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COMMUTANT REPRESENTATIONS OF COMPLETELY
BOUNDED MAPS

VERN I. PAULSEN and CHING YUN SUEN

1. INTRODUCTION

Let o/ and & be C*-algebras and let L : &/ — % be a bounded linear map.
If for themaps L® 1,: & @ M, - & ® M, , one has that sup ||L ® 1, is finite,

then L is called completely bounded and we let ||L||, denote this supremum. The
map L is called positive provided that L(p) is positive whenever p is positive, and is
called completely positive if L® 1, is positive for all n. It is well-known that every
completely positive map is completely bounded, and that for such maps their ordi-
nary norm and cb-norm coincide.

Let o/ be a C*-algebra, let Z(s#°) be the bounded linear operators on a Hil-
bert space #, and ¢: & — Z(#) be a completely positive map. Stinespring’s
representation theorem [7] asserts that given any such map, there is a Hilbert space
A, a x-homomorphism 7 : & — £(A) and a bounded linear operator V :# —
— A with |le|l = |[V*V] such that ¢(a) = V*r(a)V for all g in /. Furthermore,
if a certain minimality condition is imposed on the triple (n,V,#"), then this
representation is unique up to unitary equivalence. The goal this paper is to attempt
to generalize the above theory to the class of completely bounded maps.

If L: o - £(#)is a completely bounded map, then we show in Section 2
that there exists a Hilbert space £, a *-homomorphism n: &/ — £(2¢), a bounded
operator V:# — A", and an operator T in the commutant of =(%/) such that,
L({a) = V*Tr(a)V for all a in &. We show that such representations are not parti-
cularly well-behaved with respect to the cb-norm. Indeed, if one normalizes the
above situation by requiring ¥ to be an isometry, then there exist completely
bounded maps such that for any such representation (n, V, T, #) of L, one
has ||TY| > ||L|lc,. Analogously, if one requires instead that ||L}|,, = ||V*V]|, then
one can find completely bounded maps such that for any such representation
(n,V, T, A)of L, one has ||T|| > 1. Also, it is possible to construct two representa-
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tions, (n;, V;, T;, &) of L, with V; an isometry, i = 1,2, such that |\T,}|# |T,i,
even under very restrictive hypotheses on the representations.

These difficulties lead us to introduce a new norm, |{}- i, on the space of com-
pletely bounded maps which is more compatible with the order structure induced by
the completely positive maps. We show this norm is comparable to the cb-norm and
has the properties that for any representation (z, ¥V, T, %) of L of the above form
with ¥ an isometry, one has ||[T}| > 4|Li{[, and that representations exist where
equality is attained.

In Section 3, we turn to the question of uniqueness of these representations.
We impose some additional minimality conditions, similar to those for Stine-
spring’s theorem, and prove that a minimal representation always exists. We show
that for any two minimal representation (m;, ¥, T;, ), { = 1,2, that (ry, 7))
and (rny, 5,) are unitarily equivalent and that (V,, T7) and (V,, T,) differ by a dense-
ly defined (usually unbounded) similarity. When both the algebra and the Hil-
bert space are finite dimensional, these results show that a minimal representation
of a completely bounded map of the type discussed above is unique up to similarity.

The authors gratefully acknowledge several valuable conversations with
R. Smith and J. Ward. In particular, Corollary 3.5 was suggested to us by some un-
published work of R. Smith.

Given a subset of a Hilbert space, we shall use [-] to denote its linear span.
Given a subset & of a C*-algebra and a map L: ¥ — #Z for some other C*-algebra
A, we let L*: % — 7 be the map defined by L*(S%) == L(S)*. When & : =%
and L = L* we call L self-adjoint. Finally, given & < £(#) we let &' denote
its commutant.

2. COMMUTANT REPRESENTATIONS

In this section we prove the existence of certain representations of a comple-
tely bounded map from a C*-algebra into £ (s#) and explore some of their properties.

We begin with the following elementary observation about the numerical
radius of an operator. Recall that for 7 in #(s#), the numerical radius, w(7T), 1s
defined by

w(T) = sup{[{Tx, x>| : x € 3, |lx]] = 1}.

LemMA 2.1. Let Te L(#), then w(T) = sup{|[Re(AT)i}: i e C, |Aj = 1}.

