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ON FACTORIAL STATES OF OPERATOR ALGEBRAS. II

C. J. K. BATTY and R. J. ARCHBOLD

1. INTRODUCTION

It was shown in [7,19] that the set P(A4) of pure states of a (unital) C*-algebra A
(other than A == C) is weak™ dense in the state space S(4) if and only if 4 is both
prime and antiliminal. More recently, it was shown in [2] that the set F(4) of fac-
torial states is weak™® dense in S(4) if and only if 4 is prime. Comparison of these
results suggests that weak™® density of P(4) in F(A4) is related to antiliminality. On
the other hand, abelian C*-algebras, for which P(4) = F(4), must also be taken
into consideration. It will be shown in Theorem 3.4 that these are essentially the
only two cases — P(A4) is weak* dense in F(A) if and only if A4 is an antiliminal exten-
sion of an abelian C*-algebra.

Approximate factorial extensions of factorial states on C*-subalgebras were
also considered in [2], by means of the fact that the set F.(A4) of type I factorial
states is always weak* dense in F(4). It will be shown in Section 5 how the arguments
of [2] can be simplified by considering only the set F.(4) of states ¢ for which 7,(4)’
is a finite type I factor. Both F(A4) and F.(A) are described simply in terms of pure
states in Section 2. In Section 4, it is shown, by methods parallel to those of Section
3, that the states for which n,(4)" is a type I factor of bounded degree are weak*
dense in F(4) if and only if 4 is an antiliminal extension of a subhomogeneous
C*-algebra.

Standard definitions and properties of C*-algebras, as described in [6], will
often be used without comment. Throughout, 4 will be a C*-algebra (with or with-
out unit), whose spectrum A is equipped with the Jacobson topology. The equi-
valence class in A of an irreducible representation n will be denoted by [x].

" For a subset E of 4%, E will be the weak* (o(4*, 4)) closure of E in A*.
The sets of all, all pure, and all factorial, states of 4 will be denoted by S(A4), P(4)
and F(A) respectively. For a state ¢, (5%, n,, £,) will be the Hilbert space, rep-
resentation, and cyclic vector, associated with ¢ by the GNS construction.

If 1 is a (closed two-sided) ideal in A, then (4/1)" will be identified with {[n] €
€A n(I) = 0} and I with AA\(A/I)A [6,3.2.1]. Similarly S(4/I) will be identified with
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{® € S(4) : (I) = 0} and S(I) with {¢ € S(4) : ||@|I|| = 1}. Then P(4) = P(4/)u
U P(I) [6,2.11.8]. Furthermore, for ¢ in F(4), the weak operator closure 77(1)
of n,(I) is an ideal in the factor 7,(4)", so either m) = m,(4)" or mn,(I)=0.
Thus n,(A4) is prime; also F(4) = F(4/I)u F(I) (see [2]). Although the embed-
ding of S(I) in S(4) is a 6(J*, I) — o(A4*, A) homeomorphism, it is not uniformly
continuous in general. However it should not cause confusion if the nota-
tion Sm, P(IY, F(I) etc. is used for the a(A*, A) closures of S(I), P(I), F(I) etc. in A*.

2. TYPE I FACTORIAL STATES

The first result gives a precise description of how type I factorial states arise.
It overlaps with several results which are familiar in the literature (see for example
1, Proposition 2.3; 3, Proposition 2.4.27; 6, 5.4.11; 10, Theorem A]).

PROPOSITION 2.1. (1) Let ¢ be a state of A, and suppose that n,(A) is a type I,
Sactor (where 1 < n < o0). Then ¢ is a o-convex combination of n equivalent pure
states of A.

(ii) Let @ be a o-convex combination of equivalent pure states of A, so that there
is an irreducible representation m of A on a Hilbert space #, and a family {¢,: a € D}
of vectors in # such that

p@) = % (@, &y (aecA).

a€D

Then n,(A) is a type I, factor, where d is the dimension of the linear span of
{és: o€ D}.

