C₁.-CONTRACTIONS WITH HILBERT-SCHMIDT DEFECT OPERATORS

KATSUTOSHI TAKAHASHI

1. INTRODUCTION

According to their theory of characteristic functions and functional models for contractions, Sz.-Nagy and Foias investigated a contraction T whose defect operator $D_T = (I - T^*T)^{1/2}$ is of Hilbert-Schmidt class and whose spectrum does not fill the unit disc (see [5, Chapter VIII]). Such a contraction was called a weak contraction and proved to possess a good structure. In this paper we investigate a contraction T of class C_1 , whose defect operator D_T is of Hilbert-Schmidt class. We note that such a contraction is a weak contraction if and only if it is of class C_{11} (see [5, Chapter VIII]). Recall that a contraction T is of class C_1 , if $\lim \|T^nx\| \neq 0$ for every non-zero x, and T is of class C_0 , if $\lim \|T^nx\| = 0$ for every x. The classes C_1 and C_2 are defined by using T^* instead of T, and T_2 and T_3 for T_4 instead of T_2 and T_3 are defined by using T^* instead of T_3 and T_4 and T_4 for T_4 and T_4 are defined by using T^* instead of T_4 and T_4 and T_4 are defined by using T^* instead of T_4 and T_4 are T_4 .

For a contraction T of class C_1 , there is an injection X with dense range such that XT = VX for some isometry V (see [5, pp. 71–72] and [4]). In the recent paper [12] Uchiyama proved for a C_{10} -contraction T with Hilbert-Schmidt defect operator D_T that there exist an injection X with dense range and an injection Y such that XT = SX and TY = YS for a unilateral shift S with ind $S = \inf T$ (for a semi-Fredholm operator A, $\inf A$ denotes Fredholm index). In Section 3 we show for a C_1 -contraction T with Hilbert-Schmidt defect operator D_T that there exist an injection X with dense range and a sequence of injections $\{Y_n : n = 1, 2, \ldots\}$ such that XT = VX, $TY_n = Y_nV$ ($n = 1, 2, \ldots$) and the span of $\{ \operatorname{ran} Y_n : n = 1, 2, \ldots \}$ is the space on which T acts, where V is an isometry with $\inf V = \inf T$, and $\inf T$ is of class C_{10} , then the isometry V is a unilateral shift. Then we treat three natural weakly closed algebras of operators associated with such T; the first one is $\operatorname{Alg} T$, the weakly closed algebra generated by T and the identity, the second is the double commutant $\{T\}''$, and the third is $\operatorname{Alg} L$ at T, where $\operatorname{Lat} T$ denotes the class of all T-invariant subspaces and $\operatorname{Alg} L$ at T is the algebra consisting of all operators

A for which Lat $T \subseteq \text{Lat } A$. Obviously Alg $T \subseteq \{T\}''$ and Alg $T \subseteq \text{AlgLat } T$. An operator T is said to have the bicommutant property if Alg $T = \{T\}''$ while T is said to be reflexive if Alg T = AlgLat T. Every isometry is reflexive ([2]). Every non-unitary isometry has the bicommutant property while a unitary operator U has this property if and only if it is reductive, that is, Lat $U = \text{Lat } U^*$ ([9]), and reductive unitary operators were characterized ([13]). In Section 4 we prove the bicommutant property for a C_1 -contraction T not of class C_{11} whose defect operator D_T is of Hilbert-Schmidt class, and for a C_{11} -contraction, the condition for its bicommutant property can be completely described in terms of its characteristic function. In the final section we establish the reflexivity of every C_1 -contraction with Hilbert-Schmidt defect operator.

For contractions whose defect operators are of finite rank, these results were proved by Uchiyama ([10] and [11]) and Wu ([14], [15], [16] and [17]). But our proofs are more direct and transparent even in the case of finite rank.

2. PRELIMINARIES

A contraction is completely non-unitary (c.n.u.) if it has no non-trivial unitary direct summand. For a c.n.u. contraction we use the functional model of Sz.-Nagy and Foiaş [5]. All Hilbert spaces are assumed to be separable.

For a Hilbert space \mathscr{E} , $L^2(\mathscr{E})$ denotes the Lebesgue space of \mathscr{E} -valued, norm-square integrable functions on the unit circle, and $H^2(\mathscr{E})$ is the Hardy subspace of $L^2(\mathscr{E})$. For two Hilbert spaces \mathscr{E} and \mathscr{E}' , $L^\infty(\mathscr{E},\mathscr{E}')$ and $H^\infty(\mathscr{E},\mathscr{E}')$ denote the Lebesgue and Hardy spaces of operator-valued, bounded functions on the unit circle whose values are operators from \mathscr{E} to \mathscr{E}' , respectively. Multiplication on $L^2(\mathscr{E})$ by an operator-function F in $L^\infty(\mathscr{E},\mathscr{E}')$ is an operator from $L^2(\mathscr{E})$ to $L^2(\mathscr{E}')$, which we denote by the same letter F;

$$(Ff)(e^{it}) = F(e^{it})f(e^{it}) \quad (f \in L^2(\mathscr{E})).$$

An operator-function $F \in L^{\infty}(\mathscr{E}, \mathscr{E}')$ is in $H^{\infty}(\mathscr{E}, \mathscr{E}')$ if and only if the multiplication operator F maps the subspace $H^2(\mathscr{E})$ of $L^2(\mathscr{E})$ into the subspace $H^2(\mathscr{E}')$ of $L^2(\mathscr{E}')$. Let T be a c.n.u. contraction, and let \mathscr{D}_T denote the closure of the range of the defect operator D_T . The characteristic function Θ_T of T is an operator-function in $H^{\infty}(\mathscr{D}_T, \mathscr{D}_{T^*})$ whose values are contractions, defined by

$$\Theta_T(\lambda) = [-T + \lambda D_{T^{\bullet}} (I - \lambda T^*)^{-1} D_T] | \mathcal{D}_T \quad (|\lambda| < 1).$$

The (unitarily equivalent) functional model of T is the operator $S(\Theta_T)$ on the Hilbert space

$$H(\Theta_T) = K(\Theta_T) \ominus \{\Theta_T h \oplus \Delta_T h : h \in H^2(\mathcal{D}_T)\},\$$

where

$$K(\Theta_T) = H^2(\mathcal{D}_{T^*}) \oplus \overline{\Lambda_T L^2(\mathcal{D}_T)}, \quad \Lambda_T(e^{it}) = (I - \Theta_T(e^{it})^* \Theta_T(e^{it}))^{1/2},$$

defined by

$$S(\Theta_T)(f \oplus g) = P(\chi f \oplus \chi g),$$

where $\chi(e^{it}) = e^{it}$ and P denotes the orthogonal projection of $K(\Theta_T)$ onto $H(\Theta_T)$ (see [5, Chapter VI]). A c.n.u. contraction T is of class C_1 . (resp. C_1) if and only if its characteristic function Θ_T is *-outer (resp. outer) (see [5, Chapter VI, Proposition 3.5]). Recall that an operator-function Θ in $H^{\infty}(\mathscr{E}, \mathscr{E}')$ is outer if $\Theta H^2(\mathscr{E})$ is dense in $H^2(\mathscr{E}')$, and Θ is inner if $\Theta(e^{it})$ is an isometry for almost every t. Θ is *-outer (resp. *-inner) if $\tilde{\Theta}$ is outer (resp. inner), where $\tilde{\Theta}$ is an operator-function in $H^{\infty}(\mathscr{E}', \mathscr{E})$ defined by $\tilde{\Theta}(\lambda) = \Theta(\tilde{\lambda})^*$. We also use the canonical factorization of an operator-function in $H^{\infty}(\mathscr{E}, \mathscr{E}')$; an operator-function Θ in $H^{\infty}(\mathscr{E}, \mathscr{E}')$ admits the canonical factorization $\Theta = \Theta_i \Theta_e$, where Θ_i is inner and Θ_e is outer, and from the canonical factorization of $\tilde{\Theta}$ we obtain the *-canonical factorization $\Theta = \Theta_{*e} \Theta_{*i}$ of Θ , where Θ_{*i} is *-inner and Θ_{*e} is *-outer (see [5, p. 204]).

