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ON EIGENVALUES IN THE ESSENTIAL SPECTRUM
OF A TOEPLITZ OPERATOR

P. R. AHERN and D. N. CLARK

INTRODUCTION

Let T be the unit circle in the complex plane, C. For a bounded, measurable
function ¢ on T, define the Toeplitz operator T, on H? of the unit disk by

T,f=Pof

where P is the projection of L? on K>

If ¢ is continuous, the Fredholm theory of T, is well known [6, Chapter 7]. In-
deed, p(T,), the Fredholm resolvent set, is the complement of the curve ¢(T) and
the index of T, — Al = T,_;, for 2 ¢ ¢(T), is — w(ep, 1), the negative of the winding
number of the curve ¢(T) about A. In addition, the index —w(p, ) is equal to the
dimension of the kernel ker(T,, — Al), if w(p, 2)<0 and w(p, 1) =dimker(T;f — 1),
if w(p,4) = 0.

The present paper is a report on an investigation of the dimension of ker(7,, —
— Al), when ¢ is continuous and A lies on the curve o(T) (so that T, — il is not
a Fredholm operator.) Some previous work on the eigenspaces of non-Fredholm
Toeplitz operators may be found in [10, 5, 3, 8]. Our work differs from that of these
otherauthors in that we seek a description of eigendimension in terms of the geome-
trical properties of the curve ¢(T), modeled as closely as possible on the winding
number characterization of dimker(T, — AI), for 4 ¢ ¢(T). A test question for a geo-
metricaltheory of eigendimension is the problem of whether dimker(T,, — AI) > 0
can hold for A € 9o(T,), the boundary of the spectrum of 7, 0> 12, 91

For our formula, we assume @(e*) has the form

4)) o(e") = f[ (=it — e Ui p(eir),
e

where a; > 0,j =1, ..., n, and / is continuous and nonvanishing on T. In Part 1,
we prove that w(4, 0), which determines dim ker T, is characterized as follows (to
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be made precise in Section 1.1). Let Q be a connected component of C\.¢(T), with
0 € 0Q. If the boundary of Q has positive inner angle at 0, we label as negative, the
arcs A,(t) = @(e") (8; — & < t < 0; -+ &), such that the two arcs of 4; itself meet at
positive angle at 0 and € lies on the right as 1; is traversed through a neighborhood
of 0. In this case,

@ olh, 0) = alp, @) + ¥, /2] + N

where N is the number of negative arcs, and [ -] is the greatest integer function. If the
boundary of Q has inner angle 0 at 0, we must consider all arcs 2; having a cusp at 0,
with Q in the O-angle of the cusp. From this set, the number of negative arcs minus
the number on nonnegative arcs must be added to the right side.of (2).

In Part 2, we address the problem of boundary eigenvalues for T,,. Based upon
our characterization of w(#, 0), it is not difficult to show that for ¢ satisfying (1), a
point on the boundary of a component of p(T,) cannot be an eigenvalue. However,
as we show by example in Section 2.1, there may still be eigenvalues. The mild addi-
tional assumption that ¢ is C* with ¢’ # 0 at 0,, ..., 8, (or, more generally, that for

each j there is an m; such that ¢ € C"? and ™ ?(e%) #0) is sufficient to imply

that ker(T, — AI) == {0}, for all A€ 0a(T,).

1. GEOMETRIC FORMULA FOR DIMKER T,

1.1. THE FORMULA. We consider a Toeplitz operator with symbol ¢ having
the form

©) ol = T — ¢ "N hE),

where 0; is real and «; > 0, j==1, ..., n, and h is continuous and nonvanishing
on T. The function

pe) = I (" — ¢
j=1

is outer and ¢ = ph, so that T, = T.T,. Since T; is one-to-one, it follows that the
kernels of T, and T, are equal. By the Fredholm theory for Toeplitz operators,

dimkerT, = — w (4, 0),

but it is not entirely clear how w(/, 0) depends on ¢. This is our first goal.
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Suppose € is a (connected) component of C\@(T), with 0€ 99, the boundary
of Q. Fore >0,let 4, = {z:|z] < ¢}, and let ], ..., I, be the components of

