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THE PROBLEM OF INTEGRAL GEOMETRY
AND INTERTWINING OPERATORS FOR A PAIR OF REAL
GRASSMANNIAN MANIFOLDS

I. M. GELFAND, M. I. GRAEV, R. ROSU

INTRODUCTION

Let G,, G, be the Grassmannian manifolds of the p respective g dimensional
subspaces of the real linear space ¥ (p <¢). This paper is concerned with the remark-
able integral transform associated with G, and G,. 1t can be defined as the transform
which associates with each function on G, a function on G,; namely, if f'is a function
on G, and a€G,, then (Ff)(a) is the value of the integral of the function fon G (a)—
the set of the subspaces b € G, which are contained in a. When so defining it, we
already assume that on each G(a) there is a given measure and, by this, a supple-
mentary structure is being introduced on G,. In order to avoid this we shall define
the operator . slightly different: we introduce the function spaces F on 6p~ the
manifold of the pairs (b, f) where be G, and f§ is a non-oriented volume element
in b, which satisfy the homogeneity condition f(b, tf) = t*f(b, f) for any ¢ > 0.
‘We shall define (see §1, p. 3) # as an operator

S Fl— FP

which, for the natural representation of SL(V) on F% and FZ, is an intertwining oper-
ator (that means, by definition, that it commutes with the operators of the represen-
tation). If an Euclidian structure is introduced on V and, by this, we have a measure
on each G,(a) then the definition of the operator coincides with the one at the
beginning.

The main purpose of this paper is to explicitly construct an operator F} — F2
which on Im.#, the image of #, coincides with the inverse of .# — that is obtaining
an inversion formula for . (We shall consider the case p 4+ ¢ <n, when # is injective.)

Several approaches on the subject are already known: in [6] it was constructed
the operator » which associates with every function ¢ € F? and every be G, the
p(g — p) differential form x,¢ on the manifold G,_,. It was proved that if ¢ = Jf
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then z,¢ is a closed form on G,_, and, moreover, for any p(q — p)-dimensional
cycle y « G,_,

M Sx.,q) = C,f(b)

Y

where C, is depending only on the homology class of the cycle y. For even ¢ -- p
there are cycles y with C, # 0 and then (1) is an inversion formula for . for odd
g ~- p there are no such cycles. The affine variant of the problem was solved in [I]
for p = 1 and arbitrary ¢, and was considered in [12] for arbitrary p and ¢. In the
projective case the problem was solved in [4] for p == 1 and arbitrary q.

In this paper the inversion formula for # is obtained by means of simple
standard constructions. We start by defining (see §2) a sequence of functions
P, (1 £ k <n— p) which by their geometrica! intrinsic sense are in themselves
important. The function P,_, is crucial in constructing the inversion formula. We
then consider the manifold (" of the pairs (c, ) where ce€G,p» b == (b, /‘)efi
and bnc==0. & is a bundle over G having as fibre at b the set n=i(h) = G&_,
consisting of those c € G,_, withcn b = 0.

A central achievement of this paper is the construction of the intertwining
operator

v FL — QN(&)

where QV is the space of N-densities on & (N == p(q — p)) with the natural action
of the representation of SL(V). This operator is explicitly constructed in §3 by
composing several mappings which, on the respective manifolds, commute with
the action of the group SL(V).

Afterwards we obtain the inversion formula for .# in §4 by means of the operator
x. Namely we introduce a class of N-dimensional manifolds C < G,_,, the harmonic
manifolds, which play for the densities the same role the N-dimensional cycles
play for differential forms. It is proved that if C = =~(}) is a harmonic manifold,
then the following inversion formula is true:

@ g(xrp)(- 15) = Cr(O)f(B)

C

where the cofficient Cr(C) is depending only on C. We like to point out that, in
the same manner, the operator x can be defined as an intertwining operator (in [6]
the operator x was defined in a different way).

The inversion formula (2) naturally leads us to the notion of permissible
complex in G,. Namely, since for p < ¢ < n — p we have dimG, < dim G,, in this
case, the knowiedge of the function #f on the whole manifold G, is over-sufficient for
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recovering the function f. We can assume that the function #fis given only on a certain
submanifold K = G,, whose dimensionis k > dimG,, and recover the function f
by means of the function S f = Jf],. We call the submanifold K < G, a permissible
complex if for almost every b € G, there is a harmonic manifold C,, such that for
any ¢ € FP, (x)(-1b) restricted at C, is uniquely defined by means of ¢ . It is true
that for permissible complexes, the associated operator # is one to one, but remark-
able for them is the fact that the inversion formula for # has the explicit form
given by (2) for C = C,.

Using the structure of the operator x we define in §5 a large class of permissible
complexes. The problem of describing all the permissible complexes is of great
interest.

1. VTHE INTERTWINING OPERATOR ¥

1. PRELIMINARIES. 1° We define the (non-oriented) volume element w in the
real, n-dimensional vector space V, as a non-negative function w(v,, ..., v,), v;€ ¥,

which for any change v; —- Zn giv; (i =1, ..., n)is multiplied by |detg|; in parti-
Jj=1
cular w(v,, ..., v,) =0 for v, ..., v, linearly dependent vectors. It is obvious
that the volume element w is uniquely determined by the number w(ey, ..., e,),
where {e,, ..., ¢,} is a basis in V.
We introduce some notations. Let w be a volume element in ¥. We then denote
by w’ the volume element in the dual space ¥’ given by the equality

(J)’(e]‘, cees e")w(e] ey en) =1

where {¢'} and {e;} are dual bases respectively in ¥’ and V. Next let L be a subspace
in ¥V and a a volume element in L. We denote by w/o the volume element in the
factor space V/L, determined by the pair w, «. That is if {e;, ..., ¢} is a basis in
L and {e.,, ...,e,} completes it up to a basis in ¥, then leté, (k + 1 < i < n)
be the projection of e; on the factor space V/L. Then

(p(e1 s _el,)_

w/a('ék+1: --‘,En):: .
0((@1, ---,ek)

Finally, if in the vector spaces L, , L, there are respectively given the volume elements
Vi, Vg, then in the tensorial product space L, ® L, we canonically define a volume
element which is denoted by v, ® v,. That is, if {e,}, {f;} are bases respectively in
L, and L, then

(i ® v{e; ® ;) = v({eDva{f;})-
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It is easy to verify that the introduced definitions are correct, that is, they are inde-
pendent of the choice of the bases in the respective vector spaces. The next lemma
follows from the definitions.

