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C,.-CONTRACTIONS WITH HILBERT-SCHMIDT
' DEFECT OPERATORS

KATSUTOSHI TAKAHASHi

1. INTRODUCTION

According to their theory of characteristic functions and functional models
for contractions, Sz.-Nagy and Foias investigated a contraction T whose defect
operator Dy = (I — T*T)% is of Hilbert-Schmidt class and whose spectrum does not
fill the unit disc (see [5, Chapter VIII]). Such a contraction was called a weak con-
traction and proved to possess a good structure. In this paper we investigate a con-
traction T of class C;. whose defect operator D, is of Hilbert-Schmidt class. We
note that such a contraction is a weak contraction if and only if it is of class C,;
(see [5, Chapter VILI]). Recall that a contraction T is of class Ci. if lim||7"x||#0 for
every non-zero x, and 7 is of class Co. if lim|[77%| = O for every x. The
classes C.; and C.,, are defined by using 7T* instead of T, and C,y = C,. N C.y for
o, ==0,1. :

For a contraction T of class C,., there is an injection X with dense range such
that X7 ==: VX for some isometry V (see [5, pp. 71 —72] and [4]). In the recent paper
[12] Uchiyama proved for a C,,-contraction 7" with Hilbert-Schmidt defect operator
D that there exist an injection X with dense range and an injection ¥ such that
XT = SX and TY = Y. for a unilateral shift § with ind S = ind 7" (for a:semi-
Fredholm operator A, ind A denotes Fredholm index). In Section 3 we show for
a Cy.-contraction T with Hilbert-Schmidt defect operator D, that there exist an
injection X with dense range and a sequence of injections {Y,:n=1,2,...}
such that XT=VX, TY,=Y, ¥V (n=1,2,...) and the span of {ran¥, :n =
=1, 2, ...} is the space on which T acts, where ¥ is an isometry with ind ¥ = ind T,
and if T is of class Cq, then the isometry V is a unilateral shift. Then we treat three
natural weakly closed algebras of operators associated with such T'; the first one is
Alg T, the weakly closed algebra generated by T and the identity, the "second is
the double commutant {7'}", and the third is Alg Lat 7, where Lat 7 denotes the ¢lass
of all T-invariant subspaces and AlgLat T is the algebra consisting of all operators
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A for which LatT < LatA. Obviously AlgT < {T}’ and AlgT < AlgLatT.
An operator T is said to have the bicommutant property if AlgT = {T}’ while T
is said to be reflexive if AlgT = AlgLatT. Every isometry is reflexive ([2]). Every
non-unitary isometry has the bicommutant property while a unitary operator U
has this property if and only if it is reductive, that is, Lat U = Lat U* ([9]), and
reductive unitary operators were characterized ([13]). In Section 4 we prove the
bicommutant property for a C,.-contraction T not of class C,, whose defect operator
D is of Hilbert-Schmidt class, and for a C,,-contraction, the condition for its bicom-
mutant property can be completely described in terms of its characteristic function.
In the final section we establish the reflexivity of every C;.-contraction with Hilbert-
-Schmidt defect operator.

For contractions whose defect operators are of finite rank, these results were
proved by Uchiyama ([10] and [11]) and Wu ([14], [15], [16] and [17]). But our proofs
are more direct and transparent even in the case of finite rank.

2. PRELIMINARIES

A contraction is completely non-unitary (c.n.u.) if it has no non-trivial unitary
direct summand. For a c.n.u. contraction we use the functional model of Sz.-Nagy
and Foias [5]. All Hilbert spaces are assumed to be separable.

For a Hilbert space &, L%(&) denotes the Lebesgue space of &-valued, norm-
-square integrable functions on the unit circle, and H% &) is the Hardy subspace of
L% &). For two Hilbert spaces & and &', L%(&, &) and H®(&, &) denote the Lebesgue
and Hardy spaces of operator-valued, bounded functions on the unit circle whose
values are operators from & to &, respectively. Multiplication on L* &) by an
operator-function F in L*(&, &) is an operator from L* &) to L%*&'), which we
denote by the same letter F;

(Ff)e") = Fe)f(e") (feL¥é)).