Proof. Since Re(AT) is self-adjoint, ||Re(AT)||=w{Re(AT)). From w(Re(AT)) <
< w(AT) = |Aw(T), we have that |[Re(AT)|| < w(T) for all 2e C, |4 ==L

On the other hand, if x € #, then there exists 4, JA]=1, such that {(7Tx, x>'==
=s WTx, x) = (Re(AT)x, x> < ||[Re(AT)|| from which the result follows.
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THEOREM 2.2. Let o/ be a unital C*-algebra and let L: & — L(H#) be a com-
pletely bounded map, then there exists a Hilbert space X", an isometry V:# - XA,
a unital =-representation n: & — L(A) with [a(L)VH] dense in A, and a unique
operator T in n(), such that

L{a) = V*Tn(a)V  for all ae .
Furthermore,
IRe(AL)|l., < w(T) < [y, < T < 2 |IL,,

for all ). e C, with |} = 1.
If L =L% then T=T% and ||T|| = ||L},, -

Proof. Without loss of generality we may assume that |[L]},, = 1. By [4, Theo-
rem 2.5] there exist unital completely positive maps ¢@;: & — Z(#) such that
the map & : &/ @ M, - L(¢) ® M, defined by

(p((a b)) _ ((Pl(a) L(b) )
c d L) ¢o(d)
is completely positive. Since compositions of completely positive maps are

completely positive, we have that for any A, with |1} == 1, the following map is
completely positive,

P o(e ) (1) 0+ i+ 400

2 a a

Hence, setting ¢ = (¢, -+ @5)/2, we have that for any 2, with |1] = 1, ¢ <4~ Re(1L)
is completely positive. In particular, ¢ 4 Re(L) and ¢ 4- Im(L) are all completely
positive.

Now, let (%, ¥, #") be the minimal Stinespring representation of ¢. That is,
A is a Hilbert space, V: 3 — X is an isometry, n: & — #(4") is a unital #-repre-
sentation with [t(4)V3#] dense in X", and ¢(a) = V*n(a)V.

Note that (¢ 4+ Re(L))/2 is completely positive and ¢ — (¢ + Re(L))/2 =
= (¢ — Re(L))/2 is completely positive, i.e., ¢ = (¢ + Re(L))/2. By [1, Theorem
1.4.2] there exists a unique positive P in the commutant of n, P < 1, such that
V#PrV = (¢ -+ Re(L))/2 and, consequently, ReL = V*QP — )nV. Setting
H=2P— 1, |[H|| €1, H= H*, and ReL = V*HnV. Similarly, there is a K
in the commutant of n, K = K*, |K|| € 1 with ImL = V*KrV, Thus, we have
that L = V*TnV, by setting T = H - iK, T is in the comutant of n, and ||T| < 2.

If 7' was another operator in the commutant of n such that L = V*T'znV,
letting 7' = H’ -+ iK'’ be its Cartesian decomposition, then we would have (¢ 4
-+ ReL)/2 == V*((1 -+ H')/2)nV which would imply that1 4+ H’= 2P or H' = H.
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Similarly, K’ = K from which it follows that the T obtained in the above {ashion
is unique, and the first assertions of the theorem are proven.

Note that when L = L%, K= 0 and in this case one has T = H so that
|7l < 1, which establishes the last claim of the theorem.

Since ¢ 4 Re(AL) are completely positive for any 2, |4 = 1, we may apply
the above result to Re(AL). Thus, we obtain a unique 7, such that T, - T},
Re(ALy = V*T,nV, and ||T,|| < 1. But, clearly Re(iL) := V*Re(AT)n¥V and so
by uniqueness, Re(AT)= T, and hence [[Re(AT)|| < 1. Thus, by Lemma 2.1,
w(7) < 1. Finally, observe that if L = V*TnV, then necessarily [Li, < T
since L® 1, =0 ® 1,)*(T® 1)t ®1,)(V®1,). Similarly, since Re(AL) —
== V¥Re(AT)nV, |IRe(AL)]|., < |[Re(AT)]| < w(T). This completes the proof of ihe
theorem.