¢~1(4,) that contain eiol, R ew", respectively. Each I; is a closed arc on T, with
endpoints which we denote by e and €, a; < 0; < b;. It follows from (3) that

arg qo(ei(oiio)) = lim arg (p(ei(ofit))
0<t—-0

exists. If we write

w;=2nm+ B, 0<B;<2,

we have

arg(p(ei(ajvi-o)) — arg (p(ei(ﬂj—o)) — ﬂj 7, mod 271_’

and hence

arg (p(eibi) — arg (p(ei“f) = Bn -I-¢, mod2n

where ¢;~ 0 as ¢—> 0. For each such ¢ > 0, there is an g, 0 < ¢, < ¢, such that
<p-1(Aeo) € U I;. If a subscript & denotes restriction to T\ U I;, we have ¢, = p.h,

and
w((pe, 0) == w(ps, 0) + w(hc: 0),

where the winding number of a continuous function on U J/; is defined to be the sum
of the net changes in argument on the I;. A direct computation shows that

n

limo(p,, 0)=— Y a/2=— Y n — ¥ /2,
e~0 Jil Jj=1

i=1

and since limw(/,,0) = w(h, 0), we have

e~0
@ 0@, 0) = — ¥ 1, — 3 B2 + wlh, 0) + 6,

J=1

where 6 — 0, as e— 0.
We take ¢ > 0 sufficiently small that

@ (123 lgl + 1ol < 1,
j=1

G) Qnod,#@,
(iii) whenever B; # 0, @(e¥*) # ('), for

a; £ s<0;<t<b.
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By (i), we can find a curve I, lying in the interior of Qn 4,, except for the end-
points, which are at 0 and ae Q n 94,.

Let Z; = ¢ 7 We want to define what it means for /; to be a negative arc.
The points /'.j(ei“f) and /’.j(eibf) subtend two arcs in 04, exactly one of which, de-
noted y;, does not contain a. We orient y; by taking lj(ei“f) as its initial point, and
/'.j(eibi) as its terminal point. Thus we may refer to y; as being positively or negati-
vely oriented (compared with the usual counter clockwise orientation of a04)).

DerNITION. If §; # 0 and y; is negatively oriented we say Z; is a negative arc.
If B; = 0, y; is longer than its complementary arc on 94, and y; is negatively
oriented we say that 2; is a negative arc.

If B; = 0, y; is longer than its complementary arc and y ; is positively oriented,
we say that /; is a positive cusp.

Let NV be the number of negative arcs and let P be the number of positive
cusps. We have

THEOREM 1. If ¢ is given by (3), we have

&) w(h, 0) = (@, Q) + ¥, n; + N — P.
j=
REMARK 1. Although the designation of which arcs are negative and which
cusps are positive may certainly depend upon the choice of the point & from
2ndd,, (5) shows that N — P is independent of a.

REMARK 2. The Fredholm index of a Toeplitz operator with continuous (non-
vanishing) symbol is clearly invariant under an orientation preserving change of vari-
able of the symbol on T. Theorem 1 shows that if the symbol vanishes such a change
of variable must at least be a C! (invertible) diffeomorphism to leave dimker T,
invariant, as otherwise the {i;} might change.

Pioof. In order to procede from (4), we define a function ¢ on T to be equal

to (") on T\ U J; and, on I, to be such that y(e") traverses y; from /ij(eiaf) to
/'.,j(ei'ti). Then  is defined and continuous on T. The range of ¢ is disjoint from the
curve I that joins 0 to a, and so we have w(¥, 0) <= w(fr, a). Now we can homotopy
each of the arcs Z;(e") (a; < t £ b)) to y;, with fixed endpoints, the homotopy taking

place in C\\{a}, and hence w(¥, a) = w(p, a). So we have

w9, @) = 0¥, 0) = 6(@., 0)+ ¥, o, 0).

Jj=1
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Each of the terms w(y;, 0) is easily evaluated. Indeed, if ; # 0, we have
w(vj’ 0) = ﬂj/z —1— 8.1‘/2’
if ; is a negative arc; and

w(’))j: O) = B//Z + 8j/2a
otherwise. If 8; = 0,

w(‘))js 0) =—1- aj/2,

if A; is a negative arc;

oly;, 0) = 1 + ¢;/2,
if A; is a positive cusp; and

w(y;, 0) = £ &/2,

otherwise. Adding up the w(y;, 0), we get

J

Yo, 0=y 2—N+P+y
=1
where || < ¥, lg;|/2. If we insert this into (4), we get
oh,0) = w(p, @)+ Y, n;+ N— P—n —d.
j=1

This shows that y 4 J is an integer; but
] n
ln+ol <inl+6 <—2--§‘, gl + 6 <1
j=1

by (i), so that n + & = 0. The proof is complete.
CoROLLARY 1. For ¢ satisfying (3),
dimkerT, =0 if w(p, Q)+ ¥,n,+ N— P > 0;
otherwise,
dimker 7, = — w(p, Q) — Yn; — N.

