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ON NORMAL EXTENSIONS OF UNBOUNDED
OPERATORS. 1

J. STOCHEL and F. H. SZAFRANIEC

In the theory of unbounded operators an important question is whether
the closure of a symmetric operator is selfadjoint (or the operator itself is
essentially selfadjoint). One of the methods approaching this problem ex-
ploits some classes of C®-vectors like bounded, analytic, quasi-analytic ones.
etc. The canonical theorem in this matter says that a closed symmetric
operator is selfadjoint if and only if an appropriate class of its C*®-vectors.
is (linearly) dense in the underlying Hilbert space. This means that any pro-
per candidate for a selfadjoint operator must necessarily have (linearly)
dense sets of each of these classes. However it depends on circumstances.
which class may be handier to deal with: some theorems (of general nature,
like on tensor products) can be proved easier using the simplest (and the
smallest) class of bounded vectors [12}, whilst in checking whether particular
operators (for instance, differential operators) are essentially seifadjoint broader
classes of vectors (analytic, quasi-analytic etc.) can serve better.

The interplay between symmetric and selfadjoint operators has its counterpart
in the case of unbounded normal operators: here are formally normal and normal
ones. In [12] we have considered this case with the help of bounded vectors emphasiz-
ing their relation to bounded operators which fill up the operator in question.
The allied problem to essential normality is when a formally normal operator has.
a normal extension. Here some phenomenon appears: while a symmetric operator
always has a seifadjoint extension, in some larger space eventually, a formally
normal need not have any at all {3].

Going one step further one can ask about all these unbounded operators.
which can be extended to normal ones, in other words about subnormal operators.
In [12] using bounded vectors we have characterized a class of subnormal operators.
However (unlike to what is the case for selfadjoint operators) there are closed
subnormal operators having no nontrivial bounded vectors but having a rich
enough collection of analytic or quasi-analytic ones (cf. the Example). Our purpose
here is to examine such a class of subnormals.
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Developing the idea of Sz.-Nagy [17] in the case of unbounded operators we
adopt for our purpose a dilation theory of positive definite forms over #-semi-groups
(as proposed in [14]). This leads in a natural way to spectral (integral) representa-
tions of these forms (Sections 5, 6) as well as to normality question of formally normal
operators (Sections 2, 3 and 4): both these topics may be interesting for their own
sake. All the questions result in Sections 7, 8 and 9 where one may find conditions
(cf. Remark 7) reminding the well known Halmos characterization [4] of bounded
subnormals. The complex moment problem, which is a parallel matter, is considered
n the Appendix.

NORMALITY OF FORMALLY NORMAL OPERATORS

1. PRELIMINARIES
We want to collect some simple facts about series needed in the sequel.
(a) Let {a,}2., be a sequence of non-negative numbers and let b be a positive
oo o]
number. Then Yy} a, = —-oo if and only if ¥ g,b"" = —oo.
a 1 e 1

(b) Let {a,}? o be a decreasing sequence of non-negative numbers. If a, is

0
an arbitrary non-negative number then, taking any p> 2, we have Ya, o
n=-1
0
if and only if ¥} @, = -+o0.
n 1

(c) Let {b,}% , be a sequence of non-negative numbers such that
M b < bih, foreach k121, k +1=2n.

Then the following conditions are equivalent (with b, = 1)

< .
(2) Yy, byt = +o0
n 1
oo
®) Y, byl = 400
7.1
> b
(4) Z g b TR ~- 00
FIES bn

(here g —Loo).
, 0

The conditions (2) and (3) are equivalent by (a) and (b). To prove (2) = (4)
one can use the Carleman inequality (cf. {6]).
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2. A SINGLE FORMALLY NORMAL OPERATOR

Let 2 be an inner product space with the inner product (f, g>, f, g€ 2.
Denote by £(2) the set of all linear operators on Z. In the sequel L*(D) stands
for the space of all operators N e #(2) for which there exists an operator
N* € Z(2) such that {Nf, g> = {f, N*g), f.g € @. Such N* is uniquely deter-
mined. The operation # makes #*(%) an involution algebra with the identity
operator 7 as a unit.

We say that fe @ is a quasi-analytic vector of N € £(2D) if
$ It o0
n=1

Denote by (V) the set of ail such f’s.

The class of quasi-analytic vectors is our principal tool. However we are going
to use occasionally another class of C*-vectors, i.e. the analytic ones. Though the
latter class is rather smaller than that of quasi-analytic vectors, it has nicer proper-
ties, e.g. they form a linear subspace. One says that /'€ & is an analvtic vector for
an operator N € £ (2) if there is a positive number 7 such that

- t” { nyet !
2 '—'—'lle}" < 0.

n=1 M.

This is the same as to say that

(5) = Wﬂ < oo

n—-00 n

Denote by £7(NV) the set of all analytic vectors of N. As we already have said
A (N) = Q(N).

An operator N e £*(2) is said to be formally normal if ||Nf|| = [[N*f]|
for € @, which is equivalent to NN* == N*N. For any N € £*(2) put ReN =
= 2-Y(N* + N) and ImN = i2-Y(N* — N). Now we want to relate the sets of
quasi-analytic and analytic vectors of a formally normal operator N to thosc of
ReN and TmN. We have the following:

PROPOSITION 1. If N € L*(D) is formally normal then
Q(N) < Q(Re N) n Q(Im N),

ANy c Z(ReN)n & (ImN).

53 - 1086
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Proof. Since N¥N = NN#* we have

riwenyri=13 () N"N#‘”-ky:f <

i k=0

’z t q n—Kk Il n n
< 5, () wvewvsessy = ez

Thus

I(ReNYSl| < INfll, fe 2.
Similarly

{AmNYSf] < [Nfil, fe 2.
Both these inequalities imply the conclusion.

