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SPECTRAL PROPERTIES OF L’ TRANSLATIONS

G.1. GAUDRY and W. RICKER

0. INTRODUCTION

In[6], U. Fixman showed that the bilateral unit shift in [°(Z), where 1 < p < oo,
p # 2, and Z is the additive group of integers, is not a spectral operator in the sense
of N. Dunford, {3]. This example is in fact typical of translation operators in general
locally compact abelian groups. For, if G is such a group, then except in trivial
cases, translations in L?(G), | < p < oo, p # 2, are not spectral; see [9] and [2;
Chapter 20], for example. However, it is natural to expect translations to be spectral
in some sense, because they are isometries in L”(G) and, hence, analogues of unitary
operators. This point was taken up in [9] and also in the recent article [1; §4], where
it is shown that translations can indeed be expressed in the form

0 Se d0(3),

R

where {Q(4) ; 2 € R} is an associated spectral family of commuting projection
operators satisfying certain properties [1; §4], and the integral (1), which can be
interpreted as being over the unit circle T of the complex plane C, exists in a certain
well defined sense. But, it should be stressed that in general the spectral family does
not generate a g-additive, projection-valued spectral measure.

However, as suggested in the note [18], an alternative interpretation of (1)
is possible. Namely, an operator may fail to be spectral solely because its domain
space is “too small”’ to accommodate the projections needed to form its resolution
of the identity. Accordingly, if interpreted as acting in a suitable space containing
the domain space, it happens often that such an operator is spectral in the sense
of Dunford. This has the advantage that the operator then has associated with
it a rich functional calculus.

Itis shown in [18; Example 2.8] that the bilateral unit shift in /°(Z), 1 < p < 2,

which has spectrum equal to T, is a scalar-type spectral operator in this wider sense
with resolution of the identity supported in T. Earl Berkson posed the natural
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question of whether every translation in L?(G), where G is an arbitrary locally
compact abelian group (all such operators have spectrum in T), is a scalar-type
spectral operator in this sense.

Our aim is to show that this is indeed the case if I < p < 2; see Theorem 2.1
below. Hence, the failure of spectrality of translations in LP(G) for the case | <
< p < 2 is only apparent; it is due solely to the fact that L?(G) is “‘too small”
to accommodate the resolution of the identity of the translation operator (this is
made precise in §1).

In contrast, the situation is fundamentally different when 2 < p < oo, For,
although there are certain types of locally compact abelian groups for which non-
-trivial translation operators are scalar-type spectral operators in this wider sense
(see §4), there are, nevertheless, a large class of groups for which this is not the case.
It is shown for example (cf. Theorem 3.3 below), that already for the case of the
line group R, a non-trivial translation in L(R), 2 < p < oo, can never be inter-
preted as a scalar type spectral operator with resolution of the identity supported
in T, in any space containing LP(R). In turns out that the line group is in a certain
sense a paradigm for this phenomenon. For, if G is a locally compact abelian group
and g € G is any clement which generates a subgroup of G isomorphic to Z, then
the operator of translation by g in the space L?(G) can never be treated as a scalar-
-type operator with resolution of the identity supported in T, in any space containing
L2(G); see Theorem 4.2. Accordingly, the failure of spectrality forthecase 2 < p < o
is often genuine; no change of domain space will save the situation.

The authors wish to thank Professor I. Kluvanek for valuable discussions.

1. PRELIMINARIES AND NOTATION

Let X be a locally convex Hausdorff space, always assumed to be quasi-
-complete, X’ its continuous dual and L(X) the space of all continuous linear oper-
ators on X" equipped with the topology of pointwise convergence on X. The identity
operator is denoted by /. The adjoint of an operator 7 in X is denoted by T'.

A spectral measure in X is an L(X)-valued, o-additive and multiplicative
map P : /4 — L(X), whose domain .#/ is a g-algebra of subsets of a set 2, such
that P(Q) -~ I Of course, the multiplicativity of P means that P{(En F) — P(E)P(F),
for every E e 4 and F e .#. It follows from the Orlicz-Petiis lemma that an L(X)-
-valued function P on a g-algebra .# is g-additive if and only if the complex-valued
set function

(Px,x"y t Ex> {(P(E)x,x'>, Eedld,

is o-additive for each x e X and x' € X".
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Let P : 4 — L(X) be a spectral measure. An .#-measurable function f on @
is said to be P-integrable if it is {Px, x'>-integrable for every x € X and x' € X',

and for each £ € .# there is an operator SfdP in L(X) such that

E

<(Sfd1’) X, x/> - Sfd(Px, X,

for every x € X and x" € X'. This definition of integrability agrees with that for
more general vector measures, [14].