(iii) Let ¢ be a proper a-convex combination of pure states of A, not all of which
are equivalent. Then ¢ is not factorial.

Proof. (i) Let {e,: @ € D} be a maximal orthogonal family of minimal projec-
tiens in w,(4), and &, = e,,. Since &, is separating for m,(4), the vectors &,
are non-zero, and therefore D is at most countably infinite. The subrepresentations
of n, on e, are equivalent irreducible representations. Thus if 4, = [/£,* and
o) = A7 K (a),, &, then {@,:a € D} are equivalent pure states of A, and
=Y L0,

xeD

(i) Let o, be a Hilbert space with orthonormal basis {#, : « € D}, and
Hi=H Q@Hp, m@=r@@1, =Y &L®n
xe

Then
olay = (m(a)¢, &)
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so 7,, is the subrepresentation of 7, on the cyclic subspace [n,(4)¢). Let {&;: B € D'}
be an orthonormal basis of the linear span of {£,: « € D}, and let 4, be scalars with

&= X Apls Dl = MG =1.
peb N o

Let i1y = Y, Zupfla> and #p be the closed linear span of {np: pe D'}. Then ¢ =
xeD

2/3620’6;’ ® nsand, by Kadison’s Transitivity Theorem, 3¢, = [n,(A){] =# ® #'p.
The vectors ny are linearly independent, since if

n, = Y, Mg
pe D’

where pt, = 0 and u; = O for all except finitely many B, then
/1zzy = Z “ﬁlaﬂ
peD’

so the linear span of {(£;+ pgé;): B e D', B+#y} contains each £, and therefore
contains ¢,. This is a contradiction. Thus 5#p is of dimension d, and 7,(4)" is
a factor of type I,.

(iti) There are inequivalent pure states ¢, and ¢, with ¢; < ;¢ for some

2; > 0. Let y=(1/2)(@y + @,)- Since ¢ <(1/2)(4, 4 i), Ty isa subrepresentation
of m,. It therefore suffices to show that r, is not factorial.

There is an operator x in 7,(A4), with 0 < x < 1, such that
(1/2)py(@) = {my(@)xgy , &y
(1/2) @o@) = (my(@) (1 = x)¢y , &)
The posttive linear functional " defined by
Y'(a) = <7t¢,(a)x(l - x)éwa éw)
is dominated both by ¢, and by ¢,. Since ¢, and ¢, are pure and distinct, ¥’ =0,
so x(1 — x) = 0, and x is a projection. Now Ty, and Ty, are the subrepresentations

of m, on x#, and (I — x)5#,, repspectively, so that m, = Ty, @ Ty, Since 7,
and =, are disjoint and irreducible, my(4) = 7, (4) @ m,,(A) =~ C2,
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The following notation can now be introduced, Proposition 2.1 giving the
alternative definitions. Here k is either infinity or a finite positive integer.

Fi(4) = {¢ € S(4) : n,(A4) is a type I, factor, where n < k} «=

k k
= {Z 2ty 20, Y Ai=1,0, equivalent pure states} ==
i=1 i

i1

i==

= {é (P(a’ 'ai) Qe P(A), a; e A’ i (p(ai*ai) — 1}

Fi(4) = {9 € S(4) : m,(4) is a finite type I factor} = |J F,(A4).
1

<k <oo

Thus F(4) is the set of all states ¢ for which n,(4) is a type I factor. This set was
denoted by F(4) in [2].

If A is separable, all these sets are Borel subsets of S(4) [6, 7.3; 15, 5.7].