In general, one can have that ||T|| > ||L|l,, for any representation of L of
the above form. In fact, the constant 2 in the above theorem is sharp, even when
the domain algebra is commutative, as the following example shows. Consider
the completely bounded map L: C @ C — M, defined by

=)

Identifying M, ® M, with M, ® M,, the map

LR, COpORQM, > M, @ M,
is given by
X 0 D)
L® 1, ), B; )= e N
® n((az,J) (ﬁ J)) [(ﬁi‘j) 0 :}

from which it is clear that |L @ 1.}l = 1.

Now suppose that L = V*TnV, where (n, V, T,#") are as in Theorem 2.2.
Let =(1,0) = P,, n(0,1) = P, so that P, and P, are orthogonal projections, P; -
+ P, = 1. Also, let ¢, and e, be the canonical basis vectors for C?, and set x; = Ve,,
i=1, 2.

We then have that,

1 = (L, ey, e;> = (TPyx;, X3) = {TPyxy, Pyxy) < T - 1 Pyxoll - [iPyxy

Similarly,

1 = (L0, Dey, e5)> < [[T1|- || Pyxall- [ Pax, |l

Choosing 0; such that cos8; = ||P,x;||, for i = 1,2, and adding the above
inequalities, yields, 2 < ||T||-[cos 6, cos 8, -+ sin 6, sin 6,] = || Tllcos(8, — 6,) <" T}
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The necessity of the constant 2 in the above theorem can be better understood
if one takes a closer look at the relationship between the order structure, induced
by the completely positive maps, and the |- [|,,-structure on the space of completely
bounded maps. We shall show that in some sense these structures, while compatible,
are not entirely consistent and we shall introduce a new, equivalent, norm structure,
which is consistent.

Let L: & —» () be completely bounded, then we set

LN = inf{ o]l :( ¢ L) is completely positive} .
L* ¢

ProrosiTiON 2.3. Let L: o — L(#) be completely bounded, then ||L|y <
< |NILI < 2|/ L)y with ||L||., = IIIL|I| when L = L*.

Proof. By [4, Theorem 2.5], there exist completely positive maps ¢@; : & — Z(#)

with [|¢;|| = ||L|[e for i = 1,2 such that ((zz L ) is completely positive. Hence,

)

(‘Pl L)+((P2 0)=(‘P1+(P2 L )
L* ¢, 0 o L* ¢+ @
is completely positive and it follows that |||L||] < 2||L|Lp. For the other inequality
note that if (; L) is completely positive, then for A € & ® M, with [4] < 1,
R4
1 A\ . e
we have that (A* 1) is positive in & ® M, ® M, and hence
(§0 ® L1 L® lk(A))
L*® 1(4) ¢ ® L,(1)
is positive. Thus, [IL ® 14 < [l ® LDl = llell, and so |IL|le, < [l¢l], from

which |[L|l, < HIL]II.
Finally, if L = L*, let ¢,, i = 1,2 be such that ||¢,|| = ||L|l, and

(7 )
L ¢,

is completely positive. Consequently,

=i o) e i o)=(% a)
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is completely positive, and so

@+ow=(7 ")

is completely positive, where ¢ = (¢, + ¢,)/2. Since |l¢|| = ||L{.,, we have
WL = Ly -

REMARK 2.4. We shall show later that 2 is the best constant.

ReMark 2.5. If L: .o —» & is completely bounded and # is injective, then
one can still define |[[L]|] as above and the conclusions of Proposition of 2.3 hold.
In fact, a necessary and sufficient condition for there to exist a completely positive

Ly . P .
map ¢ such that (i ) is completely positive is that L belongs to the span of
5 g

the completely positive maps. Indeed, if L = @, — ¢, -+ i(p; — @,) then ¢ =: ¢,-+
-+ s+ @3 + @4 will do. Thus, '{|.!|' can always be defined on the span of the com-
pletely positive maps between any two C*-algebras.

An example of [6, Example 2.2] shows that, in general, [||-{{{ and |- i, need
not be equivalent norms on the span of the completely positive maps. It would be
interesting to know if they are equivalent if and only if every completely bounded
map from &/ to # is in the span of the completely positive maps. It would also be
interesting to know if it is possible for these norms to be equivalent with a constant
different from 2. We begin with a Radon-Nikodym type theorem.