An operator 7 € L(X) is called a scalar-type spectral operator if there exists a
spectral measure P in X with range an equicontinuous part of L(X) and a P-integrable

function f such that T:SfdP. This is the classical definition introduced by
. 2

N. Dunford, [3]. The equicontinuity of the range of P ensures that all bounded meas-

urable functions are P-integrable, [18; Proposition 1.1].

The class of operators relevant to this note are those whose spectrum, in
the sense of {19; §3], is a part of the unit circle T. The spectral properties of such
operators have been well studied; see for example [11], [12], 16], [17] and the refer-
ences therein. Of particular relevance are the pseudo-unitary operators [12], [15],
[19], that is, those scalar-type spectral operators 7 € L(X) for which there exists a
spectral measure P in X, defined on the g-algebra # of Borel subsets of T, such that

T = Sz dP(z).

T

The spectrum of such operators is a part of T, [19; Theorem 4]. They are a natural
generalization of unitary operators in a Hilbert space.

Let T e L{X). A locally convex Hausdorfl space Y is said to be admissible
for T, [18; p. 275], if there exist a continuous linear injection 1 ; X — ¥ such that
Y is the completion or quasi-completion of i(X), and an operator T, in L(Y),
necessarily unique, such that

(2) Ty(ix) =1Tx, xe€lX.

In this case the dual space Y’ can be identified with the subspace {y'c1:y" € ¥’}
of X’. Therefore, we write Y’ < X’. The subspace Y’ of X’ separates the points of X.
Furthermore, ¥’ is an invariant subspace for 7" that is, 7°(Y’) < Y’. Sets bounded
in X remain bounded in Y but, more importantly, sets which are unbounded in X
may be bounded in Y.
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LeEMMA 1.1. Let T be an invertible operator in L{X). Let Y be an admissible
space for T such that the operator Ty is invertible in L(Y). Then for each trigonometric

N
polynomial ®(z) ~ Y, .z, the space Y s admissible for the operator ®(T) =
n-—N

N
= Z o, T" and
=~N
(d’(T))y - ¢(TY)-

Proof. If 1 : X — Y is the continuous injection such that (2) is satisfied, then
for each x € X it is clear that

vix=1T"x, n=0,1,2,...,

and, hence, that (7"), — (Ty)" for each n=0,1,2, ... . Furthermore, for each
X e X,
tx = 1TT " x = TyuTx,
.and, hence,
(Ty) hix =T 1x.

Accordingly, Y is an admissible space for 7-1. It follows that
Ty —=(Ty)™", n=1,2,....

The result is now obvious.

REMARK. [t is worth noting that if Y is an admissible space for an invertible
operator T € L(X), then it need not follow that T has an inverse in L(Y) and, hence,
Y may not be an admissible space for 7. For example, if X is the (strict) inductive
limit of the spaces /*({1,2, ...,n}), n==1,2, ..., then the operator T given by
Tx =y, x € X, where y, == n~1x, foreach n = 1,2, ..., is continuous and has a
continuous inverse; the space Y == [X{N) is admissible for 7 but not admissible
for T-1.

An operator T € L(X) is said to be an extended pseudo-unitary operator if
there exists an admissible space ¥ for T such that the operator T is pseudo-unitary.
The phenomenon of a non scalar-type spectral operator (with spectrum in T)
being an extended pseudo-unitary operator occurs often; see Examples 2.3 and 2.8
of [18] and Theorem 2.1 below.

In the remainder of this section we state some results from harmonic analysis
which are needed in the sequel.

