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AC FUNCTIONS ON THE CIRCLE AND SPECTRAL
FAMILIES

EARL BERKSON and T. A. GILLESPIE

1. INTRODUCTION

If J = [a, b] is a compact interval on the real line R, we denote by AC(J) the
Banach algebra of all complex-valued absolutely continuous functions on J
with the norm || - ||, given by || f|l, = [f(b)] + var(f, J), where var(f, J) is the total
variation of f on J. In [10], [11], [12] Ringrose and Smart introduced the following
notion of well-bounded operator. An operator T on a Banach space X is said to be
well-bounded provided that for some compact interval J, T has an AC(J)-functional
calculus (that is, a bounded algebra homomorphism ¥ of AC(J) into #(X), the
algebra of bounded operators on X, which sends the identity map to T and the
constant 1 to the identity operator I). Ringrose showed that the well-bounded oper-
ators on X can be characterized by a certain representation reminiscent of the spectral
theorem for self-adjoint operators, but in terms of a (not necessarily unique) function
on R whose values are projections acting, in general, in X, the dual space of X [11,
Theorem 2-(1) and Theorem 6-(i)]. In order to ensure the existence of a “‘spectral
family” of projections, E(-): R — %(X), such that T has a Stieltjes integral represen-

b

tation 7 = S A E(A) with E(-) uniquely determined, the special class of well-bounded
operators of type (B) was introduced in {4] (formal definitions will be given in § 2).
The well-bounded operators of type (B) can be characterized [4, Theorem 4.2} by
additionally requiring that the AC(J)-functional calculus in the definition of well-
-boundedness be weakly compact—that is, map bounded subsets of AC(J) onto sub-
sets of #(X) whose closure in the weak operator topology is compact in that topology.
(In particular, every well-bounded operator on a reflexive space is automatically
of type (B).)

A major limitation on direct applications of the theory of well-bounded oper-
ators is that the definition implicitly requires the spectrum of a well-bounded oper-
ator to be real (in fact, a subset of J). Moreover, as pointed out in {11, § 8.1], attempts
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to extend the notion by a functional calculus type of definition to operators with
complex spectra (even to operators whose spectra fill out a simple closed arc) face
serious obstacles. On the other hand, operators of the form e'4, where A4 is well-
-bounded of type (B), have been shown to occur naturally in analysis. For example,
if 1 < p < oo, then all translation operators on LP(G) (where G is an arbitrary
jocally compact abelian group) and all surjective isometries of the Hardy space
H?(D) (where D is the open unit disc in the complex plane C) are of this form (see
[8, Theorem 1] and the discussion in [3]). It is desirable, therefore, to obtain a charac-
terization of such operators in terms of an intrinsic functional calculus, and this
we do in § 2. We show (Theorem 2.3 below) that a necessary and sufficient condi-
tion for an operator S to be of the form ei4, with 4 well-bounded of type (B),
is that S should have a weakly compact AC(T)-functional calculus, where T is
the unit circle [z| = 1 in C. Since the trigonometric polynomials are dense in AC(T),
we call such operators “trigonometrically well-bounded” (formally in Definition
2.18 below).

The proof of sufficiency in Theorem 2.3 has one additional advantage. With
obvious adaptations to an AC(J)-functional calculus, it affords a simpler and more
self-contained existence proof than hitherto available for the spectral family of pro-
jections of a well-bounded type (B) operator. This is discussed briefly at the end
of § 2, and should be compared with the existence proofs for the spectral family
of a type (B) operator in [4, Theorem 4.2} and {6, Theorem 17.14]. In § 3, the con-
cluding section, a second characterization of trigonometrically well-bounded
operators is given in terms of a suitable ‘““unitary-like’” Cartesian decomposition
(Theorem 3.4).

Finally, it should be mentioned that trigonometrically well-bounded oper-
ators were used in [2] to extend the class of type (B) well-bounded operators to a class
of operators with comple x spectra having a suitable “polar’’ decomposition (called
polar operators). The polar o perators include all scalar-type spectral operators and
lend themselves to semigroup considerations. In particular, trigonometrically well-
-bounded operators can be used to generalize Stone’s theorem for unitary groups to
arbitrary Banach spaces s o0 as to encompass aspects of multiplier theory [2, Theorem
4.20 and 4.47)].