LeMMA. For any t > 0, s > 0, the following are true:

(1.1") . (tw) =t"'w
1.1 So/tx = st w]a
(11) (59 ® (1) = 587 L= 19 Ly, @ 1)

2° We mean by k (even) density on the smooth manifold X, dmX -=n > k,
a smooth function ¢ which associates with each pair (x, 1) where xe X and % is a
k-dimensional subspace of 7, X, a volume element in /. In other words, ¢ is a function

i
of x € X and of the vectors &, ..., ¢, € T,.X, which for any change ¢; — Yy 8iiC;
Je1

(i=1,..., k) is multiplied by !detg:.

For k-densities we can define by the same methods used for k differential forms,
the following operations:

1) integration on k dimensional submanifolds in X,

2) the pullback n* from X to Y where n : ¥ — X is a bundle,

3) integration of the k-densities on Y denoted by 7., on the fibres of the bundle
7Y — X (n, is defined for & > /, I — the fibre’s dimension, and it transforms the
k-densities on Y into k — [ densities on X).

2. THe SpACEs Fj. Let G (V) be the manifold~ of the p dimensional subspaces
of the vector space V, dim ¥ = n. We denote by G,(¥) the manifold of the pairs
b := (b, p) where b € G,(¥V), B is a volume element in b (clearly ép(V) can be viewed
as line bundle over G,(V)). We iptroduce the spaces Fi= F}V) (p=1,...,
n-— 1,2 €C) of C* functions on G,(¥) which satisfy the homogeneity condition

(1.2) fib, 1B) = 1’f(b, B)

for any t > 0. We define a representation of the group SL(¥) on each space F; by:

(T'(@))(b) = flbg)

where b — bg is the natural action of the element g<SL(V) on ép(V).

Next, we shall give several interpretations for the spaces F ;} that shall be used
later on.

1) Fi(V) = F}_(V’) where ¥’ is the dual space of V. This isomorphism is
induced by the one to one and onto mapping G~p(V) — én_p(V’) which carries
b, P e GP(V) to (Ann b,(w/B)’) in é,,_ V), @ — a fixed volume element in V.
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2) We consider Fi(V) as a C* function space on G,(¥). In order to do this
we give an Euclidian structure on ¥ and denote by f, the Euclidian volume element
in b € G(V). We obtain the desired interpretation by associating with each function
f'€ FXV) the function ¢(b) = f(b, B,) on G(V).

3) Notice that ‘G,,( V) can be interpreted as the manifold of p vectors U=ty A ...
... Au,#0 of V, where we identified u with —u. That is, for each pair (b, f) € G (V)
there is a corresponding p-vector u = u; A ... A u, given, up to multiplication
by —1, by the conditions: the space spanned by u,, ..., u,is band B(w,, ..., u,)=1.
By this, F} can be regarded as the space of C* functions on the manifold of the
p-vectors u # 0 which satisfy

f(a) = |t]=*(u) for any ¢ # 0.

From this interpretation we get two more others.
4) We regard F} as the space of C™ functions on the manifold E,, of the
p-frames in ¥, which satisfy the condition

(1.3) flgx) = |detg|~*f(x)

forany g € GL(p, R). That s, as E,, , is a bundle on the manifold of non-zero p-vectors,
we obtain the desired interpretation associating with each function defined on the
manifold of p vectors, its pullback on £, ,

5) In a coordinate system for V, any p-frame is given by a pXn matrix of
rank p. So, F} is interpreted as the C* function space on the manifold of p Xn ma-
trices of rank p, which satisfy the condition (1.3), or, equivalently, as the space of
C* functions that are even, homogenous, of —1 homogeneity on the p-minors
of the matrix x.

6) Fjinterpreted as the C* function space on the manifold M,, ,,_, of p X (n—p)

matrices *. That is done by associating with each matrix u = {|v/|| in M, ,_,, the
p-vector tu = vy A ... AV, Where

v, =0}, ..., 00 ut, ..., ulP)y i=1,...,p
(0} - Kronecker’s symbol). It is obvious that the projection of the set tM,, ,_, on

G, (V) is an open and dense subset of G,(V). We obtain the desired interpretation,
associating with each function f defined on G (¥V), the function (t%f)(u) = f(ru)
defined on M,

lo. n—p-
Note. There is a purely group interpretation of the spaces Fi(¥). They are
interpreted as the C* function spaces on the group SL(n, R), satisfying the condition

Slug) = |deta]*f(u) for any block triangular matrix g = ( Z 0) where @ is a p-matrix.
c

In this interpretation, the operators of the representation act by right translations.

*) These functions satisfy supplementary conditions of decreasing at infinity, which
are not presented here.
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3. THE DEFINITION OF THE INTERTWINING OPERATOR .. The main subject
of this paper is the intertwining operator

S:FE—F (1<p<g<n)

that is, an operator which commutes with the operators of the representation.
This operator has a simple geometrical sense: roughly speaking, (£f)a), a e G(V)
is equal to the value of the integral of the function f on the set of the p subspaces
that are contained in a; we shall now give the exact definition of the operator ..

Let feFl,a =(a, )€ Er‘q(V), b = (b, Be (7‘,,(41). We denote by o;(I;) the
volume element in the tangent space 7,G (@) = b'®a/b canonically defined by the
volume elements « and §:

(1.4 0:B) = B ® a/p.
By the homogeneity conditions (1.1) and (1.2) it follows that the product f([;)a;(a’w”))

is independent of the choice of the volume element f and, therefore, it defines for
any fixed @ a N-density on G,(a), where N = p(g — p). We define

(1.5) (#)a) = Sf(é)a;(l?).
G p(a)
It follows immediately from the definition that #f e FZ and that . is an intertwining
operator.
We give now the formula of .# in coordinates when FZ? and F? are interpreted
as function spaces respectively on the manifold of p X (1 — p) matrices and on the
manifold of g X (n — ¢) matrices. We write u € M, ,.,and ve M, ,_, as block ma-

)

v
uyeM, ,_,and v = (01) where v,e M, ,_..
2

trices: u -= (uy, uy) where u, € M, 4p>

o € M,

q-p,n—q-

(1.6) ) = Sf(r, 0y + t05)dt

M
pr4-p

Then

where dt -= []ds.

