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HILBERT SPACE OPERATORS WITH ONE DIMENSIONAL
SELF-COMMUTATORS

KEVIN F. CLANCEY

The intent is to present a report on the theory of (bounded linear) operators
T acting on a separable Hilbert space # whose self-commutators have the form

©.1) [T*, TN=T*T—TT* = ® ¢

for some ¢ in #. The notation ¢ ® ¢ in (0.1) is the standard notation for the one
dimensional operator ¢ ® ¢ ()= (f, ¢)¢, where (,) is the inner product of #. The
condition (0.1) only characterizes those operators with one dimensional self-commu-
tators satisfying [X*, X] > 0. Of course, if X has one dimensional self-commutator,
then one of X or X* will satisfy the latter semidefinite condition. By demanding
(0.1) we have elected T to satisfy [T%, T] > 0 and this will lead to surprizing diffe-
rences in the spatial careers of 7 and T*.

As every operator theorist knows ‘“‘the’’ unilateral shift satisfies (0.1) so that
solitary examples from the class of operators having one dimensional self-commu-
tators have been around for sometime. The first general study of the class appeared
in 1962 [32). The main result in [32] is a singular integral model which can be sum-
marized as follows: Suppose T = H -+ iJ is the Cartesian form (H = (1/2){T +
+ T*); J = (1/20) [T — T"*]) of an operator satisfying (0.1) and H is (unitarily equi-
valent to) the operator Hf(t) = 1f(z) acting on L3(a, b). Then ¢ is in L®(a, b) and J
has the form

| J—
©2) 310 = st + 42 L o
‘ 21 -
for some real valued ¥ in L*®(a, b). Without defining carefully the nature of the sin-
gular integral (a Cauchy principal value) the reader can formally verify that with
H, J as above T = H + iJ satisfies [T*, T]1=2i[H, J]= ¢ & o.

Until recent times singular integral models such as (0.2) and Cartesian (or
polar) decompositions have been the mainstays of the theory of operators having
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one dimensional self-commutators. The references [1, 4—10, 13, 15, 24—26, 28,
34] are a representative variety of such techniques. Of course, the Cartesian decom-
position is not conducive to a natural analytic functional calculus. One of the goals
in this paper is to adopt as much as possible the complex point of view.

To preview the modus operandi we offer the following comments. If T satis-
fies (0.1), then for every complex z there is a unique solution T*~2p of (T~ zI)*x =¢
orthogonal to the kernel of (7' — zI)*. The theory as developed in this report is
centered around the weakly continuous #-valued function

0.3) T* 19, zeC.

This function will be appropriately called the global local resolvent. The existence
of the global local resolvent (0.3) is a property which sets 7* apart. The vector ¢
is rarely in the range of 7' — zI when z belongs to the spectrum of 7.

It is easy to use the global local resolvent to obtain a multiplication operator
model for 7. In fact, the operator

Vi— — 8(f, T ) (5 = (172) [aa_x i 50;])

is easily seen to be a continuous map of 3 to a space J of distributions with com-
pact support and, further,

VTS = zV/.

In other words, ¥ transplants T to “multiplication by z.

One of the main new consequences of the development here is a proof that 7
is irreducible if and only if the values 71, z € C, of the global local resolvent
span .

The discussion is presented in four sections. Section | contains the basics.
Of necessity this first section has a somewhat pedantic form and the reader may
want to ignore the elementary proofs. In particular, the many equivalent versions
of irreducibility are provided by way of contrast to the local resolvent criteria deve-
loped in Section 3. Section two studies unitary invariants for the class of irreducible
operators having one dimensional self-commutators. The latter part of this section
considers connections between the well studied principal function invariant and the
global local resolvent which is bzing featured in our development. Section 3 gives
the details of the distributional model referred to above. The completeness of the
vectors T~ 1p, z € C, is also established in Section 3. Section 4 gives a brief treat-
ment of the problem of whether ¢ satisfying (0.1) is cyclic for either of the irre.
ducible operators T or T*.
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1. BASICS

Throughout this section the notation T is reserved for an operator acting on
the Hilbert space 5 with [T*, T]1 = ¢ ® ¢. The main topics to be discussed in this
section are the question of irreducibility and the basic properties of the global local
resolvent. Certain aspects of the discussion have generalizations to broader classes
of non-normal operators (e.g. nearly normal and/or seminormal operators); how-
ever, the focus here will be on operators with one dimensional self-commutators.
Indeed many of the results described below are special to operators satisfying (0.1).

1.1. CRITERIA FOR IRREDUCIBILITY. The notations T, = T — z[ and TF =
=T% —zI, for ze C, will be used.

PROPOSITION 1. For all z, w not in the spectrum o(T) of an operator T satisfy-
ing (0.1)
(L1) T3 T e = (L + (T %, T5'e) TS\ TS e

(1.2) T T Yo =1 — (T3, T o) T~ T .
Proof. For all z,we C, T)T. — T,T;f = ¢ ® ¢. Thus for z, w ¢ 6(T)

(1.3) TE T — TR =T TE Y ® T* Ty .
Tt follows that
TR T7'e =TTy Y + (o, TF T3 'Q) T T 9 =

=[l + T7%, T3l T T5 e
and this is (1.1).
Taking adjoints in (1.3) we obtain

T;k—lTJI . T;V-IT;I:—I — T;k—lT‘;-l(p ® T—‘lT;lf—l(p
and, consequently,

T T o =1 —(TF ", T '@ T T3 .

Interchanging the roles of z, w in this last identity yields (1.2). The proof of the pro-
position is complete.

The following notations will be employed:
T@w) =1+ T, T5%9)

y:{:(z’ W) = 1 - (T:‘:_l(pi T?—l(P)-

(1.4)

From (1.2) and (1.3)
(1.5) T(z,w) =T 34z w),
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in particular, (z, w) is invertible. Note also that

TYT.T3 ' T; =1+ @TF Ty
and, therefore,

T3T.T5 T e = T (z, w)e.