One can provide arguments which show that the second inclusion in Propo-
sition 1 is actually an equality.
. Let o = Z#(2). Define the commutant &/ of o/ in the usual algebraic
way, i.e. € = {T e £¥(2): TN = NT, Ne &/}.

PROPOSITION 2. Let N € £ *#(9D) be a formally normal operator. Then {N, N#}<
is an involution subalgebra of ¥ *(9) and for any M in {N, N*}€,
MQ(N) <« Q(N) and Ms(N) < o(N).
Proof. Only the second part of the conclusion requires a proof. Notice that
IN"MflE = <N*"N;'J", M*Mfy < [[N¥f1|joaMfl].

Now using (a) and (c) in the case of quasi-analytic vectors and (5) together with

— 1\V/»
lim (Ei’:)%—) < -+-oo in the case of analytic vectors, we get the conclusion.
n!

A densely defined operator N in a complex Hilbert space 4 is said to be
normal if Q(N) = Z(N*) and | Nf|| = [|N*f|| for fe Z(N). 1t is well-known that
a normal operator N has a unique spectral measure £ on the complex plane C
which represents N in a usual way:

->00

N = SzE(dz).

C

Two densely defined normal operators in % commute if so do their spectral measures.
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Suppose we are given a Hilbert space % and a linear subspace 2 of %" which
is dense in #". Consider a densely defined operator N in & such that its domain
9(N)contains & and 2 reduces N. Then M = Nl@ € ¥*(D) because M* = N*]@.
On the other hand, given M € ¥ *(2), one can find a densely defined operator N
in 2 such that its domain 2(N) contains @, 2 reduces N and M = Nl@.
There are two extreme of such closed operators N, namely the smallest M = the
closure of M in A and the largest (M*)*.

An operator N € £ #(9) is said to be essentially normal if its closure N in o
is normal. We say that two essentially normal operators M, N € £ *(9) essentially
commute if their closures in &4 commute. It is important to notice that both essential
normality and essential commutativity do not depend on the choice of a Hilbert
space A (=D). Consequently we do not specify A" unless this is necessary. However
one should be aware of the fact that essential normality, essential commutativity
as well as formal normality, as used in this paper, refer to densely defined Hilbert
space operators having reducing dense subspace.

The main result of this section is the following:

THEOREM 1. Let N € L*(D) be a formally normal operator. Suppose we
are given a set Q < Q(N) such that the set {Tf:T € {N, N*}€, fe Q} is linearly
dense in @. Then N is essentially normal.

Proof. Fix an arbitrary complex Hilbert space 5 such that # = @. Taking
if necessary the set {Tf: T € {N, N*)C, fe Q} instead of , we may assume (due
to Proposition 2) that Q is already linearly dense in £". Because N¥ N < N*N, the
operator 7 = N* N is symmetric. Take f e Q(N). Then, by (c) of Section 1

f fTpi=er = § || N2of ][ = +co.

n=—=1

This means that the set of Stieltjes vectors of T is linearly dense in 2. Since T is
also a positive symmetric operator, its closure T is self-adjoint (cf. [6] or [9]). The
equality N*N = NN* implies that T = N*N and T < NN*. Since these three
operators are self-adjoint, T == N*N = NN*. This means that N is a normal ope-
rator. Consequently N is essentially normal.

REMARK 1. It is known that if N € ##*(2) is a formally normal operator
then both Re N and Im NV are symmetric and commute; on the other hand if N
is normal then Re N and Im &V are essentially selfadjoint and essentially commute.
Accordingly, someone might suppose that the quickest way to prove essential
normality would be to apply any result on essential self-adjointness of commuting
symmetric operator (cf. for instance [11], Corollary 3.4 or [8], Section 3). However
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this way does not seem to be “casy to see’’: the reason is that though (ReN)~ -+
-+ (Im N)~ is a normal extension of ¥, the equality

(6) (ReN +~iIlmN)~ == (ReN)™ + i(ImAN)~

does not follow automatically. Thus the essence of Theorem 1 is, among other
things, in proving the equality (6) under our circumstances.

3. COMMUTATIVE PAIRS OF FORMALLY NORMAL OPERATORS

The following theorem gives some sufficient conditions for commutativity
of two formally normal operators.

THEOREM 2. Let M, N € L*(%) be two formally normal operators such that
M e {N, N*}C. Suppose we are given a set Q = QIN)N QM) such that the sct
\Tf:Te {N,N* M, M*}°, feQ} is linearly dense in @. Then the essentiaily
normal operators M and N essentially commute.

Proof. As usually # stands for the complex Hilbert space such that & = - ¢
It is clear that the set Q, == {7/ : T € {N, N¥, M, M*}C, fe Q} is invariant for M,
M#*, N and N*, and so is the linear subspace 2, spanned by (. Using Proposi-1
tion 2 and Theorem 1 we can infer that both (M,@o)‘ and (Nl@o)‘ are norma
operators, and consequently M~ :(Ml@o)‘ and N-= (Nl@o)‘. Thus we can assume
that @ is already linearly spanned by (, taking if necessary £,. @O,MIQ(, and
N|@, instead of Q, @, M and N.

Now we show that the spectral measure of M is the product of the spectral
measures of the self-adjoint operators (Re M)~ and (Im M)~ (the same is true for
N). Tt is well-known that the spectral measure of M is precisely the product of
the spectral measures of self-adjoint operators M, = 2-YM* -- M)~ and
M, =:i2"(M* — M)~. Since ReM and ImM are symmetric and Q(ReM)n
N Q(ImM) is linearly dense in @, ReM and ImM are essentially self-adjoint
([8], Theorem 2). Because Re M = M, and ImM < M,, we obtain M, -~ (Re M)~
and M, = (ImM)~-.