2. THE FUNCTIONAL CALCULUS OF TRIGONOMETRICALLY
WELL-BOUNDED OPERATORS

We begin this section with a few basic facts about spectral families of projec-
tions and well-bounded operators. For a fuller summ ary of these topics see [2, § 2].
A complete treatment of the essential facts can be found in {6, Part 5}.

DEFINITION. A’ spectral family in a Banach space X is a uniformly bounded,
projection-valued function E(-) : R — Z(X), which is right continuous on R in the
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strong operator topology, has a strong left-hand limit at each point of R, and satisfies

() EDEw) = EQEQ) = E(min{2, u})  for A ue R;

(i1) E(4) — 0 (resp., E(A) — I) in the strong operator topology as A — —o0
(resp., A — - o0).

If there is a compact interval [a, b] such that E(A)) =0for A < aand EQR) = I
for 2 > b, we shall say that E(-) is concentrated on [a, b].

Although spectral families of projections need not arise from projection-vaiued
measures (indeed, one of the advantages of spectral families is their ability to treat
conditional convergence, as illustrated in [2, 4.47 (1)]), an integration theory is avail-

able for spectral families ([6, Chapter 17]). If E(-) is a spectral family and J = [a, ]
8

is a compact interval, then for each fe AC(J), S JDHAE(2) exists as a strong limit

o

B
®
of Riemann-Stieltjes sums. We shall denote f(x)E(x) - S SOYAE(D) byS JAE. The
. : ]

® ‘ .
map f '—>S JAdE is an algsbra homomorphism of AC(J) into #(X), and
J

@1 “Sefdfs < [Ifll sup{|E): 2 e J} for fe ACW).

J

Th;e‘deﬁnition of well—boun'ded operator of type (B) we shall use is that indi-
cated in § 1. Specifically, an operator T € #(X) is well-bounded of type (B)if and only
if for some compact interval J, T has a weakly compact AC(J)-functional calculus.
The following characterization of well-bounded operators of type (B) in terms of
spectral families is known (see [6, Theorem 17.14 and Theorem 16.3 (i))).

2.2. PROPOSITION. An operator T € B(X) is well-bounded of type (B) if and
only if there is a spectral family E(-) in X such that for some compact interval J, E(-)

®
is concentrated on J and T ———S ME(2). If this is the case, there is a unique spectral
J .

family E(-) for which such a compact interval J exists. This unigue E(-) is called
the spectral family of T.

For each complex-valued function g on T, we denote by g: [0, 27] — C the
function given by g(6) = g(e') for 0 € [0, 2n]. We shall denote {ge CT: g € ACI[0, 2n]}
by AC(T). Thus AC(T) is a Banach algebra with pointwise operations and the
norm given by ||gll = [Ig |l 2.3- In fact, the mapping g € AC(T) = g is an isometric
Banach algebra isomorphism of AC(T) onto {fe AC[0, 2n}: f(0) = f(2n)}. This
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concludes our discussion of basic background material. We come now to our main
theorem. For each integer n, let e, be the element of AC(T) given by e,(z) =: 2"
for ze T.

2.3. THEOREM. Let X be a Banach space and T e B(X). A necessary and
sufficient condition that T have the form T = ¢4 with A well-bounded of type (B) is
that there exist a norm continuous algebra homomorphism & of AC(T) into #(X)
such that :

(i) Dley) == I, the identity operator, and ®(e,) = T;

(i) for each bounded subset B of AC(T), the closure in the weak operator
topology of ®(B) is compact in the weak operator topology.

In order not to digress from the main theorem at this juncture, we first take up
the necessity argument, since the sufficiency proof will require some lemmas.

Proof of Necessity. By [2, proof of Proposition 3.11], T'= e, where Ay is well-
-bounded of type (B) and o(4,) <[0, 2n] (6(A4,) denotes the spectrum of A,). Let
E(-) be the spectral family of A,. In particular, E(-) is concentrated on [0, 2n] (by

® ®
virtue of [6, Theorem 19.2]), and 4, = S JdE(A). Thus T= S e*dE(A). Let Y be

70, 2z) [0,2"

the norm continuous algebra homomorphism of AC[0,2r] into #(X) given by Y(f):-:

®
== JAE. By [6, Theorem 17.14] for each bounded subset & of AC[0, 2], w-cl.