Thus 1 = F(z, w) is the only eigenvalue of T¥7.7T*¥~*7T! other than A = 1. In par-
ticular, the formula

(1.6) det (TET.TE T, = T (2, w)

holds for the determinant.

PROPOSITION 2. Let T satisfy (0.1). The following are equivalent:

() T is irreducible.

(i1) The only subspace reducing T on which T is a normal operator is the zero
subspace.

(ii1) The smallest subspace 3¢, reducing T containing ¢ is I .

(iv) {TE"T % : |zl, |w| > ||TI|} spans .

(V) (T3 % |2, iwl > | T))} spans 2.

(vi) {T*T*p:j, k=0,1,2, ...} spans 3#.

(vi) {T'T*¢ : j,k = 0,1,2, ...} spans H#.

Proof. 1t is clear that (i) implies (ii). Assume (ii). If 7= T, @ T,, then [T*, T]=
= [T¥, T1] @ [T%, T,). In virtue of the fact that {T™, T] has rank one, then one of
T, or T, must be normal. Since (ii) is being assumed, then this operator acts on the
zero subspace. This completes the proof of the equivalence of (i) and (ii).

The closed linear span of the vectors

(1.7) T5T™ T e; n,my,...,n,,m =0

is the smallest space %, reducing 7 containing ¢.

If f1 #,, then T*Tf= TT*. Thus T restricted to #y = ©H, is
normal. Hence (ii) implies (iii). On the other hand if A is a reducing subspace
on which .4 is normal, then T*7f — TT*f = (f, ¢)¢ = 0, f € A" Consequently,
¢ 1 A and this implies A | #7,. Thus (iii) implies (i) and the equivalence of (ii)
and (iii) has been established.

The equivalence of (iv) and (vi) and the equivalence of (v) and (vi) are trivial.

From (1.1) and (1.2)

T5 T =T (@, wT7 T e
T \TE Y = T .(z, wyTE T Y.

These identities make it clear that (iv) is equivalent to (v).
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If (vi) holds, then #; = s and, consequently, (iii) holds. There remains to
show that (iii) implies (vi). From (1.1) and (1.2) it is not difficult to conclude that

k
TjT*k(/) — JZ Z crsT:::sTr(p

r=1s=1

j 4
T*kT"(p — i Z drsTrT*s(p

r=1s=1

for well determined c,, d,,. Therefore the vector (1.7) can be written in the form

rs?

ml+ e +mk nl+ e +nk

y Y b THT.
r=1

s=1

This shows (iii) implies (vi) and completes the proof of the proposition.

REMARK. An operator T that satisfies (ii) of the above proposition is said to
be “‘completely non-normal’’ or “pure”’. The equivalence of (ii) and (iii) for a general
seminormal operator is established in [28].

For X a compact set in the plane we will denote by 2(X) the collection of rati-
onal functions with poles off X and by 2(X) the subalgebra of %#(X) consisting of
(analytic) polynomials. For later reference we indicate that the notation R(X)
(respectively, P(X)) will be used for the closure of Z(X) (respectively, 2(X)) in the
uniform algebra C(X) of continuous complex valued functions on X.

For A an operator on 3 and f in # the notation

R(A:f) = V{47 z ¢ o(A)}

will be employed for the smallest closed subspace of # containing f which is inva-
riant under r(4) for all r € %(c(A)). Similarly,

PlA:f) =V {A7f iz > |\ T

is the smallest invariant subspace for 4 containing f. As usual fis called a rationally
(or analytically) cyclic vector for 4 in case R(A:f) = . Similarly, P(4:f) =
means f is a cyclic vector for 4.

PROPOSITION 3. Assume T is an irreducible operator satisfving (0.1). The fol-
lowing statements hold :

a) The vector T belongs to R(T*: ¢) if and only if ¢ is a rationally cyclic
vector for T*.

b) The vector T*¢ belongs to R(T: @) if and only if ¢ is a rationally cyclic
vector for T.
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Proof. (a) We have the identity
TTi e =T 'To + (¢, T ') Ti e, z ¢ o(T).

Thus T¢ in R(T*: @) implies R(T*: ¢) is T invariant. Smce R(T*: @) is cleally T+
invariant, the irreducibility of T implies R(T*: ¢) =
The proof of (b) is similar.

REMARK. In a similar manner one can show ¢ is a cyclic vector for T (res-
pectively, 7%) if and only if T*¢ (respectively, T¢) is in P(T: @) (respectively,
P(T* : @)). '

1.2. THE GLoBAL LocAL RESOLVENT. In spite of the contradictory nature of
the title of this subsection it will be shown below that the resolvent T¥~% z ¢ (7)),
when *“localized™ to the vector ¢ has a globally defined weakly continuous exten-
sion T¥ 1, ze C.

The initial discussion can just as easily be cast for an arbitrary seminormal
operator. Suppose S is an operator on s that satisfies D = S%S — SS* > 0.
For every complex z

VD VD + S,S¥ = SiS.

and, consequently, there are unique contractive operator functions C —= C(z),
K = K(z) satisfying
5¥Cz) =VD, SF=K@)S.
{1.8)
C#(z2)[Ker S¥] = K(z) [Ker S¥] = (0),
where Ker S* denotes the kernel of the operator SjF.
For any f in o it follows from (1.8) that

S*C(x)f = VDf

and, therefore, given d = |'D f in the range of }/D there is a solution of S¥x = d,
for every z € C. Moreover, C(z)f represents the unique solution of SFx =d
in [Ker S¥]+.