In general, the discussion above and in [6, 5.4.11] shows that, for ¢ in F(A4),
m, is quasi-equivalent to an irreducible representation 7,,, with [7,] unique. Define
0: F(4) - A by 0(¢) = [#,]. If T isa closed subset of AA, there is an ideal 7 of 4
such that T = (4/I)" and 0-YT) = S(A/I) n Foo(A). Thus 0-YT) is closed in
F.,(4), so 0 is continuous. If U is open in F.(4), and

k
W= {(p € P(A): Y, ¢(a;"-a;) € U for some a; in A},

i=1

then W is open in P(A4), and 0(U) = (W) is open in /f[6, 3.4.11; 15, 4.3.3]. Thus
O|F,(A) is open (I £ k < o0).

It is immediate, from the representation of states in F.(4) as o-convex combi-
nations of equivalent pure states, that F,(4) is norm-dense in F(4). It was shown in
[2, Corollary 3.4] that F.(A) is weak™ dense in F(A4). The next result foilows imme-
diately from these facts, but a direct proof, using the method of [6, 11.2.4] is also
given.

PrROPOSITION 2.2. For any C*-algebra A, F (A) is weak* dense in F(A).

Proof. Let ¢ be a factorial state, and K be the kernel of m,. Then K is a prime
ideal. It will be shown that S(A/K) = F{(4/K), from which the result follows.

By the Krein-Milman Theorem, it suffices to show that ¢’ € F(4/K) if ¢’ ==
=Y, 4ip;, where £, > 0, ¥ 7; =1, ¢, € P(4/K). Let U be any convex weak*
i i1

f==1
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neighbourhood of 0 in 4%, and
Vi={{r;]: ¥ € P(A), ¥ — ¢, € U}

Since § — [rn,] is an open map of P(4) into ;1, V,= Z for some ideal I;. Since
¢(K) =0 but ¢;(I;) # 0, I, is not contained in K. Since K is prime, I, n...nI,
is not contained in K. Let ¢, Py n ... nIL)Nn P(4/K). Then [7:%] eVin...
... NV,, so there are pure states i;, equivalent to @,, such that ¥; — ¢; € U. Let

Y=Y Ay, so that Y € F,(4) and y — ¢’ € U. This suffices to complete the
{=l

proof.

3. APPROXIMATION OF FACTORIAL STATES BY PURE STATES

As indicated in Section 1, comparison of the results of [2, 7, 19] suggests that
antiliminality is related to weak* density of P(4) in F(4). In this section, the exact
relationship will be established, beginning with the sufficiency of antiliminality.

ProrosITION 3.1. Let A be an antiliminal C*-algebra. Then P(A) is weak*
dense in F(A).

Proof. By Proposition 2.2, it suffices to show that if ¢ if a convex combina-
tion of equivalent pure states @; (1 < i < n), then @ € P(4). But ¢ vanishes on the
common Kkernel of each Ty, ; SO this assertion follows from [7, Lemma 5; 6, 11.2.3] —
the assumption that 4 has a unit is not essential for those results.

The converse of Proposition 3.1 is false, since P(4) = F(4) if 4 is abelian.
But the two cases, of antiliminality and abelianness, essentially include all possibi-

lities that P(A) is dense in F(4). This will be established in Theorem 3.4 after two
lemmas.

LemMA 3.2. Suppose that P(A) is weak™ dense in Fo(A), and that I is an ideal
in A with continuous trace. Then [ is abelian.

Proof. If I is not abelian, there exists an irreducible representation of 7 on a
Hilbert space of dimension greater than 1, and therefore there exists ¢ in Fy(I)\P{/)
(Proposition 2.1). Now

¢ € Fy(4) = P(4) = P(I) U S(4/I).

Since ¢ € S(I), p € P-(.—I). But P(I) is o(I*, I) closed in S(I) [8, Theorem 6 and Re-
mark on p. 601}, so ¢ € P(I). This is a contradiction.

LemmMa 3.3. Suppose that P(A) is weak™ dense in Fy (A), and that I is an abe-
lian ideal in A. Then P(A]I) is weak* dense in Fo(A/I).
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Proof. By assumption,
Fo(A/I) = Fy(A) = P(4) = P(A/) U P().