All what we have said so far will help us to see that M and N essentially
commute provided so do any two operators 4, B of {ReM, Re N, ImM, Im N},
If follows from Proposition 1 that Q = Q(4) n Q(B). Since AB = BA, we can
easily check that A(B -- )2 < (B — )2 and consequently, by Proposition 2,

) (B~ NQ = Q(4) n Q(B) n QA|(B — D)D)

Moreover, since B is essentially self-adjoint (B — 1)@ = #". Recalling that & is
linearly spanned by Q, we can say that the left hand side of the inclusion (7) is
. linearly dense in .#" and so is each of the sets on the right hand side. Now we are in
the position to apply Theorem 6.9, p. 273 of [2] to get the conclusion of our theorem.
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REMARK 2. The proof of Theorem 2 would have become shorter, if we could
have applied Theorem 6 of Nussbaum’s paper [8]. However there is an essential

mistake in his proof, which seems to be overlooked, namely the vectors ¥, a,T"1S"ix,

7
where x € @, need not compose any linear subspace, consequently they can not
form a Nussbaum’s space P. Fortunately, one can provide with some additional
arguments bridging this gap. Furthermore, when M and N are symmetric operators
our Theorem 2 implies Theorem 6 of [8].

One could try to state mutatis mutandis an analogue of Nussbaum’s
Theorem 6 for formally normal operators without any explicit appeal to reducing
subspaces. However it would take much more complicated (and less clear) form
than ours and in fact would follow from ours.

POSITIVE DEFINITE FORMS AND THEIR SHIFT OPERATORS

4. THE SHIFT OPERATORS AS FORMALLY NORMAL ONES

Let & be a complex linear space and let & be a commutative involution semi-
group with the unit 1. Let ¢ : ¥ xX&X & — C be a map such that for every s € &,

o(s; -, —) is a hermitian bilinear form on &. Following [14] we call ¢ simply a
Sform over (&, &). Such a form ¢ is said to be positive definite if for all finite se-
quences 8y, ...,S, € Land f;, ..., [, €&

Y o(sFse s fi, )20
Jk==1
A form ¢ over (&, &) such that for every f€ &, o(-; f.f) is positive definite as a
form over (&, ), i.e.
Y, o(sfs s fif)ad; >0
Jrk=1
for all finite sequences sy, ...,s5, € & and ay, ..., q, € C is called weakly positive
definite.
Given a positive definite form ¢, one can construct [14] an inner product

space &, a linear map V : & —» 2 and an involution preserving semigroup homo-
morphism & : ¥ — ¥ *¥(9) such that

) o(s; 1, 8) =<PHVf, Vg, fged, se¥
® 2 is linearly spanned by ¢(&F)VE.

Standard arguments show that the above objects are uniquely determined up to
unitary equivalence (cf. [7]). We call each ®(s) the shift operator related to ¢ at
s € &. Since P(s¥) = P(s)* and ss* = s%s, the operator @(s) is formally normal.
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Now the following questions appear:

1° when the shift operator &(s) is essentially normal;

2° when two shift operators essentially commute;

3° when for every s € &, ®(s) has a normal extension in A == 2.
Our aim here is to give an answer to these questions.

Given a weakly positive definite form ¢ over (¥, &), denote by Q(s) the set
of all fe & such that

Y o((s*s)'s f, )" = 400,

n==1

and denote by 7,(s) the set of all fe & for which there is # = #(f) > 0 such that

4

fwmmmnW§<+w

!

It follows from (8) that f € Q,(s) (resp. f € ,(s)) if and only if Vf e Q(P(s)) (resp.
Ve o(P(s), provided ¢ is positive definite. Also ,(s) = Q,(s). Thus we can
think of elements of Q,(s) (resp. Z,(s)) as quasi-analytic vectors (resp. analytic
vectors) related to the form ¢ at s.

PrOPOSITION 3. Let ¢ be a positive definite form over (&, &). If & is linearly
spanned by the set Q(s) for some s € &, the shift operator ®(s) is essentially normal.
Moreover if s and t are two different elements of & and & is linearly spanned by
Q,(5) N Q,(t), then d(s) and B(t) essentially commute.

Proof. Since f € Q,(u) if and only if Vf € Q(®(u)), the fact that #(&L) = P(5)°
and that (9) holds true allows to derive Proposition 3 directly from Theorem 1 and
Theorem 2.

Suppose that ¢ is a positive definite form such that ¢(1;f, ) = 0 implies
f=0.Then ¥V : & - V& is invertible. Let ¢t € & be such that

10) the linear manifold V¢ is invariant for @(z).

Taking the restriction S of ®(t) to V& and setting S = V-1SV we can easily check
that

an VS = &(1)V.
In other words we have
o(s; Sf, 8) = KPSV SS, Vgd == KVSf, d(s*)Vg) =

= (OVS, P(s*)Vg> = (D(s)V'f, V&> = o(st; f, &)-
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Thus
(12) Co(s; Sf,8) =o(st;/,8), se S, f,ged.

Going back, we can say that ¢ satisfies (10) if and only if there is S = S, € £(&)
such that (11) (or equivalently (12)) holds.

For an arbitrary (not necessarily positive definite) form define &, = {te & :
:there exists S == S, € £(&) such that (12) holds}. Consequently &, is a unital
subsemigroup of . If ¢(1; £, f) # 0 for f 0 then S = S(r) in (12) is uniquely
determined and ¢ - S(¢) is a semigroup homomorphism.

PROPOSITION 4. Let ¢ be a weakly positive definite form such that ¢(s; f, g) =
~ @(s*; g,f). Then for t € & and any S corresponding to t via (12) we have
SQ,(s) = Qu(s), Sl (s) = A (s), s€F.