The surprizing existence of the global local resolvent C(z)f for d == ]/Df in
the range of |/ D is in [29]. The use of the contractive operator function C = C(z)
to account for the existence of this local resolvent appears in [30]. Further details
on the connections between the operator functions C == C(z) and K = K(z) are
n [19].

If the above discussion is specialized to the case of an operator 7 satisfying
(0.1) 50 that D=0 ® ¢ (/D = ¢ ® [[@]|~¢), then

(1.9) ) =T @9
llpli



ONE DIMENSIONAL SELE-COMMUTATORS 271

where

T# '¢, zeC,

-denotes the unique solution of TF¥x = ¢ which is orthogonal to Ker 7°¥.

The remainder of this section contains a discussion of the elementary proper-
ties of the global local resolvent T~ 1, z € C.

Clearly,
1° IT¥ pll <1, zeC.
Further, '
2° T e, zeC,

‘where 5, is the smallest reducing subspace for T containing ¢.

In Section 3 we will establish the identity s, = V {T* ¢ :ze C} and,
therefore, 2 is spanned by 77 ¢, z € C, whenever T is irreducible. For the pre-
sent we do not choose to assume this irreducibility.

The space Ker TF splits
Ker T* = Zy(2) @ Z(2)

relative to the decomposition # =H#, D H,, where Z,(z)= KerT¥ns#,,
i = 0,1. On Zy(z) the operator T. is the zero operator and Z,(z) is at most one dimen-
sional. If Z,(z) # (0), then we will denote by e, the unique element in Z,(z) that
satisfies (¢, €.) = 1.

From the identity

TZ*T::‘): - T:T;kez = T?Tze: == ((’:, QD)(/) =@

we conclude

3° ‘ T# ' = T.e, on n(T¥)

where m,(T§) denotes the set of eigenvalues of the operator 7§ = T*[.yfl and the
bar denotes complex conjugation.

Moreover
1T 0l = (Tl = (T¥Te., e.) = (p, ;) = 1.
Therefore,
4° IT¥ %l =1 on ny(T}).
The following result was obtained in part in [29]. See also [12, 16].

PROPOSITION 4, Let T satisfy (0.1). The global local resolvent T}~ ¢, z e C,
is weakly continuous on C and strongly continuous off {z e o(T): || T} o < 1}
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Proof. Let {z,}%., in C have limit z,. Any weak subsequential limit x, of T*k' o

satisfies T' fox = ¢. Thus T*~ ¢ is clearly weakly continuous off 7,(77F). Further,
if z, € ;rXT;*—), then by 4°, [leo_l(pH =1 and Tﬁ;_l(p is the solution of T’fox = ¢ of
minimum norm. Since any such x, satisfies ||x,|| < I, then xO:Tfo_I(p. This
shows T¥~1¢p, z € C, is weakly continuous on C. It follows from this wcak conti-
nuity that [T || < lim |70l < 1. Thus T e[l = 1 implies 77 0. —
—»[[Tfohl(pll and, therefore, TF ¢ is strongly continuous off {z € o(T) : || T¥ ¢, <1}.
The proof of the proposition is complete.

REMARKS. (i) The set {z € 6(T): ||T¥ '¢ll <1} may be non-empty. In the
following section an explicit expression for ||TF'p|] will be given which will make
this last statement easy to verify. See also [14].

(i1) The local resolvent T '@ behaves in an entirely different manner than
T¥~1p. Indeed, there is no solution of T.x = ¢ cn any open set intersecting
a(T) [14].

(1ii) The local resolvent kernel

T z,w)y=1—(Ts e, T¥ o)

of (1.5) can now be extended to C2 The kernel J,, is sectionally continuous on C?*
and jointly continuous off

{(z,w):z € o(T), IT* ¢l <1 or wed(T), [Ty "ol <1}

Moreover, for w fixed 7 . (w, -) is analytic off o(7T) and for z fixed 7 .(-, 2) is
coanalytic off o(T).

(iv) A sequence of Hilbert space operators {4,}5>; is said to converge in the
strong-* sense to the operator A in case A,f — Af and Aff — A*f for f in #. If
(T2 4 satisfying [,7%, ,T]1= ¢, ® @, converges in the strong-* sense to an oper-
ator T satisfying [T%, T] = ¢ ® ¢, with ¢, — ¢ then the sequence of global resol-
vents ,T*-1p,, z € C converges weakly to T¥~%¢ and, further .77 ¢, - TF ‘0 off
the set {z : z € closure {C) a(,T) :I, IT* | < ]}. The proofs of these statements.

n-=1
are similar to the proof of Proposition 4. See [12].

2. UNITARY INVARIANTS

This section contains a discussion of unitary invariants for the class of oper-
ators with rank one self-commutators. In the first part of the development the uni-
tary invariants are related to the resolvent. Later in the section unitary invariants
based on the spectrum are studied.
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2.1. INVARIANTS FROM RESOLVENTS. It is not difficult to obtain scalar valued
unitary invariants for operators with one dimensional self-commutators.

THEOREM 1. Let T, S be irreducible operators on Hilbert spaces #, A, respec-
tively, such that [T*, T1= ¢ ® @ and [S*, S] = ® . The operators T and S are
unitarily equivalent if and only if the local resolvent kernels

T@w)y =1+ T, Ti0); Flz,w) =1+ (ST, Sg')
agree in a neighborhood of oo in C2.

In fact, when T (z, w) = F(z, w) agree for minl|z|, |w|]] > M the mapping U
defined by

H1,.— w1

Q.1 UY, aT: ' Toe = Y, aSi7'80 %

defined on the dense collection of linear combinations of {TF Ty : min[iz|,
[wi] > M} extends to a unitary operator U:H# — A which satisfies UT = SU.