It therefore suffices to show that

Fo(A/D) n P(D) = P(A]).

Any state in P(I) is multiplicative on A4, and therefore the same is true for states in
P(7). Hence P() P(4), which is sufficient to complete the proof.

THEOREM 3.4. For any C*-algebra A, the following are equivalent :

(1) P(A) is weak™ dense in F(A),

(ii) P(A) is weak* dense in Fy(A),

(iii) Either A is abelian, or there is an abelian ideal I such that Al is anti-
liminal.

Proof. (i) = (ii). This is trivial.

(i) = (iii). Let I be the largest abelian ideal in A (this exists since the sum of
abelian ideals is abelian), and J be an ideal in 4 containing I such that J/I has conti-
nuous trace. By Lemmas 3.3 and 3.2, J/[ is abelian, so J is abelian. By maximality
of 1, J == I. Thus either A == I or A/I is antiliminal.

(iii) = (i). If A4 is abelian, P(4) = F(4).

If Iis an abelian ideal in A and A/I is antiliminal, then it follows from Propo-
sition 3.1 that

F(4) = F(I) U F(4/I) = P(I) u P(4]I) = P(A).

Since a prime C*-algebra of dimension greater than one has no non-zero abe-
lian ideal, one can recover from Theorem 3.4 and [2, Theorem 3.3] the result of
[7,19] that P(A) is weak™ dense in S(A) if and only if A4 is both prime and antiliminal
(or one-dimensional).

Glimm [8, Theorem 6] characterised those C*-algebras A for which P(A)
is weak® closed in S(4). It was shown in [2, Theorem 5.2] that F(A) is weak®
closed in S(A) if and only if A4 is liminal and A is Hausdorff. One should make two
observations about these resuits. Firstly, the arguments of {2, 8] apply equally to the
condition that 4 is Hausdorff and the weaker condition that 4 has Hausdorff
primitive ideal space — furthermore, if A4 is liminal, the conditions coincide. Second-
ly, using an approximate unit, it is easy to see that, for any C¥-algebra A,

F(4) c {}¢:0 < 2 <1, ¢eF)nSA)}

PA) c {29:0< 2 <1, ¢@eP)aSA)).



FACTORIAL STATES OF OPERATOR ALGEBRAS 137

It follows immediately that condition (ii) in Theorem 3.5 below is equivalent to
F(A) being weak* closed in S(4). The theorem shows that even if it is only assumed
that the weak* closure of P(4) in S(4) is contained in F(A4), then F(A4) must already
be weak* closed, but a direct proof of this does not seem to be available.

THEOREM 3.5. For any C*-algebra A, the following are equivalent:

(i) A is liminal and A is Hausdorff,

(i) F(A) = {lp:0 < A < 1, 9 € F(4)},

(i) P(4) n S(4) = F(A).

Proof. (1) < (ii). [2, Theorem 5.2] (see also [17, Proposition 9]).

(if) = (iii). This is trivial.

(iii) = (i). Assume condition (iii), and suppose first that A is not Hausdorff.
In the proof of [8, Theorem 6], Glimm showed that there exist inequivalent pure
states ¢, and @, such that (1/2)(¢; + ¢@9) € f(:f). By Proposition 2.1 (iii), this contra-
dicts (iii). Thus A is Hausdorff.

Let 7 be an irreducible representation of 4 on 5# with kernel P, and A be
the C*-algebra of compact operators on . Since A is Hausdorff, P is maximal,
so either n(4) = or r{(A)nHA = (0). If n(4)nA = (0), then it follows from
[7, Theorem 2; 6, 11.2.1] (no assumption about a unit is needed) and (iii) that

S(4/P) = P(A/P) N S(A) = P(4) n S(A4) = F(A).

Thus every state of n(4) is factorial, so n(4) = # {2, Lemma 5.1]. This shows
that A is liminal.