An operator-function Fe L®(&, &) is in H®(&, &) if and only if the multiplication
operator F maps the subspace H*&) of L¥ &) into the subspace H*(&') of L¥(&7).
Let T be a c.n.u. contraction, and let 2, denote the closure of the range of the defect
operator Dj;. The characteristic function ©; of T is an operator-function in
H™(9 ¢, 91-) whose values are contractions, defined by

Op ) =[—T + ADr(I — 2T%-D;)12r (1A < 1).
The (unitarily equivalent) functional model of T is the operator S(©;) on the Hilbert

space
H@©O.) = K(Op) © {(Oh @ Arh : he HXD,)},
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where
K(©7) = HA21) @ 4:L*(Dy), 4r(e") = (I — O1(c")*Or(e")*?,
defined by |
SO/ Dg) = Pxf @ xe)

where x(e'*) = e and P denotes the orthogonal projection of K(©,) onto H(Or)
(see [5, Chapter VI]). A c.n.u. contraction T is of class C;. (resp. C.;) if and only if
its characteristic function @ is *-outer (resp. outer) (see [S, Chapter VI, Proposi-
tion 3.5]). Recall that an operator-function @ in H®(&, &) is outer if OH*(&) is
dense in H%(&'), and @ is inner if @(e") is an isometry for almost every 7. © is *-outer
(resp. *-inner) if @ is outer (resp. inner), where @ is an operator-function in H*(&”", &)
defined by é(/l) = @(1)*. We also use the canonical factorization of an operator-
-function in H*(&, £’); an operator-function @ in H*(&, &') admits the canonical
factorization ©® = 0,0_, where O, is inner and O, is outer, and from the canonical
factorization of & we obtain the *-canonical factorization @ =00, of ©, where
@, is *-inner and @, is *-outer (see [5, p. 204]).

The proof of [12, Proposition 2] shows the following lemma for *-outer func-
tions. For completeness, we give its proof here.

LeEMMA 1. If an operator-function @ € H®(&, &) is *-outer, then the operator
@ is injective and the pre-image of H¥&') under @ is contained in H¥&), that is,
e LY &) is mapped into H¥(&') by © only if [ is in H¥&). If © is inner in addition,
and if g € H¥&') is in ran @, then O%g is in H¥&).

Proof. Since ran® is dense in L2(&), for almost every ¢ ran @*(e"') is dense
in &, so that ker @(e”) = {0} which implies that @ is injective. Further it follows
from the *-outer property of @ that the image of L*&’) © H*&’') under OF is
dense in L%(&) © H¥&). Therefore if Of is in H&"), that is, @f is orthogonal to
L&) © HYS'), then fis orthogonal to L¥(&) © H(&), hence f belongs to H*(&).
If O is inner in addition and if g € H3(§") is in ran @, then g = OO%g so that O%g
must be in H%(&) as above.

LEMMA 2. Let © = 0,0, be the canonical factorization of © € H®(¢, &');
O, € H™(&, F) is outer while O, H®(F, &) is inner. If there is Qe H®(&', 8)
and 0 £ 6 € H® such that

4)) QO = éI,,
then the outer part §, of 6 is a scalar multiple of O, ; for some ® € H*(F, &)
Q) PO, =561, and OP = I.1;z.

If, in addition, O is *-outer, then O, is *-outer too.
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Proof. Let @ =(Q0,), be the outer part of 20, . According to the uniqueness
(up to a constant unitary) of the canonical factorization (see {5, p. 204]), we may
assume that (1) implies ®0, = I, , hence {©,6 — § 1;}60, = 0. Since, O, being
outer, ran @, is dense, this implies that &, — §_I; = 0, proving (2). It follows
from (2) that 0, == Self . Then since &,/ is outer together with 8.1 , ® must be
outer. If, in addition, @ is *-outer, @0 is outer. Then the relation O - é‘z(gclﬁ»
implies that ran 9~2 is dense, that is, @, is *-outer. %

Let T be a contraction of class C;. with Hilbert-Schmidt defect operator.
Since, for any a with |x] < 1,

I —T:T, = Si( — T*T)S,
where
T,=(T—ol)(I~aT)~* and §,=:(1 — [« — aT)-?