The heart of the proof of this theorem is the following:

Lemma 1. For z, w, u, v distinct complex numbers not in o(S)

(SETISSYW, SETIS; W) =
(2.2)

. S(z, w) S(u, z) — S(u, v) _ S(w, z) — S(w, v) .
o u — w) (z:_:g) [ S(z, w) S(z, w) ]

Proof. By repeated use of (1.1)
(SEISTN, SuIST W) =(ST 1S ISF IS, Y)=S(2, w) (SF 1SS 1SF MY, ¥)=

_ Sz, w)

[(ST1STASE M, ¥) — (SFISFISE N, ¥)] =
u—w

_ SGEw) [ (SFISFISTW, ) (SETISEISINL ) T
C u—w [ S(z, u) S(z, w) ]—

_ S@w) [ (SEASTM, Y)—(STISa WL y)  (SETIST N, Y)— (ST S0 MY, )
u—w Sz, u)z —v S(z,w)z—v ]
This yields (2.2) and completes the proof of the lemma.

Proof of Theorem 1. If 7 (z, w) and &(z, w) agree in a neighborhood of oo in

C?, then by Lemma 1 for all pairs (z, w), (&, v) in this neighborhood (the case of
non-distinct z, w, u, v follows by continuity)

(T2'T5 0, TR T ) = (SFTISE W, SE1S7 ).
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This makes it clear that the operator U defined by (2.1) is isometric. The rest of
the proof is straightforward.

REMARK. For jz|, jw| large

N _ ® (T, T'p)
! ]wm1 = I e—
(", ) ; j2=0 ZiH1pi+1
and
-1 -1 _ had ('Ti<P’ Tj(p) A
(Tz (pa Tz (p) —’“ijz;o zi+1§l'+l

Thus the values || 7, %¢|? in a neighborhood of oo determine Z(z, w) for large |z,
w|. In particular in Theorem 1 the equality ||T; ¢|| = || S; Y| for Iz} large implies.
F(z, w) = T (z, w) for large |z|, |w|.

The above remark combined with Theorem 1 yields the following:

COROLLARY 1. Assume T, S are irreducible operators on the Hilbert spaces S,
A, respectively, such that [T*, T]= ¢ ® ¢ and [S*, S]=y @ . The operators
S, T are unitarily equivalent if and only if

1T el = 1S5l

in a neighborhood of oo.

REMARKS. (i) Theorem 1 remains true if J(z, w) and &(z, w) are replaced
by 7 .(z, w) and &.(z, w). Similar replacements can be made in Corollary 1. Thus
S, T are unitarily equivalent if and only if ||T¥ '¢|| = ||S¥~%|| in a neighborhood
of oo.

(i) It is possible to give a different proof that |77 ~Tol| = || S¥ Y| for large
|z} implies S and T are unitarily equivalent. This proof appears in [19] and is based
on the ‘“‘curvature’ invariant for hermitian holomorphic line bundles [20]. Actually,
the argument that ||TF ~'¢||? determines 7 .(z, w) in the remark preceding Corollary 1
is similar to methods in [20].

2.2. INVARIANTS ON THE SPECTRUM. If 4 is an operator on the Hilbert space #
with [4%, A] trace class, then there is a compactly supported real valued integrable
function g = g, which for all polynomials p = p(z, z), ¢ = q(z, Z) provides the
representation

(p, 9) = tr[p(4, 4%), q(4, A¥)] =
2.3)

1 - —
=— S {0pdq — dp0q} g, da,
n
C
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where a denotes planar Lebesgue measure and “tr’” denotes the trace functional.
It should be noted that the substitution of the non-commuting variables 4, A* for
z, Z, respectively, in p, g can be carried out in any order without affecting the trace
of the commutator [p(4, A4*), q(A, A*)]. Thus (2.3) defines a bilinear form on the
algebra C[z, z] in the two commuting indeterminants z, Z.

The principal function g = g, in the representation (2.3) has a significant
history. This invariant appears first in [24] where it was used as a method of diago-
nalizing self-adjoint operators. In particular, the self-adjoint singular integral
operator J in (0.2) can be diagonalized in terms of the g of T = H + iJ [24]. The
principal function for operators with trace class self-commutator was developed in
[24, 26]). The approach to g, in [24, 26] was through the determinant. The tracial
bilinear form of (2.3) was first investigated in [22]. These authors initially represent-
ed this form

1 - _
(p,q) = - S {Opdq — 0pdq} duy,,

where u, is a finite compactly supported signed measure. The measure p, was
shown to have the form dy, = g,da in [25].

The determinant form of (2.3) reads
(2.4) det[eFeCe~Pe-2] = exp 1 S {Opdq — dp0q} g, da,
T

where we have used the notations P = p(4, A%), O = g(A4, A*}. Both of the iden-
tities (2.3) and (2.4) extend to sufficently smooth functions of z, Z. In particular,
these identities remain valid for functions p, ¢ which are analytic or coanalytic on
a(A), {8, 22). See also [3].

The principal function is a sufficiently fine invariant to capture many spectral
properties of A. See [8], [22]. The function g, has also been used to study cyclic
vectors for A. See [2], [4] and [16].

In case T is an operator satisfying (0.1) then the principal function satisfies.
0 < gr < 1. In fact, the principal function is a complete unitary invariant for irre-
ducible operators having one dimensional self-commutator. In detail, two irredu-
cible operators T, S on Hilbert spaces o, %, respectively, which satisfy [T*, T] =
=0 ® ¢, [S* S]=y ® ¥ are unitarily equivalent if and only if g = g¢[24).
Moreover, to every compactly supported g satisfying 0 < g < 1, there corresponds:
a unique (up to unitary equivalence) irreducible 7" with one dimensional self-com-
mutator such that [T*, T] > 0 with g = g, [7].

It should be noted that many of the earlier developments connected with
the principal function were made in terms of Cartesian (or polar) decomposition
of T In particular, the model of [32] is a Cartesian model. Recently in [27, 33, 34}
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an analytic model for T based on the principal function has been developed. We
will say a bit further about this analytic model in Section 3.