Proof. Using the Schwarz’inequality (cf. [14])

lo@*v; £, IF < o@*v; £, Now u; 1, f)

we can write
o((s*s)"; Sf, Sf) = o((s*s)'t; f, Sf) =
= @(t*(s*s)"; S, f) = @(t*1(s*s)"; [, /) <
< (s £, M 2((t*0); £ fIV2.
Using this (and (a) and (b) of Section 1 for the quasi-analytic case) we get the
conclusion.

The above two propositions imply the following:

THEOREM 3. Let ¢ be a positive definite form over (S, &) such that o(1;f,f) # 0

Jor f# 0. Let T be a subset of &, such that & is linearly spanned by the vectors

{SG) :s€ Ly, f€(RN1)}. Then the shift operators d(t), t € T are essentially
tes

normal and essentially commuting. If moreover & is an inner product space and

(13) o(L; £,1) = Ifliz
then one can think of (t) as an extension of S(t),t € T

In the proof of the second part of the conclusion, the formula (11) plays an
essential role.
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5. SPECTRAL REPRESENTATIONS OF THE SHIFT OPERATORS

The following result gives a partial answer to the question 3° in Section 4.
Call y : & — C a character of & if y(st) = y(s)x(1), 7(s*) = y(5), x(e) = 1. Denote
by P the set of all characters of & and equip it with the topology of pointwise
convergence. Define the Fourier transform § of s € & in the usual way, i.e.

§(0) = y(s), ye P

Denote by ,%(.f) the Borel o-algebra of .

THEOREM 4. Let ¢ be a positive definite form cver (&, &). Suppose that the

involution semigroup & has at most a countable set T = {t,} of generators and

suppose that & is lincarly spanned by (\Q,(t). Then there is a unique spectral incasure
teg

Fin ' — 9 defined on 5( 3?) such that

B(s)f — S §dFY, feo,

A
&

where @(s) is a shift operator at s € &.

Proof. Denote by ¥ the Cartesian product [[ €., every €, = C. The Tychonoff
teg
topology makes % a Polish space. Moreover the g-algebra on cylinder sets of %

and the g-algebra #(%) coincide. Define the mapping j : P % by ji)- ()},
t € 7. Now we wish to show that j identifies (algebraically and topologicaliy) the
set £. Two properties of j are at hand

(14) j(%) is closed in €,
(15) jis a homeomorphism onto its image.

To state other properties of j we need some more notations. Using the usual multi-
-index notations and taking two finite sequences % = (2, ..., %,,) and f = (f;, . ..
..., By of non-negative integers define a complex valued function j,; on € as
Jag(R) =050 /157'1/;1 . )—.f", /. € 4. For an arbitrary s € & there are two multi-

-indexes =, f such that

B B\
(16) st . )
where {#,} are generators. Then

an 5 =jygo)
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It follows from Proposition 3 that the essentially normal operators {&(z,)}
essentially commute. Let £, be the spectral measure of @(z,). Denote by F* the
Cartesian product [] F, of the spectral measures F,. If s is of the form (16) then

(18) D(s)f =- gjz,, dF®f, fe2.

%

We want to show that Fo(¥ \j(SA”)) = 0 which allows us to look at the measure

F® as one defined on &. It is evident that ) € fé’\j(f/?) if and only if some s € &
has two expressions of the form (16) with o, f and y, é respectively, such that

(19) Jap(2) # Jrs(2).

In other words, denoting by A = A, , ;4 ; the set of all 2 € ¥ such that (19) holds,.

we can say that (6’\/'(5?’) is precisely equal to the union of all such A4’s. Since the
number of all these 4’s is at most countable, it sufficies to show that each.
F®(4) = 0. Having such a A = A4, ,,, ; notice that

(ap — Jo) AFSf == Ds)f — D(s)f = 0, feD.

4

Since @ is invariant for all the integrals Sja,, dF*, we have

4

g g — g2 ACER(I LS = <g s — Joo? dF°°ﬁf> _
A

A
= <S (ja[i - jyﬁ) dFoo):::g(jaﬁ _jyé) df-w/5f> s 0: ,fE 9.
A €

Since A is a Borel set and |j,; — j,5:2 > 0 on A4, the only possibility is F®(4)f = 0.
Consequently F*{A) - 0. This means that F* is supported by j(f/?).
Define the spectral measure F on !//?(,7?) as follows

F(A) = Fe(j(4), AeAP).
Since the support of F® is contained m j(.&) we have the inversion formula

(20) F(A) = F(j=A4), A€ B(%).
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By (18), (20), and (17) we have

S(s)f = S];,ﬂ dFef = S o AFf =
€

LA
)

:Sj,,,odef:S&de, fea.
& 2
Thus we have got a measure F.
The uniqueness of F is forced by the fact that each spectral measure satis-

fying the conclusion must necessarily, via (20), be a product of spectral measures
of {&(t,)}, which are always uniquely determined.

THEOREM 5. Suppose that the semigroup & and the form @ are as in Theorem 4.
Then there are (uniquely determined up to unitary equivalence) a Hilbert space A,

a linear operator V : & — A and a spectral measure F on B(¥F) acting in A such
that:

() V& < @(Ss“dF),-

(i) 0(s:/, 8) = < S § dFVy, Vg> ;

A

4

(iii) o is a closed linear span of the integrals

S&dFVf, se ¥, feé.