Our purpose is to obtain inversion formulas for .4, that is to construct an
inverse operator #~'onIm.#. As for ¢g>n — p impliesdim G, > dim G,, Ker .7, the
kernel of the operator £, is non-zero in this case. That is why we shall from now on
assume g < n — p.

2. THE SEQUENCE OF FUNCTIONS P,

I. DEFINITION OF THE FUNCTIONS P, IN GEOMETRIC MANNER. By means of
simple geometric constructions we shall define a sequence of functions P,(c, A,
1<k <n—p,whereé = (c, y) € G(V), hh = (h, ) € G~‘,(V’), ¢l hand 4 == {4;},
i-=1,...,p-k, vectors in the tangent space 7.G, (V).
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The function P,_, plays a central role in the construction of the operator y.

Let & be fixed. We consider # the manifold of the pairs (c, &) where ¢ € Gi(V),
he G, (V') and ¢ L h. We define the mappings 7, : # — G,(V') and 7, : B — G(V)
by n,(e, h) = h, ny(c, h) = ¢. We obtain a double fibration

B
i‘[/ \12

GV GV .

We notice that 73 {¢) = G((V/c)') = G,(Annc).

Let :p(/?) be an arbitrary smooth function on é,,( V") which satisfies the condition
Y(h, tn) = t"Y(h, n) for any ¢t > 0. Then |//(/~z)a(l7,)(l~z) is independent of the choice of
the volume element and defines a p(n — p) density on G (¥V'). Consider on % the
pullback of this density, that is, the p(n — p) density t = nf(Yo,) given by the
following equality:

we, b, By, ..., B)) = WMoy ()(Dry)B,y, . . ., (Dny)B,)

where B; e T, ,# and r = p(n — p).

We fix A = {A4,} an arbitrary system of p.k vectors in the tangent space
T.G(V)and let 4 = {A;} where 4; € T, ,% are vectors in the preimage of 4;. Then
in T, ,# we choose B = {B;} a system of p(n — k — p) tangent vectors to the fibre
of the bundle n,, that is B; e T,G,((V/c)'). Then, for fixed ¢, h and A, t(c, h, A, B)
is independent of the choice of the vectors A; and defines a volume element in
T,G,(Annc). On the other hand l//(/;)UAnn c, (w/,,y(7z) is also a volume element in
T,G,(Annc) hence 7(c, f, A, B) and (xﬁ(/;)a,\nn ‘-,(,0/7)'(/;))(3) differ by a multiplicative
factor which is independent of B.

DEFINITION. We define P,(¢, AJh) by the equality
2.1) W o W), a = PG AR, wrrr (D)(B)-
Tt is obvious that P, is independent of the choice of . It follows from the definition

that the function P, is invariant for the action of the group SL(¥) on the manifold
of the triplets (¢, A]4). From (2.1) we have

Pi(¢, Al-) € F7N(V/e)).

(Rigourously P,(C, A|-) belongs to some extension of F,*(V/c)') consisting of
piecewise smooth functions.)
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2. ExpLiCIT FORMULA FOR THE FUNCTIONS P,(C, Alh).

PROPOSITION. Let ¢ =(c, ), 71:(h, m, A=:{A,,.. ., Ay} where A; € T,G(V)==
= Hom(c, V/c). Then

(2.2) P(E, Alh) = |det|[<vf, Al

where {v;}, {v'} are some unitary bases respectively in ¢ and he G ((V/c)), that is
n({v'}) = y({v;}) == 1 (the right side is independent of their choice).

We point out thatifin ¢ and T there are respectively given the frames z =
== (zy, ..., 2,) and & = (&, ..., &P) then (2.2) can be written as

23) Py(z, Aig) = idetf[<¢', 4,23} (¢ =0).

Proof. Both sides of (2.2) are invariant for the action of the group SL(V).
Therefore, as the group acts transitively on the manifold of pairs (¢, /) it suffices
to prove (2.2) for a certain pair ¢ = ¢,, i o= Izo We assume that there are given
dual coordinate systems in ¥ and ¥'. On G (V') we define local coordinates (¢, 1)

V:”aHizl.‘..,p: ’1-“’1:”1 1 5
J=1, ..k n-—p——/
for each pair (&, n) there is a corresponding p- subspace spanned by the row vectors
of the p Xk matrix & = (¢, 1,, n). At the same time we consider Fj(V"’) as space of
functions of (¢, n). Analogously we can define on G, (V) local coordinates
a=l|aillia, & b= Hb’H, 1,
J=:1, ...,p 1 ,n k—p
for each pair (a, b) there is a corresponding k-subspace spanned by the row vectors
of the matrix (/,, a, b). Asthe ortogonality conditionof ¢ = (I, a, by and i =: (&, I,,, 1)
is written @ + ¢’ - by’ = 0, we can choose as coordinates on # the triplet (a, b, 1).
In these coordinates, we have

nl(a’ b: ") = ( —a — "b,: '1)

Then if we fix ¢; = (/,, 0, 0) and /, = (0, 1,, 0) we find that in (c,, /,) the differen-
tial of the mapping =, is written

(Dnl)(A7 Ba 77) = (_AI: Y])

By standard computation we ge. the equality (2.2) for (c, 1) = (¢, , lip)-

3. THE INTERTWINING OPERATOR y

. THE SPACE QN(é’) We shall denote by & = &,_, the manifold of the
pairs (¢ b) where ce G V) b = (b, li)eG (V) and b n ¢ = 0; and by QN(6),
N = p(q — p), the space of N-densities 1(c, ) on & satisfying the condition
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1(c, (b, tf)) = t¥t(c, (b, B)) for any ¢t > 0. As SL(V) acts naturally on &, we can
define on QN(&) a representation of SL(¥) by translation operators.
In this paragraph we shall construct an intertwining operator

% FP— QN6)

which is crucial in the inversion formula. We shall obtain the inversion formula
for 4 in §4.

2. THE INTERTWINING OPERATORS R} . The construction of y will be done in
several steps. We start by constructing the intertwining operators

RV, w) : FXV) — F1=X¥").

(Recall that Fi=A(V') ~ FrzX(V).)In order to do this we introduce the function
U““(lz b) on the manifold of the pairs (/z b) where /i == (h,n) e G,,(V’), b=
== (b, f) e G,,(V) defined by the equality

(3.1) UP(h, b) == C, (W) det|[{f, el (LeO).