The immediate goal is to point out connections between g, and the global
local resolvent T3~ 1¢. These connections involve the Cauchy transform. Suppose v
is a compactly supported measure on C. The locally integrable function v defined by

z) :LSd_v(_Q
n )& —z

C

is called the Cauchy transform of the measure v. The Cauchy transform is a basic
tool in the study of approximation by rational functions. See, for example, {21]
and [23].

If ¢ is a compactly supported integrable (with respect to planar Lebesgue

measure) function, then it is customary to write @ for &d;. The Cauchy transform
has a natural extension to any distribution with compact support. Since we will
have later use for this “‘generalized’” Cauchy transform, we will recall its definition.
Let 2 be the space of test functions on C, &' the dual space of distributions on C
and & the space of distributions with compact support. For v € &' one defines %
in &' by

vp) = —v(®).

A . . . ,
The map v — v is a continuous map of &' to &’. Moreover, since for ¢ in &

A fa
0p = —p = Op,

then in the sense of distributions

~ ~
V= —V.

Qi

The injectivity of " : & — 9@’ follows from Weyl’s lemma which states that the only
solutions of dv = 0 are entire functions. (See, e.g., [31].)

The following result from [16] describes the Cauchy transform of the principal
function.

THEOREM 2. Let S be an operator such that D = [S*, S] satisfies D >0 and Vb_
is trace class. Let C = C(z), K = K(2) be the contractive operator functions satis-
fying (1.8). Then

(2.5) tr()/DC*) = tr[K, S]= gs.
In particular, in the sense of distributions

(2.6) g = 0 tr[S, K] = —8 () DC™).
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We will not present a detailed proof of the above theorem. We offer the fol-
lowing remarks. The operator functions C and K are related by the identity

2.7 [ = C(z) C*(z) + K¥*(z) K(2) + P(2)
where P(z) denotes the orthogonal projection onto Ker(S¥). The identity (2.7) is

from [19]. Consequently,
[K(z), S] = K(2) S. — S.K(z) =

= S* — S*K*(2)K(z) = S¥C(z)C*(z) = /[ DC*(2).

This gives the first equality in (2.5).

Further, for z¢o(S), K(z) =(S—2)*(S —2)~1. Thus for z¢a(S), we
may use (2.3) to compute

tr[K(z), S]=tl(S — 2)*(S—2)7%, S]=

=1 S L ey dacd).
n)é—z

C

This is the second identity in (2.5) for z ¢ a(S).

For the case of an operator T satisfying (0.1), the identity (1.9) allows one to
conclude the following:

COROLLARY 2. Let T be an operator satisfying [T*, T]1= ¢ ® ¢. For every
rational function r with poles off o(T)

2.8) ((T)p, T*"1g) = "—S E@* (&) da(®).

T — Z

In particular

" (2.9) gr = —0(p, T¥ o).

It follows from (2.8) that elements of the form r(T)o, r € #(c(T)), are deter-
mined by ‘“‘testing’’ against the global local resolvent. In fact, we have

—0(r (D), T¥ ') = rg.

It is our goal to further this point of view of the global local resolvent as a set of
test vectors. This is accomplished by first computing (7% ¢, T¥*¢) (see Theorem 3
below). Eventually, this idea will lead to a proof that the span of T ¢, ze C,
is ¥, (=3 when T is irreducible).

6 — 2650
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It is immediate from (1.6) and (2.4) that for z, w ¢ o(T)

T(z,w) =1+ (T, Tyle) =

1 g1(%)
“4ngﬁ~ﬂ@~wa@}

C

(2.10)

Combining this with the identity 7 .(z, w) = Z ~}z, w) one obtains immediately for
z, w ¢ 6(T) the exponential representation

2.11) T (z,w)=1— (TE '@, T*¥ o) = exp{ — LS
T

gT(C)
e ——mmm d .
@—a@—ma@}

The identity (2.11) extends to C2 This has been done in [[2] and, independently,
by R. W. Carey and J. D. Pincus. (See the remarks in the introduction to [27].)
The precise result is the following:

THEOREM 3. Ler T satisfy (0.1). Then for z, w in C the equality (2.1) holds.
In case z = w andS |€ — z|~2g(&)da(E) = oo, then the right side of (2.11) is taken

to be zero.

The idea behind the proof of Theorem 3 is the following. If the spectrum of T
is nowhere dense, then for z # w the identity (2.11) can be concluded from the weak
continuity of the global local resolvent. For the general case when z # w the iden-
tity (2.11) is obtained by approximating 7 in the strong-* sense by a sequence of
operators with one dimensional self-commutators whose spectra are nowhere dense.
For further details on the proof of Theorem 3 including the interesting and subtle
case when z = w we refer to [12]. (See also [14].)

We conclude this section with two consequences of the exponential represen-
tation (2.11).

1° The equality
8©)

-1 :L
(o, T o) nSf

da(Z)

-2

of Corollary 2 i1s an immediate consequence of (2.11).
2° For almost every z with respect to the measure grda the integral

S|é — z|~%g (&) da(é) is infinite. Consequently, ||[7F lp| = 1a.e. with respect to

gda. This fact has been used to develop a “Toeplitz type’” model for T in [17].
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Further, it is not hard to construct examples where S |€ — z{~2gp(€)da(é) is finite

at some z, € o(7). At such a point ||T:i'1<p|| < 1 and the local resolvent T¥ 1¢p
cannot be strongly continuous at z = z,.

3. A DISTRIBUTIONAL MODEL

It was noted in the introduction that it is easy to use the global local resolvent
T¥*-1p, ze C, to obtain a multiplication operator model for T on a space of distri-
butions. This model will be studied in greater detail in this section. One of the more
interesting consequences of the development is a proof that the irreducibility of T
implies the vectors T¥1p, z € C span the Hilbert space.

