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TOWARD A CHARACTERIZATION OF REFLEXIVE
CONTRACTIONS

PEI YUAN WU

In memory of James P. Williams (1938 —1983)

Throughout this paper, we consider bounded linear operators on complex,
separable Hilbert spaces. For an operator T, let {T'}’, {T'}" and AlgT denote,
respectively, its commutant, double commutant and the weakly closed algebra
generated by T and I. Let LatT denote the invariant subspace lattice of T
and AlgLatT = {§:LatT < LatS}. Recall that an operator T is reflexive if
AlglatT = AlgT.

The study of reflexive operators was initiated by Sarason [2]. He showed the
reflexivity of normal operators and analytic Toeplitz operators. Since then, various
classes of operators are known to be reflexive. Among contractions, it is now known
that C., contractions with unequal defect indices and C;. contractions with at least
one finite defect index are reflexive (cf. [6] and [12], resp.). Moreover, the characte-
rization of reflexive operators among ¢, contractions and completely non-unitary
weak contractions with finite defect indices has been reduced to that of
S(¢), the compression of the shift on H* © @H?®, ¢ inner (cf. [1] and [12]).
It is generally agreed that reflexivity is difficult to characterize unless we
have a rather deep understanding of the structure of the operators under study.
In this paper we propose a characterization of reflexive contractions with
at least one finite defect index which summarizes all the above-mentioned results
(at least when restricted to the class of operators we consider). We have not been
successful with the most general case. What we can handle is under the additional
condition that the outer factor of the characteristic function of the contraction
admits a right outer scalar multiple (see Section 1 for the definition). However the
results obtained, together with our previous experiences, seem to indicate that this
is the appropriate criterion. Qur proofs for the more restricted case depend heavily
on the scalar multiple condition. More refined methods will be needed to deal with
the general case.

In Section 1 below we fix the notation and review some basic facts needed in
the subsequent discussions. Then in Section 2 we prove an approximate decompo-



74 PEI YUAN WU

sition theorem. This theorem generalizes the major theorem in [11] and its applica-
bility extends from weak contractions and C;. contractions, as discussed in [11],
to C.p contractions. Using this theorem as a tool, we prove, in Section 3, the double
commutant property of certain contractions. Section 4 contains the characterization
of reflexivity. The main results proved in these sections (Theorems 3.1 and 4.1)
generalize the corresponding ones for C.o and C,. contractions. We conclude in
Section 5 with conjectures concerning the double commutant property and reflexivity
of contractions with at least one finite defect index.

1. PRELIMINARIES

In this paper we will use extensively the contraction theory of Sz.-Nagy and
Foias. The main reference is their book [5].

Let T be a contraction on the Hilbert space H. Let @y == ([ — T#T)V*H and
Dre == (I — TT*)2H be the defect spaces and dy = rank(I — T#T)¥? and dp,
rank(l — TT*)Y2 the defect indices of T. T is completely non-unitary (c.n.u.) if there
exists no non-trivial reducing subspace on which T is unitary. Any contraction can
be decomposed as the direct sum of a unitary operator and a c.n.u. contraction.
A unitary operator can be further decomposed as the direct sum of a singular uni-
tary operator and an absolutely continuous unitary operator. T is of class C;.
{(resp.C.y) if T"x —#> 0 (resp. T*"x —> 0) forany x#0; T is of class Cy. (resp. C.q)
if T%x — 0 (resp. 7%"x — 0) for any x. C,y =C,. n Cgfor 2, f=0,1. Tis a
weak contraction if its spectrum o(T) does not fill the open unit disk D and
I — T*T is of finite trace. Any contraction has canonical triangulations of types

[Co‘ y .a [Cl y ]
and .
0 Ci. 0 Co,

For a contraction T, let {@1, @1+, @1(4)} denote its characteristic function.
If Tis c.n.u., then we can counsider its functional model, that is, consider T being
defined on the space