IfL; ;: 9 - %, i,j=1,...,nare linear maps, then by (L; ;) we mean the
linear map ¢: &/ ® M,—»# ® M,, defined by d((a; )=(L; fa; ;). We remark
that the following diagram commutes,

o®1,
(L OM)®M—— (B @M, ® M,

(£;,;©1)
(‘% ®Mk) ®M"____)(?Z ®Mk) ®Mn’

where the vertical arrows are the canonical isomorphisms. In particular, one sees
that @ is completely posiuve if and only if (L; ; ® 1,) is positive for all k. Through-
out the remainder of this paper we shall frequently use this diagram to identify
? ® I with (L; ; ® 1)).

PROPOSITION 2.6. Let n: & — L(A) be a unital w-representation, and let
ViAH — K be a bounded operator, with the span of [n(L)VH) dense in . Let T; ;
be in the commutant of m, and define L, ;: A — L(#) by L; ;= V*T; ;aV for i, j=
:=1,...,in. Then (L, ;) is completely positive if and only if (T: ;) is positive.
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Proof. Assume that (T} ;) is positive. Let (a; ;) € & ® M, be positive, then
(n(a; ;)) is positive. Since the sets {7} ;} and {n(a; ;)} pairwise commute, by [9,
Lemma 4.24), (T; ;- n(a; ;) is positive. Similarly, if 4; ;isin & ® M, for i, j=1,...

..,nand (4, ) is positive in (& ® M,) ® M,, then since the sets {T; ; ® 1,} and
{m ® 14, ;)} pairwise commute, (T;;® 1,)-7 ® 1,(4; ))i j=1 is positive in
(ZL(#)® M,) ® M,. Hence,

(Ve lk)*(Ti,j ® 1l ® lk(Ai,j)(V ® 1:;))7,,':1 = (Li,j ® lk(Ai,j));',j=1
is positive in (Z(#) ® M) ® M,, from which it follows that (L; ;) is completely
positive.

In what follows we adopt [, | to indicate matrices.

Conversely, let [L; ;] be completely positive and let {e,}/-, be the canonical

basis for C”. Thus, for (Z X ® e,) e ® C” we have that
J

l=:1

{7: ;] ( i X ® ej) =.ﬁ (T5. %) ® e

j=1 V=1
Since the span of n(«)VH# is dense in X', to prove that [T ;] is positive it will

suffice to consider a vector of the form Y, (Z (a,,k)V/z,,k) ® e, where i, ye H
=1 \k=1
and a, € .
Define Ajesd @ M, by

all*--w alm
I IR 0
0o ...... 0

let {f,}%-1 be the canonical basis for C™ and set &, = Yy ®fiet @ C

k=1
We now have that

<[Ti,j] (i ﬁ n(aj,k)th,k ® ej)’ (i 2 75( k)V/lj,k ® ej)> =
#eC™”

=tk j=tk=1

=(m;e11($ e L0 el eq)

(ﬁ T ® LAYV ® 1)k ® )> =Y T, 01,00 ® 1,)4)-
it

#®C"eC” Qi1

'(V ® lm)/]j ® €5 Z n ® ]m(AJ)(V ® lm)hj ® ej>
Jj=1

M@C’”@Cn
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. i (V ® lm)*n ® 1m(Al*)(Tl'J ® ]m)n ® lm(A_i) (V ® lm)hj$ hi> =
#&C™

i,je==1

=V ® 1) (T:; ® 1,)n @ 1,474V @ 1,)lx, x)
== <[Li,j ® lm(Ai*Aj)]x, x)

#eC"ec" =

n
which is positive since [L; ;] is completely positive, with x = ¥, ® e;.
il

To motivate the following definition, we recali the relation between norm and
order in Z(s). Namely, for T € £L(s#), ||IT) <1 if and only if (; T) is a
positive operator [2, p. 162].

COROLLARY 2.7. Let L: & — L(H#) be completely bounded, let ¢: s — L (H)
be completely positive, and let (n, V,A) denote the minimal Stinespring representa-

tion of ¢. Then (Lq) L) is completely positive if and only if there exists T in the
e

commutant of n, such that L = V*TrV and ||T|} < 1.