[0, 2a]

Y(&) is compact in the weak operator topology, where “w-cl.” signifies closrure in
the weak operator topology. The necessity proof is now easily concluded by setting
P(g) = Y(g) for each g e AC(T).

We now take up some lemmas needed for the sufficiency proof of Theorem 2.3.
The first lemma, a recent result of Fong and Lam [7, proof of Proposition 2.2],
provides, from first principles, a key tool for producing the spectral family crucial
to the sufficiency proof. In order to make the discussion in this section more self-
contained, we shall reproduce the simple Fong-Lam proof of the lemma.

2.4. LEMMA. Suppose s is an algebra over R witl identity I, and A is a subset
of < such that each of A" and I — A is closed under multiplication. Then every extreme
point of A is an idempotent.

Proof. Let x be an extreme point of . Since # and I — i are closed under
multiplication, x*e % and (2x — x» e . Since x = 2-}x? + (2x — x?)}, and
X is an extreme point, x must be idempotent.

2.5. LEMMA. Suppose ¥ is a norm continuous hormomorphism of AC(T) into
AB(X) such that ¥(e)) = I. Let U= ¥(e,)). Then o(U) < T. If g € AC(T), and g
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vanishes on a subset of T open in the topology of T and containing o(U), then
¥(g) = 0.

Proof. If zy € C\T, then clearly
P((zg —e) N (zo — U)=(zp — U)¥((zg — e ) = L

So ¢(U) = T. The remaining conclusion can be seen by an elementary argument
(based on Liouville’s theorem) which follows the first part of the proof of {5, Theorem
1.6, pp. 60, 61].

2.6. LEMMA. Suppose ¥ and U satisfy the hypotheses of Lemma 2.5. If 1,€ T
and o(U) = {1y}, then U = Ayl.

Proof. Let W=7,U. For each FeAC(T), define F; € AC(T) by
Fao(z) = F(Ayz) for ze T, and let @(F) = Y’(on). Then ¢ is a norm continuous

homomorphism of AC(T) into #(X) with ¢(e,) = I, p(e;) = W. So it suffices
to prove the lemma for the case 4, = 1, which we now consider. For each & with
0 <5 < n/2, define f; € AC(T) by setting f;=0 on [0, 6] U 27 — &, 2n],
fs(t) = et — 1 for te[26, 2rm — 28], fy(f) = 6-1(e% — 1) (r — &) for €[, 2],
and f5(¢) = 6-2(e~% — 1)(2r — § — t) for ¢ € [2n — 28, 2n — §). Since f; vanishes
on an open arc containing 1, we have from Lemma 2.5 that Y(f;) = 0. Let
f=e — 1. Then
et — 1, if e[0,58] U [2r — &, 2a],
iy =) = 0, if te[20, 2n — 29,
et — 1 —fy1), if tels, 28] U [2n — 28, 21 — S).

Hence

If = f3] = var@e® — 1, [—3, d]) + var(eit — 1 — f3(2), [6, 26]) +

+ var (e — 1 — f5(1), [2n — 26, 27 — J)).
It follows readily that
If = f5ll < var(e¥ — 1, [—25, 28]) -+ var(f;, [5, 26]) +

+ var(f;, [2n — 26, 2n — 5]).
The majorant in this inequality is just
46 + 2|e%e — 1.

So ¥(f;) = ¥(f)=U—1Ias § - 0*. Since ¥(f;) == 0 for all 4, the proof of the
lemma is finished.
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We now complete the proof of Theorem 2.3.

Proof of Sufficiency. For %€ [0,2n) and 0 < 6 < 2-1(2n — 1), let Fis be
the set consisting of all real-valued /€ AC(T) such that f =1 on [0, /L, f: 0 on
[~ 46, 2r — &), f'is decreasing on [2, . -+ 6], and f~ 1s increasing on [2n — §, 27
Let o 5 = w-cl{®(f): feZF, 5}. Put A, = ro]y{l_a. Clearly such &, ; is convex,

non-empty, and norm-bounded (by the constant 3) in AC(T). It follows that each
A ;5 1s a convex, non-void, weakly compact subset of Z(X). Since §, < &, implies
A ao, S K 10, it follows by compactness that " is non-void. Obviously 57, is weakly
compact and convex. It is easy to see that for each 8, asand (I — A, ;) are com-
mutative semigroups. Hence .#"; and (I — 2,) are commutative semigroups. More-
over, it is a straightforward observation that the set .# defined by

()] M == {D(f): fe AC(T)} U (E_g H56)

is commutative. We now proceed to show that each set 2, for 4 e[0, 2n) is a
singleton set consisting of a projection operator. First we establish a lemma.