Here {f'}, {e;} are unitary bases respectively in /7 and b (the right side is independent
of their choice),

A+ ) L

where I',(s) = HF(S — —{2\~) We point out that

(3.3) UH(h, ty; b, sB) == (1s)~*UW(, n; b, B)
forany r > 0, s > 0.
Let fe F}. From (l.1), (1.2) and (3.3) it follows that the product

U=, b)f(b)a~(b), is independent of . Here Ve (V, ) and a~(b) f ® w/p.
Therefore for any fixed /1 it defines a p(n — p) density on G (V). By definition:

3.4 R g = S UG, Bf oy b

Gl

The integral (3.4) is convergent for Re A > n — 1. In order to make it have sense
for ReA < n — 1, we give an Euclidian structure on ¥ and regard F} as C* function
space on G,(V) (see §1 p. 2). Then the operator Ry is written:

G.5) (RYf )y = S U=, b)f(5)o(b)

Gyt
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where U, b) = UP(h, ny; b, By), o(b) = o5(b, B;) and 1, B, are the Euclidian
volume elements respectively in 4 and b.

For a fixed f, the integral (3.5) is convergent in the domain Rel > n — 1
and is Z-analytic in this domain. For ReX < n — 1 we define R%f as the analytic
continuation in A. It is easy to verify that this definition is independent of the choice
of the Euclidian structure on V.

It follows from the definition that in any point in whose neighbourhood R V)
is analytic (such points will be called regular for the operators R,’;(f/)), it carries the
spaces FA(V) into Fy=*(V') and is an intertwining operator.

Norte. If we change w by tw (¢ > 0), then, oy,w(l;) is multiplied by 7, so from
(3.4) we have )

RNV, tw) = t’RAV,w) for any 1 > 0.

Elementary computation leads us to the formula of RX(V, ) in coordinates, when
FXV) is interpreted as the C* function space on the p X (n — p) matrices u = [u]
and analogously F7=*(V’) is interpreted as the C* function space on the matrices
(n—pyxp, &= ||l Namely

(3.6) (RAV) )igy = Cp o0 — 1) S I, + uél="du
M
prn-p
where du = [Jdu}, I, being the p identity matrix and we denote by |-/, the
absolute value of the determinant of the respective matrix.

3. REGULARITY CONDITIONS FOR THE OPERATORS Ri(V) AND THE INVERSICN
FORMULA.

PropPOSITION 1. For p > 1, R{;(;) is 2 regular whenever ) # (p — 1) —k,
k=0,1, ... forp =1, R(V)is Aregular whenever 7. # 2k, k=10,1, ... .

Proof. 1t is known (see for instance [10], [11]) that the generalized function

Idet x}*
()—}— 2

on the manifold of p-matrices is a A-entire function. Therefore, the
r

»

2
singular points of R as function of Z, coincide with the singular points of the

functionI', (—;—) . Hence our statement follows immediately.

PROPOSITION 2. If ) and n — ). are regular points for the operators R} ithen
R,’Z"I(f}’)oRj(V) is the identity operator on FX(V).

COROLLARY. With the same assumption on 2, the mappings

RAV) : FXV) — Fi=XV")
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and
Ry=H(V") : Fym (V') — Fi(V)
are isomorphisms. '

Proof. We shall make use of the following statement: any intertwining opera-
tor which maps F4(V) on itself is proportional to the identity operator E. By this
statement we have R;;‘A(V’)oRﬁ(V) = cE. So we have to show that ¢ = 1. In order
to do this we give respectively on V and V’, dual inner products (, ) and denote by
SO(n) the subgroup of the group SL(¥) which consists of those transformations
which preserve the inner product. In FA(V) and F,~*(V’) there is respectively a
unique vector, up to a multiplicative constant, which is invariant for SO(n). Namely
the functions f(b, f) = |det||(v;, v))||| ~** respectively @(h, 7) = [det||(v', v/) |||~ =2/
where {v;} and {1/} are unitary basis respectively in be G, (V) and h € G,(V'). Hence
RA( VYf = S0, R,’,’"-(I;’)(p = S,_;f and it suffices to show that §, = S,_, = 1.
For that we use the matriceal interpretation of FA(V)and F,;~4¥') where we have

n—2

f) = I+ wu'|=%2, @) = |[~+ &E T,

P

Thus the equality R}f = S;p becomes
n-2

S, + &gl T = C, (% —n) S L, + w'| =3, + u€|*~"du.

M
p.n-p

Computing for £ = 0, we get

S, = Cpu% —n) S |, -+ w'| = *2du.

MI’y n-p
As S I, + u'{=*2du = [C, (. — m)}~* (see Appendix 2 foilowing this point),
Mp. n-p

we have S, = 1.

idet x|*

A4p
()
for A= —p—k, k=0,1, ... (see {10], [11]).
Let 6(x) be the delta function on M,-the manifold of p-matrices (3, f) = f(0)

for any test function f. As it is known §&(x) = (Zn)—l’zﬁ(l), where & is the
Fourier transform defined on the test functions by the equality

AppPENDIX 1. The explicit formula of the generalized function

(F ) = Sf(x)ei'"@'x)dy dy = ILdy,;.

1 being the function identically equal to 1.
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Motivated by the definition of the delta function 6(x), we introduce the distri-
bution y(x) by the equality

y(x) = n) " F(sgn(det x)).