1.2. THE ADJOINT SYMBOL. After proving a theorem such as Theorem 1, it is
normal to try to write down the dimension of the adjoint kernel, dimker T, and
hence determine the index of T,. In this section, we discuss a difficulty with this
program.
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Suppose ¢ satisfies (3) and set
hy(e) = (e — e 0.
Then
3(e") = [T hi(e)HE")
je1
where

H(e) = [T (e (e he").

Now if «; is not an integer, Ej(e“)/lzj(e“) has a jump discontinuity at e/, so the
results of §1.1 cannot be applied directly to calculate w(H, 0). Actually, if no x;
has the form I 4 1/2, where / is an integer, the theory of Toeplitz operators with
piecewise continuous symbol [5,7] implies that Ty is Fredholm, and dimker 7}, can
be computed in terms of w(h, 0) and {«;}, j= 1,2, ..., n. Using our formula for
w(h, 0), this case can bz handled satisfactorily. But the next result shows that if
o; = [ -} 1/2, for some integer / and some j, then serious difficulties arise and we
cannot hope to determine w(H, 0) from the geometry of »(T) alone.

ProposiTION 1. Suppose
6) Ple) = (e — DV2A(E"),
where h is continwous and nonvanishing and dimker T, = n > 0, then dim ker T»‘—) <n.

If h e LipB, for some B > 0, then dimker T - =n—1. On the other hand, there

exists a (continuous, nonvanishing) h with dim ker T, =n.
Proof. The inequality follows by taking the conjugate of both sides of (6).
Suppose /1 € Lip f, for some 8 > 0. Then we can write

h(e) = g(eu)e_imeiu(e“ )

where g, 1/g € H® and u € Lip . Since « and its harmonic conjugate v lie in Lip$,
F == (1/2)(u + iv) is bounded. Thus if G = ¢'F, we have G, 1)G € H®and ¢ : : G G.
Putting all this together, we see that

T'(; = Tl/‘c“ Te- intgit _1)1/2T.€'G
so that
%) dim ker T¢— = dim ker[Te_ int T(eil 3 1)1/2]'

Now the kernel on the right side of (7) is

{ge H?: p = (z — 1)"2g is a polynomial of degree n — 1}



ESSENTIAL SPECTRUM OF A TOEPLITZ OPERATOR 157

It is immediate that dim ker T¢ = n — 1, since the set of all p appearing in the above

kernel is exactly the set of polynomials of degree < n — 1 with p(1) = 0.

Now we prove the last assertion of the proposition. By conformal mapping
onto an unbounded domain, it is possible to find a function u, continuous on the
circle, such that its conjugate v satisfies

v(e") < — |logle™ — 1]["*.
If we let F == (1/2)(u + iv), then it is easily checked that e~'Fe H* and
G(z) = e"Fa)(eiz — 1)-Y2 e H2
Let @(e") = (e~ — 1)"2e™e~". We see that ker T, is
{Gp: p is a polynomial of degree at mostn — 1}

and hence dim ker T;’; = n.

2. BOUNDARY EIGENVALUES

2.1. ExaMpLEs. In this section, we preface our results on Toeplitz operators
without boundary eigenvalues by some examples of Toeplitz operators with boun-
dary eigenvalues. '

First we give a simple example of a continuous symbol ¢ such that 7, has a
boundary eigenvalue. Let

pe") = le — 1]7e" " 0 <a <.

Clearly ¢(1) = 0, and, since ¢ takes no positive real values, 0 is on the boundary
of the spectrum of T,,. Write

(p(e“) — (e—it _— 1)—¢/2e—it(eit . 1)«/2_

Now since 0 <« < 1, g = (e — 1)*2¢ H? and clearly T,g = 0. When « = 1/2,
this is essentially the same examplc given recently by Clancey [2].

We can use the same ideas to give an example of a continuous symbol ¢ such
that 7, has a boundary eigenvalue of infinite multiplicity._ Let

Y(2) = exp{— (1 -+ /(1 — 2)}

denote the “atomic” inner function and {z,} the set of points such that ¥(z,) = 1.
Then |z,| = 1 and z,~ 1, as k— oo. It is not difficult to see that if Y o, < 1/2, then
the product

g(z) = (z — D /gl (z — z)%
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converges to a function that is holomorphic in iz| < | and continuous in - < 1.