&

Proof. Applying Theorem 4 to the shift operators {®(s) : 5 € &} related
to @, we get immediately 2, V" and F. Having other 5, V; and F,;, a typical
argument (essentially the same as that of [7]) gives us a unitary operator U : # — %
such that

1) US §dFf = S SdRUf, fe 92,

A A
b4 &

(2 is a linear span of the integrals S §AFVS, fe &, se &), and
2

(22) uv = v,.
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It follows from (21) that

SMFf:S&dFﬁ se ¥, fe 3,

A
b

Q!

where F = U ~1F,U. Since the measure F in Theorem 4 is uniquely determined
we can check directly that

UF = F,U

which gives our conclusion.
We would like to recommend here the recent Berezanskii’s book [2] as a
helpful reference concerning families of spectral measures and their products.

This theorem implies some Bochner type representation for positive definite
functions for =x-semigroups with an at most countable number of generators

To state the results, we call a form p over C@(.?) &) a semi-spectral measure on &
if every u(-; f, f) is a positive scalar measure.

COROLLARY 1. Suppose that the semigroup & and the form ¢ are as in Theorem 4.
Then there is a unique semi-spectral measure u on & such that

(i) 5 e Lu(-; £f), feéb, 5P,
(i) o(s:f,8) =83‘du(-;f,g), figed, se .

A

3
COROLLARY 2. If in Corollary 1 & = C, then the conclusion takes the following
form: there is precisely one positive scalar measure p on & such that
() 5 e L¥w),

(i) o(s) = S@' du, se &.

~

&

Existence of p in both Corollaries is an easy consequence of Theorem 5.
Because the uniqueness of p in Corollary 1 can be easily deduced from that in
Corollary 2 (via polarization formula), we concentrate on the latter fact.

Proof of uniqueness in Corollary 2. Suppose p satisfies (i) and (ii). Then using
notations of the proof of Theorem 4 we have

@3) o(s) = S 3 du = Sja,, jdu = S.ia,; dpe = SZ“Z”un(d)»)

A 3 n
9 7 © c
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where % and f have the same lenght 1 and
(24) Mo A) == p®({h e b (A, ..., 2) € A}), Ae AC.

Fixing 7z, we can say that, by (23) and (i), p, is a representing measure of n-para-
meter complex moment sequence

f [3 @ B By
o (e 1)) g

Call this moment sequence {a(x, ff)}. Because of our assumption on quasi-analyticity,
we have for each k==1,...,n

g a(mdy, md)~1m = § QL)Y = oo

f77 e | ma=1
where &, is the usual zero-one d-sequence. Thus, according to Appendix, Theorem
12, the moment sequence {a(z, £)} is determined. In other words each measure g,
is uniquely determined. Because cylindric sets generate (%), (24) implies that
1™ is uniquely determined too. Applying the formula u® = u -/~ we get the uni-
queness conclusion.

REMARK 3. Notice that if for a particular semigroup & the condition
(25) L) =&

holds (here j and % are defined as at the very begining of the proof of Theorem 4),
then the proof of Theorem 4 can be shortened drastically. Moreover, under the
assumption (25) much of the arguments presented in this sectio1 work well even
in the casc of an uncountable set .7 of generators. However the conclusions of
Theorems 4 and 5, Corollaries 1 and 2 become weaker: namely, instead of é/’}(eﬁ’)
we have to deal with the g-algebra 31”(?’) on cylinder sets of ¥ (in the countable
case thesc o-algebras coincide), and the measures F and p are defined on 2‘(.5/\/’).

REMARK 4. We have two possible ways to relate to ¢ the spectral measure
appearing in the formula (ii) of Theorem 5. One way is just as in the proof of Theo-
rem 5. The other would be to dilate a semispectral measure p of Corollary 1 in
the sense of Naimark. Uniqueness assertion of Corollary 1 says nothing else than

these spectral measures coincide up to unitary equivalence. More precisely, if £, V
and F are as in Theorem 5 then one can show that

(26) A = the closed linear span of F('@(.@)) Vé.
Moreover Theorem 5 guarantees that the semi-spectral measure defined by

(27) HA; £, ) = (VS Ved, Ae AP, figeb,
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uniquely represents ¢ (in the sense of Corollary 1). On the other hand, if u is a
semi-spectral measure representing ¢ and "y, ¥, and F) is a Naimark type dilation
of u (i.e. (26) and (27) hold for them), the uniqueness of Naimark dilations (cf. [7])
implies the existence of a unitary operator U : 4" — ", such that UF = F,U and
UV = V,. This, by (iii) of Theorem 5, gives the equality

A, = the closed linear span of S SdnV.f, se¥, feé.

A

g

When & = C (cf. Corollary 2), we get a particular model of the Naimark dilation.
This is: A"y = L%w); Fi(A)f = 1,f, fe#, and V; maps 7 into /1% for e C.
Then one can prove that

S§dFIl§:§’ se <.
7

This gives us the welcomed conclusion: L%(u) is the closed linear span of Fourier
transforms S, s € &.

6. WEAK POSITIVE DEFINITENESS VERSUS POSITIVE DEFINITENESS

Notice that for two weakly positive definite forms ¢ and  we have
(28) Jﬂaqj‘kbuy(s) - "d(p(s) n 'M\[/(S)
where a, b are arbitrary positive numbers. This property helps us to prove a version

of Corollary 1.

THEOREM 6. Let & have an at most countable sequence I = {1} of generators.
Suppose that a form ¢ over (&, &) is weakly positive definite. Suppose moreover
that for each t€ I, o4, (t) = &. Then the conclusion of Corollary | holds true.

Proof. Applying Corollary 2 to the positive definite form ¢(-;f, f)(f€ &),

we get the existence of a unique measure y; on & satisfying (1) and (ii) of Corollary 2.
Using the polarization formula we define the complex measures

1 . .
A f, 8) = ‘Z {#f+g(A) - :uf—g(A) + 1#f+ig(A) - ll’lf—ig(A)}‘

Since the measure i, is uniquely determined, we have

129) Hoy = lalPuy (@€ C).
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This implies that u, = u(-; f,f), f€ & and that the form u(4; -, —) is hermitian
symmetric. Now it remains to prove the linearity of u(4; -, —) with respect to
the first variable. To show it is additive, we write

os;f+ g h) =@ )+ ols;8,h), f,gheb.