Throughout this section it will be assumed that the operator 7 is an irreducible
operator on the Hilbert space o# and that [T*%, T]= ¢ ® ¢. The notations

(3.1 V= V{T;}:_I(P:ZEC}Q Vo=H OV,

will be employed. The space ¥7, is T*-invariant and ¥y, which will eventually be
shown to ‘be zero, is T-invariant.

The followmg proposmon provides in a 51mple manner a dlstnbutxon model
for T.

PROPOSITION 5. Eet T be ‘an irreducible operator satisfying (0.1). The linear
operator V . H — (o@"deﬁned by
6y v=lEg T
is continuous from H 19 &'. The kernel of V is the space ¥y of (3.1). Moreover,
(3.3) R U VTr=2v), fes,

where zVf denotes the usual multiplication of the distribution Vf by the €% function
u(z) = z.

Proof. If {f,} is a sequence.in # with f, — f, then (f,, T* ¢) converges uni-
formly to (f; T*-%p) on C. Therefore, the continuity of V is clear. The identity

(T, T '0) = (f, 0) + 2(f. T 9)
immediately implies (3.3).
Using Weyl’s lemma we learn that Vf = 0 implies (f, T¥~'¢p) is entire. Since

this function vanishes at co it must be zero. In orther words V=0 implies f | T* ¢
z € C. This shows Ker V = ¥7, and completes the proof.
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REMARKS. (i) It is clear that for every f the distribution Vf is supported on 6(7).

(ii) The map V:# — &' is a weak sequentially continuous map. In fact, if
Ja converges weakly to f in J#, then (f,, T* @) — (f, T¥'¢) pointwise boundedly
on C. This implies V/f, - Vfin &".

If & is analytic in a neighborhood of the spectrum of the operator 7, then
directly from (2.8)

(3.4) ViKT)p = hg.

The next result computes ¥ on ¥7,.

PROPOSITION 6. For w e C,

- I — T‘t_l > Tf—l ) - '9.:::(2’ }V)
(35) VTz 1(,0 = [ ( — 4 4 ]gT(Z) = ‘T‘:g'[(z)-
z—w _ z—w
Proof. By definition
VI§ ' = — ATk e, T¥ 'p) =

= a0~z 72 = oo~ {0 garo]

where the last equality is (2.11). It is straightforward to verify on C\\{w}
g exp{ _L S—gfg)—_——_ da(é)} — exp{ _ b S _ &© da(e)} £1()
T )& —2)(E —w) T E—2¢—w zZ—w
in the sense of distributions. This shows (3.5) holds on C\{w}, in particular, the

two sides of (3.5) differ by a distribution supported on {w} of order one. Thus

Tz, w)

(36) VT:;_I(P gT(z) + o“Sw + Baéw + yaaw!

where «, B, y are constants and J,, the unit point mass measure at w. (See, for exam-
ple, [31, Theorem 6.25].) The proof will be completed by showing a, B, y are zero,
Using Weyl’s lemma one learns that the (distributional) Cauchy transform of both
sides of (3.6) agree modulo an entire function. Behavior at infinity implies this
entire function must be zero. Therefore, in the sense of distributions

14

da(¢) —

#—1 %1 1 T (&, w)
e e Yo T

~
) - ﬁ‘sw + yaéw .

n(z—w
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The next step is to multiply (3.7) by the ¥* function u,(z) == z — w. Before doing
this we note the identity

T (&, w) .
AT W d =
(z—w S T Z)gr(c) a(¢)

¢2(&)da®) + - Séz—— & ”’)gT«:)d @

T SJ(C(E" M)))

This identity, combined with the continuity as a function of z of the last integral,
implies

7 W)
3.8 I — —_— d = 0.
6.9 fim ¢ — ) | =2 0104

AN
So that when (3.7) is multiplied by (z — w) we obtain that the distribution yu,09,,
is represented by a continuous function. However,

1, D0 (u) = Sé”@ da(¢), we D,
i

— W

and we conclude y = 0. Now if we use (3.8) along the obvious identity
lim (z — w) (TE~ 2, T¥ @) =0, we learn a = 0. Finally, once we know «, y

ZawW

are zero then 8 = 0 follows from (3.7). This completes the proof.

Proposition 6 provides a representation of VT on ¥",. More precisely, we
have the following:

PROPOSITION 7. For fin ¥
(3.9 VI = 2Vf+ (f, T2 0)gr = 2Vf + W er.
Proof. Assume first that f = T ‘¢ for some fixed w € C. Then
VT*Ty~Yo = Vo +wVTH o =

1—(T* 1‘P,T* l(p)

Z—W

S| Jar=2vret0 + @0 T,

where the penultimate equality is from (3.5). This shows (3.9) holds for f = T¥~1¢
and by linearity (3.9) continues to hold for finite linear combinations of {7~ '¢
:w e C}. Now if f, — f, fn € ¥y, then VT*f, - VT*f, ZVf,—zVf and (f,, T '¢)gr —
- (f, T ') gy in the topology of &’. Thus (3.9) holds on ¥7,. This completes the
proof.
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We are now in a position to establish the following:

THEOREM 4. Let T be an irreducible operator on H# with self-commutator '
[T*, T1= @ ® @. The values T* lp, ze C, of the global local resolvent
span .