Proof. Let L=V*TnV, T} <1 and T in the commutant of n. Since
( 1‘ T) is positive, by Theorem 2.6,

T#% 1
{ V*rV V*TRV) (e L)
VET*nV  V*nV L* ¢

is completely positive.

£ )
rem 2.2, we can construct 7 e n(«/) such that L = V*TnV. Again applying

Conversely, if (Iip L) is completely positive, then as in the proof of Theo-

Theorem 2.6 we have that ( ; ];) must be positive and hence, ||[T]| < 1.

ProposITION 2.8. Let L:sZ — L(H#) be a completely bounded map. Then

there exists @: A — L(H) with o|| = |'|L|!}, such that ( ip L) is completelv posi-
= g
tive. Furthermore, one may choose ¢ such that, in addition, (1) = |||L|j]-1.

Proof. Recall the BW-topology of [1]; in this topology the space of comple-
tely bounded maps from & to Z(s#) with norm bounded by some constant is com-
pact. Let

Ly . .. .
&, = {(p : (Zo ) is completely positive and ||| < [iLjj| + l/n} ,
£ g
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then it is easily checked that each &, is non-empty, closed and hence compact in

the BW-topology. Hence, & = (M) &, is non-empty and if ¢ € & then || =

n=1

L\ .
= |||L]|| and (L(pl< ) is completely positive.
£ o

Given such a ¢, let o(1) = P, let Q = |||L]]| — P, and let y: & — FL(H) be
any unital completely positive map. Setting ¥(a) = @(a)-- 0¥2y(a)Q"? yields a com-
pletely positive map such that y(1) = [||L|}]-1 with ( LW* {;) completely positive.

Combining Proposition 2.8 with Corollary 2.7 yields two representation theo-
rems for completely bounded maps.

THEOREM 2.9. Let L: o — FL(H) be a completely bounded map, then there
exists a Hilbert space A", a x-homomorphism n: s — L(H), a bounded operator,
V:# A, and a contraction, T € () such that [n(L)YViH] is dense in A, |V*V]|j=
= |||ILlll, and L = V*TnV.

THEOREM 2.10. Let L: of — L(H) be a completely bounded map, then there
exists a Hilbert space A", a s-homomorphism n: o - L(KX), an isometry V: H — A
and an operator T € n{(A) such that [(L)VH] is dense in A, T = |||L||, and
L = V*TnV.

We shall refer to a representation of the form given by Theorem 2.9 as a
commutant representation of L and to a representation of the form given by Theorem
2.10 as a commutant representation with isometry of L. In either case we shall denote
itby (n, V, T, X).

We now present an example to show that even for bounded linear functionals
on a C*-algebra, it is possible for |||L|[} # ||IL|l.,. It is well-known that if L is a
bounded linear functional, then L is completely bounded and |[L|l., = |IL]-

Consider the linear functional L: M, — C defined by

(2 9)-
¢ d

L*(a b) =c
¢ d

Let {E,.,j} be the standard matrix units for M,, and suppose that ¢: M, — C is a

so that |[L|| =1 and

map such that (L(p* L) is completely positive.
T
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. E, E,\. .. .
Since ( 1 1“) is positive, we would have that ((p(E”) ! ) is a
21 22 1 O(Ez)
positive matrix in M, . Consequently, 2 < @(Ey;) 4+ @(Ey) = ¢(1), so that jo(1) = 2.
Hence |}|L};; = 2 so by Proposition 2.3 we have that |||L||| = 2.

3. THE UNIQUENESS PROBLEM

Recall that if ¢: & — £(#) is a completely positive map, and we are given
two Stinespring representations of ¢, (x;, V;, ")), i == 1, 2, which are both minimal,
that is [m,(2Z)V.5#] is dense in J7;, then these representations will be unitarily equi-
valent. This means that there exists a unitary U:. %", = A, such that UV, : = V, and
Ury == n,U. Thus, the minimal Stinespring representation is unique, up to unitary
equivalence.

In this section, we develop a uniqueness criterion for the commutant represen-
tation of a completely bounded map. The best uniqueness results that we are able
to achieve are modulo a densely defined (possibly unbounded) similarity.