Wright [21, p. 578] has speculated hopefully that the criterion F(4) = S(A)
might be used to prove Naimark’s conjecture that an (inseparable) C*-algebra
with only one irreducible representation is elementary. Similarly, the criterion-that
F(A) is weak™ closed in S{4) might be relevant to the stronger conjecture that if A
is Hausdorff, then A is liminal.

4. APPROXIMATION BY FACTORIAL STATES OF LOWER DEGREE

This section runs parallel to Section 3, with the role of P(4) now taken by
F.(A), where k is a fixed finite positive integer. The case kK = 1 is just that considered in
Section 3. Some of the arguments are a little more involved for 1 < k < co.

Recall that a C*-algebra A is said to be k-subhomogeneous if every irreducible
representation of A is on a Hilbert space of dimension at most k.

LEMMA 4.1. If A is k-subhomogeneous, then F (4) = F(A).
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Proof. For ¢ in F(A4), let I be the kernel of n,,. Since /is a prime, hence pri-
mitive, ideal of the postliminal C*-algebra 4 [11, Lemma 7.4], A/ is isomorphic
to the algebra of nXn complex matrices, for some n < k. Hence ¢ e S(4/I) --
== F(4/I) = F(4).

It follows from Proposition 2.1 (ii) that the converse of Lemma 4.1 is true —
if F.(4) - = F(A), then A is k-subhomogeneous. Similarly, F.(4) = F(A4) if and only
if every irreducible representation of 4 is on a finite-dimensional Hilbert space.

LEMMA 4.2. If A has continuous trace, then F,(A) is weak™ closed in S(A).

Proof Let ¢ € F,(4) n S(4), so that ¢ is the weak* limit of a net of states of

the form Z %% where /¢ = 0, Z /2=1, and {p¥:1 <7 < k} are equivalent
il

pure states. Passing to a subnet, 1t may be assumed that if — 2;, and ¢¢ — ¢,
where 4; > 0, Y4, =1, 0, 20, (i < 1. Thenp =Y, 4,0, Let Q = {i: }; > 0}.
Since jj@|| = 1, ¢; € S(4) for i in Q. Since P(4) is weak* closed in S(4) [8, Theo-
rem 6], ¢; € P(4) for i in Q. Since Ais Hausdorff, and ¢ — [n,] is continuous, the
equivalence relation is weak® closed in P(4) X P(4), so {¢;: 7€ Q} are equivalent.
By Proposition 2.1, ¢ € F.(A).

LemMa 4.3. Suppose that F(A) is weak® dense in ¥\ (A), and that Iis an
ideal in A with continuous trace. Then I is k-subhomogeneous.

Proof. If I is not k-subhomogeneous, there exists an irreducible represen-
tation of 7 on a Hilbert space of dimension greater than k, and therefore there exists
o in F, . (IY\F(I) (Proposition 2.1). Now

¢ € Fen(4) « Fy(A) = F() U SU/D).

Since ¢ € S(I), ¢ € F,(I) n S(). By Lemma 4.2, ¢ € F,(I). This is a contradiction.

LemMmA 4.4. Suppose that Fi(A) is weak™ dense in F,  ,(4), and that I is a
k-subhomogeneous ideal in A. Then F.(A/l) is weak™ dense in F o (A]I).
Proof. By assumption,

Fii(4/D) = Fiy(4) < F(A) = F4]D) U F (D).
It thercfore suffices to show that

Fe(A/D) 0 F (1) < F(A/D).

Let ¢ € Fiy(4/0) n F(I), and ¢, be a net in F(I) converging to ¢. Each ¢,
is & convex combination of (at most) k equivalent pure states of I. Since I is k-sub-
homogeneous, there are integers n, < k, (irreducible) =-homomorphisms =, of
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A into the C*-algebras /£, of complex n, X n, matrices, and states , of %’,, such
that ¢, = Y,om,. It is possible to find a subnet for which #, is constantly » and (using
the finite-dimensionality of /",) n,(a) converges to a limit n(a) for each a, and ¥, con-
verges to some state ¢ of #°,. Then = is a *-homomorphism, and ¢ = om, so
@ € F, ;1(n(4)) = F(n(4)) (Lemma 4.1). Hence ¢ € F,(4/).