2.8. LEMMA. Let A€ [0,2n) and Ec A, with E> = E. Then T|EX, the
restriction of T to EX, satisfies o(T|EX) < {e:0 < 0 < 2}. Alsoo(T (I — E)X)<
€ {ef:1 <0< 2n).

Proof. For ze C\T, it follows from (2.7) that 7 and (z — T)~! commute
with E. Thus o(T | EX) and o(T | (I — E)X) are subsets of T. Fix an arbitrary u
such that A < pu < 2r. Pick 6 >0 so that 2 -0 <pu and 27 -—0 > pu. Let
g€ AC(T) be such that g(r) = (el —e¥*)-1 for ref0,2+ 6] U [2n- -3, 2xl.
Then for each f'e Z, ;, (e'“—e,)gf = f. Hence for each C € i, 5, (e'#—T)P(g)C==C.
If, in particular, we take C to be E, the first conclusion of the lemma is esta-
blished. If Z := 0, the second conclusion is trivial. Otherwise, fix an arbitrary f§ so
that 0 < 8 < /. Let h e AC(T) be such that /i(r) = (e — ei*)~1 for e [/, 2=}
If 9>0 and fe #F,;, (€ —e)l —fHh~(1 —f). It foliows readily that
(e'--T)d(h)(I — E)--:-I — E, and the remaining conclusion of the lemma is apparent.

In order to show that #¢"; (0 < 4 < 2r) consists of a single projection, it suffices,
in view of the Krein-Milman theorem and Lemma 2.4 to show that any two projec-
tions E, Fin %, are equal. If A > 0, then it follows from Lemma 2.8 that neither
o(T" FX) nor o(T | (I — E)X) separates the plane. By standard spectral theory (for
example, by [6, Theorem 1.29])

o(T|F(I — E)X) < o(T|FX) n o(T (I — E)X).
Hence, from Lemma 2.8 we have

2.9) o(T | F{I — E)X)< {c*, 1}.
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If A = 0, then by Lemma 2.8, o(7T'| FX) = {1}, and the above reasoning gives (2.9)
trivially. Now notice that the set  of trigonometric polynomials (that is, the linear
span of the functions e, for all integers #) is dense in AC(T) in the norm topology.
Thus if M is a closed subspacz of X invariant under T and T-1, then M is invariant
under &(f) for all fe AC(T). Put Y = F(I — E)X. It follows from (2.9) and Lemma
2.6 that

(2.10) if A1=0,Ty=y for all yeY.

If A > 0 then standard facts about Riesz projections (as in [6, Theorem 1.39]) in
conjunction with (2.9) show that there are idempotents P,, P, e #(Y) such that:
P.P; = 0|Y fori#j; P, and P, commute with T'|Y; P, + P, = I|Y; and o(T|P,Y) <=
c {e*}, o(T|P,Y) < {1}. Clearly, P,Y and P,Y are invariant under 7-1. Thus by
Lemma 2.6 Ty, = ey, for y, € P, Y, and Ty, = y, for y, € P,Y. Using the density of
 in AC(T) with this and with (2.10) we see that for 2 € [0, 27) and 0<6<(2r — 2)/2,
o(f)|Y =1I|Yforall fe #,,. ThusCy = yforyeY, Ce i, ;. In particular, Ey=y
for all ye Y= F(I — E)X. Hence 0 = EF(I — E)= F(I — E), and so FE = F.
Similarly, EF = E, and we have £ = F, as required.

Put o, = {E(A)} for 2 €[0,2n), and define E(z) =0 for 21 <0, E(A) =1
for 2 = 2n. We next show that E(.) is a spectral family in X. Clearly for
Ael0,2n), 0 < < (2rn — A)/2,

.11) Hrs S weel{B(f): fe AC(T), |f]l < 3}.