(see [5, p. 240)), the operator T — o is left Fredholm together with 7. Also since T’
is of class C,. , T - al is injective, hence it is left invertible. It follows from Fredholm
index theory (see [3, Chapter 3]) that

dim ker(T — al)* = —ind(T — al)

is invariant for j«| < 1. Further ind 7= 0 if and only if T is a weak contraction.
For operators T; and T,, T, 2 T, denotes that there exists a family {X,}
of injections such that X, 7, = T,X, for each « and the span V ran X, is the whole

space on which T, acts. If the family {X,} can be chosen to consist of a single
operator, i.e. if there exists an injection X with dense range such that X7, - : T,X,
then T, is.called a quasi-affine transform of T,, and this relation of T, and T, is
denoted by 7, < 7,. And T; and T, are said to be completely injection-similar if
T, < Ty and T, < Ty (7).

For a Hilbert space &, let S, dencte the unilateral shift on H%¢&). Forac.n.u.
contraction 7, let S;. and U; denote the unilateral shift on H*¥Z2y.) and the
unitary operator of multiplication by y(e) == ei’on ZITL‘-’(Q;), respectively.

3. COMPLETE INJECTION-SIMILARITY

In this section we prove the following theorem.

THEOREM |. A c.nu. Cy.-contraction T with Hilbert-Schmidt defect operator
is completely injection-similar to an isometry. More precisely

S,@U; XT<S,® Usp

where & is a Hilbert space of dimension —ind T.
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. To prove this theorem we need some lemmas.-
Lemma 3 is a refined version of the result obtained in the proof of [12, Theo-
rem 2] for a C.-contraction whose point spectrum does not fill the open unit disc.

_ LeMMA 3. If T'is a c.n.u. Cy.-contraction with Hilbert-Schmidt 'defect operator,
then for each cpmplex o with |a| < | there exists an isometry: V, from Dy to D+
such that

3) ker V¥ = ker @ (a)*
and that V¥Oy has a scalar multiple 5, € H®,
RC)) ' ) QaV:@T = V:OTQa == (,srz[QT
with some Q, € H*(D1) (= H*(Z+, D+)).

Proof. For |a] < 1, the operator T, = (T — al)({ — &T)~' is a contraction
and its characteristic function Or (2) coincides with @ ({tj i ) (see [5, p. 240)),
that is, there exist unitary operators A,: Dr,— Py and B; :aéT; — D7+ such that

(5) Or (i) = B*O, (’ te A)Aa for 2] < I.
. | + &k

Since the defect operator Dy, of T, is of Hilbert-Schmidt class together with Dy,
the operator

I+ (T}D,4)07 ()) = Dy + iDy TH(I — iT¥)~Dr,

is of trace class for |4l < I, and it follows by (5) that I +A ,T¥B¥O.()) is of trace
class for |4l < 1. Let B,T,A¥=V P, be the polar decomposition of B, T,4¥. Then
V, is an isometry from @, to 9+ because T, is injective, and

ker V¥ = ker(A,T*BY) == ker(——AaOTa(O)*B:) =
= ker(— O (0)*) == ker O, (2)*.
Since I + P, V¥O.(A) (]2] < 1) and I — P, are of trace class, the identity
I 4 V20,() = I + PVE0,G) + (I~ PVI0:0)

shows that 7 - V*@.(4) is of trace class for || < 1. Then there exists an operator-
-function Q, in H*®(2;) such that

QDVIOL) = VEOLNR() = 0(Dg,  forlil <1,
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where 6,(2)=det(—V*O (1)) € H® (see [1]). Since T, is injective and I — TyT,
is of trace class, we have that

04(®) = det(—V30(x)) = det(A (TS T,|Dr ) AF) # O,

and ¢, is a non-zero function in H®. This completes the proof. %
We remark that ker @ r(«)* has the same dimension —ind T for every la} < 1.
In fact, putting 2 = 0 in (5), we have
- Ta|@Ta = GTa(O) = B:@T(a)Aa'

Since T, maps @Ta into %« while it isometrically maps the orthocomplement of
Dr_onto the one of Z,» (see [5, p. 260]), it follows that @(a) is left invertible and
a o

dimker O (o)* = dimker T} = —ind T.

LEMMA 4. If a cnu. contraction T with Hilbert-Schmidt defect operator is
of class Cy. but not of class Cyy, then ind T < 0 and there are a Hilbert space & of
dimension —indT and an operator-function ® € H®(2r-, &) that is *-inner and
outer such that

©) ker &(e') = ran O(c"*) a.e. ¢
and
¢} ran d(e'!) = ker@(e") a.e. t.

Proof. Puta = O0inLemma 3,and consider an operator-function ¥ € H®(Z )
defined by

(8) W = dly — OV

Then since §,(e") # 0 a.e. ¢, it follows from (4) and (8) that
()] ker?(e) = ranO.(c") and ran¥(e") =kerV§ a.e.t.