Proof. Relative to the decomposition # = ¥, @ ¥, the operator 7" has

the 2 X 2-matrix form
[ 0 ]
0 yi 1

and the self-commutator has the forms

| X

X*To— ToX*  [T%, Th] +X*

_ [0 0 ]
0 o®9
The proof will be complete when it is shown that [T'§, 7,] = ¢ ® ¢. In fact, this
condition combined with (3.10) implies X = 0. Since the operator T is assumed

irreducible, then ¥”, must be zero.
There remains to show [T, T,] = ¢ ® ¢. To this end let f be in ¥7,. Then

(3.10)

VITIT S — NWTEf1=2VIif + (LS, T 'o)g — zVIYf =

= zi*Vf + 2(f, T¥ *o)g + (f, 9)g — 121*Vf — z(f, T¥ p)g = V(f, 9o,

where we have used (3.3), (3.9), the invariance of ¥7, under 7% and the fact that V'
is zero on ¥",. This shows V[T¥, T;] = Vo ® ¢ and since ¥ is one to one on ¥y,
we can conclude [TF, T,] = ¢ ® ¢. The proof is complete.

REMARKS. 1° Theorem 4 provides a further condition for irreducibility which
can be added to the seven equivalent conditions of Proposition 2. Namely,

(viii) T¥ 1, ze C, spans H#.

Of course, (viii) can be expressed in many ways. For example, (viii) is equivalent to
the condition that ¥ defined on s# by Vf = —8(f, T* ') is one-to-one.

2° Tt is easy to conclude from Theorem 4 that when T is irreducible, then
{T¥ ¢ :z e o(T)} spans the space. Indeed, if there is an f with (f, T¥ ‘) = 0,
z € o(T), then by analyticity of (f, T¥ '9) on C\o(T), we can conclude f | T¥ ¢,
z € C. Thus f = 0. In fact, when T is irreducible {Tj:_l(p tn =12, ...} will span s#
for any sequence {z,}% , which is dense in a(T).
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3° If T is irreducible, then the image of ¥ in &’ can be made into a Hilbert
space # in a trivial manner by setting

VL Ve =(f. 9.

The operator V is unitary from # to # and T has the multiplication model V7f =
= zVf on .

4° In [27, 33, 34] an analytic model for operators with rank one self-commu-
tator is presented. We cannot fully explain this model here. One of the nice features
of [27] is that given a g with compact support satisfying 0 < g < 1, there is realized
an irreducible operator with rank one self-commutator such that g = g,. Moreover,
the operator T is given as Tf(z) = zf(z) on a Hilbert space of functions supported
on the spectrum of T with inner product described in terms of g. For further details
of this explicit model the reader is referred to [27]. It should be noted that the ques-
tion of realizing the model through V of Proposition 5 as well as the result in Theo-
tem 4 are not considered in [27].

4. THE CYCLIC NATURE OF THE RANGE
OF THE SELF-COMMUTATOR

The discussion in this section centers around the problem of deciding when the

vector ¢ satisfying [7%, 7] = ¢ ® ¢ is a (rationally) cyclic vector for the irreducible
operators T or T#. The problems are taken up in natural subsections.

4.1. THE CASE FOR T*. As “the” unilateral shift capably demonstrates the
vector ¢ in the range of the self-commutator of an irreducible operator satisfying
(0.1) may fail to be cyclic for T*. More generally, a result from [11] (see also [18])
shows that if the self-adjoint operator |T| = (T*T)"* when restricted to the space
V{ITVe : j=0,1,2, ...} has a singular component (in its spectral measure), then
¢ is not cyclic for T*. In the positive direction we can establish the following:

ProposiTION 8. Let T be an irreducible operator satisfying [T*, T]= ¢ ® ¢
such that the spectrum o(T') is nowhere dense. The vector ¢ is rationally cyclic for T*.

Proof. Suppose (f, T#~*¢)=0 for all z ¢ 6(T') (equivalently (f, (T*—&)~1p)=0
for all & ¢ o(7T%)). By continuity and the assumption that o(7T) is nowhere dense,
we conclude (f,T¥"'¢p)=0, ze C. Theorem 4 implies f= 0. This shows
R(T* : ¢) = o# and completes the proof.

ReMARKs 1. The condition ¢(7") is nowhere dense appearing in the last propo-
sition is not necessary for R(T* : ¢) = 2. A collection of (singular integral model)
examples of operators with ¢(7T") having interior where R(T* : ) = 5 is described
in [13]. Another such example is provided by the bilateral weighted shift

o o _ [ k<O
BT ok { e



284 KEVIN F. CLANCEY

acting on the space £, Here [B¥, B] = (3/4)e, ® e, where e, = {J,0}3_ o and
o(T)={¢:1/2 < |¢] < 1}. In this case R(B*:e,) ={¢,. Note here that P(B*:
1ey) # Lo

2. Suppose T is an irreducible operator with [7%, T] = ¢ ® ¢ and such that
the planar Lebesgue measure of the essential spectrum o ,(7) is zero. For each z
in a(T)\o (T) the space KerT¥ is one dimensional. Let e, be the unique element
in Ker T'F satisfying (¢, e.) = 1. This notation is consistent with that used in Sec-
tion 1. In particular, as noted in 3° of Section 1 TF ¢ = T.e.. Under the hypo-
thesis that ¢ (7)) has measure zero

{e.:z € o(T)\o (T)}

spans 5. See [13] and [18]. Further, the vector function z — e_ is automatically ana-
Iytic on o(T)\o,(T). See {12]. These last two facts supply a second proof of Theo-
rem 4 for the case o,(7) has measure zero. In fact, if f L T¥ o, z € o(T)\o (T),
then 0 = O(f, T¥ *p) = 8(f, T.e.) = —(f, e.) on a(T)\o(T). Since e, z € o(T)\
o (T), spans #, then = 0.

3. It has been conjectured that if T is irreducible with [T* T]= ¢ ® ¢,
then T* has a cyclic vector [18]. This conjecture has been verified in several cases
including the case discussed in the preceding remark when ¢ (7) has measure zero
[13, 18]. The result in Proposition 8 gives further evidence (at least when C\o(7T)
18 connected) for the truth of this conjecture.