Suppose that L: o — £(o#) is completely bounded and that (r;,V;, T;, %)),
i=1, 2 are two commutant representations of L. We call these representations
similar provided that there exists a bounded, invertible operator S: ", — # ', such
that SV, ::=V,, Sn, = n,8 and ST, = T,S5, and we call these representations
unitarily equivalent when S is a unitary. Given a commutant representation of L,
(n, V, T, &) we call the completely positive map, ¢ = V*rV the associated comple-
tely positive map. Note that by the definition of a commutant representation,
(n, V, ) will always be the unique minimal Stinespring representation of ¢.

We note that by Corollary 2.7 and Proposition 2.8, that ¢ is the associated
completely positive map of some commutant representation (n, V, T, #) of L

if and only if (ZD L) is completely positive and [jo| = [|{[L]{!. We call the col-

@
lection of such ¢, the set of dominating maps for L.

ProrosiTION 3.1. The map which assigns to each commutant representation
of L its associated completely positive map is a one-to-one correspondence between
the unitary equivalence classes of commutant representations and the set of dominat-
ing maps for L. Furthermore, this latter set is convex and compact in the BW-topology.

Proof. First, note that if two commutant representations of L are unitarily
equivalent then their associated completely positive maps are equal, and thus the
map is well-defined.

Conversely, if two commutant representations, (n;, V,;, T;, &), i == 1,2, have
associated completely positive maps which are equal, then (z;, ¥;, ;) are two mini-
mal Stinespring representations of the same completely positive map. Consequently,
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there exists a unitary U:J'; — 4y such that UV, = ¥,, and Un; = n,U. This
implies that (m,, V,, U*T,U, 2¢,) is also a commutant representation of L, so that
VT, — UToUlrny(@)Vy =0 for all a € &. Hence, T, = U*T,U and the two com-
mutant representations are unitarily equivalent.

It is easy to see that the dominating set is convex and closed in the BW-topo-
logy and hence is compact since the unit ball is compact in this topology.

There is a certain type of degeneracy in the commutant representation which
we wish to avoid, namely, the operator 7 may not act on the whole space. The
following shows that we may assume that it does. Here N(7') denotes the kernel of T.

Prorosition 3.2. Let L: ot — L(H) be a completely bounded map, then there
exists a commutant representation (n, V, T,) of L, such that N(T) n N(T*)={0}.

Proof. We note that N(T) n N(T*) = {0} if and only if [T 4 T*47] is
dense in .

Let (=, V, T, ") be any commutant representation of L and let P be the pro-
jection onto the closure of [T + T*:¢], which we call /. 1t is easily seen that ./
is invariant and hence reduces n(4), so that P € n{«/)’. Furthermore TP = PT = T,
and hence L = V*TrV = (PV)*(PTP)(PrP)PV).

Thus, if we define n,: &/ - L(H) by ny = PrP, then (ny, PV, PTP, ) is
the desired commutani representation of L.

Any commutant representation of L, (z, ¥V, T, #") for which N(T) n N(T*) =
-= {0} will be called a faithful commutant represeniation of L. The associated com-
pletely positive map, ¢ = V*zV, will bz called a faitihful dominating map for L.

THEOREM 3.3. Let L: o — L{H) be completely bounded, then the set of faithful
dominating maps for L is a non-empty convex set.

Furthermore, if (n;, V,, T;, ), i =1, 2, are faithful commutant representa-
tions of L, then therz exists a unitary U: A 1 — (}{.2 such that Un, = n,U.

Proof. By Proposition 3.2, we know that the set of faithful dominating maps
is non-empty. Thus, let ¢,, i = 1,2 bz faithful dominating maps, (=;, ¥;, T;, X)),
i == 1,2 the associated faithful commutant representations and let 0 < ¢ < 1.

Szting ¢ == to; + (1 — t)p,, we have that ¢ is a dominating map and thus
has an associated commutant representation (m, ¥, T, 57"). We wish to show that
N(T) n N(T*) = {0}.

Since, @, <t ¢ and @, < (1 — )~'¢, we have by [I, Theorem 1.4.2] positive
operators P; € n(«/)’ such that ¢, = V*P;aV, i = 1,2: Also, since ¢ = fo, + (1 —
— D)y = V*[tP, + (1 — tP)nV, we have that P, -+ (I — )Py =:1,. Let
R, = PM?, for i=1,2.