We first see that ¥ # 0, consequently ker Vgt # {0} and ind T < 0. In fact, if ¥ = 0,
then J, is a scalar multiple of @ by (4) and (8), and since @ is *-outer, it is also
outer (see [S, Chapter V, Theorem 6.2]). Then, as remarked earlier, T is of class C,,;
this is a contradiction.

Let ¥=Y,¥, be the “-canonical factorization of ¥, that is, ¥, € H®(Zr+, F)
is *-inner and ¥, € H®(#, 91) is “-outer. Then since ¥,(e¥) is injective a.e. t,

10) ker P(ei*) = ker ¥,(c'*)
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and
48)) dimran ¥ (e") = dimran ?(ei*) = dim ker V.
Finally let ¥,=¥,,%,, be the canonical factorization of ¥,, thatis, ¥;; € H®(Zy-, &)

is outer and ¥,, € H®(&, #) is inner. Put ¢ = ¥,,. Then clearly & is *-inner and
outer, and for almost every ¢,

(12) ker @(ei) = ker ¥,(e")
and
(13) dim & = dimran @(e'*) = dimran ¥,(e").

It follows from (11), (13) and (3) that
0 < dimé¢ = dimker@4(0)* = dimker 7% = —ind T

while (9), (10) and (12) imply (6). Then (7) follows from (6) by taking ortho-comple-
ments because @ is *-inner, hence for almost every 7, d(e") is isometric and
ran ®(e') is closed. %

CoRrROLLARY 1. The operator-function ® in Lemma 4 possesses the following
properties:

(14) B(A)O(A) =0 for all L with |4] <1
and
(15) ker® =ran®, and ran @ = ker@T,

where O, is the inner part of @ .

Proof. (6) implies
DO (e*) =0 ae. ¢

Since both &(1) and @(2) are analytic functions of A, this relation on the boundary
yields (14). Also since the outer part ©, of ©; has a scalar multiple by Lemma 2,
O,(e") is invertible a.e. ¢, and therefore (6) implies

ker &(e’) = ran @,(e*) a.e. t.
Now (15) follows from this and (7) by using the isometric property of @, and @

The following lemma shows the relation S, @ Uy 2 T in Theorem 1, and it
is also used in the subsequent discussion.
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LEMMA 5. Let T be a c.n.u. Cy.-contraction with Hilbert-Schmidt defect opera-
tor. If T is not of class Cy, t/zgﬁ there are a sequence {J,:n = 1,2, ...} of injections
from H(Or) to HY6) ® ArLXDy) and a sequence {K, :n =1,2, ...} of injections
Jrom HX&) @ 4¢L¥XD+) to H(Oy), where & is a Hilbert space of dimension —ind T,
which satisfy the following conditions :

(16) (S ® Ur)J, == J,5(0r) and K(S; @ Up) = S(01)K,,
(17) JnKn = 5n(S5 @ UT) a"d Kan = (SM(S(OT))

where &, are in H®, 5(S, @ Uy) and 6,(S(Or)) are operators obtained by the H>-
-functional calculus of St.-Nagy and Foias for all n, and

(18) V ran K, = H(Op).

If T is of class Cyy, then there exist injections J and K with dense range such that
(16)’ UpJ = JT and KU; = TK,

7y JK = 3Uy) and KJ = 6T),

where 0 is an outer function in H®,

Proof. Suppose that T is not of class C;;. Fix a sequence of distinct complex
numbers {«,} such that [%,! < I and limx, = 0. Since ker©®,(x,)* has the same
dimension —ind T for every n, it is possible to take an isometry W, from & to /'y«
such that ran W, = ker O(2,)*. Write, for simplicity, V, =: V, , @, == Q, and
d, == 8, in Lemma 3. First define an operator f” from K(@,)to HAé) ® AL %)
and one K, from H%&) @ 4+LA%y) to K(Oy) by
W — 0.2,V O
- [ — A QV 6,,1]

n°n

=00
0 I

respectively, where W, also denotes a constant function in H®(&, 2 r.) whose value
is W, . Then obviously

(19)  J(Sr ® Up) = (S, ® Up)J, and (Sp. @ UPK, = R,(S; ® Up).
Since W, Wi = I — V,V; by (3), it follows from (4) that
W, WS — OrQ,VE) = 6,1 — V,VE) — O:Q,Vi + V, V302,V -

Jy

and

(20)
= 5"1 - QTQHV: .