Let G be a locally compact abelian group and I' its dual group. The value
of y € I' at g € G is written as (g, y). The Haar measures on G and I'" are assumed to
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be normalized so that the Fourier transform f»—>f°is an isometry of L*G) onto
LX)

If ¢ : I' — Cis a bounded measurable function, we define S[¢] to be the contin-
uous linear mapping of L*G) into itself for which

(Slelf)" = of, fe L¥G).
‘Given p € [1, 00], ¢ is said to be a p-multiplier if there is a number B such that
1 Slelfil, < Blifll,. f€ LXG)n LXG),

where || - ||, denotes the standard norm in L”(G). The smallest such B is denoted
by {liSielill, or {llelll,. Denote by M (I') the space of all p-multipliers on I'. If p €
€ [1, oo], then ¢ denotes the conjugate index of p.

Let 1 < p < 2. Then the Fourier transform f»—>f¢is a norm-decreasing mapping
of LP(G) into L9(I') which agrees with the ordinary Fourier transform

fy) = g(—g, Nig)dg, yerl,

G

on LYG) n LP(G). In this case, the condition that ¢ belongs to M (I') can be expres-
sed by the condition that (pfA be the Fourier transform of a function in L?(G) for
every f € LP(G). The operator Sp] then has a natural extension to all of L?(G).

The following result, permitting the transfer of Fourier multipliers from one
group to another, is known as the extended delecuw theorem, [4; Appendix B].

LEMMA 1.2. Let G and H be locally compact abelian groups with duals I
and A respectively, and n a continuous homomorphism from A to I'. Then if p € [1, o0]
and ¢ is a p-multiplier on I" which is a continuous function, it follows that ¢ om € M (A)
and

o enlil, < lHelll,.

Lemma 1.3. Let | < p < oo. Let {¢,}24 be a sequence of p-multiplier functions
onT and S, = S[p,],r = 1,2, ..., the corresponding sequence of operators on L*(G).
Assume that

@) sup{li[S,dll, :r =1,2, ...} == M < o0, and

(i) ¢, > pae. on I.
Then ¢ is a p-multiplier and the sequence {S,} | converges to S[o] in the weak operator
topology.

Proof. Since [||S,/ll, = [IIS,/llg = || @]l for each r == 1,2, ..., it follows from
(i) that

sup{ll@plleo 57 = 1,2, ...} < o0,
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It is now evident that if £, h € LX(G) n (LXT'))", then

(S by = S(S,f)“a)ﬁ(—z) dr = gqo,(r)ﬂz)/?(—t) de

r r

and, hence, by the Dominated Convergence Theorem

(3) lim (S,f, k> = S o(Of(Oh(—1) dt.
r
Furthermore,
@ §<p<t)f<t)?z<-—t) ar| < fim S o Of O~y dr =
r e s }

= lim [KS, £, Byl < MUfiL Al

o0

by (i). It follows from (4) and the density of the space LY(G) n (" in L(G)n
n LP(G) that ¢ is a p-multiplier, [4; p. 7], and !1|S[e]ill, < M.

Now if F e LP(G), H € LYG) and ¢ > 0, we can choose f, h € LXG) n (L\(I))"
so that ! F - f1|, < ¢ and [|H — ki, <& So

L(Slo) - SHF, Hy — {(Sle] — S)f, hyl < IK(Sle] — S,) (F—=f), H)| =-
+ K(Sle] — SHf, H — ). <
< Slp) - S e Hl, + 11 S[e) — S CLF, — €)e < 2MelH! = 2Me((| F i+ €).
Letting # — oo it follows (using (3)) that

lim [<(S[e] — S)F, HY| < 2Me([Hl, -+ || Fll, + #),
for every ¢ > 0. It follows that S, —» S[¢] in the weak operator topology. This
completes the proof.

An arc in T is any subset of the form {e"’; f € J} where J is an interval in R.
The collection of all arcs in T will be denoted by /.

The proof of the next lemma is included for the sake of completeness. The
result is not new (cf. [9; Lemma 6] and [2; Lemma 20.15]).