We remark that if 7" is irreducible with [T%, T]= ¢ ® ¢, then T* is “2-cyclic’.
More precisely, there is a ¥ in # such that the smallest 7*-invariant subspace con-
taining ¢ and  is . The proof of this (unsatisfactory) remark uses Theorem 4
and the techniques of [18]. No further details will be presented here.

4.2. THE CASE FOR 7. In this final subsection we will briefly examine cases
where ¢ is ‘“‘rationally’” cyclic for T. Nothing will be said about non-cyclic cases;
moreover, the results formulated are not the strongest possible. For further results
on the cyclic nature of ¢ under T we refer to [16, 27].

It is immediate from (2.11) that

@.n VT#p =z + gr(2)lgr(2)
or, equivalently,

[f + gT(f)]

L ar(0) da)

@.2) (T*p, T ¢) = S
T

The identities (4.1) and (4.2) have interesting forms when g is a characteristic
function y; of some Borel set G in C. Let 4 be any open disc centered at z =0
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containing a(T) (for example, 4 = {&:1&[<2||T|j}). Then % A8 = —E, for ¢ € o(T).
Equations (4.1) and (4.2), respectively, can be rewritten in the forms

(4.3) VT%p = — ] n o8>
PN
@4 @0 72710 =~ LN F09D 6 aae

The identity (4.3) roughly states that the vector “¢ is R(G) cyclic for T”. To
be more precise: If G is bounded Borel set in C, then R(G) denotes the closure in
C((—}) of the functions of the form

0 =) 2

T

where u is a bounded measurable function having compact support such thatu = 0
on G. The algebra R(G) is the analogue of R(X) for non closed X. It is easily seen

that R(E) < R(G) and that the two possible interpretations of R(G) agree when G
is closed. See [21].
When g; = y¢, we will set

H(T: @) = {fe A : V[IG € R(G)|G}

and R(T: ¢) to be the closure of gé(T: ¢). Note r(T)e is in @(T:q)) for all r in
R(6(T)). Thus R(T: ¢) = R(T: ¢).

PROPOSITION 9. Let T be an irreducible operator satisfying [T%, Tl=0¢ ® ¢
and assume the principal function gy is the characteristic function of the bounded mea-

surable set G. Then ¢ is R(G)-cyclic for T in the sense that R(T: Q) =JH.

Proof. The subspace JNQ(T: @) is clearly T-invariant. Equation (4.3) shows
T*p e ﬁ(T : ¢). Using this fact with (3.9) one can conclude by induction that T
is in R(T : ¢), k >0. Therefore, TiT**¢ is in R(T: ¢), j, k >0 and, by (vii) of Pro-
position 2, we can conclude Is(T: @) = #. This completes the proof.

REMARK. In general Proposition 9 is the best one can hope for in terms of ¢
being a rationally cyclic vector. There are examples of operators T satisfying
[T%, T]= ¢ ® ¢ with g a characteristic function; however, R(T: ¢) # #. See
the final example of [16].

If gr is a characteristic function of a closed set with finite perimeter, then
we can show R(T : ¢) = 2. Recall that a closed set X < C is said to have finite
perimeter in case
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where X, n > 1 is a sequence of compact sets with X, ., < X, with boundary 0.X,
of X, a finite disjoint union of simple closed analytic curves, moreover,

sup [0X,] < oo,
n

where |0.X,| denotes the length of 0X,,.
The prototypical example of a set of finite perimeter is

(4.6) X=Zl\(‘°)An,
n=1

where 4, is the open unit disc, 4, = 4(z, : r,) is the open disc centered at z, of radius
r,. The discs 4, are chosen such that

4,04, =G (m+#n); Y r,<+oco.

If the set X in (4.6) has no interior, then X is called a Swiss cheese.

THEOREM 5. Let T be an irreducible operator with [T*, T]= ¢ ® @ such that
gr= xx where X is a closed set of finite perimeter. Then ¢ is a rationally cyclic vector
for T.

Proof. By Proposition 3 we need only establish T%¢ is in R(T : ¢). Assume X is
given by (4.5) and let 4 be a closed disc centered at z = 0 which contains X in its
interior. Without loss of generality it can be assumed X,.; is in the interior of
X,. Set Q, = AN\X, and u, to be the analytic function

@) 0@ = | 57400 = 24,0

no)i—

defined in a neighbourhood of ¢(7"). Using (2.8) we obtain

. NG
(T, T 2¢) = —71; S égj S 8r(8)dald), zeC

Thus any weak limit f/ of u,(T) will satisfy

X x(6)
(/, T ) = %S‘XZJ\—XZ gr(¢)da®), zeC.

Combining this last identity with (4.4), we obtain
(,T# %) = (=T%p, T 19), zeC

and since T¥ g, z € C, spans &’ this leads to T%¢ = fe R(T: ¢).
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There remains only to show that u,(T)¢ has a weak limit. This will follow once
we show thete is an M such that

{4.8) len(TH < M, n > 1.
To this end note
! u)
4.9 T) = —-— IS e,
“9) why =g\ O
ox

n-1

“where 0X, .+ is positively oriented with respect to the interior of X,,,,. Substitution
of the integral form (4.7) for u,(&) into (4.9) and using Fubini’s theorem leads to
the identity
1 1
u(T) = — — \ ~——da(®).
T S E—T

Applying Green’s lemma we have

u(T) = L S & — T)1dg,
27

o
n

where 0Q, =04 U 0X, is oriented positively with respect to €,. Since

A S T#¢ — T)-1dé =0, we have
2mi

us2
n

u(T) = - S K@) ¢
27
DQ"

where K(¢) = (£ — T)*(& — T)~! is the contractive operator function satisfying
T¥ = K(T,. It is now clear that

[04] + sup |0.X,|
2n )

(DI <

This is (4.8) and completes the proof.
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