Therefore

@ R, = [5"’ 0]-—[@T][9nV:* 0 .
0 &1 Ay
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Since ran W, = ker V¥ by (3),

0 5,1
Next we claim that
(23) kerJ, = K(©,) © H(Oy).

That. the right side is included in the left side follows immediately from (4). Take
f®g in H(Op) nker .7,,. Then firstly f@® ge H(Oy) implies that O%f + d,g€
€ LXD;) © HXDy). Next f@ gekerJ, implies, via (21), that §,f = 0,Q,Vif
and J,g = 4,0,V f, hence

8, (O1f + 418) = QY.

Therefore 6;1Q,V;f belongs to L¥Pr) © HAPr). But since ©:6,'Q,Vif=f
and @Oy is *-outer, by Lemma 1 this is possible only when 6;71Q,V;*f = 0, hence
f =10 and g = 0. This establish (23).

Now let J, == f,,]H(@»,) and K, = 13,,. Then (16) and (17) follow from (19),
(21), (22), (23) and the identity P(Sy. ® Uyp) = P(Sy. @ Up)P. Further J, is injective
by (23). Since obviously §,(S, ® Uy) is injective, so is K, by (17). It remains to prove
(18). Tt suffices to show that f@® g in H(®;) can be orthogonal to all ran IA(,,
(n=1,2,...) only if f= 0 and g = 0. First of all, g = 0 follows immediately from
the orthogonality. Then since f @ g € H(@) means Oif + A;g € LXD1) © HAD,),
we have @7fe LXD;) © H(Dy). Let @ = 0,0, be the canonical factorization
of @p (O, HY D1, F) and O,c HF, D). Then since @, is outer, it
follows that

(24) O5fe LXF) © HAF).

Next the orthogonality of f to ran W, implies that f{(a,) is orthogonal to ran W, .
Since ran W, = ker @p(x,)*, it follows from Corollary 1 that ®(x,)f(«,) =0 (7 =
=1,2,...). Then by the iniqueness theorem for an operator analytic function SM(A)
=0 for all }]4} < 1, hence feker ¢. Then again by Corollary 1, feran @, . Since.
O, is inner and *-outer by Lemma 2, it follows from Lemma 1 that O3 f belongs to
H¥%). When combined with (24), this yields ©;f = 0, and finally f =~ 0,05f = 0.
This completes the proof for the case T is not of class Cy; .

If T is of class C,;, then it is a weak contraction, hence @ has a scalar
multiple é that is outer (see [5, Chapter VIII]); Q@@= I and @,Q = I for some
Q € H®(Drs, Dr). We define the operators J and K by

(25) J=[—4;2 ] | H©y) : H(Or) — 4;L¥D 1)

(26) K=P [3] : 4;L%D7) > H(Oy).
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Then the identites (16)’ and (17)’ are clear. Since J is outer, 6(S(@y)) is an injection
with dense range (see (5, Chapter III, Proposition 3.1]). Also obviously 6(Uz) is
injective and has dense range. Therefore it follows from (17)’ that J and K are injective
and have dense range. 7

Proof of Theorem 1. 1t is known that a c.n.u. Cyy-contraction T is quasi-similar
to Uy, that is, T < Uy and U < T (see [5, pp. 71—72)) and it is also proved in
Lemma 5. So suppose that Tis not of class C;;. Consider an operator X from
K(©;) to H¥6) ® 4;LADy) defined by

)2:[ ¢ 0 ]
—4:0F7 0701

where & is the outer function in Lemma 4. Obviously X intertwines S, @ Uy and
Sre @ Uy, thatis, (S, @ UpX = X(Sy @ Uyp).

First we claim that X has dense range. In fact, since, @, being *-outer, @30,
ArL¥(9Dy). This implies that {0} @ Z;L@ is contained in the closure of ran X.
Further since @ is outer, it maps H*(2 1.) to a dense set of H(&). Therefore the closure
of ran X must contain HX&) @ 4:L¥2y).

Next we claim that ker X coincides with K(©;) © H(O7). Since ®@; = 0
by (6), and 4, commutes with ©;0; ,

[—aror o0, la]=[o):

which shows that ker X contains K(@) © H(Or). Suppose that f @ g is in H(O1) n
nker X, or equivalently

(27 Ozf + 418 € LX21) © HYZy),
(28) &f=0 and —A4,0%f + 008 =0.