Unlike for 4(x), the support of the distribution y is the whole manifold M,. Consi-

"
dering 6®(x) =: P¥8(x), y®(x) = P*y(x), k =0,1,... where @ = det- - =
X
i
= det ii ', we have with these notations:
l ’C
ldet \ ! — (_l)p-k_np2/2 5(2k)(x)
rp(’ 111), 22kprp(k +~”-)
2 Jhepoak 2
Idetx;? ! (—i)@ +Dp. o'/

PEED(x),

(5]

2 ey

2(2k+1)F ‘k +p-;—l)

APPENDIX 2. Let us make the computations for the formulas

Fp( /- m)
" Pt 2

L = S I, 4+ xx'| =%y = 1 2 _____3__
n(2)

p,m

2

For p=1 we have I}, = S(l +x3+ ...+ x2)-*2dx, ... dx,,. This integral

is easily computed by passing to spherical coordinates:

=)

I] m nmlz

y
z
matrix x. The matrix I,, + xx’ is positively defined; we consider u = (I,, + y'p)12,
v = zu-1. Then we have I,, + x'x = I, + y'y + z'z = u(l,, + v'v)u and it follows
that |I,, + x'x| = |I,, + v'v|-|I,, + y'yl. Therefore, using the evident equality
|1, -+ xx'| = I, + x'x| we have |[, + x'x| =1 4+ o), + yy'|. And as dx =

Suppose now thatp > 1. We write x as x =( ) where z is the last row of the
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—~=dydz = |I,_; + yy'|¥* dy dv we conclude that

A=1

L= S(l - ooy dvgu,,_l F oy T dy = B L3 e

It follows that

-
5
= If,m'll,_ml v jop-l= gt 2 .

Prm 1, m -
= ()
2
REMARK. By I, + xx'| = [I,, + x'x| we have that I}, = I}, ,. Therefore we

find the following interesting formula for I',

4. THE OPERATORS w:F(V)—~ FFuV). If feF(V), ue F;#(V') then
u-(R{V)f) € Fr=*=#(V"). We associate with the function u the operator & : FAV) —
— F2*#(V) defined by the equality

(3.7 U = Rr=+=#(V"Yu-RAV)f).

We shall call u the symbol of the operator # and yu its order. The given definition
still makes sense when u is a piecewise smooth function. In this case uf will be a
function from a certain extension of the space Fi+4(V).

We now describe the case when i is a differential operator. Let Fi(V) be inter-
preted as the function space on the p X (n — p) matrices of rank p and respectively
FX(V") as function space on the p X (n — p) matrices £. If u is a non-negative even
pumber then there is an invariant finite dimensional subspace ®,#(¥") which con-
sists of the homogenous polynomials of order u of the p-minors of the matrix £.

ProposITION 3. If w(é) € @,4(V') where p is an arbitrary non-negative even
number, then u is a differential operator of order p-u, given, up to a multiplicative

constant, by the equality
A 7 )
U=uf—
( 0x

(that is 4 is determined by changing, in the formula of u, the elements &;; with the

6).

ij

operators
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Proof. If fe Fi(V) and @(§) = (RP(I7)f ¥¢&), then considering the chosen inter-
pretation for the spaces F7, u is written like this:

(3.8) @) = C,, n(—ﬂ.—u)g X&) p(E)o(E)
2

where 6(£) is a p X (n — p) density in whose explicit formula we take no interest,
and the integral is computed on an arbitrary section of the boundle £, , - G (V).
From Proposition 2 we obtain

(3.9) 109 = Cy o(—3) S x| p(E)o().

2

0 . . .

We apply the operator u ( —af—) to both sides of the equality (3.9). To write explicitly
x

the obtained formula, we define on the manifold of p-matrices z = ||z;;|| the operator

0 2 I .
-— == det !I—«‘ --+. It is obvious that

vz 0z; ;i
]
u (f—)lxé';-l — u(®) (~§’—)"lz;—lf .
Ox Cz P

On the other hand, it is known (see for instance [10]) that

a \“ i A
('éz') l2|=* = C; lz| 4= #

where C, , is a numerical constant. This is how we obtain

(3.10) (u( ;x-)f) @) = C, (—Cs, S x|~ A= (@ ()0 (E).
0

Combining (3.9) and (3.10) we get the statement of the proposition.
For us, the main example of an # operator is given by the following.
DeriNITION 1. We shall denote by P(c, A) the operator

P, ) : Fo(V/c) — Fi(V/c)

given by the symbol ?’(c, Aliz) = P,_[c, A71) (see §2). If c e G,_ (V) is given by the
frame z = (z,, ..., 7,.,), then we write ﬁ(z, A) instead of ﬁ(E, A).

By the proof of the previous proposition, and by Proposition 1, §2 we have
(with the obvious notation):

PROPOSITION 4. If z = (z,, ..., z,_,) and A are such that

3.11) det||<&, Azdil = 0
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Jor any p-vector &£ = (£, ..., EP) then ﬁ(z, A) is a differential operator of order N =
== plq — p).

REMARK. The function det||<¢’, 4,z;>]| is a homogenous polynomial of degree

g — p in each of the vectors &' and, consequently, the inequality (3.11) is possible
only for even ¢ — p.

5. DEFINITION OF THE OPERATOR X. Let ¢= (¢, y) € 5q_p(V). We define
the injective mapping

0z: G (VIe) = GV)

given by the equality 0.(a, @) = (a,, ;) where a, € G(¥) is the preimage of a e
€ Gy(V/c)and a, is defined by the equality a,/y = a. We shall associate with every
function ¢ € F4(V) and every ¢ € (~?,,_p(V), the function ¢ e F4(V/c) given by
the equality

(3.12) 0(8) = @(0;3) Ge G, (Vo).

Let & be the manifold of the pairs (c, 5) we have introduced in Subsection 1, ¢ €
€ Gy, (V), b= (bp)e ép(V) and bnec=0. We construct the mappings
p:& = G, (V) and n: & - G,(V) by the equalities p(c, b) = ¢, n(c, b) = b.

DEFINITION 2. Let ¢ € F&(V). For any ¢=(c, y)€ éq_p(V), b=(b,pe

eG(V)withbnec=0and any 4 = {4;, ..., Ay}, A;€ T.,&, N = p(q — p), we
define:

(3.13) U 5,0y = PE pA) 0:)B ® cle, B ® 3/7)

where pA = {pA;}, pA4;e T ,G,- (V).

We point out that the right side is independent of the choice of the volume
element y in ¢, as when changing y in ty (¢ > 0), ¢ is multiplied by ¢” and IA’(E, pA)
is multiplied by ¢-?. It follows from the definition that y¢ is an N-density on &. It

is easy to verify that (x@)(c, (b, tf), A) = t%(xp)(c, (b, B), A); so yx determines a
mapping

% Fy(¥) - Q(6)

where QN(&) is the space of N densities on & we defined in Subsection 1.
PROPOSITION 5. y is an intertwining operator.