THEOREM 4.5. For any C*-algebra A, the following are equivalent:

(1) Fi(A4) is weak™ dense in F(A),

(ii) Fi(A) is weak™ dense in F, _,(A),

(iii) Either A is k-subhomogeneous, or there is a k-subhomogeneous ideal T
such that A/l is antiliminal.

Proof. The proof is very similar to Theorem 3.4, Lemmas 4.3 and 4.4 replac-
ing Lemmas 3.2 and 3.3.

COROLLARY 4.6. Let k be a positive integer, and
F)(A) = FAN\F,_(A) = {p € S(4) : n,(4) is atypel, factor}.

The following are equivalent:

(i) FXA) is weak* dense in F(A),

(ii) A has no non-zero {(k—1)-subhomogeneous ideal, and either A is k-sub-
homogeneous, or there is a k-subhomogeneous ideal I such that AJI is antiliminal.

Proof. It suffices to show that F,_;(4) has non-empty interior in F,(A4) if and
only if 4 has a non-zero (k — 1)-subhomogeneous ideal J. The corollary then fol-
lows immediately from Theorem 4.5.

If J exists, F(J) = F,_,(/) (Lemma 4.1), which is therefore contained in the
interior of F,_,(A4) in F,(4). Conversely, if F,_,(4) has non-empty interior U in
F,(A4), then 0(U) is open in A (see Section 2), so there is a non-zero ideal J such that
0U) = J. Suppose that J is not (k — 1)-subhomogeneous, so that there exist ¢
in U, an irreducible representation n of A on a Hilbert space # of dimension at
least k&, and vectors &; (1 € i<k —1) in & such that

0@ =Y, n@g,, &> (ac 4)

(Proposition 2.1). Let 5; (1 < j < m) be fixed unit vectors in # such that {£;} u
U {n;} spans a space of dimension k. For & > 0, define

k-1 m
pua) = (1 + ms>—1{_§5 @& &Y+ e Y, <al@m;, n,->}.

Then ¢, — @ as ¢ — 0, but ¢, € Fo(4) (Proposition 2.1). This contradicts the fact
that ¢ is in the interior of F,_,(A4) in F(A4).
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5. EXTENSIONS OF FACTORIAL STATES

Now suppose that 4 is a C*-subalgebra of some C*-algebra B. A longstand-
ing problem has been whether factorial states of A extend to factorial states of B.
This has recently been solved affirmatively by Popa {16} and Longo [13] in the sepa-
rable case. Part of the method had been introduced earlier by Sakai, giving positive
results for (semi)nuclear C*-algebras A, and for type I factorial states without res-
triction on A [4, 12, 20]. Further analysis of the construction in [4] shows that a type
I factorial state can be extended to a type I factorial state (but there may also be fac-
torial extensions of other types). However a simple argument for this is available,
as in Proposition 5.1 with k = co. (In this section except where otherwise stated,
k may be infinite.)

For a subset E of S(B), E'A denotes the set of all restrictions @|A to A of states
¢ in E.

PROPOSITION S5.1. Let A be a C*#-subalgebra of B. Then F(A) « F{B) A.

Proof. For any ¢ in F,(4), Proposition 2.1 shows that there exist ¢, in P(4)
and a; in A such that

k
¢(@) =Y, golafaa) (ae A).
ie:1
Let ¥, be any pure state of B extending ¢,, and define

V©) = ¥, Volaiba) (be B).
Then € Fi(B) and ¥|4 = ¢.

In the above proof, considering n, as a subrepresentation of m, |4 and using
again Proposition 2.1 (ii), one can see that if n,(4)" is of type I, (I < n < 00), then
n,(B)" is also of type I,.