Let ©; = @,0, be the canonical factorization of @r; @, € H*(Z, #) is outer
and @, € H(F, Dr.) is inner. Let 4, = (I — @¥0@,)"* and 4, = (I — 0,0)"~
Then since @, is inner, it follows from (28) and (i5) that f = ©,0%f and

= —A;0% + 00,8 = —4,070if + 0F0,g = OF(— 4,05 + 0,9).
Since @, is outer, —4,,05f + 0,g = 0, hence 4%,0;f = 4,,0,g. Thus we have
@;;f: @1(@;if+ 418),

which implies
(29) f= 0,0 =0107f + 4rg).
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Since '€ H¥(D4.) and O is *-outer, it follows by Lemma 1 and (29) that
O7f + 418 € HX(Dy).

When combined with (27), this yields ©3f 4 Azg = 0. Then f= 0 follows from (29),

hence A;g = 0. Since g is in A;L%(@7), g = 0. This establishes the claim.
Now let X be the restriction of X to H(@y). Then ker X = {0} and ran X is

dense in H¥&) @ A;L¥Dy), and
(Ss @ UpX = XS(Op),
which proves T < S, ® Uy .
The relation S, @ Us -c<’ T follows immediately from Lemma 5. %

4. DOUBLE COMMUTANT

In this section we consider the double commutant {7}’ of a c.n.u. contraction
T of class C;. with Hilbert-Schmidt defect operator Dy .

The minimal isometric dilation of T = S(O1) on H(Oy) is Sp. @ Uy on K(Oy).
Consider the class & of operators X on K(@y) that commute with Sp. @ Uy and
make K(©;) © H(@;) invariant. More explicitly, X belongs to & if and only if
firstly it admits a representation

T4 0
(30) X—[B c]

where 4 € H®(@ ), Be L°(D 1+, 27) and C € L®(D 1) such that B maps H¥Dy.)

into ATT_IF@; and C maps 4L @) into itself, and secondly there exists K € H(D 1)
such that

e 5 ella]=[5]x

B Cll4; Ar
According to the lifting theorem of Sz.-Nagy and Foias (see [5, Chapter II, Theorem
2.3] or [6]) the correspondence = that assigns to X its compression to H(@,), i.e.
n(X) = PX |H(©1), maps &£ onto the commutant {T}'. Obviously = is multiplicative.

In case @ is *-outer, if X maps HXPr.) ® {0} into K(Or) © H(Oy), then
n(X) = 0. In fact, if H*@) ® {0} is mapped into K(O;) © H(Or), there exists

Le H®*(@7+, 27) such that
(5] =[]
B Y P
When combined with (31), this yields that

@T(L@T — K) = O and ATL@T + CAT = ATK.

10 — 2294
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A3 ]
Py
28]

Since, @ being *-outer, Oy is injective, it follows that L@; = K and
CAT = ATK hamd ATLOT = 0.
Then clearly C vanishes on the whole ATLL’(@Tj, hence X maps the whole K(O;)
into K(@y) © H(@,), or equivalently n(X) = 0.
THEOREM 2. If a c.n.u. Cr-contraction T with Hilbert-Schmidt defect operator
is not of class Cq, then
{T}' = {o(T) : e H*},

and in particular
{T}" = AlgT.

Proof. 1tis clear that o(7T) is in {T}"’ for every ¢ € H*. Therefore let us prove
that for each X in % for which n(X) is in the double commutant {T}", there is
¢ € H* such that n(zf’ ) = @(T). Suppose that X admits a representation (30} with
(31). Take the operator-function ¢ € H®(Zr+, &) in Lemma 4 that is outer and
“-inner. Since $O; = 0 by (6), the relation (31) implies 4O := 0 or equivalently

O(PA)~ == 0, hence by (15)

ran (®A)~ < ker O, = 1an ®.
Since~3) is inner and *-outer, it follows that ®*(®4)" belongs to H®(S). Let 4, =
= (@’:‘(¢A)~)~. Then 4, € H*(&) and

(32) DA = A,P.