12 .- 2294
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Proof. We obtain x as a composition of several mappings
® = @p —>1//—->Pw—-)x(p

where ¥ = R;}(I7/c)(pa. In the above sequence, each element is a function whose
domain is a manifold on which the group SL(V) acts naturally, for instance ¢x is
a function defined on the manifold of the pairs (¢, @) where ¢ = (c, y) eGq ,,(V)
a = (a, a)e GP(V/c), Vis a function on the manifold of the pairs (¢, Iz) where ¢ :

= (¢, 7)€ G ("), h = (h, n) € Gy(Annc), andsoon. From the definition of these
mappings we see that on the respective manifold, they commute with the action of
the group SL(V).

DEFINITION 3. We shall denote by (y¢)(c, Aig) the restriction of the N-density
¢ at the fibre n7X(b) = G}_ (V) of the bundle n: & — G (V)

(314) (X(p)(c,A{E) = (X(p)(c,z, A) ?_1_1 (b)

(where G5_ (V) is the manifold of the subspaces c€ G,_,(V) which satisfy ¢ n b - 0).

Forafixed be C:‘,,(V), (xv) is a N-density on G5_,(V).

((.Ab)

6. LEMMA FOR PASSING TO SUBSPACES W V. In the definition of the operator
¥, the framework was the vector space V. In order to stress this, hereafter we shall
use yY instead of y. Recall that the dimension of ¥ satisfies n =dim¥V = p + ¢.

LEMMA. Let W < V be an arbitrary subspace of V,dimW =m = p -+ q and
“et p¥be the restriction of the function ¢ € FE(V)at GW) (that means ¢ € FX(W)).
Then for any triplet (c, A, by where c € Gy (W), A= {A;},4,€ T.G,_,(W),be G:,(W)
we have

(3.15) XV )e, A1b) = (¥ 9™ )(c, Alb).

Proof. We can assume without loss of generality that in the coordinate system
of V, the space W is given by the equations x"*1 = ... = x" = 0 and c is the space
spanned by the vectors vy, ..., v,_, Where v; = (8}, ,, ..., 6/4,) (6{ — Kronecker's
symbol) We identify V/c with the subspace spanned by (x y - .., X") where xP -1 :
= . =2 x9 == 0. We regard F(V/c) and F,~%(V/c)') as functxon spaces respectively
on the manifold of p X (n — ¢) matrices u and on the manifold of (# — g) X p matrices
¢ (where u and & are local coordinates respectively for the Grassmannians G,(V/c)
and G,((V/c)'). We write them as block matrices:

U= (u,uy), £ = (?) where uy, $1€ M, 5y ; Uy, E3€ My, o -
G
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Considering thlS the Grassmannian G, (W/c) = G,(V/c) is given by the equation
1, = 0; thus (p~ is a function of u, , given by the equation

o () = ¢z (uy, 0).

Using the notation W(¢,, &) = (RUV]Q@)Er, &), @W(E) = (RAW]O@L)(E,) we
prove that

(3.16) ¢W<51)=agw(él,fz)d¢2 where g == Spor=as)|

Cp, n—q+P(}') !1=—1]

and as usually d&, is JId(&,);;. Indeed we have

(f) (ul ) u2) - p n— q+p()) S |I ulél—{"uZélelp(ﬁl ’ éZ)déldéZ !

I

which gives us for u, = 0:
(.17 @) =C, ,,-w(x)g i, 4 ) (Sw(g @)dfz)defl}
. M:—q

On the other hand we have

(3.18) W) = C, ., wmgu s Y E)AE g

Combining (3.1‘7) and (3.18) we get the equality (3.16). We shall now proceed to
prove the equality (3.15). Presuming that the assumptions of the lemma are fulfilled,
it is easy to verify that P(c, A|£,, &) is independent of &, and P(c, A[,, &) =
P¥(c, 4, £;). Next, be G, (V) is given by the matrix v = (v,, vy) and the condition
be G, (W) becomes v,. = 0. We find that

|
(Fo)e, A1) = C, m,(i)s I, + w &I P (c, AlEW &y, E)dE, dE,

Acz—q

(3.16) shows us that the right side is equal to (x*¢")(c, A[E) and the proof is ended.

4. THE INVERSION FORMULA FOR THE OPERATOR £

1. MAIN LEMMA. We shall denote by # the manifold of the pairs (c, A}
where ce G,_(V), h = (h,n)e G, (V') and ¢ L h. We shall associate with each
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function ¢ € F (V) the function ¢ on B given yb the following equality

(@.1) @lc, By = (RE(Ve, o/1)pe,, ) .

Here y is a fixed volume element in ¢ and ¢,,, € F5(V/c)is given by the equality (3.12)
(easy computation shows us that the right side is independent of the choice of 7).

LEMMA. If ¢ = Jf where fe FY(V), then for any (c, 71) € 4 we have

4.2) @lc, i) = o, (RE(V, ) )(h)

where a,,, = - 1?9~ PT (p[2)[T (q/2).
Proof. 1t suffices to show that the statement of the lemma is true for a certain
fixed ¢ == ¢o. On the manifolds G,(V), G(V) and G (V') we respectively introduce

v - “r
local coordinates u = (uy, Up), V= ( 1) and ¢ == (él) where u,,&e M, ,_.;
Uz 2

Ug, Ca€ Mgy V1€ Mp,_y, V3€ My, and we regard Fi(V), FH(V) and
F2-9(¥") as function spaces respectively on the manifolds of the matrices u, v, ¢
(see Subsection 2 of Section 1). -

In this interpretation the function f = R;,’(V)f is given by the equality

ioq

4.3) j:(éls &) = Cp.v(}‘ - ”)S in + wéy + "252l1~7(ul, uy) du, duzil

(see Subsection 2 of Section 2). Next we give c€ G, (V) using the (g — p) X n matrix
c-==(a,I,_,,b) where ae M,_,,,,be M,_, ,_,. Suppose ¢, = (0, [,_,, 0); then the

orthogonality condition for ¢ == (GI) and ¢, is &; = 0. It follows from the definition
2

of &(c, k) that for ¢ = ¢,, @ is a function of &, given by

(44) ()‘B(b, 52) — Cp.n—(q—p)()" — n)S [Ip + vlézll—"(ﬂ (l:;) dvl

i=q

Combining this with the formula of ¢ as function of f (see 1.6) we get

4.5) @(cos &) = Cpun-q-p(% — ")S I, + v,&l*~7f(, v,) dedo,

=g
Therefore (¢, &) = 2, F0, &) where
_ Con-q-pd — )| — Pa—p Ty(p/2)

OCP sq
Conlh — 1) |1eg r,q/2)

Hence our lemma is proved.
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COROLLARY. The image of the operator #,1m .#, is the set of those functions
o € FXV) which satisfy the condition ¢(c;, 71) = g(cy, 17) Jor any (cy, /;) and (c,, I;) of 2.