First, we claim that there exists 7; € n(«/)’ such thet L == V*R.T,RzV for
i =+ 1,2. To see this, let .# be the orthocomplement of N(P;), and let O be projec-
tion onto . Since P, € n(H), O € n() and we let n,: & — F(#) be the x-homo-

7 - 2495
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morphism defined by n, = QrQ. It is easily checked that (z,, QR,V, /) is the mini-

mal Stinespring representation of ¢, and hence the commutant representation asso-

ciated with ¢, is of the form (n,, QR,V, Ty, #). Now set T, = T; @ ON(P ) then
1

T, e n(&£) and L = (QR,V)*T1m,(QR,V) = V*R,TyR,nV. The identical argument
works for establishing the existence of T,.

Note also that since ¢, is faithful, N(7j) n N(77*) = {0} and hence,
N(R,T\R) N N(R,T¥R)) = A+t = N(R) = N(Py), similarly, N(R,T,R,) N
N N(R;T§R,) = N(P,). However, since (n, V,2¢) is the minimal Stinespring repre-
sentation of ¢, we have that L = V*TrV = V*R,T,R;nV implies that T = R, TR,
i=1,2. Hence, N(P,) = N(T)n N(T*) = N(P,), but since tP;+(l —1t)P,=1,
we also have that N(P,) n N(P,) = {0}. Thus, N(T) n N(T¥) = N(P,) == N(Pp)==
= {0}, establishing the first part of the theorem.

To establish the second statement, note that N(P,) = N(P,) = {0} implies
that (7, R;, ¥V, ') is a Stinespring representation of ¢, that satisfies the minimality
criterion. Hence if (n;, V;, &) is any minimal Stinespring representation of ¢;,
then there exists U;: #'; — J unitaries such that U,R,V = V;, and U;rn, = nU;,
i = 1,2. Consequently, (n;, V;, ;) and (ny, V,, o,) are themselves unitarily equi-
valent.

We present a simple example to show that the set of faithful dominating maps
is distinct from the set of dominating maps. Let L: C @ C — M, be defined by

en=(; %)

and let ¢, ;: C® C — M, be defined by

o 0
(pr,s(a’ﬂ)*_(o f’(x—}—sﬂ)

where s > 1/2, » > 0, and r -+ s < 1. Note that since L = L* 1 = |Ljjp =

= |[ILIIl = llo, I - .
It is now easily seen that for r > 0, defining V, ;1 C? > CG,n:C@® C —» M, =

= Z(C%, and T, ;e M; by

1 0y ra 0 0
V,,sz(o 1/7), n(a,ﬁ):(o « 0),
0 Vs 0 0 B

and
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yields the commutant representation (n, V, ,, 7, ;, C®) associated with ¢, ;. That
is, (m, ¥, ,, C%) is the minimal Stinespring representation of ¢, ;. Note that none of
these are faithful.

Now, if r =0, defining V;: C® > C3, n: C@® C -» M, and T, e M, by

1 0 a O 1 0
V‘“(o VF)’ ”("’ﬂ)‘(o ﬂ)’ and T‘"(o —1/2s)

yields the commutant representation of L associated with ¢, ,, which is clearly
faithful.

It is not too difficult to check that every dominating map for L is of the above
form.

We now turn our attention to the study of similarity of faithful commutant
representations. So let (n;, V', T;, &), i = 1,2 be two faithful commutant represen-
tations of L. Set #; = [r(L)V . H] and N ;=[Tn(A)V 3+ T*n(£)VH#] and note
that these define dense subspaces of 2¢";, i=1,2. It is easy to see that for a;, b;, c;e &/
and x;, y;, v; € #, we have,

<Z7f1(ai) Vixi, Z(Tﬂﬁ(bi) ivi + T¥m(edVw)) =
= <Z na)Vex;, E (Tong(b)Voy, + T mo(c)Vavy))

since both inner products are expressible in terms of L and L*,
Thus we have that the maps S: #; — #,, R: /'y - A, defined by

S( z" nl(ai).lei) = ﬁ ma(@)VeX;,

i=1

=1

R( ﬁ; (Tony(b)Voy, + T:"z(ci)szi)) = Z(Tﬂfl(bi)VlJ’i + T¥m (V)

are well-defined, linear, one-to-one, and onto.