The proof of [12, Proposition 2] shows the following lemma for *-outer functions. For completeness, we give its proof here.

LEMMA 1. If an operator-function $\Theta \in H^{\infty}(\mathscr{E}, \mathscr{E}')$ is *-outer, then the operator Θ is injective and the pre-image of $H^2(\mathscr{E}')$ under Θ is contained in $H^2(\mathscr{E})$, that is, $f \in L^2(\mathscr{E})$ is mapped into $H^2(\mathscr{E}')$ by Θ only if f is in $H^2(\mathscr{E})$. If Θ is inner in addition, and if $g \in H^2(\mathscr{E}')$ is in ran Θ , then Θ^*g is in $H^2(\mathscr{E})$.

Proof. Since $\operatorname{ran}\widetilde{\Theta}$ is dense in $L^2(\mathscr{E})$, for almost every t $\operatorname{ran}\Theta^*(e^{it})$ is dense in \mathscr{E} , so that $\ker\Theta(e^{it})=\{0\}$ which implies that Θ is injective. Further it follows from the *-outer property of Θ that the image of $L^2(\mathscr{E}') \ominus H^2(\mathscr{E}')$ under Θ^* is dense in $L^2(\mathscr{E}) \ominus H^2(\mathscr{E})$. Therefore if Θf is in $H^2(\mathscr{E}')$, that is, Θf is orthogonal to $L^2(\mathscr{E}') \ominus H^2(\mathscr{E}')$, then f is orthogonal to $L^2(\mathscr{E}) \ominus H^2(\mathscr{E})$, hence f belongs to $H^2(\mathscr{E})$. If Θ is inner in addition and if $g \in H^2(\mathscr{E}')$ is in $\operatorname{ran}\Theta$, then $g = \Theta \Theta^*g$ so that Θ^*g must be in $H^2(\mathscr{E})$ as above.

Lemma 2. Let $\Theta = \Theta_2\Theta_1$ be the canonical factorization of $\Theta \in H^\infty(\mathscr{E}, \mathscr{E}')$; $\Theta_1 \in H^\infty(\mathscr{E}, \mathscr{F})$ is outer while $\Theta_2 \in H^\infty(\mathscr{F}, \mathscr{E}')$ is inner. If there is $\Omega \in H^\infty(\mathscr{E}', \mathscr{E})$ and $0 \neq \delta \in H^\infty$ such that

$$\Omega\Theta = \delta I_{\ell},$$

then the outer part $\delta_{\rm e}$ of δ is a scalar multiple of Θ_1 ; for some $\Phi \in H^\infty(\mathcal{F},\,\mathscr{E})$

(2)
$$\Phi\Theta_1 = \delta_e I_{\mathcal{E}} \quad \text{and} \quad \Theta_1 \Phi = \delta_e I_{\mathcal{F}}.$$

If, in addition, Θ is *-outer, then Θ_2 is *-outer too.

Proof. Let $\Phi = (\Omega\Theta_2)_e$ be the outer part of $\Omega\Theta_2$. According to the uniqueness (up to a constant unitary) of the canonical factorization (see [5, p. 204]), we may assume that (1) implies $\Phi\Theta_1 = \delta_e I_{\mathcal{E}}$, hence $\{\Theta_1 \Phi - \delta_e I_{\mathcal{F}}\}\Theta_1 = 0$. Since, Θ_1 being outer, ran Θ_1 is dense, this implies that $\Theta_1 \Phi - \delta_e I_{\mathcal{F}} = 0$, proving (2). It follows from (2) that $\tilde{\Phi}\tilde{\Theta}_1 = \tilde{\delta}_e I_{\mathcal{F}}$. Then since $\tilde{\delta}_e I_{\mathcal{F}}$ is outer together with $\delta_e I_{\mathcal{F}}$, $\tilde{\Phi}$ must be outer. If, in addition, Θ is *-outer, $\tilde{\Phi}\tilde{\Theta}$ is outer. Then the relation $\tilde{\Phi}\tilde{\Theta} = \tilde{\Theta}_2\tilde{\delta}_e I_{\delta'}$ implies that ran $\tilde{\Theta}_2$ is dense, that is, Θ_2 is *-outer.

Let T be a contraction of class C_1 , with Hilbert-Schmidt defect operator. Since, for any α with $|\alpha| < 1$,

$$I - T_{\alpha}^* T_{\alpha} = S_{\alpha}^* (I - T^*T) S_{\alpha}$$

where

$$T_{\alpha} = (T - \alpha I)(I - \bar{\alpha}T)^{-1}$$
 and $S_{\alpha} = (1 - |\alpha|^2)^{1/2}(I - \bar{\alpha}T)^{-1}$

(see [5, p. 240]), the operator $T - \alpha I$ is left Fredholm together with T. Also since T is of class C_1 ., $T - \alpha I$ is injective, hence it is left invertible. It follows from Fredholm index theory (see [3, Chapter 5]) that

$$\dim \ker(T - \alpha I)^* = -\operatorname{ind}(T - \alpha I)$$

is invariant for $|\alpha| < 1$. Further ind T = 0 if and only if T is a weak contraction.

For operators T_1 and T_2 , $T_1 \stackrel{ci}{\lt} T_2$ denotes that there exists a family $\{X_\alpha\}$ of injections such that $X_\alpha T_1 = T_2 X_\alpha$ for each α and the span \bigvee_α ran X_α is the whole space on which T_2 acts. If the family $\{X_\alpha\}$ can be chosen to consist of a single operator, i.e. if there exists an injection X with dense range such that $XT_1 = T_2 X$, then T_1 is called a *quasi-affine transform* of T_2 , and this relation of T_1 and T_2 is denoted by $T_1 \prec T_2$. And T_1 and T_2 are said to be *completely injection-similar* if $T_1 \stackrel{ci}{\lt} T_2$ and $T_2 \stackrel{ci}{\lt} T_1$ ([7]).

For a Hilbert space \mathscr{E} , let $S_{\mathscr{E}}$ denote the unilateral shift on $H^2(\mathscr{E})$. For a c.n.u. contraction T, let S_{T^*} and U_T denote the unilateral shift on $H^2(\mathscr{D}_{T^*})$ and the unitary operator of multiplication by $\chi(e^{it}) = e^{it}$ on $\overline{\Delta_T L^2(\mathscr{D}_T)}$, respectively.

3. COMPLETE INJECTION-SIMILARITY

In this section we prove the following theorem.

Theorem 1. A c.n.u. C_1 -contraction T with Hilbert-Schmidt defect operator is completely injection-similar to an isometry. More precisely

$$S_{\mathscr{E}} \oplus U_T \stackrel{\mathrm{ci}}{\prec} T \prec S_{\mathscr{E}} \oplus U_T$$

٠,٠

where & is a Hilbert space of dimension -ind T.

To prove this theorem we need some lemmas.

Lemma 3 is a refined version of the result obtained in the proof of [12, Theorem 2] for a $C_{\cdot 0}$ -contraction whose point spectrum does not fill the open unit disc.

Lemma 3. If T is a c.n.u. C_1 -contraction with Hilbert-Schmidt defect operator, then for each cpmplex α with $|\alpha| < 1$ there exists an isometry V_{α} from \mathcal{D}_T to \mathcal{D}_{T^*} such that

(3)
$$\ker V_{\alpha}^* = \ker \Theta_T(\alpha)^*$$

and that $V_{\alpha}^*\Theta_T$ has a scalar multiple $\delta_{\alpha} \in H^{\infty}$,

$$\Omega_{\alpha}V_{\alpha}^{*}\Theta_{T}=V_{\alpha}^{*}\Theta_{T}\Omega_{\alpha}=\delta_{\alpha}I_{\Omega_{T}}$$

with some $\Omega_{\alpha} \in H^{\infty}(\mathcal{D}_T)$ $(= H^{\infty}(\mathcal{D}_T, \mathcal{D}_T))$.