There is another approach to Proposition 5.1 via the following lemma. Here ./,
denotes the C*-algebra of all compact operators on a separable Hilbert space J#,
of dimension k. A state y of A ® 5, has a “restriction” |4 to A given by

W'4) (@) = limy(a @ ¢,)
where {e,} is an approximate identity in J¢, (see [9]).

LEMMA 5.2. Let A be any C*-algebra. Then F (A) = P(4 ® ). A.

Proof. Suppose that m,(4) is a factor of type I,, wheite | <n < k. Bya
result originally due to Murray and von Neumann [14], 5, = 3 ® #,, n,la) ==
= m(a) ® 1, where 7 is an irreducible representation of 4 on #. Let p, be a projec-



FACTORIA L STATES OF OPERATOR ALGEBRAS 141
tion of rank » in &', so that p, 4 .p, = A ,, and define

Yx) = ® 1,) (1 ® p)x(1 ® p)),, &) (x€ A @A)

where 1, is the identity representation of 4", on 5#,. Then |4 = ¢ and elementary
arguments show that € P(4 ® ).

Conversely, for ¥ in P(4 ® X)), let ¢ = |4 and n;, and =, be the restriction
(in the sense of [9; 18, p. 204]) of =, to 4 and &, respectively. Then =,(4)" and
()’ commute and generate the von Neumann algebra of all bounded linear
operators on . Since m,(A,)" is a type I, factor, n,(4)" = ny(o",)"’ [14]. Since
o(a) = {my(a)¢y, &y, 7, is asubrepresentation of 7,, and therefore 7,(4) is a type
I, factor for some n < k.

Now Proposition 5.1 follows from Lemma 5.2. For ¢ in F,(4), there exists
in P(4 ® #7,) with |4 = @. Then there exists ¥ in P(B ® ') with J|AQ A", =
= . If $ = J|B, then $ € F(B) and |4 = ¢.

As in [2, Theorem 4.4), it follows from Proposition 5.1 that, for ¢ in 'F—,IZ),
there is an extension ¥ in F(B). Also it follows from Lemma 5.2 with k = co,
and Proposition 2.2, that l?(;i) = P4 ® J?oo)lA, where & o, is the linear span of
the compact and the scalar operators on #,,. This relates the study of factorial
state spaces to pure state spaces. For example, it is possible to simplify the proof of
[2, Theorem 4.6 (1)] by reducing it to a study of tensor products 4 ® A, for k finite

{matrix algebras over A4) rather than the more complicated tensor products and
second duals of [2].

THEOREM 5.3. Let A be a C*-algebra, acting on a Hilbert space 3, containing

the identity operator, and let A be the weak operator closure of A. Then m)]A =
= F4) (1 < k < 00), and hence F(A)|A = F(4).

Proof. By the above remark (with B = A), F(4) = F.(4)|4. -

Conversely, suppose first that k is finite, ¢ € F,(4) and ¢ is an extension of
@ in P(A ® o) (Lemma 5.2). Regarding 4 ® %', as actingon # @ #,, A @ A, =
== A ® A ,. Glimm [7, Theorem 5] showed that there is a net i, in P(4 ® 2¢",) such
that Y (x) —» Y(x) (xe 4 ® ). Let ¢, = ,|4. Then ¢, € F,(4) and @,(a) —
-» p(a) (a e A). Thus F (A4 = F,(4), and hence F (4)|4 F(A).

The remainder of the theorem follows from the fact that

F(A) = Fo(A) = ( ﬁ(i))-, F(4) = F.(4)

(Proposition 2.2).
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It was also shown in [2, Theorem 4.6(2)] that if 4 does not contain the iden-
tity operator on [n(4)#’), then F(A)'4 = F(4) u {0}. Similarly F,(4)'4 = F(4)y
U {0}. However, 0 € P(4) = F,(A4) [6, 2.12.13], so F,(A)l4 = F,(4).
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