H = [H¥21) ® 4:L%2Z7)] © {Ow @ Awiwe HY(Zy)}
by
T(f @ g) = PE"f @ e'g),

where 4r = (I — O%0Op)Y? and P denotes the (orthogonal) projection onto H.
A contractive analytic function {@, 2., ©(})} is said to admit a right (resp. left)
scalar multiple 06(2) if 6(2) # 0 is a sclar-valued analytic function and there exists
a contractive analytic function {2, , 2, (1)} such that O(H)Q(2) = 6()I,, (resp.
QO A) = 6(M)lp) for all A in D. If O(H)Q(L) = 6(M)lg, and QNO() = 6(A)I,
both hold, then we say @(i) admits the scalar multiple () (from both sides).
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For operators T, on H; and T, on H,, T, < T, denotes that there exists an
injection X: H, — H, with dense range, called guasi-affinity, such that XT, =

d

= T,X. T C< T, denotes that there exists a family {X,} of operators X,:H, — H,
such that X, T, = T,X, for each « and H, = VX,H,. T, and T, are quasi-similar
(Tl NTZ) if Tl < T2 al'ld T2 '< Tl A

2. AN APPROXIMATE DECOMPOSITION THEOREM

In this section, we prove an approximate decomposition theorem. It gene-
ralizes [11], Theorem 2.1 in two respects: (1) it applies to triangulations of T other
than the canonical triangulations; (2) the characteristic function of 7 is only
required to admit a right scalar multiple instead of a scalar multiple from both
sides.

THEOREM 2.1. Let T be a c.n.u. contraction on H and let

- [33]
0 T

be a triangulation on H = H, ® H,. If the characteristic function of T, admits a
right outer scalar multiple 5(2), then T ~T, ® T,. Moreover, there are quasi-affinities
Y':H— H ®H, and Z:H, ® Hy,— H intertwining T and T, ® T, and such
that YZ = 8(T, ® T,) and ZY = &(T).

Proof. We will consider T in its functional model. To the triangulation

[y %)
0 T,

there corresponds a regular factorization O4(}) = 0,(2)0,(2) of {Dr, Dr1., O7(1)}
into the product of two contractive analytic functions {2y, &, @,(4)} and
{ZF, D1+, Oy(2)} such that H, and H, can be represented as

H,={0u ®Z Y du®v):ue HX(F), ve A:I?(:@—TS} ©{0w @ Aw:we H(D )}

and

Hy = [HX@1) ® Z-{4;LXF) ® {0))] © {Ou ® Z- (A @ 0):u € H* (F)},

where 4; = (I — O70)Y2, j =1, 2, and Z is the unitary operator from A4,;L% D7)
onto A LHF) ® 4,L¥(D;) defined by Z(drv) = 4,0,0v @ 4,v (cf. [5], p. 288).
Note that the characteristic function of T coincides with the purely contractive part
of @, (cf. [5], p. 289). Let {F, 21, Q())} be a contractive analytic function such
that ©,Q = d8I,;.
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Define the operator S: H, — H, by
SR Z- W (yd0)=PO0® Z 0@ (—4,20fx — 4,Q4,y)))

for x ® Z-1(y ® 0) in H,. We first check that § satisfies 7,.S — ST, ~: 6(T))X.
Assume that, for x @ Z-(y @ 0) in H,,

Xx®Z- Yy ®0) = O @ Z- (41 @ v),
where ue H2(Z) and ve 4,L%(%Dy). Then
T(x®Z(y®0) =PTx® Z(y®0) =
= Py(e'x @ e"Z Ny @ 0)) — (Orw ® 47w)) =
=(E2x@Z "y ®0) — (Orw® Z~H(4:0,w @ 4,)) — (O @ Z- WA ® 1)) ==
= (e''x — Opw — Ou) ® Z-Y((e"'y — 4,0,w — 4u) @ (—4,w -- 1)),

where P, denotes the (orthogonal) projection from H onto H, and we H¥Z ).
In particular, since To(x @ Z-Y(y @ 0)) is in H,, we have — 4;w — v - : 0. Hence