LEMMA 1.4, Suppose 1 < p <oco,G is a locally compact abelian group.
aid g € G. Let y ¢ denote the characteristic function of an arc E in T, and define

(5) op:y = (g, y)), veET.
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Then @ € M (I')y and
sup{lllcll,; E€ o} < oo,

Proof. Let " and e be the end points of the arc E. Denote by {F,}2, the
sequence of Fejér kernels on T. Then the sequence of functions {y, * F,}, has the
following properties:

() (e F)(E") - zp(e”) if e # e, e®,

(i) yg* F, - 1/2 at the points e'* and e*, and

(i) sup{l|lxg* Flil,; E€e &, r=1,2,...} <oo.

Statements (i) and (ii) are standard. Property (iii) can be proved as follows.

Let 4 and k be finitely supported in Z. Then it follows by Fubini’s Theorem

that foreachr = 1,2, ...,

SXE x FAh@h(~2)dz | = | S_F,(g) S 16z — ONDI(—2) dz dé ; <
| |
T

T T

< I[Pl sup .lg;cE(z — OhDk(=2)dz < ilixalll Al Ikl

l
T

and, hence, (iii) follows by the M. Riesz theorem [4; Chapter 6].
To complete the proof of the lemma, let

oy) = (e x F)((g,v), veT,
foreach r = 1,2, ... . Then, by Lemma 1.2 and (iii)
sup {lll@,ll,; Ees, r=12,...} < o0
Also, (i) and (ii) imply that
?,.(y) = ¢p(y), r— o0,
for each y € I', where

: oe(y) if (g, 7) # €9, e".
( =
¢e(?) {1/2 otherwise.

By applying Lemma 1.3, we sce that ¢z has the properties asscrted for ¢,. Yet
¢ differs from ¢ only on the sets

I,={yerl;(g 7y =¢°
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and
Fy={yerl (g =¢"},

on which each function is constant, equal to 0, 1/2 or 1. The sets I', and I',, are
cosets modulo the closed subgroup

Fo={yerl;(gy) =1}

of I'. If I'y is open, each of the characteristic functions of I', and I, is the Fourier-
-Stieljes transform of a measure of total mass 1; each therefore belongs to M,(I')
and is of norm at most 1. If I'y us not open (hence null) then ¢, and ¢F agree a.c. .
The properties claimed for ¢ therefore follow in both cases from the ones already
established for ¢f.

2. TRANSLATIONIN L FOR | < p < 2

We assume throughout this section that p € (1, 2). Let G be a locally compact
abelian group and g € G. Then T denotes the translation operator in L7(G)
defired by

GIN(s)=f(s+g), s5€G,

where f € LP{(G). Since the operator .7 is an isometry of L?(G) onto LP(G), its
spectrum, which is completely determined in [8], is a part of T. If ¢ has finite order,
then T is a pseudo-unitary operator in the space L7(G), [9; Theorem 2(i}]. Other-
wise however, ,T is not a pseudo-unitary operator in L”(G), [9; Theorem 2(ii)].
The aim of this section is to show, however, that every translation operator corres-
ponding to an element of infinite order is an extended pseudo-unitary operator.

Fix an element g € G of infinite order. For each arc £ <= T, the function
¢ defined by (5) belongs to M,(I'); see Lemma 1.4. Since ¢% = ¢ for each E € «7,
the corresponding operators P(E) = S[¢[] are projections, which clearly commute
with , 7. Furthermore, P is easily seen to be multiplicative on .2/. Since the element
g € G is assumed fixed, the notation P(E), F£ € o/, which suppresses the dependence
of these operators on g, should not lead to any confusion.

Let & denote the semiring of all arcs of the form {e'’;a < ¢ < b}, where
—oo < a < b <oo, and # denote the ring of sets generated by &. It is easily
verified that P is finitely additive on & and hence has a finitely additive (muitiplic-
ative) extension to £, again denoted by P. Furthermore,

P(E),T — ,TP(E), E€ %.

Hence, P is a prospective resolution of the identity for ,7. As noted above, the
family of operators {P(E) ; E € o/} is uniformly bounded. However, it is not true
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in general that {P(E) ; E € #} is uniformly bounded; sce [18; Example 2.8} and
also the construction of §3. This is enough to suggest that P is not extendable to
an L(LP(G))-valued spectral measure on :Z and, hence, that ,7'is not pseudo-unitary
[9]. Nevertheless we do have:

THEOREM 2.1. Let | < p < 2. Let G be a locally compact abelian group
and g € G have infinite order. Then the translation operator ,T is an extended pseudo-
-unitary operator, in the admissible space L9(T).