Proof. For $|\alpha| < 1$, the operator $T_{\alpha} = (T - \alpha I)(I - \bar{\alpha}T)^{-1}$ is a contraction and its characteristic function $\Theta_{T_{\alpha}}(\lambda)$ coincides with $\Theta_{T}\left(\frac{\lambda + \alpha}{1 + \bar{\alpha}\lambda}\right)$ (see [5, p. 240]), that is, there exist unitary operators $A_{\alpha} : \mathscr{D}_{T_{\alpha}} \mapsto \mathscr{D}_{T}$ and $B_{\alpha} : \mathscr{D}_{T_{\alpha}^{*}} \mapsto \mathscr{D}_{T^{*}}$ such that

(5)
$$\Theta_{T_{\alpha}}(\lambda) = B_{\alpha}^* \Theta_T \left(\frac{\lambda + \alpha}{1 + \bar{\alpha}\lambda} \right) A_{\alpha} \quad \text{for } |\lambda| < 1.$$

Since the defect operator $D_{T_{\alpha}}$ of T_{α} is of Hilbert-Schmidt class together with D_{T} , the operator

$$I + (T_{\alpha}^{*}|\mathcal{D}_{T_{\alpha}^{*}})\Theta_{T_{\alpha}}(\lambda) = D_{T_{\alpha}}^{2} + \lambda D_{T_{\alpha}}T_{\alpha}^{*}(I - \lambda T_{\alpha}^{*})^{-1}D_{T_{\alpha}}$$

is of trace class for $|\lambda| < 1$, and it follows by (5) that $I + A_{\alpha} T_{\alpha}^* B_{\alpha}^* \Theta_T(\lambda)$ is of trace class for $|\lambda| < 1$. Let $B_{\alpha} T_{\alpha} A_{\alpha}^* = V_{\alpha} P_{\alpha}$ be the polar decomposition of $B_{\alpha} T_{\alpha} A_{\alpha}^*$. Then V_{α} is an isometry from \mathcal{D}_T to \mathcal{D}_{T^*} because T_{α} is injective, and

$$\begin{split} \ker V_\alpha^* &= \ker(A_\alpha T_\alpha^* B_\alpha^*) = \ker(-A_\alpha \Theta_{T_\alpha}(0)^* B_\alpha^*) = \\ &= \ker(-\Theta_T(\alpha)^*) = \ker\Theta_T(\alpha)^*. \end{split}$$

Since $I + P_{\alpha}V_{\alpha}^*\Theta_T(\lambda)$ ($|\lambda| < 1$) and $I - P_{\alpha}$ are of trace class, the identity

$$I + V_{\alpha}^* \Theta_T(\lambda) = I + P_{\alpha} V_{\alpha}^* \Theta_T(\lambda) + (I - P_{\alpha}) V_{\alpha}^* \Theta_T(\lambda)$$

shows that $I + V_{\alpha}^* \mathcal{O}_T(\lambda)$ is of trace class for $|\lambda| < 1$. Then there exists an operator-function Ω_{α} in $H^{\infty}(\mathcal{D}_T)$ such that

$$\Omega_{\alpha}(\lambda)V_{\alpha}^{*}\Theta_{T}(\lambda) = V_{\alpha}^{*}\Theta_{T}(\lambda)\Omega_{\alpha}(\lambda) = \delta_{\alpha}(\lambda)I_{\mathcal{D}_{T}} \quad \text{ for } |\lambda| < 1,$$

where $\delta_{\alpha}(\lambda) = \det(-V_{\alpha}^* \Theta_T(\lambda)) \in H^{\infty}$ (see [1]). Since T_{α} is injective and $I - T_{\alpha}^* T_{\alpha}$ is of trace class, we have that

$$\delta_{\alpha}(\alpha) = \det(-V_{\alpha}^*\Theta_T(\alpha)) = \det(A_{\alpha}(T_{\alpha}^*T_{\alpha}|\mathscr{D}_{T_{\alpha}})^{1/2}A_{\alpha}^*) \neq 0,$$

and δ_{α} is a non-zero function in H^{∞} . This completes the proof.

We remark that $\ker \Theta_T(\alpha)^{\pm}$ has the same dimension —ind T for every $|\alpha| < 1$. In fact, putting $\lambda = 0$ in (5), we have

$$-T_{\alpha}|\mathcal{D}_{T_{\alpha}}=\Theta_{T_{\alpha}}(0)=B_{\alpha}^{*}\Theta_{T}(\alpha)A_{\alpha}.$$

Since T_{α} maps $\mathscr{D}_{T_{\alpha}}$ into $\mathscr{D}_{T_{\alpha}^*}$ while it isometrically maps the orthocomplement of $\mathscr{D}_{T_{\alpha}}$ onto the one of $\mathscr{D}_{T_{\alpha}^*}$ (see [5, p. 260]), it follows that $\Theta_T(\alpha)$ is left invertible and

$$\dim \ker \Theta_T(\alpha)^* = \dim \ker T_{\alpha}^* = -\operatorname{ind} T.$$

LEMMA 4. If a c.n.u. contraction T with Hilbert-Schmidt defect operator is of class C_1 , but not of class C_{11} , then $\operatorname{ind} T < 0$ and there are a Hilbert space $\mathscr E$ of dimension $-\operatorname{ind} T$ and an operator-function $\Phi \in H^\infty(\mathscr D_{T^*}, \mathscr E)$ that is *-inner and outer such that

(6)
$$\ker \Phi(e^{it}) = \operatorname{ran} \Theta_{\tau}(e^{it}) \quad \text{a.e. } t$$

and

(7)
$$\operatorname{ran} \tilde{\Phi}(e^{it}) = \ker \tilde{\Theta}_{T}(e^{it}) \quad \text{a.e. } t.$$

Proof. Put $\alpha = 0$ in Lemma 3, and consider an operator-function $\Psi \in H^{\infty}(\mathcal{D}_{T^{\bullet}})$ defined by

(8)
$$\Psi = \delta_0 I_{\mathcal{Q}_{T^*}} - \Theta_T \Omega_0 V_0^*.$$

Then since $\delta_0(e^{it}) \neq 0$ a.e. t, it follows from (4) and (8) that

(9)
$$\ker \Psi(e^{it}) = \operatorname{ran} \Theta_T(e^{it})$$
 and $\operatorname{ran} \Psi(e^{it}) = \ker V_0^*$ a.e. t .

We first see that $\Psi \neq 0$, consequently ker $V_0^* \neq \{0\}$ and ind T < 0. In fact, if $\Psi = 0$, then δ_0 is a scalar multiple of Θ_T by (4) and (8), and since Θ_T is *-outer, it is also outer (see [5, Chapter V, Theorem 6.2]). Then, as remarked earlier, T is of class C_{11} ; this is a contradiction.