(IS —ST,)(x @ Z Y (y ®0)) =
= TP0® Z-Y0 ® (—4,Q0%x — 4,Q4,y)) —
— S((e'"x — Oyw — Ou) @ Z-Y(e'"y — 4,0, — A1) @ 0)) ==
= P00 @ e'Z-(0 @ (—4,205x — 4,24,y))) —
—P0® Z-10@®(— 4,Q0%(e\'x — O pw — Ou) — 4,Q4,(e"y — 4,0,w — Asu)))) =
=PO® ZY0 ® (—4,20:0w — 4,Q050u — 4,Q430,w — 4,Q43))) = -
= PO @ Z-Y0 ® (—4,Q20,w — 4,Qu))),

where in the last equality we make use of the identity 43 = I — ©30,.
On the other hand,

STNX(x ® Z-(y @ 0)) = 8(T N O & Z~H(dgu ® v)) = P(5O,u @ 6Z~NAu @ 1))==
= P(O;Qu ® Z-(4,0,Qu ® 4,Qu)) + PO ® Z-1(0 @ (6v — 4,Qu))) :
= P(OQu @ A;Qu) -+ PO ® Z-Y0 ® (—d4,w — 4,Qu))) ==

= P0®Z Y0 ® (—dod,w — 4,Qu))).
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We need to check that
PO® ZY0 ® (—4,20,w — A,Qu)) = PO ® Z-1(0 @ (—s4,w — 4,Qu)))

or, equivalently,

PO ® Z-Y0 @ (—4,20,w 4 54,w))) = 0.
Indeed, the last expression equals

PO ® Z-(4:0,(6 — Q0w @ 4,(0 — QO)w)) =
= P00 @ 470 — QO)w) =
= P(O6 — QO)w @ 470 — QO,)w) = 0.

We conclude that 778 — ST, = 5(T,)X as asserted.

Let
Y — o(Ty) S]:H—+H1@H2
0 I
and
:[1 V_S]:HI@HZAH,
0 &(T3)

where V is the operator appearing in the triangulation of 6(T) on H, @ H,:

o= [5(0T1) c{m]'

The proof that ¥ and Z implement the quasi-similarity of 7 and T; @ T, and satisfy

YZ = 6(T, ® T,) and ZY = 6(T) is the same as in the proof of [11], Theorem2.1.
‘We omit the details.

As shown in [11], the preceding result is applicable to weak contractions and
C,. contractions with at least one finite defect index. Corollary 2.2 below shows
that it also applies to C., contractions. In this case, it covers part of [14], Theorem 2.

COROLLARY 2.2. Let T be a C.o contraction on H and let T = [Tl X] on
2
Co.

H = H, ® H, be the canonical triangulation of type [ ; ] . If the characte-
1.

ristic function of T, admits a left outer scalar multiple (1), then T ~T, @ T,.

Moreover, there are quasi-affinities Y: H— H, ® H, and Z: H ® Hy, —» H

intertwining T and T, @ T, and such that YZ = 6(T, @ Tp) and ZY = &(T).

Proof. Since C.o contractions are c.n.u., the assertions follow by applying
Theorem 2.1 to T*,
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3. DOUBLE COMMUTANT PROPERTY

An operator T is said to satisfy the double commutant property (DCP) if
{T}"" = AlgT. Necessary and sufficient conditions for a c.n.u. weak contraction
with finite defect indices to satisfy DCP have been given in [7], Theorem 4.4. The
remaining case, under the additional assumption on the scalar multiple, is covered
in Theorem 3.1 below, the main theorem of this section. We think that this extra
assumption is superfluous (cf. Section 5). But, in any case, this theorem already gene-
ralizes [6], Theorem 1 and [11], Theorem 3.13.

THEOREM 3.1. Let T be a contraction with at least one finite defect index.
Assume that the outer factor of the characteristic function of T admits a right

outer scalar multiple.
(1) If T is not a weak contraction, then T satisfies DCP.
(2) If T is not a weak contraction and has no singular unitary summand, then

For the proof, we start by observing that for a contraction T repeated appli-
cations of canonical triangulations yield a triangulation of type

CO 1

This triangulation is, in general, not unique as can be easily seen by considering
a direct sum of contractions of various classes. In case T has at least one finite defect
index, then more can be said.