Using the polarization formula for the form ¢(s, ., —) and the integral repre-
sentation (ii) of Corollary 2 we get

(30) S§dv1—SsAdvz—.Li(S.?dva—S§d»-4)=0, sSE Y,
where

VI = Upsgan T ey + Moo
Vo= Upsg—n T Uren + Hgans
V3 = Urygrin T Hp—in T Hg—in>
Vo = Hrig—in T Hr+in =T Hg+in-

Since the Fourier transform preserves the involution and the measures v,,
k -:1,2,3,4 are positive we can deduce from (30) that

Sﬁdvl-—«Sfdvz and S§dv3=S§dv4.

A A
¢ P4 ¥ ¥

Each of these integrals represents a positive definite form over (&, C). For instance

S.?dvl: os; f+~g+~h f+g+h+ol f—hf—h)+o(s; 8 —h, g— h).

This form, due to (28), satisfies the assumption of Corollary 2. Since a representing
measure in Corollary 2 is uniquelly determined, we infer that v, = v,. Similarly
vy = vg. This, in conclusion, implies the required additivity w(A; f -+ g, k) =
= u(A; f, ) + u(4; g, h). By the same trick we can prove that u(A4;af,g) =
== au(A; f, g), first for @ > 0, then for a < 0 and finally for @ = i, which exhausts
all the possibilities.

The uniqueness of y is forced by the uniqueness of u(-, f, f).
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Taking a Naimark dilation (cf. Remark 4) of the semi-spectral measure u
we get the equality (ii) of Theorem 5. Therefore we have:

COROLLARY 3. Under the assumption of Theorem 6, ¢ is a positive definite
form over (&, &) and the conclusion of Theorem 5 holds.

Having weak positive definiteness instead of positive definiteness, Proposition
4 allows us to derive from Corollary 3 an analogue of Theorem 3.

THEOREM 7. Let ¢ be a weakly positive definite form over (&, &) such that
(—p—(g;f,:g—) = o(s*;8,f) f,2€ & and o(1;f,f)#0 for f#0. Suppose that the (at
most countable) sequerice I = {t,} of generators of & is contained in &,. Moreover
suppose that & is linearly spanned by the vectors {S()f :5€ &, f€ (M, (1)}

teg

Then ¢ is positive definite and the shift operators ®(t), t € T, are essentially normal
and essentially commuting. Moreover if & is an inner product space and (13) holds,
then one can think of ©(1) as an extension of S(t),t € 7.

REMARK 5. Merits of Remark 3 refer to all what have been said in this.
section too.

REMARK 6. We wish to say some words about the role played by the gene-
rators in this context. In [12] we have considered the so-called bounded vectors
which in the form set-up can be defined as follows: fis a bounded vector of ¢
at s (in notation: f'€ #,(s)) if there are non-negative numbers a = a(f) and
¢ == ¢(f) such that

o((s*s)"; f, ) < ac”
or, equivalently,

lim @((s*s)"; f, " £ c.

There is a significant difference between bounded vectors from one side and ana-
lytic and quasi-analytic ones from the other side. Namely if fe B,(s)n %,(r)
then f e #,(st); in other words if ¢ is ‘“‘bounded” on the set of generators, then so
is it at all the members of the semigroup. This is not the case for analytic and
quasi-analytic vectors. Consider the following example: take & = N, & = C,
@(n) = n!. Then &Z,(1) = & (s = 1 is a generator of the semigroup &) but Q (s) =
- {0} for any other s # 0 and s # 1. This shows that our assumptions of “quasi-
-analyticity”’ at generators are definite. However, we have another property: if
for some n, f € Q,(s") or o, (s"), then fe Q(s) or o7,(s), respectively (to prove this,
use results of Section 1). This property can be employed in the case of continuous
positive forms on topological semigroups like R, (in this case {1/n}$° generates
topologically the additive semigroup R, and 1 is the n-th semigroup power of’
1/n; quasi-analyticity at 1 implies that at 1/n).
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SUBNORMAL OPERATORS

7. A SINGLE SUBNORMAL OPERATOR

This and the next section contain the main part of our paper. Recall that an
opcrator S (densely defined) in a Hilbert space 5# is said to be subnormal if there
is a Hilbert space #" o o and a (densely defined) normal operator N in.# such that

(31) Sh -~ Ni, hea(S).

If the operator S satisfies (31), then S is closable and its closure S satisfies (31) too.
In this section we restrict our interest to operators S having invariant domain

& == @(S). This enables us to think of S as a member of #(&). Consequently we
.can apply what we have developed so far.

THeoreM 8. Suppose S satisfies the following two conditions:

"

i Y (S SY> = 0 for each finite sequence f,. ..., f, € 2(S),

0
(ity Z(S) is a linear subspace spanned by the vectors [S"f :n >0, f€ Q(S)].
‘Then S is subnormal.

Proof. Take & == N X N with the coordinatewise addition as the semigroup

multiplication and the involution defined as (m, n)* == (n, m). Define a form ¢
over (&, &) by
(32) o((m, n); 1, g) = {S™f. S"g>.

Then one can show (cf. [17]) that (i) implies the positive definiteness of ¢. Denote
by t = (1,0). Then Q1) --Q(S), te &, and S(1) = S. Consequently, we can
apply Theorem 3 with & - {¢} to get that the shift operator @(¢) € L*#(2) is
an essentially normal extension of S € #(&8). Take any completion .#" of &. Then
N (1)~ is a normal operator in #. Since § = # and § =« £ c # we can
identify % with the closure of & in 47, to conclude that S is a subnormal Hilbert
space operator.