Let $\Psi = \Psi_2 \Psi_1$ be the *-canonical factorization of Ψ , that is, $\Psi_1 \in H^{\infty}(\mathcal{Q}_{T^{\bullet}}, \mathcal{F})$ is *-inner and $\Psi_2 \in H^{\infty}(\mathcal{F}, \mathcal{Q}_{T^{\bullet}})$ is *-outer. Then since $\Psi_2(e^{it})$ is injective a.e. t,

(10)
$$\ker \Psi(e^{it}) = \ker \Psi_1(e^{it})$$

and

(11)
$$\dim \operatorname{ran} \Psi_1(e^{it}) = \dim \operatorname{ran} \Psi(e^{it}) = \dim \ker V_0^*.$$

Finally let $\Psi_1 = \Psi_{12}\Psi_{11}$ be the canonical factorization of Ψ_1 , that is, $\Psi_{11} \in H^{\infty}(\mathcal{D}_{T^*}, \mathscr{E})$ is outer and $\Psi_{12} \in H^{\infty}(\mathscr{E}, \mathscr{F})$ is inner. Put $\Phi = \Psi_{11}$. Then clearly Φ is *-inner and outer, and for almost every t,

(12)
$$\ker \Phi(e^{it}) = \ker \Psi_1(e^{it})$$

and

(13)
$$\dim \mathscr{E} = \dim \operatorname{ran} \Phi(e^{it}) = \dim \operatorname{ran} \Psi_1(e^{it}).$$

It follows from (11), (13) and (3) that

$$0 < \dim \mathscr{E} = \dim \ker \Theta_{\mathcal{T}}(0)^* = \dim \ker T^* = -\operatorname{ind} T$$

while (9), (10) and (12) imply (6). Then (7) follows from (6) by taking ortho-complements because Φ is *-inner, hence for almost every t, $\tilde{\Phi}(e^{it})$ is isometric and ran $\tilde{\Phi}(e^{it})$ is closed.

COROLLARY 1. The operator-function Φ in Lemma 4 possesses the following properties:

(14)
$$\Phi(\lambda)\Theta_T(\lambda) = 0 \quad \text{for all } \lambda \text{ with } |\lambda| < 1$$

and

(15)
$$\ker \Phi = \operatorname{ran} \Theta_2 \quad \operatorname{and} \quad \operatorname{ran} \tilde{\Phi} = \ker \tilde{\Theta}_T,$$

where Θ_2 is the inner part of Θ_T .

Proof. (6) implies

$$\Phi(e^{it})\Theta_T(e^{it}) = 0$$
 a.e. t .

Since both $\Phi(\lambda)$ and $\Theta_T(\lambda)$ are analytic functions of λ , this relation on the boundary yields (14). Also since the outer part Θ_1 of Θ_T has a scalar multiple by Lemma 2, $\Theta_1(e^{it})$ is invertible a.e. t, and therefore (6) implies

$$\ker \Phi(e^{it}) = \operatorname{ran} \Theta_2(e^{it})$$
 a.e. t .

Now (15) follows from this and (7) by using the isometric property of Θ_2 and $\tilde{\Phi}$.

The following lemma shows the relation $S_{\delta} \oplus U_T \stackrel{ci}{\prec} T$ in Theorem 1, and it is also used in the subsequent discussion.

LEMMA 5. Let T be a c.n.u. C_1 -contraction with Hilbert-Schmidt defect operator. If T is not of class C_{11} , then there are a sequence $\{J_n : n = 1, 2, ...\}$ of injections from $H(\Theta_T)$ to $H^2(\mathscr{E}) \oplus \Delta_T \overline{L^2(\mathscr{D}_T)}$ and a sequence $\{K_n : n = 1, 2, ...\}$ of injections from $H^2(\mathscr{E}) \oplus \Delta_T \overline{L^2(\mathscr{D}_T)}$ to $H(\Theta_T)$, where \mathscr{E} is a Hilbert space of dimension—ind T, which satisfy the following conditions:

(16)
$$(S_{\ell} \oplus U_T)J_n = J_nS(\Theta_T)$$
 and $K_n(S_{\ell} \oplus U_T) = S(\Theta_T)K_n$,

(17)
$$J_n K_n = \delta_n (S_{\epsilon} \oplus U_T) \quad and \quad K_n J_n = \delta_n (S(\Theta_T))$$

where δ_n are in H^{∞} , $\delta_n(S_{\mathcal{E}} \oplus U_T)$ and $\delta_n(S(\Theta_T))$ are operators obtained by the \mathcal{H}^{∞} -functional calculus of Sz-Nagy and Foiaş for all n, and

(18)
$$\bigvee_{n} \operatorname{ran} K_{n} = H(\Theta_{T}).$$

If T is of class C_{11} , then there exist injections J and K with dense range such that

$$(16)' U_T J = JT \quad and \quad KU_T = TK,$$

(17)'
$$JK = \delta(U_T) \quad and \quad KJ = \delta(T),$$

where δ is an outer function in H^{∞} .

Proof. Suppose that T is not of class C_{11} . Fix a sequence of distinct complex numbers $\{\alpha_n\}$ such that $|\alpha_n| < 1$ and $\lim \alpha_n = 0$. Since $\ker \Theta_T(\alpha_n)^*$ has the same dimension —ind T for every n, it is possible to take an isometry W_n from δ to \mathscr{O}_{T^*} such that ran $W_n = \ker \Theta_T(\alpha_n)^*$. Write, for simplicity, $V_n = V_{\alpha_n}$, $\Omega_n = \Omega_{\alpha_n}$ and $\delta_n = \delta_{\alpha_n}$ in Lemma 3. First define an operator \hat{J}_n from $K(\Theta_T)$ to $H^2(\delta) \oplus \Delta_T L^2(\mathscr{O}_T)$ and one \hat{K}_n from $H^2(\delta) \oplus \Delta_T L^2(\mathscr{O}_T)$ to $K(\Theta_T)$ by

$$\hat{J}_n = \begin{bmatrix} W_n^*(\delta_n I - \Theta_T \Omega_n V_n^*) & 0 \\ -\Delta_T \Omega_n V_n^* & \delta_n I \end{bmatrix}$$

and

$$\hat{K}_n = \begin{bmatrix} W_n & 0 \\ 0 & I \end{bmatrix},$$

respectively, where W_n also denotes a constant function in $H^{\infty}(\mathcal{E}, \mathcal{Q}_{T^*})$ whose value is W_n . Then obviously

$$(19) \quad \hat{J}_n(S_{T^*} \oplus U_T) = (S_{\varepsilon} \oplus U_T)\hat{J}_n \quad \text{and} \quad (S_{T^*} \oplus U_T)\hat{K}_n = \hat{K}_n(S_{\varepsilon} \oplus U_T).$$

Since $W_n W_n^* = I - V_n V_n^*$ by (3), it follows from (4) that

$$(20) W_n W_n^{\dagger}(\delta_n I - \Theta_T \Omega_n V_n^{\dagger}) = \delta_n (I - V_n V_n^{\dagger}) - \Theta_T \Omega_n V_n^{\dagger} + V_n V_n^{\dagger} \Theta_T \Omega_n V_n^{\dagger} = \delta_n I - \Theta_T \Omega_n V_n^{\dagger}.$$

Therefore

(21)
$$\hat{K}_n \hat{J}_n = \begin{bmatrix} \delta_n I & 0 \\ 0 & \delta_n I \end{bmatrix} - \begin{bmatrix} \Theta_T \\ \Delta_T \end{bmatrix} [\Omega_n V_n^* & 0] .$$

Since ran $W_n = \ker V_n^*$ by (3),

(22)
$$\hat{J}_n \hat{K}_n = \begin{bmatrix} \delta_n I & 0 \\ 0 & \delta_n I \end{bmatrix}.$$

Next we claim that

(23)
$$\ker \hat{J}_n = K(\Theta_T) \ominus H(\Theta_T).$$

That the right side is included in the left side follows immediately from (4). Take $f \oplus g$ in $H(\Theta_T) \cap \ker \hat{J}_n$. Then firstly $f \oplus g \in H(\Theta_T)$ implies that $\Theta_T^*f + \Delta_T g \in L^2(\mathcal{D}_T) \ominus H^2(\mathcal{D}_T)$. Next $f \oplus g \in \ker \hat{J}_n$ implies, via (21), that $\delta_n f = \Theta_T \Omega_n V_n^* f$ and $\delta_n g = \Delta_T \Omega_n V_n^* f$, hence

$$\delta_n \cdot (\Theta_T^* f + \Delta_T g) = \Omega_n V_n^* f.$$

Therefore $\delta_n^{-1}\Omega_n V_n^* f$ belongs to $L^2(\mathcal{D}_T) \ominus H^2(\mathcal{D}_T)$. But since $\Theta_T \delta_n^{-1}\Omega_n V_n^* f = f$ and Θ_T is *-outer, by Lemma 1 this is possible only when $\delta_n^{-1}\Omega_n V_n^* f = 0$, hence f = 0 and g = 0. This establish (23).