LemMA 3.2. If T is a contraction with at least one finite defect index, then T
has a unique triangulation of type

) Cu

Proof. Let
T = |:T1 X]
0 T,
on = H, ® H, be the canonical triangulation of type [C(;'IC* ] with the
-0

corresponding canonical factorization @r = 0;0,, where {91, F, O ()} and
{#, D1+, Oi(2)} are the outer and inner factors of {Dr, Dr+, Or(4)}, respec-
tively. We have dp = dim 2, > dim& and dr+ = dim @+ > dim & (cf. [5], p- 192).
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Our assumption on the defect indices of T implies that dim & < oo. Since Or,
coincides with the purely contractive part of @, we infer that dT‘: < co. Hence T,

can be triangulated of type [ C(’;n C* ] (cf. [11], Lemma 3.2). Together with

11

Cr‘0 — [COO * ] ,
0 Cy

this yields a triangulation of type ().
Now for the uniqueness. If

on H= H; ® H,® H,® H is a triangulation of type (%), then, by considering their

corresponding regular factorizations, it is easily seen that [T3 * ] and ,:Tﬁ * ]
0 T
4 6

are of classes C.; and C.y, respectively. Hence
Lo 7]
0 T
T = 4
[o 7]
0 T,
coincides with the canonical triangulation
-[2)
0 T,
T, = [T s ¥ ]
0 7,

T2=[T5 .k:l
0 T,

coincide with the canonical triangulations of T, and T, of type [Co' * ] . This
1

C.1 *
of type . Thus
P [0 C-o]

and

proves the uniqueness.
Note that in the preceding lemma, 7" is a2 weak contraction if and only if its

triangulation of type () is of the form [Cn C* ] )
00
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In view of the approximate decomposition theorem in Section 2, it seems rea-
sonable to expect a contraction (with at least one finite defect index) to behave as
the direct sum of the diagonals appearing in its triangulation of type (), at least
when the DCP and reflexivity property are concerned. Then known results about
these summand operators can be exploited to achieve our desired result for the
contraction.

To make our proof of Theorem 3.1 more readable, we single out some repeat-
edly used arguments and state them as the following two lemmata.

T=|:T1 X]
0 T,

on H= H, ® H, be a contraction without singular unitary summand. If {T,}" =

cd
— {o(Ty): 9 € H®}, T, < Ty and T1S — ST, = 6(T1)X for some operator S: Hy —
— H, and outer function 8, then {T}" = {o(T): ¢ € H*}.

LemMAa 3.3. Let

Note that the assumption on the absence of the singular unitary summand
is needed to guarantee that ¢(T') is well-defined for all ¢ € H®. We also remark that
this lemma has already been used in the proof of [11], Theorem 3.13.

Proof. Let
R = [Rll RIZ] € {T}”.
Rn Ry
From the relation T,S — ST, = 6(T1)JX, it is easily seen that
U< [6(T s]
0 0

is in {T'}’. Hence RU = UR. A simple calculation yields R, 6(T;) = 0. Since
o(T,) has dense range in Hy, R,, = 0 and therefore Ry, € {T,}". We check that actual-
ly Rype {To}'. Let Je {T,}, and let

Y := [5(T1) S] ‘H— Hl @ HZ
0 I

and
z:[l V“S]:Hl@yz_df
0 (T
be as in the proof of Theorem 2.1. As before, we have YZ =:§(T, @ T;) and
ZY = §(T). Moreover, it is easily checked that Z(I @ J)Y € {T}'. Hence Z(I &
® J)YYR=RZ(I® J)Y. A simple calculation yields &(T,)JRop <= Rypd(To)J =:
== §(Ty)RgeJ. Since 6(T}) is an injection, we have JRy, = RyoJ whence Ry, € {Tp}"
as asserted. (A similar argument shows that R, € {7;}"".) Thus there exists ¢ € H®
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such that Ry, = ¢(T,). We have o(T)W = Wo(T,) = WRy, for any W: Hy, — H,
satisfying 7, W== WT,. On the other hand, since

S

we have RK = KR. 1t follows that R,;W = WR,, whence R, W = o(T)W.
cd
From our assumption T, < Ty, we conclude that R,, = ¢(7}). Thus R is triangu-

lated as [¢(T1) *

] . But we also have
QD(Tz)

) = o(Ty) = ]
#n [ 0 o(Ty)

Hence R — o(T)= [g g:l e {T}". To complete the proof, it suffices to show

that Q = 0. Since Ue {T}, we have U(R — ¢(T)) = (R — @(T))U. A simple
calculation yields 6(7,)Q = 0. Since §(7}) is an injection, we conclude that Q = 0,
completing the proof,

LemMA 3.4. Let Ty be a C.4 contraction on Hy (# {0}) with dTﬁlt < oo and

without singular unitary summand, and let T, be a C.o contraction on H, ( # {0})
with dr, < co.

cd
¢)) Ide2 # dry then Ty < T.

cd
2) Ifd;-1 # a'T,i:, then T{ < T§.