In particular, it follows that {||E(2)[j: 4 € R} is bounded. If 2 € [0, 27) and { f;} belongs
to the Cartesian product [} # 1.6 We claim that &(f,) — E(4) in the weak operator
J

topology as 8 — 0*. For each &, &(f;) belongs to the weakly compact set,
w-cl. {®(f): fe AC(T), ||f]] < 3}. Hence in order to establish our claim it suffices
to show that all weakly convergent subnets of {&(f;)} converge weakly to E(J). But
since A~ ne, cx 7.8, if 6, <4,,and each ", ,is weakly compact, any weakly convergent
subnet of {&(f;)} has its weak limit in %", = {E(A)}, which proves the claim. For
2 €0, 2n) and 0 < 6 < (2n — 1)/2, define g; ;€ F, ; by setting g; ,(t) =1 for
tel0, 2] U [2n — (6/2), 2], &, 5(t) =0 for t € [A + 6, 21 — O], &, ;5 is linear on
[A, A+d8land 2r — 8,2 — (6/2)]. If 0 € 2 < pu < 2r and 0 < §, < Qn — w)/2,
then for all sufficiently small positive , 1 + 0 < u and & < §,/2. It is easy to see
that for such 4, g; ;¢,.5, = &1.5- SO di(gl,a)@(g”,%) == &(g, 5) for all small enough é.
Hence, by the claim just established, E(1)D(g s ): =£(2), and so E()E(u) = E(4) for
0< A< u<2n. Since the set . in'(2.7) is commutative, the monotonicity requirement.(i)
in the definition of spectral family is satisfied. To complete the demonstration that
E(.) is a spectral family, it remains only to show that E(.) has a strong left-hand limit
ateach point of R, and E (-) is strongly right continuous at each point of R. By (2.11),
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{E(%): A € R} is contained in a weakly compact set. From this fact and the monoto-
nicity of the uniformly bounded family E(.), we see from [l, Theorem 1] that for
each A € R, E(-) has strong left-hand and right-hand limits at 2 (denoted E(1~)and
E(A+), respectively). So the proof that E(.) is a spectral family is reduced to showing
that for each 2, e [0, 2n), E(4,) == E(/5). Obviously E(A7) commutes with E(2) for
all 2 € R, and with &(f) for all fe AC(T). For Jy<u<2n, EWE(4y) = E(A7),
and so by Lemma 2.8, o(TIE(})X) € {e:0 <0 < pu}. So o(T!E(HX) &
c {c“’:O £0< ).0}. With the aid of Lemma 2.8, we have (as in the reason-
ing which established (2.9)) that

(2.12) o(T (I — EG)EGHX) < {e™, 1}.

Since E(u)E(4,) = FE(4,) for p > i, E(i§)E(4y) = E(4y). S0, to complete the proof
that E(.) is a spectral family, it suffices to show that E(/5)E(/,) = E(/y). This
step can be accomplished by applying (as in the previous argument proceeding
from (2.9)) Riesz projections and Lemma 2.6 to (2.12). Alternatively, we can show
E(§)E(A) = E(Ay) as follows. Let Z = (I — E(X,))E(25)X. Notice that Z is
invariant under 7" and T-!, hence under @(f) for all fe AC(T). By Lemma 2.5,
with Y(f) = &(f)|Z for all € AC(T), if g € AC(T) vanishes on a set open in T

which contains 6(T | Z), then ®(g) vanishes on Z. Foreach d with 0<d<(2rn — 4)/2,
pick f; € ) s 50 that f = 1 on [0, 4 + 2736} U 27 — 2715, 2x]. By (2.12) f, =1
on a relatively open set of T containing ¢(7'| Z). Hence

(2.13) @(f)z =2z for all ze Z.

Since {f;}s50€ I1 F 1,6, recall that {®(f3)}s>0 must approach E(/,) in the weak
6

operator topology of #(X) as & — O0t. From this and (2.13) we have that
E(A)z =z for all ze Z = (I — E(1,))E(A¢)X, whence

0 = EQ)(I ~ ECGoDEGS) = (I — EQo)EC§)-

So it is now established that E£(-) is a spectral family in X.

®
Since the mapping g gdE is a bounded homomorphism of the algebra

0, 2]
AC[0, 2n] into #(X), and E(-) is concentrated on [0, 27}, the sufficiency proof will
®
be complete once we know that 7" === et dE(L) by virtue of Proposition 2.2. We
[0, 2=]

now show that this equality holds. Fix arbitrary x € X and x* € X*. The mapping
[ {(D(f)x, x*y for fe AC(T) is a continuous linear functional. Since AC[0, 27]
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is linearly isometric with L'[0, 27] @ C, and AC(T) with a subspace of AC[0, 2x],
it is easy to see that there are ¢ € L™[0, 2r] and ¢ € C such that

(2.14) (D(f)x, x*y = S f'o + of2n) for all fe AC(T).