Now let $J_n = \hat{J}_n | H(\Theta_T)$ and $K_n = P\hat{K}_n$. Then (16) and (17) follow from (19), (21), (22), (23) and the identity $P(S_{T^*} \oplus U_T) = P(S_{T^*} \oplus U_T)P$. Further J_n is injective by (23). Since obviously $\delta_n(S_{\mathcal{E}} \oplus U_T)$ is injective, so is K_n by (17). It remains to prove (18). It suffices to show that $f \oplus g$ in $H(\Theta_T)$ can be orthogonal to all ran \hat{K}_n $(n=1,2,\ldots)$ only if f=0 and g=0. First of all, g=0 follows immediately from the orthogonality. Then since $f \oplus g \in H(\Theta_T)$ means $\Theta_T^* f + \Delta_T g \in L^2(\mathcal{D}_T) \oplus H^2(\mathcal{D}_T)$, we have $\Theta_T^* f \in L^2(\mathcal{D}_T) \oplus H^2(\mathcal{D}_T)$. Let $\Theta_T = \Theta_2 \Theta_1$ be the canonical factorization of Θ_T $(\Theta_1 \in H^{\infty}(\mathcal{D}_T, \mathcal{F}))$ and $\Theta_2 \in H^{\infty}(\mathcal{F}, \mathcal{D}_{T^*})$. Then since Θ_1 is outer, it follows that

(24)
$$\Theta_2^* f \in L^2(\mathscr{F}) \ominus H^2(\mathscr{F}).$$

Next the orthogonality of f to ran W_n implies that $f(\alpha_n)$ is orthogonal to ran W_n . Since ran $W_n = \ker \Theta_T(\alpha_n)^*$, it follows from Corollary 1 that $\Phi(\alpha_n)f(\alpha_n) = 0$ (n = 1, 2, ...). Then by the uniqueness theorem for an operator analytic function $\Phi(\lambda)f(\lambda) = 0$ for all $|\lambda| < 1$, hence $f \in \ker \Phi$. Then again by Corollary 1, $f \in \operatorname{ran} \Theta_2$. Since Θ_2 is inner and *-outer by Lemma 2, it follows from Lemma 1 that Θ_2^*f belongs to $H^2(\mathcal{F})$. When combined with (24), this yields $\Theta_2^*f = 0$, and finally $f = \Theta_2\Theta_2^*f = 0$. This completes the proof for the case T is not of class C_{11} .

If T is of class C_{11} , then it is a weak contraction, hence Θ_T has a scalar multiple δ that is outer (see [5, Chapter VIII]); $\Omega\Theta_T = \delta I$ and $\Theta_T\Omega = \delta I$ for some $\Omega \in H^{\infty}(\mathcal{D}_{T^*}, \mathcal{D}_T)$. We define the operators J and K by

(25)
$$J = [-\Delta_T \Omega \quad \delta I] \mid H(\Theta_T) : H(\Theta_T) \mapsto \overline{\Delta_T L^2(\mathcal{D}_T)},$$

(26)
$$K = P \begin{bmatrix} 0 \\ I \end{bmatrix} : \overline{\Delta_T L^2(\mathcal{D}_T)} \mapsto H(\mathcal{O}_T).$$

Then the identites (16)' and (17)' are clear. Since δ is outer, $\delta(S(\Theta_T))$ is an injection with dense range (see (5, Chapter III, Proposition 3.1]). Also obviously $\delta(U_T)$ is injective and has dense range. Therefore it follows from (17)' that J and K are injective and have dense range.

Proof of Theorem 1. It is known that a c.n.u. C_{11} -contraction T is quasi-similar to U_T , that is, $T \prec U_T$ and $U_T \prec T$ (see [5, pp. 71-72]) and it is also proved in Lemma 5. So suppose that T is not of class C_{11} . Consider an operator \hat{X} from $K(\Theta_T)$ to $H^2(\mathcal{E}) \oplus \widehat{\Delta_T L^2(\mathcal{D}_T)}$ defined by

$$\hat{X} = \begin{bmatrix} \Phi & 0 \\ -\Delta_T \Theta_T^* & \Theta_T^* \Theta_T \end{bmatrix},$$

where Φ is the outer function in Lemma 4. Obviously \hat{X} intertwines $S_{\varepsilon} \oplus U_T$ and $S_{T^{\circ}} \oplus U_T$, that is, $(S_{\varepsilon} \oplus U_T)\hat{X} = \hat{X}(S_{T^{\bullet}} \oplus U_T)$.

First we claim that \hat{X} has dense range. In fact, since, Θ_T being *-outer, $\Theta_T^*\Theta_T$ has dense range and commutes with Δ_T , $\Theta_T^*\Theta_T$ maps $\overline{\Delta_T L^2(\mathscr{D}_T)}$ to a dense set of $\overline{\Delta_T L^2(\mathscr{D}_T)}$. This implies that $\{0\} \oplus \overline{\Delta_T L^2(\mathscr{D}_T)}$ is contained in the closure of ran \hat{X} . Further since Φ is outer, it maps $H^2(\mathscr{D}_{T^*})$ to a dense set of $H^2(\mathscr{E})$. Therefore the closure of ran \hat{X} must contain $H^2(\mathscr{E}) \oplus \overline{\Delta_T L^2(\mathscr{D}_T)}$.

Next we claim that $\ker \hat{X}$ coincides with $K(\Theta_T) \ominus H(\Theta_T)$. Since $\Phi\Theta_T = 0$ by (6), and Δ_T commutes with $\Theta_T^*\Theta_T$,

$$\begin{bmatrix} \boldsymbol{\Phi} & \boldsymbol{0} \\ -\boldsymbol{\Delta}_T\boldsymbol{\Theta}_T^* & \boldsymbol{\Theta}_T^*\boldsymbol{\Theta}_T \end{bmatrix} \begin{bmatrix} \boldsymbol{\Theta}_T \\ \boldsymbol{\Delta}_T \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix},$$

which shows that $\ker \hat{X}$ contains $K(\Theta_T) \ominus H(\Theta_T)$. Suppose that $f \oplus g$ is in $H(\Theta_T) \cap \ker \hat{X}$, or equivalently

(27)
$$\Theta_T^* f + \Delta_T g \in L^2(\mathscr{D}_T) \ominus H^2(\mathscr{D}_T),$$

(28)
$$\Phi f = 0 \quad \text{and} \quad -\Delta_T \Theta_T^* f + \Theta_T^* \Theta_T g = 0.$$

Let $\Theta_T = \Theta_2\Theta_1$ be the canonical factorization of Θ_T ; $\Theta_1 \in H^{\infty}(\mathcal{D}_T, \mathscr{F})$ is outer and $\Theta_2 \in H^{\infty}(\mathscr{F}, \mathcal{D}_{T^{\bullet}})$ is inner. Let $\Delta_1 = (I - \Theta_1^*\Theta_1)^{1/2}$ and $\Delta_{*1} = (I - \Theta_1\Theta_1^*)^{1/2}$. Then since Θ_2 is inner, it follows from (28) and (15) that $f = \Theta_2\Theta_2^*f$ and

$$0 = -\Delta_T \Theta_T^* f + \Theta_T^* \Theta_T g = -\Delta_1 \Theta_1^* \Theta_2^* f + \Theta_1^* \Theta_1 g = \Theta_1^* (-\Delta_{*1} \Theta_2^* f + \Theta_1 g).$$

Since Θ_1 is outer, $-\Delta_{*1}\Theta_2^*f + \Theta_1g = 0$, hence $\Delta_{*1}^2\Theta_2^*f = \Delta_{*1}\Theta_1g$. Thus we have

$$\Theta_2^*f = \Theta_1(\Theta_T^*f + \Delta_T g),$$

which implies

(29)
$$f = \Theta_2 \Theta_2^* f = \Theta_T (\Theta_T^* f + \Delta_T g).$$

Since $f \in H^2(\mathcal{D}_{T^*})$ and Θ_T is *-outer, it follows by Lemma 1 and (29) that

$$\Theta_T^*f + \Delta_T g \in H^2(\mathcal{D}_T).$$

When combined with (27), this yields $\Theta_T^* f + \Delta_T g = 0$. Then f = 0 follows from (29), hence $\Delta_T g = 0$. Since g is in $\overline{\Delta_T L^2(\mathcal{D}_T)}$, g = 0. This establishes the claim.