Further g(z) =0, k=1, 2, ..., and l/ge H2. We define p(e") == ig(e")'2y(e").
As before, ¢ is continuous, ¢(1) = 0 and ¢ takes no positive real values; hence, 0
is on the boundary of the spectrum of 7,,. Now the kernel of T 5 18 (WHH*:. Let

he H®n(yH?»*. Then //g € H? and
T,(h/g) = T,T;T;hjg = 0.

Now (WH?* is infinite dimensional and H® n (WH?)< is dense in (YH)L, from
which it follows that dimker T, = co.

Although less directly related to our main theorems, we also give here an exam-
ple of a coanalytic Toeplitz operator with a boundary eigenvalue. Suppose, indeed,

that ¢ = g, with ge H®. Then the spectrum of T, is the closure of the set {:g(z)
: |zl < 1}. If we factor g = yh, where  is inner and /1 is an outer function, then
the kernel of T,is (y H®)*. In other words, Jisa boundary eigsnvalue for T, if and
only if / is on the boundary of g(U), U the unit disk, and g — 1 has a nontrivial
inner factor. Theorem 1 of {1] shows that this situation can occur. In fact, if Visa
bounded, connected, open set and g: U— V is the universal covering map, then
for A€ 8V, g — 2 has a nontrivial inner factor if and only if A is an irregular point
for the Dirichlet problem for V. Now it is well known that there is a bounded, con-
nected, open set ¥ such that 0 € 0V and 0 is an irregular point. This shows that a
coanalytic T, may have a boundary eigenvalue. It also follows from [1] that the sct

of all boundary eigenvalues for a coanalytic Toeplitz operator must have logarithmic
capacity zero.

2.2. BOUNDARY EIGENVALUE THEOREMS. In this section, we apply Theorem 1

to obtain two theorems and one example about boundary eigenvalues for T,, where ¢
has the form (3).

THEOREM 2. If 0 lies on the boundary of a component of the resolvent set of T, ,
then O is not an eigenvalue of T,.

Proof. We may apply Theorem 1 with w(e, 2) = 0. We have

n n
w(, 0) == Enj-{—N—PZ Y n—P
Jj=1 Jj=1

Now if Z; is a positive cusp, then, in particular, f; = 0, and hence »n; > 1, since

a; # 0. It follows that Enj — P =2 0, and the theorem follows from Corollary 1.

Of course the spectrum of T,, may have boundary points that do not liec on the
boundary of a component of the resolvent set. The next example shows that such
points may be eigenvalues for a symbol ¢ satisfying (3).

EXAMPLE. A Toeplitz operator T, , with ¢ satisfying (3), may have 0 as a boun-
dary eigenvalue.
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Choose a real sequence @, == n/2 > a,> ... — 0, such that if §, =a, —
~—a,41, then §,/a, ., = 0 (for example, choose a, = n/(2n)). Let t, = (1/2)(a, + a,+1)
denote the midpoint of [a,.,, a,]. Define ¢(e®*) on [0, n/2 = a,] by ¢(1) = 0 and

ton (@41, Auir + 6,/4)
4din

" 1 3
(8) (p(e") = tu - "4A5n eXp I:t — Quy41 — '4'511:' on [an+l+5n/4’ an+1+36n/4)

an - 3(0" - t) on [an+1 + 351:/4’ an] .

Then for t€[a,.,, a,l,

. 1
lp(e") — t,] < ---4,,
o(e") 5

lo@e) — t| < lp(e) — 1) + It, — 1] < 6,
so that
' (P(e“) (311 5"

—— =1l < -+t < =20, n-o oo
t t Ay +1

Now extend ¢(e'*) to [—n, =] by defining
t on[—=n/2,0)

9) p(e') =
> nedi2=0  on {n/2, 3n/2).

Then ¢(e*)/t — 1 as t - 0, so that
o(e) = (e — Di(e")

with /1 continuous and nonzero.
If A is in the lower half plane, in the interior of the disk 4, and at a distance
> J,/4 from t,, for each n, then, by (8) and (9),

Since there is only one arc 4, , Corollary 1 shows that
(10) dimker T, > 1

(in fact it is easy to see that equality holds in (10)). But 0 € dsp T,,. Indeed, for
A=1t,+ & (0 < 6,/4) the curve o(e') (n/2 < t € Tr/6) has winding number —1
about 4; the curve ¢(e¥) (a,.1 + 5,/4 < t < a,., + 35,/4) has winding number + 1
about 4; and the rest of ¢(e**) has winding number 0 about A. Therefore 0 is 2 bound-
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ary cigenvalie of T, . In the next theorem, we rule out selfintersection by the arcs of
the Z; terminating at 0, which, in the last example, made 0 a boundary point of sp 7, .
The additional assumption elliminates boundary eigenvalues.