We claim that there is a function ¢ € H® such that 4,=¢I,. For this purpose,
take any Fe H®(6, Z1+). Since Fd0, = 0 by (6), the operator

9:[1-"(15 0]
00

belongs to .. Then the assumption n(f) e {T}" implies, via the multiplicativity of
7, that

(XY — ¥X) = (Xm(¥) — n(V)n(X) =0,
hence the operator

Xy -7

s [AF® — FO4 0
BF® 0
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maps HX(9r+) @ {0} into K(@,) © H(Oy). Then it follows from (32), @ being outer,
— (2]

that [AF BFFAl] maps H%(&) into K(@r) © H(Or), the range of [A T]. Then
. T

again ¢, == 0 implies that
AyPF — ®FA, = O(AF — FA)) =0,

and therefore 4, ®-(3~"F) = &.(y~"F)4, for n = 1,2, ..., where y(e") = ¢'. The
set {y~"F:Fe H®(&, 9r)and n=1,2, ...} is operator-weakly dense in L*(&, Pr-)
and since @ is *-inner, ®LX(&, Dr+)=L>(&). Therefore it follows that A4, in H®(&)
commutes with all of L®(&), which is possible only when 4,= @I for some function
@ € H*®, establishing the claim.

Now since for every Fe H®(&, 9r+) the operator

A— ol F_[AF—FAI]
[ B BF
maps H*&) into K(©) © H(O7) and obviously

HY D7) = V {ran F : Fe H®(&, 97},
. A— @l . .
it follows that the operator B maps H¥(Dr») into K(@7) © H(Oy). Finally

the operator Z = [gl (;-I belongs to & and n(i) == ¢(T), and
2

A/;_EZ[A-——(/)I 0 ]
B C —ol

maps H3(Dr+) ® {0} into K(@T) © H(Oy). Then since O is *-outer, as remarked
in the front of this theorem, n(X Z) = 0, or equivalently n(X ) = o(T).

For contractions whose defect operators are of finite rank, Theorem 2 was
proved in [16]. The theorem of the same type was proved in [10] and [11] for C.o-con-
tractions not of class Cpy, whose defect operators are of finite rank.

We next characterize C;,-contractions which satisfy the bicommutant property.
This characterization was obtained in [14] when the defect operators are of finite
rank.

LeEMMA 6. Let T be a c.n.u. Cyy-contraction with Hilbert-Schmidt defect
operator and let J and K be the operators satisfying the conditions (16) and (17)
in Lemma 5. Then

AlgT = {4 : JAK € Alg Uy).
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We use the following celebrated result of Sarason (see [8, Theorem 7.1]):
Let 77 and A4 be bounded linear operators on a Hilbert space. Then 4 e AlgT if
and only if

LatT" < Lat A"

for every positive integer #, where for an operator X, X denotes the direct sum of
n copies of X.

Proof of Lemma 6. Assume A € Alg T. We shall show that Lat U < Lat(JAK)™
for all n. Then it will follow from the above resuit that JAK e AlgU;,. Let
M e LatU®. Since TWK™ — K®U® by (16), K™.#% e LatT™. Then, since
A" e AlgT™, (JAK)?™ = JMAMEK™ and J™W KD = §(U) by (17), we have

(JAK)® 7 == JmAMK® jf < JOKOff = §(UP)H < .

This shows that Lat U < Lat(JAK)®™.
Next we assume that JAK € AlglU;. To prove 4 € AlgT, let us show that
LatT® < Lat A" for all n. Since, from JAK e Alg U, and (16)/,

JTAK = UyJAK = JAKU; == JATK

and J is injective and K has dense range, it follows that A belongs to the commutant

{TY of T. Let.4 eLatT™. Since J™A eLatU{ by (16) and the relation
JAK € Alg Uy implies J™WAMK™ = (JAK)™ e Alg U™,

Kmjengmgmmgr o KOJDAY = §(T")H < A"
On the other hand, since 4 € {T}’,
Koo gy = §(T)4DG(T™) = A™MS(T"™)?
and it follows that A§(T)2.4" < 4. But since 0 is outer,
STOPN = TRBTPTY: = A,

hence AN = 4. This shows that Lat T™ < AlgA™ for all . %

THEOREM 3. Let T be a c.nu. Cy-contraction with Hilbert-Schmidt defect
operator. Then {T}' = Alg T if and only if © (") is isometric on a set of ’s of positive
Lebesgue measure.