Now let X be the restriction of \hat{X} to $H(\Theta_T)$. Then ker $X = \{0\}$ and ran X is dense in $H^2(\mathscr{E}) \oplus \overline{A_T L^2(\mathscr{D}_T)}$, and

$$(S_{\mathscr{E}} \oplus U_T)X = XS(\Theta_T),$$

which proves $T \prec S_{\mathscr{E}} \oplus U_T$.

The relation $S_{\varepsilon} \oplus U_T \stackrel{ci}{\prec} T$ follows immediately from Lemma 5.

 \square

4. DOUBLE COMMUTANT

In this section we consider the double commutant $\{T\}''$ of a c.n.u. contraction T of class C_1 , with Hilbert-Schmidt defect operator D_T .

The minimal isometric dilation of $T=S(\Theta_T)$ on $H(\Theta_T)$ is $S_{T^{\bullet}}\oplus U_T$ on $K(\Theta_T)$. Consider the class $\mathscr L$ of operators $\hat X$ on $K(\Theta_T)$ that commute with $S_{T^{\bullet}}\oplus U_T$ and make $K(\Theta_T)\ominus H(\Theta_T)$ invariant. More explicitly, $\hat X$ belongs to $\mathscr L$ if and only if firstly it admits a representation

$$\hat{X} = \begin{bmatrix} A & 0 \\ B & C \end{bmatrix}$$

where $A \in H^{\infty}(\mathcal{D}_{T^{\bullet}})$, $B \in L^{\infty}(\mathcal{D}_{T^{\bullet}}, \mathcal{D}_{T})$ and $C \in L^{\infty}(\mathcal{D}_{T})$ such that B maps $H^{2}(\mathcal{D}_{T^{\bullet}})$ into $\overline{\Delta_{T}L^{2}(\mathcal{D}_{T})}$ and C maps $\overline{\Delta_{T}L^{2}(\mathcal{D}_{T})}$ into itself, and secondly there exists $K \in H^{\infty}(\mathcal{D}_{T})$ such that

$$\begin{bmatrix} A & 0 \\ B & C \end{bmatrix} \begin{bmatrix} \Theta_T \\ \Delta_T \end{bmatrix} = \begin{bmatrix} \Theta_T \\ \Delta_T \end{bmatrix} K.$$

According to the lifting theorem of Sz.-Nagy and Foiaş (see [5, Chapter II, Theorem 2.3] or [6]) the correspondence π that assigns to \hat{X} its compression to $H(\Theta_T)$, i.e. $\pi(\hat{X}) = P\hat{X}|H(\Theta_T)$, maps \mathcal{L} onto the commutant $\{T\}'$. Obviously π is multiplicative.

In case Θ_T is *-outer, if \hat{X} maps $H^2(\mathscr{D}_{T^{\bullet}}) \oplus \{0\}$ into $K(\Theta_T) \ominus H(\Theta_T)$, then $\pi(\hat{X}) = 0$. In fact, if $H^2(\mathscr{D}_{T^{\bullet}}) \oplus \{0\}$ is mapped into $K(\Theta_T) \ominus H(\Theta_T)$, there exists $L \in H^{\infty}(\mathscr{D}_{T^{\bullet}}, \mathscr{D}_T)$ such that

$$\begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} \Theta_T \\ A_T \end{bmatrix} L.$$

When combined with (31), this yields that

$$\Theta_T(L\Theta_T - K) = 0$$
 and $\Delta_T L\Theta_T + C\Delta_T = \Delta_T K$.

Since, Θ_T being *-outer, Θ_T is injective, it follows that $L\Theta_T = K$ and

$$C\Delta_T = \Delta_T K - \Delta_T L\Theta_T = 0.$$

Then clearly C vanishes on the whole $\overline{\Delta_T L^2(\mathcal{D}_T)}$, hence \hat{X} maps the whole $K(\Theta_T)$ into $K(\Theta_T) \ominus H(\Theta_T)$, or equivalently $\pi(\hat{X}) = 0$.

Theorem 2. If a c.n.u. C_1 -contraction T with Hilbert-Schmidt defect operator is not of class C_{11} , then

$$\{T\}^{\prime\prime} = \{\varphi(T) : \varphi \in H^{\infty}\},\$$

and in particular

$$\{T\}^{\prime\prime} = \operatorname{Alg} T.$$

Proof. It is clear that $\varphi(T)$ is in $\{T\}''$ for every $\varphi \in H^{\infty}$. Therefore let us prove that for each \hat{X} in \mathcal{L} for which $\pi(\hat{X})$ is in the double commutant $\{T\}''$, there is $\varphi \in H^{\infty}$ such that $\pi(\hat{X}) = \varphi(T)$. Suppose that \hat{X} admits a representation (30) with (31). Take the operator-function $\Phi \in H^{\infty}(\mathcal{D}_{T^*}, \mathscr{E})$ in Lemma 4 that is outer and $\mathring{\pi}$ -inner. Since $\Phi\Theta_T = 0$ by (6), the relation (31) implies $\Phi A\Theta_T := 0$ or equivalently $\tilde{\Phi}_T(\Phi A)^{\infty} = 0$, hence by (15)

$$ran(\Phi A)^{\sim} \subset \ker \tilde{\Theta}_T = ran \tilde{\Phi}$$
.

Since $\tilde{\Phi}$ is inner and *-outer, it follows that $\tilde{\Phi}^{\sharp}(\Phi A)^{*}$ belongs to $H^{\infty}(\mathcal{E})$. Let $A_1 = (\tilde{\Phi}^{\sharp}(\Phi A)^{*})^{*}$. Then $A_1 \in H^{\infty}(\mathcal{E})$ and

$$\Phi A = A_1 \Phi.$$

We claim that there is a function $\varphi \in H^{\infty}$ such that $A_1 = \varphi I_{\mathcal{E}}$. For this purpose, take any $F \in H^{\infty}(\mathcal{E}, \mathcal{Q}_{T^{\bullet}})$. Since $F\Phi\theta_T = 0$ by (6), the operator

$$\hat{Y} = \begin{bmatrix} F\Phi & 0 \\ 0 & 0 \end{bmatrix}$$

belongs to \mathscr{L} . Then the assumption $\pi(\hat{X}) \in \{T\}^{"}$ implies, via the multiplicativity of π , that

$$\pi(\hat{X}\hat{Y} - \hat{Y}\hat{X}) = \pi(\hat{X})\pi(\hat{Y}) - \pi(\hat{Y})\pi(\hat{X}) = 0,$$

hence the operator

$$\hat{X}\hat{Y} - \hat{Y}\hat{X} = \begin{bmatrix} AF\Phi - F\Phi A & 0 \\ BF\Phi & 0 \end{bmatrix}$$

maps $H^2(\mathcal{D}_{T^{\bullet}}) \oplus \{0\}$ into $K(\mathcal{O}_T) \ominus H(\mathcal{O}_T)$. Then it follows from (32), Φ being outer, that $\begin{bmatrix} AF - FA_1 \\ BF \end{bmatrix}$ maps $H^2(\mathscr{E})$ into $K(\mathcal{O}_T) \ominus H(\mathcal{O}_T)$, the range of $\begin{bmatrix} \mathcal{O}_T \\ A_T \end{bmatrix}$. Then again $\Phi\mathcal{O}_T = 0$ implies that

$$A_1 \Phi F - \Phi F A_1 = \Phi (AF - F A_1) = 0,$$

and therefore $A_1\Phi \cdot (\chi^{-n}F) = \Phi \cdot (\chi^{-n}F)A_1$ for $n=1,2,\ldots$, where $\chi(e^{it})=e^{it}$. The set $\{\chi^{-n}F: F \in H^{\infty}(\mathscr{E}, \mathscr{D}_{T^{\bullet}}) \text{ and } n=1,2,\ldots\}$ is operator-weakly dense in $L^{\infty}(\mathscr{E}, \mathscr{D}_{T^{\bullet}})$ and since Φ is *-inner, $\Phi L^{\infty}(\mathscr{E}, \mathscr{D}_{T^{\bullet}})=L^{\infty}(\mathscr{E})$. Therefore it follows that A_1 in $H^{\infty}(\mathscr{E})$ commutes with all of $L^{\infty}(\mathscr{E})$, which is possible only when $A_1=\varphi I$ for some function $\varphi \in H^{\infty}$, establishing the claim.