By taking f = 1, we see that ¢ = {x, x*)>. Forany A € [0, 2%n), consider the functions
815, 0 > 0, defined in the previous monotonicity proof for E(-). Using g;; in

(2.14) we have
27 (6/2)

At+d
(2.15) (Blgy )%, X*y = (X, ¥y — 51 S ¢ -+ 251 S 0.
} 226
For each 4, {g; s}s50 € [T #1.5; so the left-hand side of (2.15) tends to (E(2)x, x*)
[

as 0 —» 0*. For almost all A, the term on the right of (2.15) preceded by a minus
sign approaches ¢(1) as 6 — 0+. Thus we have

27--(6/2)
CEQYx, x*y = {x, x*) — ¢(2) + 1im 261 S P,
0"
27—8

for almost all A € [0, 27). Since (1) = a — (E(A)x, x*> a.e., where o is a constant,
and f(27r) =7(0) for all fe AC(T), substitution for @ in (2.14) gives

(2.16) (B(f)x, x*> =— S FONEMDx, x*5dA + fem)x, x*>, for fe AC(T).

Integration by parts applied to (2.16) gives

® .
(O(f)x, x*y = <( S de) X, x> for all fe AC(T).
{0,2x]
Taking f = e, completes the proof of Theorem 2.3, since x and x* are arbitrary.

2.17. COROLLARY. Let T € B(X). Then T has the form T = ¢4 with A well-bound-
ed of type (B) if and only if T is invertible in B(X), and

(i) there is a constant K such that for each trigonometric polynomial

N N
¢ Y, @, I < Kligllx, where ¢(T) =Y. a,T", and gz is the norm of
ne:-- N

n=~N

g in AC(T),.
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(ii) for each set & of trigonometric polynomials bounded with respect to - 'r,
w-cl.{g(T): q € &} is compact in the weak operator topology of #(X).

Proof. The “only if” part is self-evident from Theorem 2.3. The “if*’ part
also follows readily from Theorem 2.3 by using the density of the trigonometric
polynomials in AC(T).

In view of Corollary 2.17 we introduce the following terminology.

2.18. DEFINITION. An operator 7 € #(X) will be called trigonometrically

well-bounded provided there is a well-bounded operator A4 of type {B) such that
T = ei4,

As indicated in § 1, the sufficiency proof of Theorem 2.3 can be adapted easily
to provide a comparatively simple proof that an operator 4 € Z(X) which has a
weakly compact AC(J)-functional calculus for some compact interval J, can be

®
represented in the form A == S /dG(2), where G(-)is an appropriate spectral family

J

in X concentrated on J. We conclude with some comments on this adapted proof.
For simplicity, we may take J == {0, 1] without loss of generality, and we denote the
AC(J)-functional calculus by f > f(A4). The analogue of Lemma 2.6 for well-bound-
ed operators is that a well-bounded operator (not assumed to be of type (B)) whose
spectrum is a singleton is automatically a scalar multiple of 7. Once this analogue
of Lemma 2.6 is established an existence proof for G(-) adapted from the suffi-
ciency proof of Theorem 2.3 is readily obtained by defining F, ;, for £ € [0, 1) and
0<d<1— 4 to bz the szt of all decreasing functions fe AC[0, 1] such that
f:=1lon [0, ;] and =0 on {4 -+ &, 1]. Then set