Proof. Let Ty = U @® T,, where U is an absolutely continuous unitary oper-
ator and 7 is c.n.u. . By [11], Theorem 3.5, T* < T, @ T,, where T, is another
absolutely continuous unitary operator and 7, is a unilateral shift. On the other
hand, there are a C,-Jordan operator T,=S(p;) @ ... @ S(p,) and a unilateral
shift Ty such that T, < T; @ T, where ¢;’s are inner functions and, for each inner ¢,
S(p) denotes the compression of the unilateral shift on the space H? © @H? (cf.
[3], Theorem 3).

) If dr_ # dT;H then Tg is not missing. Let S denote the simple unilateral
shift and M denote tﬁe operator of multiplication by e* on L%(E), E being a Borel
subset of the unit circle. It is known that S < M and S < 8% (cf. [9], Lemma 2.5

and [4], Proposition 5, resp.). Thus we infer that T < U® T} and T < TF. Com-
bining these relations with the facts that T, < T, @ Ty and UD TF @ TF < Th,

cd
we obtain that T, < T, as asserted.
(2) In this case, T, is not missing. Let S on H? be as in (1). The (orthogonal)
projection from H® onto H? © @H? defines an operator intertwining S and S(o).

6- 2495
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cd cd
Hence we infer that T, < T#. Combining this with T, < T3, T¥ < U* @ T, & T,
ed
and T3 @ T¢ < T¥, we conclude that T3 < T, completing the proof.
Now we are ready for the proof of Theorem 3.1.

Proof of Theorem 3.1. By virtue of [12], Lemma 1.3, we only need to prove
(2). Let T=U®T on H= H,® H, where U is an absolutely continuous unitary
operator and T is c.nu.. Let

-[3 ]
0 T,

on H = H, ® H, be the canonical triangulation of type [

Ca = ] From our
0
assumption on the defect indices of 7, we infer that dTi < oo and dr, < oo (cf. proof
of Lemma 3.2). There are four cases to consider:
(i) Hy ® H, = {0}. Then T = T, is of class C.,. Since T is not a weak con-
traction, its defect indices are unequal. Thus {T'}"'={¢(T): ¢ € H*} by[6], Theorem 1.

(i) Hy = {0}. Then T= U @ T, and T, are C.; contractions with unequal

deﬁéct indiCCS. Let
' [ 3 ]
0 7‘4

on H,= H,; ® H, be the canonical triangulation of type [C()Olé ] (cf. [11],
11

Lemma 3.2). Note that H; # {0} for otherwise T, = T, being of class Cy,, will
have equal defect indices. If H,® H, = {0}, then T=17; and {T}"' ==
={@(T):¢ € H*} by[11], Theorem 3.13. Hence we may assume that H, @ H, # {0}.
We want to apply Lemma 3.3 to

T*_[V Y
o 13|’

v=|Y 0] and Y:[O].
0 T§ X+

To verify the conditions there, note that since 7% is a C., contraction with

unequal defect indices, we have {T;}}"" = {@(T3*): ¢ € H*} by [6], Theorem 1, and
cd
TF < V by Lemma 3.4 (1). On the other hand, apply Theorem 2.1 to 77* and obtain

S:Hy— H; such that T;}S — ST} = 8(TF)X* for some outer . Let S§' ==
_ [(;] :Hy — Hy @ Hy. Then VS’ — S'T¥ = 6(V)Y. Thus Lemma 3.3 is appli-

where

cable and we conclude that {T*}" = {@(T*):¢p € H*}. It follows that {T}" =
= {@(T): ¢ € H®} as asserted.
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(ili) Hy ® H, # {0}, H, # {0} and de # drg- As in (ii), apply Lemma 3.3 to
T=[V Y], where Vz[U 0] and Y=[(Z].
0 7, 0 T, X
We leave the details to the readers.