Now since for every $F \in H^{\infty}(\mathscr{E}, \mathscr{D}_{T^*})$ the operator

$$\begin{bmatrix} A - \varphi I \\ B \end{bmatrix} F = \begin{bmatrix} AF - FA_1 \\ BF \end{bmatrix}$$

maps $H^2(\mathscr{E})$ into $K(\Theta_T) \ominus H(\Theta_T)$ and obviously

$$H^2(\mathcal{D}_{T^{\bullet}}) = \bigvee \{ \operatorname{ran} F : F \in H^{\infty}(\mathscr{E}, \mathcal{D}_{T^{\bullet}}) \},$$

it follows that the operator $\begin{bmatrix} A - \varphi I \\ B \end{bmatrix}$ maps $H^2(\mathcal{D}_{T^*})$ into $K(\Theta_T) \ominus H(\Theta_T)$. Finally the operator $\hat{Z} = \begin{bmatrix} \varphi I & 0 \\ 0 & \varphi I \end{bmatrix}$ belongs to \mathcal{L} and $\pi(\hat{Z}) = \varphi(T)$, and

$$\hat{X} - \hat{Z} = \begin{bmatrix} A - \varphi I & 0 \\ B & C - \varphi I \end{bmatrix}$$

maps $H^2(\mathcal{D}_{T^*}) \oplus \{0\}$ into $K(\Theta_T) \ominus H(\Theta_T)$. Then since Θ_T is *-outer, as remarked in the front of this theorem, $\pi(\hat{X} - \hat{Z}) = 0$, or equivalently $\pi(\hat{X}) = \varphi(T)$.

For contractions whose defect operators are of finite rank, Theorem 2 was proved in [16]. The theorem of the same type was proved in [10] and [11] for $C_{.0}$ -contractions not of class C_{00} whose defect operators are of finite rank.

We next characterize C_{11} -contractions which satisfy the bicommutant property. This characterization was obtained in [14] when the defect operators are of finite rank.

LEMMA 6. Let T be a c.n.u. C_{11} -contraction with Hilbert-Schmidt defect operator and let J and K be the operators satisfying the conditions (16)' and (17)' in Lemma 5. Then

$$A\lg T = \{A : JAK \in A\lg U_T\}.$$

We use the following celebrated result of Sarason (see [8, Theorem 7.1]): Let T and A be bounded linear operators on a Hilbert space. Then $A \in Alg T$ if and only if

Lat
$$T^{(n)} \subseteq \operatorname{Lat} A^{(n)}$$

for every positive integer n, where for an operator X, $X^{(n)}$ denotes the direct sum of n copies of X.

Proof of Lemma 6. Assume $A \in \operatorname{Alg} T$. We shall show that Lat $U_T^{(n)} \subseteq \operatorname{Lat}(JAK)^{(n)}$ for all n. Then it will follow from the above result that $JAK \in \operatorname{Alg} U_T$. Let $\mathcal{M} \in \operatorname{Lat} U_T^{(n)}$. Since $T^{(n)}K^{(n)} = K^{(n)}U_T^{(n)}$ by (16)', $\overline{K^{(n)}}\mathcal{M} \in \operatorname{Lat} T^{(n)}$. Then, since $A^{(n)} \in \operatorname{Alg} T^{(n)}$, $(JAK)^{(n)} = J^{(n)}A^{(n)}K^{(n)}$ and $J^{(n)}K^{(n)} = \delta(U_T^{(n)})$ by (17)', we have

$$(JAK)^{(n)}\mathcal{M} = J^{(n)}A^{(n)}K^{(n)}\mathcal{M} \subseteq J^{(n)}\overline{K^{(n)}}\mathcal{M} = \overline{\delta(U_T^{(n)})}\mathcal{M} \subseteq \mathcal{M}.$$

This shows that Lat $U_T^{(n)} \subseteq \text{Lat}(JAK)^{(n)}$.

Next we assume that $JAK \in Alg^1U_T$. To prove $A \in Alg^1T$, let us show that Lat $T^{(n)} \subseteq Lat A^{(n)}$ for all n. Since, from $JAK \in Alg U_T$ and (16)',

$$JTAK = U_T JAK = JAKU_T = JATK$$

and J is injective and K has dense range, it follows that A belongs to the commutant $\{T\}'$ of T. Let $\mathcal{N} \in \operatorname{Lat} T^{(n)}$. Since $\overline{J^{(n)}} \mathcal{N} \in \operatorname{Lat} U_T^{(n)}$ by (16)' and the relation $JAK \in \operatorname{Alg} U_T$ implies $J^{(n)}A^{(n)}K^{(n)} = (JAK)^{(n)} \in \operatorname{Alg} U_T^{(n)}$,

$$K^{(n)}J^{(n)}A^{(n)}K^{(n)}J^{(n)}\mathcal{N}\subseteq \overline{K^{(n)}J^{(n)}}\mathcal{N}=\overline{\delta(T^{(n)})\mathcal{N}}\subseteq \mathcal{N}.$$

On the other hand, since $A \in \{T\}'$,

$$K^{(n)}J^{(n)}A^{(n)}K^{(n)}J^{(n)} = \delta(T^{(n)})A^{(n)}\delta(T^{(n)}) = A^{(n)}\delta(T^{(n)})^2$$

and it follows that $A^{(n)}\delta(T^{(n)})^2\mathcal{N}\subseteq\mathcal{N}$. But since δ is outer,

$$\delta(T^{(n)})^2 \mathcal{N} = \overline{\operatorname{ran} \delta(T^{(n)}|\mathcal{N})^2} = \mathcal{N},$$

hence $A^{(n)}\mathcal{N} \subseteq \mathcal{N}$. This shows that Lat $T^{(n)} \subseteq \operatorname{Alg} A^{(n)}$ for all n.

THEOREM 3. Let T be a c.n.u. C_{11} -contraction with Hilbert-Schmidt defect operator. Then $\{T\}'' = \text{Alg } T$ if and only if $\Theta_T(e^{it})$ is isometric on a set of t's of positive Lebesgue measure.

Proof. Suppose that $\Theta_T(e^{it})$ is isometric on a set of positive Lebesgue measure, and let us prove the bicommutant property for T. Since Alg $T \subseteq \{T\}''$, we shall show that $\{T\}'' \subseteq Alg\ T$.