REemark 7. Conditions (i) and (ii) bear resemblance to the classical characteri-
:zation of bounded subnormal operators in its original (two-condition) Halmos'ver-
sion (cf. [4]); condition (i) is just the same as the first of Halmos, condition (ii) is
.a weaker form of the other. While for bounded operators, due to Bram (cf. [15]
or [16] for an clementary proof), the Halmos characterization reduces to the condi-
tion (i), in most unbounded cases there is a need of some additional condition
{cf. [12] for an intermediate version of (ii)).

Theorem 7 implies the following variation of Theorem §:
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THEOREM 9. Suppose S satisfies the following two conditions:

(1) for cach h € & and for allfy, ..., f, € &,

n

Y (S, S5 = 0,

jrik=0

where &, is a linear subspace spanned by the vectors {S"h : n > 0},
(1) & is linearly spanned by the vectors

{S"f:n = 0, fe L(S)}.
Then S is subnormal.

The way to deduce Theorem 9 from Theorem 7 is to observe that the con-
dition (i) implies weak positive definiteness of the appropriate form ¢ related to §
via (32).

Theorem 9 says that in presence of analytic vectors an operator is subnormal
if so it is on every of its cyclic subspace &,, h € &.

COROLLARY 4. Let S be such that & is linearly spanned by the vectors {S"f :n> 0,
fe A(S)}. Then S is subnormal if and only if for each he &, Slé”,, is a subnormal

operator in the Hilbert space &,, where &, is a linear subspace spanned by the vectors
{S§"h :n = 0}.

Corollary 4 presents an unbounded version of the fact which has appeared
in a recent paper of Trent [18] (cf. [13] for a more detailed discussion of Trent’s
result).

8. SUBNORMAL SYSTEMS OF COMMUTING OPERATORS

Using the same tools we can state similar results for a finite or infinite number
of operators. A family {S,},e~ of (densely defined) operators in a complex Hilbert
space S with the same domain & = 2(S,) (o € X) is said to be a subnormal system
if there are a Hilbert space # > # and a family N == {N,},e» of commuting normal
operators in J such that

(33) S.,f=N,f, feé,c¢€Z.

In this section we are interested in systems S = {S,},¢ » of densely defined operators
having a (common) domain & = 2(S,) (¢ € %) invariant for each S,,6 € X, and
such that S,S,f = S,S,f for each f € & and for all indices o, p € Z. Under these
assumptions, the subnormal system {S,},c= must necessarily satisfy more than (33);
namely

Sef =N, feé,

— 1086
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where Sef = T S (the same about N'*f) and « : ¥ — N is an arbitrary function

equal to zero for all but a finite number of ¢’s. Denote by A the set of all such a’s.
THEOREM 10. Let S satisfy the following two conditions:

@) Y (SY(B), SH(@)y > O for every finitely supported function f: A — &,

oBEA
(ii) & is a linear subspace spanned by the set

{8ef:2ed, feM QS

GEZ
Then S is a subnormal system.

THEOREM 11. Let S satisfy the following two conditions:
() for each h € & and for each finitely supported function f : A — &,

Zﬂl <8f(B), S*(@)> > 0,

where &), is a linear subspace spanned by the set
{S°h :a € A4},
(i1) & is a linear subspace spanned by the set

{8*f:2ed, fe A(S)}.
sEX

Then S is a subnormal system.

COROLLARY 5. Let S be such that & is a linear subspace spanned by the set
{Sef:0e A, fe M HL(S,)}. Then S is a subnormal system if and only if for each
gEX

hedé sois S[é",, (here &, is as in Theorem 11).

To prove Theorems 10, 11 and Corollary 5 one can use essentially the same
tools as those involved in the proofs of Theorems 8,9 and Corollary 4. Here we
point out some essentials. The semigroup & is just the direct sum of card X copies
of the semigroup we have used in the single operator case. & is nothing else but
A X 4 with the involution (x, 8)* =: (B, ). Then the form ¢ is as follows:

€2 @2, B); f, 8) = <8, SPg), a, pe A

The set J of generators consists of (J,, 0), where J, is the usual J-function at .
To prove Theorem 11 we have to use Theorem 7 combined with Remark 5 because
in this particular case of the semigroup &, the condition (25) is satisfied. The proof
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of the “if”” part of Corollary 5 requires to check that the condition (i) of
. Theorem 11 is fulfilled. This can be done using (35) and (36) below.

REMARK 8. Suppose S is a subnormal system and N its normal extension.
A look at the (joint) spectral representation of NV leads us to the following state-
ments:

(35) &< DM, ... M,), where M, e Ny N,
(36) for all M,, M, e NuN* MM,f=MM.f, f[€é&.

This justifies the following definition: the extension N is said to be minimal if
{N*Nif:fe &, Be A} is linearly dense in #°. A question we ought to speak
of is the uniqueness of a minimal normal extension. The substantial argument we
can provide here with is that of Theorem 5. The conclusion would be roughly the
following: a minimal normal extension of Theorems 8, 9, 10 and 11 is uniquely deter-
mined up to unitary equivalence.

9. EXAMPLE: THE CREATION OPERATOR

Neither Theorem 8 nor Theorem 9 characterizes subnormal operators
completely. However there is an important example which fits nicely in this scope.

Consider the operator (which is also known as the creation one)

3]

with 2(4,) = 8(R), the Schwartz space. Recall some properties of the operator
A .. Having the Hermite functions

x2
S =et Lo

dx"
one can figure out the following formulas

1 n
37 A} m= | " 7= m+n
(7 A
(38) A5 foll? = nl.