(ivy H, @ H, # {0}, H, # {0} and dT1 7 dT;. In this case, we need a more
elaborate argument. Consider
r=[y z
7=
0 T,

as in (iii). Since Theorem 2.1 is applicable to T, T,S — ST, = §(T,)X for some
operator S: H, — H, and outer function 6. Let S’ = [(;] ‘H, —> Hy® H,. Then

VS — §'T, = 6(V)Y. Let R e {T}". Using the above relation and arguing as in the
first part of the proof of Lemma 3.3, we obtain that

.R — [Rll RIZ]
0 Ryl
where R;; € {¥"’}. Since ¥ is a C.; contraction with unequal defect indices, Ry; =
= @(¥) for some ¢ € H® as proved in (ii). For any W: H, — H, @ H, satisfying

WT, = VW, we have
0 W
= e {T}.
@ [O 0 ] {7

Hence QR = RQ yields WR,, = R, W. On the other hand, we also have Wo(T5,) =
= (V)W = R, W. It follows that WR,, = Wo(T,) or REW* = @(T)*W*.
cd

Since, by Lemma 3.4 (2), we have V*<T¥ or V W*H,® H,) = H,, we

WT,=VW
conclude that R} = @(Tp)* or Ryy= ¢(T,). Thus

7 [¢(V) Ry, ]
0 o(Ty)
Since R — @(T)e {T}", we infer that
0 0 0
R — o(T) = [0 0 P]
0 00
for some operator P:H, — H,. Note that

M= [5(0TI) :] e{T} and N= [g P] e {T}".

From MN = NM, we obtain §(T)P = 0. Since 6(T}) is an injection, P =0
follows. Thus R = ¢(T), completing the proof.
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4. REFLEXIVITY

In [12], Theorem 2.3, we gave necessary and sufficient conditions for a c.n.u.
weak contraction with finite defect indices to be reflexive. Qur next theorem covers
the remaining case, under the additional assumption on the scalar multiple. It gene-
ralizes [6], Theorem 2 and [12], Theorem 1.4.

THEOREM 4.1. Let T be a contraction with at least one finite defect index.
Assume that the outer factor of the characteristic function of T admits a right outer
scalar multiple. If T is not a weak contraction, then T is reflexive.

The idea of the proof is to reduce the consideration of the reflexivity of T to
that of the direct sum of the diagonals appearing in its triangulation of type (#).
It is similar in spirit to the proof for the reflexivity of C;. contractions (cf. [12],
Section 1).

Proof. By virtue of [12], Lemma 1.3, we may assume that 7 has no singular
unitary summand. Let T= U ® T on H = H, ® H and

=[5 2]
0 7T,

on H == H’1 @ H, be as in the proof of Theorem 3.1. Since Theorem 2.1 is appl-
cable to T, T ~ T,® T, T, and there are quasn -affinities ¥ and Z intertwining Tand
T, ® T, and such that YZ = o(T, ® T,)and ZY = 5(T) for some outer function &,
Let Y=6(U) ® Yand Z= In, ® 7. Then Y and Z are quasi-affinities intertwining
TandM =U® T, ® T,and satlsfymg YZ = S(M) and ZY = 6(T). For K € LatT
and L e Lat M, the mappings K — YK and L — ZL preserve the latiice operations
in LatT and LatM and are inverses to each other. Hence invariant subspaces
of T and M are of the forms ZL and YK, where L € LatM and K € Lat T. Arguing
asin [12], Lemma 1.1 by using these facts, we may show that T is reflexive if and only
if M is. Next we make a further reduction. Let

e [2)
0 T,

. . C *

on H, = H, ® H, be the canonical triangulation of type [ 0 CL ] (cf. [113,
11

Lemma 3.2). Since Theorem 2.1 is applicable to T, we may argue as above to show

that M is reflexive if and only if N= U@ T, ® T, ® T, is. Note that T, is a

c.n.u. C,, contraction with finite defect indices. Hence T, is quasi-similar to an abso-
lutely continuous unitary operator, say V, and the quasi-similarity is implemented

by quasi-affinities P and Q satisfying PQ = n(V) and QP = n(T,) for some outer
function n (cf. {10], Lemma 2.1). As above, we infer that N is reflexive if and only
fK=sU®VOT, T, is.