We claim that U_T has the bicommutant property. In fact, if U_T has not the bicommutant property, then, as shown in [9], it follows from the reflexivity of U_T and the double commutant theorem for von Neumann algebras that U_T is not reductive; i.e., there exists a subspace \mathscr{M} of $\overline{\Delta_T L^2(\mathscr{D}_T)}$ that is U_T -invariant but not U_T -reducing. The subspace \mathscr{M} , which is a subspace of $L^2(\mathscr{D}_T)$, is invariant under the bilateral shift on $L^2(\mathscr{D}_T)$ but not reducing. Therefore it follows from the invariant subspace theorem of shifts (see for example, [8, Theorem 3.25]) that \mathscr{M} contains the subspace $\Psi H^2(\mathscr{G})$, where \mathscr{G} is a Hilbert space and Ψ is an operator-function in $L^\infty(\mathscr{G},\mathscr{D}_T)$ whose value is isometric a.e., which implies that $\overline{\Delta_T L^2(\mathscr{D}_T)}$ contains a function which does not vanish almost everywhere. This contradicts the assumption that $\Delta_T(e^{it}) = 0$ on some set of positive Lebesgue measure, proving the claim.

Now by Lemma 6 and the bicommutant property of U_T , to prove $\{T\}'' \subseteq A \lg T$, it suffices to show that $JAK \in \{U_T\}''$ for each $A \in \{T\}''$. Let $A \in \{T\}''$ and $B \in \{U_T\}'$. Then (16)' implies $JAK \in \{U_T\}'$ and $KBJ \in \{T\}'$, hence we use (17)' to have

$$JKJAKB = JAKBJK = JKBJAK.$$

Since JK is injective, JAKB = BJAK, and therefore $JAK \in \{U_T\}''$.

We next assume that $\Theta_T(e^{it})$ is non-isometric for almost every t, i.e. $\Delta_T(e^{it}) \neq 0$ a.e. t. Then there exists a function $E \in \overline{\Delta_T L^2(\mathcal{D}_T)}$ such that $||E(e^{it})|| = 1$ a.e. t. Let \mathcal{N} denote the closure of $\{P(0 \oplus fE) : f \in H^2\}$, which is a subspace of $H(\Theta_T)$. Obviously \mathcal{N} is invariant for $T = S(\Theta_T)$ and $\mathcal{N} \neq \{0\}$ by the injectivity of K defined by (26) in the proof of Lemma 5. Using the injection J defined by (25), we have

$$(J|\mathcal{N})(T|\mathcal{N}) = (U_T|\overline{J\mathcal{N}})(J|\mathcal{N}).$$

Since J is injective and the inclusion

$$J\mathcal{N}\subseteq \{\overline{\delta fE:f\in H^2}\}\subseteq \{fE:f\in H^2\}$$

implies that $U_T|\widetilde{J\mathcal{N}}$ is a unilateral shift, $T|\mathcal{N}$ is of class $C_{\cdot 0}$. Then it follows that $\{T\}'' \neq \operatorname{Alg} T$, which completes the proof. Indeed, if $\{T\}'' = \operatorname{Alg} T$, then $\mathcal{N} \in \operatorname{Lat} A$ for all $A \in \{T\}''$. Since particularly $\mathcal{N} \in \operatorname{Lat}(\lambda I - T)^{-1}$ for all $\lambda \notin \sigma(T)$ (= the spectrum of T), we have $\sigma(T|\mathcal{N}) \subseteq \sigma(T)$, hence $T|\mathcal{N}$ as well as T is a weak contraction. Then the C_1 -contraction $T|\mathcal{N}$ is of class C_{11} , as remarked earlier. This contradicts $T|\mathcal{N} \in C_{\cdot 0}$.

5. REFLEXIVITY

It was proved in [15] and [17] that a C_1 -contraction whose defect operator is of finite rank is reflexive. We obtain the following theorem.

346 Katsutoshi takahashi

THEOREM 4. A c.n.u. C_1 -contraction T with Hilbert-Schmidt defect operator is reflexive.

Proof. Let $A \in Alg Lat'T$, and let us prove $A \in Alg T$. If T is of class C_{11} , then by Lemma 6 it suffices to show that $JAK \in Alg U_T$, where J and K are the operators in Lemma 5. But since it easily follows from (16)' and (17)' that $JAK \in Alg Lat U_T$, the reflexivity of the unitary operator U_T implies that $JAK \in Alg U_T$. So we assume that T is not of class C_{11} . By Theorem 2 it suffices to show that $A \in \{T\}''$. Let $\{J_n\}$ and $\{K_n\}$ be the sequences of injections in Lemma 5. From (16) and (17) we have $J_nAK_n \in Alg Lat (S_{\mathcal{E}} \oplus U_T)$, so the reflexivity of the isometry $S_{\mathcal{E}} \oplus U_T$ implies $J_nAK_n \in Alg (S_{\mathcal{E}} \oplus U_T)$, and therefore

$$J_n TAK_n = (S_{\ell} \oplus U_T) J_n AK_n = J_n AK_n (S_{\ell} \oplus U_T) = J_n ATK_n$$

for all n. Then, since the injectivity of J_n implies $TAK_n = ATK_n$ for all n and $\bigvee_n ran K_n$ is the whole space by (18), it follows that TA = AT. Let $B \in \{T\}'$. Since $J_n BK_n \in \{S_{\mathcal{E}} \oplus U_T\}'$, $J_n AK_n \in Alg(S_{\mathcal{E}} \oplus U_T)$, $A \in \{T\}'$ and $K_n J_n = \delta_n(T)$,

$$J_nK_nJ_nBAK_n = J_nBK_nJ_nAK_n = J_nAK_nJ_nBK_n = J_nK_nJ_nABK_n$$
.

Using the injectivity of $J_n K_n J_n$ and the condition (18) of K_n again, we have BA = AB, hence $A \in \{T\}''$.

The author wishes to thank Professor T. Ando for many helpful discussions and comments.

REFERENCES

- Bercovici, H.; Voiculescu, D., Tensor operations on characteristic functions of C₀-contractions, Acta Sci. Math. (Szeged), 39(1977), 205-231.
- 2. Deddens, J. A., Every isometry is reflexive, Proc. Amer. Math. Soc., 28(1971), 509-512.
- 3. DOUGLAS, R.G., Banach algebra techniques in operator theory, Academic Press, New York, 1972,
- 4. DOUGLAS, R. G., On the operator equation $S^*XT = X$ and related topics, Acta Sci. Math. (Szeged), 30(1969), 19-32.
- Sz.-NAGY, B.; Foias, C., Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970.
- 6. Sz.-NAGY, B.; FOIAŞ, C., On the structure of intertwining operators, Acta Sci. Math. (Szeged), 35(1973), 225-254.
- 7. Sz.-NAGY, B.; Foias, C., Jordan model for contractions of C₀, Acta Sci. Math. (Szeged), 36(1974), 305-322.
- 8. RADJAVI, H; ROSENTHAL, P., Invariant subspaces, Springer Verlag, Berlin ··· Heidelberg--New York, 1973.
- 9. Turner, T. R., Double commutants of isometries, Tôhoku Math. J., 24(1972), 547-549.
- UCHIYAMA, M., Double commutants of C_{.0} contractions, Proc. Amer. Math. Soc., 69(1978), 283-288.

11. UCHIYAMA, M., Double commutants of C.₀ contractions. II, Proc. Amer. Math. Soc., 74(1979), 271-277.

- 12. UCHIYAMA, M., Contractions and unilateral shifts, Acta Sci. Math. (Szeged), 46(1983), 345-356.
- 13. WERMER, J., On invariant subspaces of normal operators, *Proc. Amer. Math. Soc.*, 3(1952), 270-277.
- 14. Wu, P. Y., Bi-invariant subspaces of weak contractions, J. Operator Theory, 1(1979), 261-272.
- 15. Wu, P. Y., C₁₁ contractions are reflexive, *Proc. Amer. Math. Soc.*, 77(1979), 68-72.
- Wu, P. Y., Approximate decompositions of certain contractions, Acta Sci. Math. (Szeged), 44(1982), 137-149.
- 17. Wu, P. Y., On the reflexivity of C_1 -contractions and weak contractions, *J. Operator Theory*, **8**(1982), 209-217.

KATSUTOSHI TAKAHASHI Department of Mathematics, Sapporo Medical College, Sapporo, Minami 1 Nishi 17, Japan.

Received August 2, 1983.