In (38) we have the norm of L%(R). Take & = the linear span of {f,}3> , and consider
S = A.,|€ € £(&) (the restriction is possible because, by (37), & is invariant
under 4.). Condition (37) helps us to prove the condition (i) of Theorem 8.
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For h =Y, &..f,, we have

A = l; <A,-§-hl’ A-[l-/]k> = Z él!xé;cyn<Aﬁ—.f;zﬂ A{i-fm> =

ki mun

- - | k+7
=S g ,;1 élnfkm (_' VT) <ﬁ1+k9ﬁn+l> —

== el 2 ’7lnfikm(5m—k_n—[(n + k)!
Iin k.m

where

k+m
1\ 5

et pp) 2T

The quickest way to see that this sum is non-negative is to write it as an integral

27 400
2rd == nlnﬁkm ei[(m—k)—(n—l)]t dt tn+ke—r dr =
Lin kam
0 "
2z +00 n+l
: ) — 3
=S S LY Ay eitis l'e=sdsdr > 0.
o hn ‘
0 0

To conclude that the operator S is subnormal we can use either Theorem 8 or
Theorem 9. Conditions (37) and (38) together help us to check the condition (ii) in
either of these theorems.

Since A, is contained in the closure of S (use the density of & in S(R) and
the continuity of A4, in the 8(R)-topology), we infer that 4, itself is subnormal.
Let us remind that the formal adjoint of 4 is the annihilation operator

1 d
A=—1[x — -\
2 (A+dx)

Since ||Af,)} < ||4+f,|!, neither A, is normal nor A is subnormal.
. mnl.

As usual it is interesting to ask about the L?*model of a normal extension
of A.. From what is in the fundamental paper of Bargmann [1] follows that the
(minimal) normal extension of A4, is unitarily equivalent to the operator of multi-

plication by z in the Hilbert space L2 (C, 1 exp(—|z]?) dx dy) . This model can
T

be used to show that the closure of 4, has no nonzero bounded vector.
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APPENDIX: THE COMPLEX MOMENT PROBLEM

First we want to clear up the determinancy question of the multiparameter
complex moment problem appearing in the proof of Corollary 2. Using the multi-in-
dex notation, we say that the sequence {a(x, B)}, ¢ = (2, .. ., %), B =By, ..., By)

is the n-parameter complex moment scquence if there is a finite positive measure p
on C" such that

(39) a(e, B= S A2 2fu(dA).
Cn
This sequence is said to be determinate if the measure is unique.

THzdrem 12, If {a(x, B)} is an n-parameter complex moment sequence and if

(40) N a(méy, md)=V*" — 4co, k=1,...,n

m
where 9, == (0, ...,0, 1,0, ...,0) with the k-th coordinate 1, then the sequence is
determinate.

Proof. There is a natural one-to-one correspondence between n-parameter
complex moment sequences and 2u-parameter real moment sequences, which
preserves determinancy (but does not preserve quasi-analyticity). Take such a
2n-parameter real moment sequence {b(y)}, v == (Y1, ..., ysn). Condition (40)
guarantees that each of the one-parameter moment sequences {b(0, ...,0,
n,0, ...,0)}, satisfies the classical Carleman condition

§ b, ...,0,2m,0,...,0)" V" = L oo,

m=1
which implies that all these sequences are determinate. Then, by Theorem 10 of
[8] (or Theorem 3 of [10]), the 2a-parameter sequence {b(y)} is determined itself.
Finally the related n-parameter complex moment sequence {a(e, )} is determined
too.

In turn, our Corollary 2 can be applicable to the colvability (and determi-

nancy) of the n-parameter complex moment problem.

COROLLARY 6. Let {a(e, B)} be a sequence of complex numbers such that

{i) Y a(e + 6, f + e, BED, 3) = 0
o,
740

for all finite sequences {&(w, B)} of complex numbers,

(i) ¥ amd,, mé)~" = foo, k=1,...,n

m=1
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Then there exists a unique finite non-negative measure p on C" such that (39) is satis-
e . g
fied. Moreover all the polynomials in /. and 1 are dense in L*(u).

REMARK 9. There is a paper of Kilpi [5] concerning the (one-parameter)

complex moment problem. He characterizes (Satz 5) complex monElent sequences
in terms of positiveness of appropriate linear functionals (the M. Riesz approach).
He also relates (Satz 7) complex moment sequences to formally n(?rmal o.peratc.)rs
having normal extensions. Unfortunately the part of Satz 7 which begins with

“Es sei bemerkt...” is false.

1L

13.

14.

15.

16.
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Note added in proofs. A recent inspection of this paper has inspired us with prov-
ing a version of our Theorem 2. This is

THEOREM 2°. Let M, N < £#(D) be two formally normal operators such that M e {N, N# ¢,
Suppose we are given two sets O cQ(M) and Q,cQM) such that each of the sets
{Tf:Te{M, M*}¥, fel, and {Tf:Te{N, N¥}°, fe @) spans D. Then the essentially
normal operators M and N essentially commute.

However, when replacing quasi-analytic vectors by analytic ones both these version
coincide. We intend to present this in detail in the subsequent papes ‘*‘Commuting symme-
tric operators and normality™.

Theorem 2 entails the answer to the question 2° of Section 4. This answer is given
by a part of Proposition 3. The new version of Theorem 2 impacts Proposition 3 as well

as all its consequences (Theorems 3, 4, 5. 10 and Corollary 1). In particular Theorem 10
would now take a stronger form.

THEOREM 10°. Let S satisfy the condition (i) of Theorem 10 and the condition
(i) for each 6 e X, & is a linear subspace spanned by the set {Sef:fe A, fe QS)}.
Then S is a subnormal system.
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