THEOREM 3. Suppose ¢ satisfies (3) and suppose further that there exists 1 > 0
such that if 0, —n <t<s<0;orif 6, <s<t<0;+4u, then @(c¥)# (")
(1 <j < n). Then O is not a boundary eigenvalue of T, .

Proof. Pick

e < inf{ p(e*): 't — 6, >y, for all j}.

If 4,, ..., %, satisfy the requirements of § 1.1 for this ¢ (/; is the arc of ¢(T) such
that J; = A7'(4,) is the connected component of e’ in ¢-1(4 ), we can further
assume that /; is free from selfintersections (even between the two parts of 7; ter-
minating at 0), unless f; = 0. Since, from (3), the limits

lim arg o(ei)
t—»gj:!:

exist for each j, we can also assume (by reducing ¢, if necessary) that there are two
sectors A, and A in 4, such that 4, contains a sequence {5,} < p(T,), 9, - 0;
and such that the interior of A, lies in p (T,).

Pick ¢, < &, so that <p-1(A£1) < UZ;. Let e and ¢/ be the endpoints, on
the unit circle, of the smallest (connected) arc containing /; n (p—l(Asl).

Pick ¢, < ¢, such that a point § = 5, (in p(7,)) lies in 4. \4, . Let e and ¢''s
be the endpoints of the connected component of (p‘l(Aee) containing ¢'%, chosen
so that the arc of /; joining e to e [resp. joining e to e'/] does not pass through
the origin. Thus if an arc 1,(e%), as t — 0; (¢ < 0)), enters 4. first at ei"j, it enters
AE2 for the last time before passing through 0 at e’ , then passes through 0, then
reenters A%\Aez at e/ and leaves Ae1 for the last time at e,

In 4,\[4,U {6}], homotopy the arc of }; joining ¢/ and e, with fixed
endpoints, to a simple arc lying in A%\Asz‘ Do the same with the arc of A; joining
e’ and €' J=1,...,n In this way, we can arrange a homotopy in 4, \[A4sU

U {J}] between ¢ and ¢ so that an arc y of |z| = |J] joining & to a point of A, crosses
p — ¢ simple arcs of @, p of which leave A, to the right as they cross y and g of which
leave A4, to the left as they cross y, according to the orientation of @. It is easy to
see that if, as we pass between two regions of C\¢(T), we cross a simple arc of @,

then the winding number of @ increases by 1, according to the orientation of the
simple arc. It follows that

0= w(@,0) ==w(@,As) +p—g=w(p,A3) +p — g
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and, by Theorem 1,

o, 0) = w(p, A)) + ¥nj+ N=g—p+ Y,n;+ N.

(There can be no positive cusps, since A4, is a sector with vertex at 0.)

If ¢ > p, this proves w(h, 0) > 0. If p > g, there are at least p—g arcs A;
which are either negative with respect to A, or have §; = 0 (since arcs with §; > 0
are nonintersecting in 4,). If §; = 0, we have n; > 0 (since «; # 0), so that

Yni+N=zp—q

In any case, w(h, 0) > 0 and the proof is complete by Corollary 1.

The following corollary implies that T, cannot have boundary eigenvalues
for a class of ¢ including g e C*, with ¢’ # 0 (generalizing Wang [9], Theorem 1)
and ¢ rational (generalizing Clark and Morrel [4], Lemma 2.2).

COROLLARY 2. Suppose ¢ is continuous on T, vanishes at e e e rs ew", and
in a neighborhood of each 6;, pe C"7, with ¢"(€'%)#0. Then 0 is not a boundary
eigenvalue of T,.

Proof. Clearly (3) issatisfied witha; = m;, j =1, ..., n. To show Theorem 3
is applicable, we prove: if @ € C® | in a neighborhood of ¢? , and if there are sequences
{s,}, {r,}, with

P> >r>85%>...>0, r,—-0

@) = p(e™),

then ®(e®) = 0. This will suffice to prove the corollary.

Write @(e¥) = @ (t) + ipy(t), with ¢,, ¢, real valued. Then ¢,, g, C®
and @ (r,) = @), for i=12 and v=1,2,.... By the mean value theorem,
@1(t,) = 0, for some ¢, € (s, r,). By induction, ¢{(u) =0, for some sequence
u, — 0. This proves ¢{(0) == 0. Similarly, @¥(8) -= 0, and the claim follows.
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