K5 wel{f(A):f€ F, ;},

K.=M I<}._ei .
&

This existence proof for G(-) will be considerably simpler than the sufficiency proof
of Theorem 2.3 itself, because one deals with intervals of R rather than T. In par-
ticular, at the stages corresponding to (2.9) and (2.12) the majorant sets will be sin-
gletons, and the analogue of Lemma 2.6 applies immediately, eliminating the need
for auxiliary constructs such as the Riesz projections. We omit further details except
for a discussion of the analogue of Lemma 2.6 mentioned above. This is equivalent
to the assertion that a quasinilpotent well-bounded operator Q must be 0. One
easy way to see this is as follows. Pick M > 0 so that Q has an AC{—M, M] func-
tional calculus. If e AC[—M, M] and f vanishes on an interval (—p, p), then for
each z € C with |z| < p/2, let h, e AC[—M, M] te defined by setting h.(r) --
z(z—t)~1for t € [—M, M]with 't > p, and then taking 4_ to te linear on {—p, pl.
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We have (z — D), (t)f(t) = f(t) for t e [—M, M], |z| < p/2. Thus, for 0 < |z} <
< pl2, h(Q(Q) = (z — Q)~f(Q). However {h_: |z| < p/2} is a bounded subset
of AC[—M, M]. So (z — Q)~f(Q) has a removable singularity at z = 0. By
Liouville’s theorem f{Q) = 0. For each positive integer n, let f, € AC[—M, M] be
obtained by taking f,(1) = ¢ for [¢| < n~!, and making f, constant on each of
the two remaining- subintervals of [ —M, M]. Since f,(¢) — t vanishes for [¢| < rn~1,
£(Q) = Q. But ||f,ll;-s sy = 3/n for all n. Hence Q = 0. A shorter, but more so-
phisticated, proof that @ = 0 can be argued as follows. Clearly from the AC-func-
tional calculus, |le¥2| = O(J¢]), t € R, |t] = 1. Moreover, (1 — €'€) is quasinil-
potent. By a theorem of Gelfand and Hille [13, pg. 6], (¢/¢ —I)2=0. But ¢/ —I=0C,
where C is invertible and commutes with Q. So Q2 =0, and for all ze C,
I+ 2Q) = ({ — z0)~L Hence QU — zQ)~! = Q(I + zQ) = Q. But the AC-func-
tional calculus of @ shows that ||Q(I — ikQ)~1{| — 0 as the positive integer k
approaches oo.

3. CARTESIAN DECOMPOSITION FOR TRIGONOMETRICALLY
WELL-BOUNDED OPERATORS

We begin this section with two propositions which are essentially contained
in (2].

3.1. ProrpostTION. If' T € B(X) is trigonometrically well-bounded, then there is a
unique well-bounded operator A of type (B) such that: T = &4, o(4) < [0, 27, and
6 (4), the point spectrum of A, does not contain 2.

Proof. By [2, Proposition 3.15 and proof of Proposition 3.11].
DeriNITION. The unique A4 in Proposition 3.1 will be denoted by arg 7.

3.2. ProposiTiON. Suppose T = o, where A, is well-bounded of type (B) with
spectral family Ey(-). Let E(.} be the spectral family of arg T. If k and m are integers
such that 2rk < mina(A4,) and 2nm > max o(4,), then

sup{[[E(W)|: 2 € R} < 1+ 4(m — k) [sup{||E,(A)||: 2 € R}]2

Proof. Use {2, proof of Proposition 3.11].

3.3. LEMMA. Suppose We B(X), and W has a representation of the form
W = D, + iD,, where Dy, D, are commuting well-bounded operators of type (B).
Then this representation is unique.

Proof. Suppose W = B, + iB, is a second such representation. For ¢ > 0,
e - - e'P1e"Ba, Tt follows by [2, Lemma 4.3] that ¢, £B, are well-bounded of type
(B). Hence by [2, Proposition 3.8], Dje”1=e"1D; for j = 1,2, and ¢ > 0. If we diffe-
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rentiate this equation with respect to ¢, and set # == 0, we see that {B,, B,, D;, D,} is
a commutative family. Since the operators in this family have real spectra and B, -:-
-+ iBy = D, + iD,, standard Gelfand theory shows that there are quasinilpotents
Ny, N, € #(X) such that B, = D; + N;, B, = D, + N,. By [2, Lemma 4.1], N, ==
= Ny = 0.

DerINITION. If W satisfies the hypotheses of Lemma 3.3, we shall denote the
nniquely determined operators D,, D, by Re(W) and Im(W), respectively.

We come now to the Cartesian decomposition theorem for trigonometrically
well-bounded operators.

3.4. THEOREM. Let T € B(X). Then T is trigonometrically well-bounded if
and only if there are commuting well-bounded operators A, B of type (B) such that

(3.5) T=A+iB,
and
(3.6) A%+ B? == [

If this is the case, let E\(-), Ey(-), Es(-) be the spectral families of Re(T), Im(T),
and argT, respectively, and let

s; = sup{||E;())1: 2 e R}, for j=1,2,3.