In the following we show the reflexivity of K. For simplicity, let W =U® V.
Since C 4 contractions with unequal defect indices and C,. contractions with at
least one finite defect index are known to be reflexive (cf. [6], Theorem 2 and {12],
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Theorem 1.4, resp.), we need only to show the reflexivity of the following direct
sums whose summands are non-trivial:

(i) W @ T,. Since this is a direct sum of an absolutely continuous unitary
operator and a C.¢ contraction with unequal defect indices, its reflexivity has been
proved in [13], Lemma 1.

(i) T, 7,. If dT2 = drgﬁ then 7, is a C,y, contraction. Hence 7; @ T,
being a C., contraction with unequal defect indices, is reflexive. Thus we may
assume that a’T2 # dT§. Let R e AlgLat(T; @ Ty). Then R=R; @ R,, where R, e

e AlgLatT;, j=2, 3. There is ¢; in H* such that R;=¢(T}), j=2,3 (cf. [6], Theorem
2). For any operator J: H, — H, satisfying JT, = T,J, consider the (closed) sub-
space G = {Jx ® x:x € Hy} in Lat(T, @ T,). We infer from RG < G that, for
any x € H,, p3(To)Jx & <p2(T2)x:Jyd(-D y for some y € H,. It follows that ¢4(T,)J=

= Jp(T,) = ¢4(T3)J. However T, < T; by Lemma 3.4 (1). We conclude that
¢o(Ts) = @o(Ts) whence ¢, = ¢, ae.. This shows that R = ¢ (T; ® T,) €
€ Alg(T, ® T,) and the reflexivity of T3 @ T, follows.

i) K=WeTreT, If dT2 = drg’ then, as in (i), T, ® T, is a C,.

contraction with unequal defect indices. The reflexivity of K follows as in (i). Next
we consider the case a’T2 # dr;' By[13], Lemma 1, W @ T;is reflexive and Alg(W @

@ T)={p(W®T):9e H}, j=2,3. Let Re AlgLatK. Then R=R, ®R; ® R;
with R, ® R; e AlgLatW @ T;), j=2, 3. Hence Ry, ® R, = (W@ T;) for
some ¢@; € H®. We infer from R, = @,(W) = @s(W) that ¢, = ¢; a.e.. Thus
R = @,(K) € Alg K. This shows the reflexivity of K and completes the proof.

5. CONJECTURES

As we remarked before, it is quite plausible that the extra assumption on
the scalar multiple in Theorems 3.1 and 4.1 can be dropped, that is, a contrac-
tion with at least one finite defect index behaves, as far as the DCP and reflexivity
property are concerned, like the direct sum of the diagonals in its triangulation of
type (*). We state them as the following conjectures:

CoNIECTURE 5.1. Let T be a contraction with at least one finite defect index.

(1) If T is not a weak contraction, then T satisfies DCP.

(2) If T is not a weak contraction and has no singular unitary summand, then
{TY' = AlgT = {o(T): ¢ € H*}.

CONJECTURE 5.2. Let T be a contraction with at least one finite defect index.
If T is not a weak contraction, then T is reflexive.

If Conjecture 5.2 is true, it will reduce the characterization of the reflexivity
of contractions with at least one finite defect index to that of S(¢), the compression
of the shift on H2 © @H?, ¢ inner (cf. [12], Theorem 2.3 and [8] or [1]).
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The preceding two conjectures can be summarized as the following:

CONIJECTURE 5.3. A contraction with unequal defect indices satisfies DCP and

is reflexive.

—

11.
12,
13.
14,

15.

for
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Added in proof. Conjectures 5.1 and 5.2 have since been known to be true
any contraction T for which (1 — T#*T)* is of Hilbert-Schmidt class.

The former is proved by K. Takahashi [15] and the latter by him and

H.

Bercovici.
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