THEOREM 3.4. Let L: sl — ZL(#’) be completely bounded, let (n;, V;, T;, ),
i = 1,2, be faithful commutant representations of L, and let M ;, /';, R and S be
defined as above, then R and S are closable operators with densely defined adjoints.
Furthermore, if S— denotes the closure of S, then the following equations hold:

(1) S-—my(aym = ny(a)S-m, for all me Dom(S-), ae oA
(2) na)S*m = S*ny(@)ym, for all m e Dom(S*), ae o
(3) S*T,S—-m = Tym, Jor all m e Dom(S-)
4) S*TFS-m = T¥m, Sfor all m € Dom(S-).
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Proof. We begin by noting that for my € .7, and mye A, (S i) -
= {my, Rigy. Thus, R € §% § < R* and since R and § have dense domains,
R* 2nd §* do also and we have that R and § are closable by [5, Theorem VIT1.1].

To see the first relation, note that if m e Dom(S), then Srfe)m = wa)Sin.
If e Dom{S-), by [5, p. 250} we know there exist n, € Dom(S) with w7, - w2
and Sm, - §-m. Hence =n,(@)S-— i = limny{a)Sm, = lim Sr(a)m, . We have
that m(a)m, € Dom(S), m(a)m, — m(e)m, Swy(adn, — nx(a)S—m, so that m (@i e
€ Dom(S-) with §-n{a)m = n.(a)S-m.

The remaining equations follow by similar manipulations.

In the finite dimensional case everything is bounded and considerably more can
be said.

COROLLARY 3.5. Led &7 be a finite dimensional C#-aigebia, and let L: 57— .7,
be ¢ linear map. If (n;, V,, T,, 5¢;), i == 1, 2 are two faithful commutant represeiia-
tions of L, then there exists a bounded invertible S: 4"y — A 5 such that Sn, 8- : =

Ty, S¥T,S — Ty and SV, - V.

The above result yields a complete description of the set of faithful dominat-
ing maps in this case. Fix any faithful commutant representation, {(x, ¥, 7, .%")
and let,

- o)

I
s

n
@ - {Pe n(): P is invertivle, [V*PV| = |IL|, and <T }7:

e

For cach Pe ¥, we let ¢pe) = VFPxlo)V.

TueorREM 3.6. Ler . be o finite dimensional C*-algebra, let L. & — .7, ¢ linear
map, and let {(n, V', T, 00 b2 aav fixed faithful commutant representaiion of i.. The
map P — @p defines a one-t0-on2, affine, ordeir isomorphism from € onto the set of
Jaithful dominating maps for L.

Proof. First, note that jlop|| = | 0p(D) == |F*PV [ == [{|L];], and that by Pre-
o Ly . T . o
position 2.6, ((p? 1s completefy positive. Thus, ¢p is 2 dominating map for L.
L% g,

Since P is inveriibie, {m, LYV, ") is o minima! Stinespring representation for ¢p
antd Lo =VETrY =(PY2YyH(P-12TP- U (PY2Y) Hence, (r, PY2V, P-1V2TP 22 1)
is mnecessarily the commuiant represcniation associated with ¢@p.

Note that N{P-VITP-¥2) - N(T), NP2+ p-1) = N{T*) and =0
(r, P2y, P-IRTP-Y2 57) is actually a faithful commutant representation. Thus, ¢p
is 2 faithful dominating map.

The map £ — ¢, is clearly affinc, one-to-one and order preserving. It remains
tc show that it is onto.

To this end consider another faithful commutant representation. By Theorem
3.3, we may assume that it has the form (n, V.., Ty,57). Now by Corollary 3.5,
there is an invertible operator S:Jf — ¢ such that SxS-!=mand SV = TV;.
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Polar decomposing S = UR we have that U and R are in the commutant of w(A4),
R is invertible and ¢, = V¥V, = V*RrRV == ¢, where R*=P. To seec that P

belongs to €, we have that |||L]| = |lo,|| = |V*PV|, and since (zl L) is
R4

P T

completely positive, another application of Proposition 2.6 yields that (T P}

1s positive.

]

This paper contains parts of the second author’s Ph. D. dissertation written under the
direction of the first author.
Research supported in part by a grant from the NSF .
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