Then
3.7 Sy € 1 4+ Cy(5182)%
and
(3.8) max {s;, o} < Cys3,

where Cy and C, are absolute constants.

Proof. (Note: It can be seen from the proof which follows that the constants
C,, C, could be taken to be 200 and 7, respectively.) Suppose first T is trigonometri-
cally well-bounded. Then
®
T= e? dEy(4).

[0, 2x]

Let
) &
A = cosAidEy(%), B = sin AdE,(2).

[0, 2a} {0, 27

Put X, = Ey(n)X and
Xy = {Ey2r) — Ex(m}X = {I — Ey(m)}X.

Since the cosine function is strictly monotone on each of the intervals [0, ] and
[n, 2n], and the additive inverse of a type (B) operator is of type (B) (see [9, Propo-
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sition 2.2.6]), it follows from [2, Lemma 4.3] and the direct sum decomposition
A = (41X;) @ (A]X,), that A is well-bounded of type (B), and the spectral family
E\(+) of A satisfies

sup{|| Es(2)||: 2 € R} < 4s3.

Similar reasoning applies to B on writing
X = Ey(n/2)X @ {Es(3n/2) — Ey(n/2)}X @ {Ey(2n) — E;(37/2)}X.
The spectral family E,(-) of B then satisfies
sup {|| Ex(M))|: 2 € R} < 7s3.

Since it is clear that AB = BA, and (3.5), (3.6) hold, the “only if”” assertion and (3.8)
are established.

Conversely, suppose T = A + iB, where 4 and B are commuting type (B)
operators satisfying (3.6). We first show that T is trigonometrically well-bounded.
Clearly a(A), o(B) < [—1,1] by (3.6). Since arccos € AC[—1, 1], we can set

®
D= (—arccos 1) dE,(A).

(-1, 1]
Thus,

3.9) A = cosD.

Let X, = Ex0)X and X, = {I — E,(0)}X, so that X = X, @ X,. The subspaces X
and X, are invariant under T, 4, B, D, E(-), and E(-), by {6, Theorem 16.3 (ii)].
It is easy to see that

(3.10) o(B|X) = [—1,0], o(B|X;) < [0,1].
From (3.6) and (3.9)
3.11) [cos (DX + (B|X,)* = I|X;, for j=1,2.

Since (—arccos) is strictly increasing on [—1, 1], D is well-bounded of type (B),
and its spectral family H(-) satisfies

{3.12) sup {[|HA)||: 2 € R} = s,.
Observe that by (3.11)
3.13) (B|X,)? = [sin (D|X)].

The commutativity of B and D, (3.10), and the fact that o(D) is obviously a subset
of [—=, 0], allow us to use standard Banach algebra considerations in conjunction
with (3.13) to infer that

(3.14) B|X, =sin(D|X;) + @i,

where O, € #(X,) is quasinilpotent. Since D is well-bounded of type (B), so is sin D
(by similar reasoning to that employed in the ‘‘only if”’ part of the theorem’s proof).
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Moreover, the restriction of a well-bounded operator of type (B) to an invariant sub-
space is also of type (B). Applying [2, Lemma 4.1] to (3.14), we see that 0, — 0.
Applying (3.14) and (3.9) to (3.5), we now have

T|X, = cos(D|X,) + isin(D|Xy).

Hence

(3.15) T|X, =%,
Similarly we can obtain

(3.16) T|X, = 0%,
and so T = ei¥, where

(3.17) V = D|X, ® (—D|X,)

corresponding to the direct sum decomposition X = X; @ X,. Since each of the
direct summands on the right of (3.17) is well-bounded of type (B), ¥V is well-bounded
of type (B), and T is trigonometrically well-bounded. This settles the ““if*” assertion
of the theorem. Moreover, since o(D)<[—mn, 0], (3.17) shows that (V)= {—m, ). If
we let P(.) denote the spectral family of V, then from (3.17), (3.12), and the
definition of the subspaces X,, X,, we have

(3.18) sup {||P(M]i: 2 € R} < 55,5,

Application of Proposition 3.2 to (3.18) shows (3.7) with C, = 200, and completes
the proof of the theorem.
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