Proof. Suppose that @,(¢'*) is isometric on a set of positive Lebesgue measure,
and let us prove the bicommutant property for 7. Since AlgT < {T}", we shall
show that {T'}"" < AlgT.
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We claim that Uy has the bicommutant property. In fact, if Uy has not the
bicommutant property, then, as shown in [9], it follows from the reflexivity of U,
and the double commutant theorem for von Neumann algebras that U, is not
reductive; i.e., there exists a subspace .# of A,L¥2,) that is Ur-invariant but not
Ur-reducing. The subspace .#, which is a subspace of L%@,), is invariant under
the bilateral shift on L%(2 ) but not reducing. Therefore it follows from the invariant
subspace theorem of shifts (see for example, [8, Theorem 3.25]) that .# contains
the subspace YH*%) , where ¢ is a Hilbert space and ¥ is an operator-function
in L*(%, 9) whose value is isometric a.e., which implies that 4,L%(9,) contains a
function which does not vanish almost everywhere. This contradicts the assumption
that 4,(e*) = 0 on some set of positive Lebesgue measure, proving the claim.

Now by Lemma 6 and the bicommutant property of Uy, to prove {T}"’ = AlgT,
it suffices to show that JAK € {U,}"’ for each A € {T}"". Let A € {T}" and Be {U;}.
Then (16) implies JAK € {Uy}’ and KBJ e {T}’, hence we use (17)’ to have

JKJAKB = JAKBJK = JKBJAK.

Since JK is injective, JAKB = BJAK, and therefore JAK € {Uy}".

We next assume that ©(c) is non-isometric for almost every ¢, i.e. 44(e) # 0
a.e. r. Then there exists a function E e 4,L%2,) such that lEE€?)]|| =1 a.e. t. Let
A" denote the closure of {P(0 @ fE) : fe H?}, which is a subspace of H(@,). Ob-
viously A" is invariant for T = S(©r) and 4" # {0} by the injectivity of K defined
by (26) in the proof of Lemma 5. Using the injection J defined by (25), we have

N WTIN) = (UTHYIIAN).

Since J is injective and the inclusion
JN < {OfE : fe H*} < {fE :fe H?}

implies that UT|7;17‘ is a unilateral shift, 7|4 is of class C.,. Then it follows that
{T}" # AlgT, which completes the proof. Indeed, if {T}"’ = AlgT, then 4" € LatA4
for all 4 € {T}". Since particularly A" € Lat(Af — T)~*for all A ¢ o(T) (= the spec-
trum of T'), we have o(T|A4" )< o(T), bence T|A4" as well as T is a weak contraction.
Then the Ci.-contraction T'|A" is of class Cj,, as remarked earlier. This contradicts
TI./V € C.o .

5. REFLEXIVITY

It was proved in [15] and [17] that a C,.-contraction whose defect operator
is of finite rank is reflexive. We obtain the following theorem.
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THEOREM 4. 4 c.n.u. Ci.-contraction T with Hilbert-Schmidt defect operator
is reflexive.

Proof. Let A€ AlgLatT, and let us prove A e AlgT. If T is of class Cy,,
then by Lemma 6 it suffices to show that JAK e Alg U,, where J and K arec the
operators in Lemma 5. But since it easily follows from (16) and (17) that JAK e
€ Alg Lat Uy, the reflexivity of the unitary operator U, implies that JAK e Alg Ur. So
we assume that T is not of class C,;. By Theorem 2 it suffices to show that A e {T}"".
Let {J,} and {K,} be the sequences of injections in Lemma 5. From (16) and (17)
we have J,AK, e AlgLat (S, @ Uy), so the reflexivity of the isometry S.@® Uy
implies J,AK, € Alg (S, @ Uy), and therefore

JnTAI(n = (Sd’ @ UT)JnAKn = JuA[(n(Sﬂ’ @ UT) = JHA TKn

for all n. Then, since the injectivity of J, implies TAK,= ATK, for allnand Vran K,

n

is the whole space by (18), it follows that T4 ==: AT. Let Be {T}'. Since J,BK, e
€e{S; ® Uy}, J,AK, e Alg(Ss ® Uy), A€ {T} and K,J, == 6,(T),

J,K,J,BAK, = J,BK,J,AK, = J,AK,J,BK, = J,K,J,ABK,.

Using the injectivity of J, K, J, and the condition (18) of K, again, we have BA - = AB,
hence A € {T}".

The author wishes to thank Professor T. Ando for many helpful discussions and comments.
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