NoTE. An equivalent characterization for Im 4 was given in [6].

2. THE INVERSION FORMULA. Let C< G, (V) be a N = p(q — p) dimensional
submanifold. By the Crofton symbol of C we shall mean the function Cr.(/) on
G,(V") which assigns to & the number of subspaces ce C which are orthogonal to /.
It is easy to see that Cr. is almost everywhere finite. C will be called non-degenerate
if supp Cr. contains an open subset and will be called non-singular if supp Cr, =
= G(V"); we say C is harmonic if Cr¢(h) = const # 0 almost everywhere. We shall
denote this contains by Cr. and shall call it the Crofton number. We shall denote
by GC the operator é\rc : FY(V)—F)(V) given by the symbol Cr(/1) (see Subsection 4
of Section 3). We notice that if C is harmonic then (/Z;c == Cr(C)- E where Eis the
identity operator.

THEOREM. Let b= (b, fe C:',,(V) and C a non-singular submanifold of G5_ (V)
whose dimension is N = p(q — p). Then if fe FiV) and ¢ = Jf

“.6) S(xqo)(- B = EeNd).
C

In particular, if C is a harmonic submanifold, then

@7 So«p)(- 8) = Cx(C)-1).

[5

3. PrROOF OF THE THEOREM. According to the definition of (/J\rc , we have (/:\rC f=
= Ry~(P")(Crcf) where f'= Ri(P)f, that is

(4.8) CreNB) = \ U@, HCrebfiios .
G p( v

We shall consider the submanifold &, = # consisting of the pairs (c, 1) where
ceC, he G(V') and hlc. We define the projections =, : %, — G, (V') and
7y : B.—C by 7my(c, h) = hand ny(c, h) = c. Let U = ny,(4,); then we can consider
that in (4.8) the integration is done on U. For almost every point 2 € U, the preimage
ny '(h) consists of a finite number of points Crq() # 0; therefore (4.8) can be
represented as an integral on the manifold £, :

@.9) GeNB) = S U9, Do s().

2.
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According to the Main Lemma we have /~'(71) = a;20(c, I), where ce C is an
arbitrary element orthogonal to 4. Hence

@.10) (Cren®) = o5 S RHU b, Wip(e, Bz ).

4
Be

We shall compute this integral as an iterated integral in which we first integrate
on the fiber and then on the basis of the bundle n, : #. - C. According to (2.1)
we have:

Cref)B) = a;,},S( S U=, h)P(c, AR)i(c, Iz~)o(,7/c),(h~)).

C 2l
It follows from the definition of the operator y that the first integral is equal to
a,,q(x0)(c, A'b). So

G = S(xw)(- ).

c

Notk. For each harmonic submanifold there is a corresponding application
o : Q&) - FUV)

(where Fi(V)is a certain extension of FZ(¥)), defined' by the equality

o@B) = Sr( ).

(o}

This application is not an intertwining operator on the whole V(&) but according
to the proof, its restriction at the subspace y.#(FZ)< QV(&)is anintertwining operator.

REMARK. In the same manner, for any & < ¢ — p we can define the operator
A s Im I — QP&

where &, — the manifold of the pairs (¢, 5), ¢, € G (V) and be G, (V).

That is, let ¢ € Im # and ¢(c, I;) the function on # given by (4.1). We define
the function ¢@.(c,, /~z) on the manifold of the pairs (¢, h) where ce G.(V), he Eip(V’)
and ¢, L A, by the equality

(Tok(ck H };) = (77((,', l;)



INTEGRAL GEOMETRY 379

where ce G,_,(V) is a certain subspace satisfying ¢, = ¢, ¢ L h. According to the
Main Lemma the given definition is correct. By definition

2P = RI™""k(Ann ¢y, (/7)) Py, ARG(cy, 7))

where P, is given by (2.1).

We underline that for & < ¢ — p the operators are defined on the subspace
ImSs < F7. :

Using the operators y, we can construct other inversion formulas for the
operator £.

APPENDIX. ON THE OPERATOR x. For any be GP(V) there was defined in
{6] the operator " which associates with a function ¢ € F(V) a N-differential form

on Gi_(V), (N = p(q — p)). 1t was proved that if ¢ = £f, fe F4(V), then 3P isa

closed form on G4_ (V) and we have for any N-dimensional cycle y ¢ Go_,(V):

@11 | S%bfp = C,f(6)

Y

where C, is depending only on the homology class of y. Moreover, for even ¢ —p
there are cycles y for which C, = 0 and for these cycles (4.11) gives the inversion
formula. There are no such cycles for odd ¢ — p.

The operator x can be defined analogousiy to y as intertwining operator.
In order to do that, we must replace, in the definitions given in this paper, the non-
-oriented volume element by an oriented volume element. Therefore we shall regard
(~7,,(V) as the manifold of the pairs (b, ) where b € G,(V) and f§ is an oriented volume
element in b. Instead of Fi(}) we must introduce a larger class of spaces, FF%(V)
(e = 0, 1) the spaces of C* functions on G:,(V) satisfying the condition f(b, 1f) =
== [t}* sgn’t-f(b, B) for any ¢t # O (we notice that F#°~ F7). If in the definition of
x we change P(Z, Alh) = |det||(n', Aw;>|li with Q(, Alh) = det||{n', 4,5 then
instead of y we get the intertwining operator

x: F2(V) - QY(&)

where & is a bundle over GP(V) with the fibre at b = (b, f) e (5,,(V) equal to G5_(V),
and Q(¢) is the space of the MN-differential forms which satisfy the condition
(¢, (b, tB)) = |t|? 1(c,(b, P)) for any ¢ # 0.

It can be shown, by passing to coordinates, that the restriction of N of the

differential form x¢, ¢ € F5(V) at the fiber n~%(b), n: & — 6,,(V) coincides with
the differential form introduced in [6].
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5. PERMISSIBLE COMPLEXES

1. DEFINITION OF THE PERMISSIBLE COMPLEX. As for p<g<n—p,
dim G, (V) < dimG,(V), in this case, knowing the values of Jf on the whole
manifold G(V) is over-sufficient for recovering the function f; we can assume
that the function Jf is given only on a certain submanifold K < G (V) whose
dimension is k > dim G, (V). There arises the problem of recovering the function f
by means of the function S, f= 4f| K.

We introduce a class of submanifolds K = G, (V) for which £ is one to one
and the inversion formula for #; follows immediately from the inversion formula
for .# we obtained in Section 4.

DEFINITION. The submanifold K « G(V) will be called a permissible complex
(more exactly : a p-permissible complex) if for almost every b € G,(V) there is 2

harmonic submanifold C, < G5_ (V) such as if ¢|K = 0 then (x(p)(-!l;)ic,, = ( for
any p € F)(V).

In other words the restriction of the density (y¢)(- 113) at C, is uniquely determin-
ed by the restriction of ¢ at K. Itis obvious that in the case of a permissible complex
K, the function fe Fj(V) is computed from its image ¢ = S f by means of the
inversion formula (4.7) for C = C,.

NoOTE. By replacing in the definition the operator y by the operator x and the
harmozic manifold by the p(q — p) cycle in G5_ (V) we obtain the notion of per-
missible complex earlier introduced for complex vector spaces and whose complete
characterization is given in [3] and [9] forp =1, ¢ =: 2.

2. ExaMpLES OF PERMISSIBLE COMPLEXES. 1°. The complex K.. We associate
with each harmonic submanifold C < G,_,(V) the complex K¢ = G4(¥) consisting
of the subspaces a € G (V) which contain at least one subspace ce C. We notice
that dim K¢ = dimG (V) = p(n — p). Indeed the set of the subspaces ae G (V)
which contain a fixed subspace ¢ € C, is equivalent to G,(V/c) and therefore its dimen-
sion is p(n — q). It follows that dim K. = p(¢ — p) + p(n — q) == p(n — p). Obvious-
ly, the complex K is permissible.

We shall give an example of a K. complex for p = 1, g == 3. We consider a
pair of lines 1, , I, in P"~? situated in general position. We denote by C the set of the
lines in P"~1 which intersect the given lines. It is obvious that C is a harmonic mani-
fold with the Crofton symbol 1. The complex K. consists of the set of 2-dimen-
sional planes of P"-1 which intersect the two lines /,, /,.

2° Radon complexes. The manifold K < G,(V) will be called a Radon complex
(more exactely: Radon p-complex) if for almost every b € G,(V) there is a linear
subspace W, < V such that b ¢« W,, dimW, > p + g and G,(W,) c K. It follows
directly from the lemma in Subsection 6 of Section 3, that any Radon complex is
permissible.
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REMARK. In the definition of the Radon complexes, we can assume that
dimW, == p + g. Then the inversion formula for $, is reduced at the inversion
formula for the Radon transform in the projective space.

We shall give an example of Radon complex for p = 1, g = 2. Consider in
P*-1an arbitrary (n — 3)-dimensional family of 2-dimensional planes which contains
all the points of P"~1. The complex K consists of the set of all the lines which are
contained in at least one of the planes of the considered family. It is obvious that,
generally, this co}rnplex K is not a K. complex. At the same time, the complex of
2-dimensional planes in Example 1°, is not a Radon complex.

3. #-coMpLEXES. We shall introduce a class of permissible complexes
K < G,(V) which contains both the K complexes and the Radon complexes.

DerFINITION. The submanifold K < G(V) will be called a #-complex if for
almost every b € G (V) there is a subspace W, — V of dimension dimW, 2 p + ¢
and a harmonic manifold C, = G,_,(W,) suchthatb = W, and K¢, n G(W,) = K.

It follows immediately from the lemma in Subsection 6 of Section 3 that
any f-complex is permissible and, moreover, the inversion formula is (4.7) for
C == C,. Tt is also obvious that both the K complexes and the Radon complexes
are #-complexes.

We shall now construct an example ofa #-complex whichis neither a K. complex
nor a Radon complex. Let p = 1, g = 3. Consider in P"~! an arbitrary one-dimen-
sional family =, of (n — 2)-dimensional planes which contain all the points of P"~1.
In each plane =, we fix an arbitrary pair of lines I}, I7 situated in general position.
The complex K consists of all the 2-dimensional planes in P”-! contained in at
least one of the planes =, and which intersect each of the corresponding lines [}
and /}. We notice that dim K = n — 1.

4. THE INTEGRAL TRANSFORM J, FOR AN ARBITRARY COMPLEX K . Let
C < G,_,(V) be an arbitrary submanifold, not necessary harmonic, K. the
manifold of those a € G,(V) which contain at Jeast one subspace ¢ € C. Generally,
the complex K = K. is not permissible and Ker.#,, the kernel of the associated
integral transform ., can be non-zero. We shall compute this kernel. Let M, =
= {he G, (V') | Cr(h) = 0}.

ProrosiTioN 1. Ker #y, K = K¢, consists of the set of those functions f € F{(V)

Jor which supp(Ri( V)f)< Mc. In particular, the mapping 5 . is one to one if and only
if C is non-degenerated, that is, Cro(h) # 0 almost everywhere.

Proof. Let fe Fi(V), ¢ = S f and f = RI(V)f. We shall assume without any
confusion, that the function fis given as a function on G,(V')and not on the bundle

5,,(V') over G(V’). We denote by G} the set of the subspaces & € G,(V) for which
Crc(#) # 0. By the assumptions in the lemma and by the fact that the mapping
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@ ~ &(c, h) == (RE(V]c)p;) (h) is one to one, it follows that

(pEO@f!G—;EO

where G} is the closure of G%. Hence our statement follows immediately.

tha
Jf

of

Let now #,. = 2 be the manifold of the pairs (c, 71)6 4 where ¢ € C. We notice

tfor ¢ € C, ¢(c, 71) is determined only by the restriction ¢ = £, f of the function
"at the complex K. Therefore by the results in Subsection 1 of Section 4 we have:

ProrosiTiON 2. Im S, the image of the application F, consists of the set
those C* functions @ on K which satisfy ¢(c,, h) = o(cy, lz~) for any (c,, /1~) and

(cs, /;) in #,.

W

0.

11,
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