Proof. Let Y = LUT') and 1 : L°(G) — Y denote the Fourier transform map.
Then 1 is continuous, injective and 1(L”(G)) is dense in Y, [10; Chapter 8].
Let , T, denote the operator given by

Ty (y) = (g, Vh(y), vEeT,

where /1 € Y. A simple calculation shows that
V() =1 Tf),  fe LP(G).

Accordingly, Y is an admissible space for ,T.
It is clear from the calculation

WPE)) = (P(EY)" = 14((g, W+ %slg, WISy

valid for each £ € £ and f'e L7(G), that Y is also an admissible space for each of’
the operators P(E), £ € @, and that P,(E) € L(Y) is the operator

(6) PY(E) :/l > XL‘((g: '))ll, Il € II"

for every E € . Accordingly, define a set functic‘m Py: B — L(Y) by (6), but now
for every Borel set E € #. Clearly P, is multiplicative and P(T) =1 If he Y
and & € Y7, then it is easily verified that

™ (Py(EM, £ = S KEG)dy,  Ec .

-1

(g, ) (£)

Since 4§ € LYI) it follows that {P,h, &) is g-additive. Hence P, is a spectral
measure.

The identity function on T, being bounded and measurable, is certainly Py-
-integrable. It follows from (7) that for each 4 € Y and ¢ € Y7, the identity

Ss(t)d<P,(t>/z, & = S (g, W)Y dy

T r
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holds for all simple functions s on T and, hence, for all continuous functions. In
particular,

Szd<Py<z)h, & — S (g, DHOVEG) dy = ( Ty, &,
r

T

for each /i € Y and £ € Y'. This shows that Ty =SzdPy(z) is a pseudo-unitary

7
‘operator with Py as its resolution of the identity.

REMARKS. (i) Once it is established that Y is an admissible space for T, then
the pseudo-unitary property of ,Ty, clearly a scalar-type spectral operator, follows
from [3, XVII, Corollary 2.11(ii)]. In this particular case we have chosen to
check the relevant properties of P, directly.

(i) We note that if the group G is discrete, then it is possible to treat ,T as
an extended pseudo-unitary operator in an admissible Hilbert space. This is seen
from the fact that the natural inclusion of L4TI) into L*(I) is continuous, injective
and its range is dense in L%['). Furthermore, in the notation of Theorem 2.1, it
is clear that the space L2(I') is admissible for each of the operators ,7y and Py(E),
E e 2, and hence also for the operators , 7 and P(E), E€ #. It is easily verified
that the extension of ,7 to L") so determined is pseudo-unitary.

3. TRANSLATION IN L?(R) FOR2 < p < o©

Throughout this section we assume that 2 < p < co. Consider the general
setting of a locally compact abelian group G and an element g € G, which we may
as well suppose to be of infinite order. Otherwise the translation operator 7T is
pseudo-unitary in L”(G) anyway, [9; Theorem 2 (i)].

For each arc £ = T, let P(E) be the extension of the operator S{pgl to L?(G)
associated with the p-multiplier ¢ (Lemma 1.4). Then the family of projections
{P(E) ; £ € o/} so determined is uniformly bounded, muitiplicative and commutes
with  T. Furthermore, P has a finitely additive extension, again denoted by P,
from & to #. Hence, P is a prospective resolution of the identity for ;7. However,
as noted previously, P is not in general extendable to a spectral measure on & with
values in L(LP(G)).

It is natural to expect, in view of the proof of Theorem 2.1, that ,7 might be
.an extended pseudo-unitary operator in the space of quasi-measures D'(I'), equipped
with its weak-star topology (see [7] for the definition and notation), since the Fourier
transform map can be defined as a continuous, injective map of L?(G) into D'(I').
However, since the operation of multiplication of quasi-measures by characteristic
functions of Borel subsets of I' is not defined in general, it seems likely that D'(I")
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is not an admissible space for the operators P(E), E € #, and accordingly, that

T is not pseudo-unitary in D'(T"). In fact, we are going to show that if G = R, then
the translation operator ,T is not an extended pseudo-unitary operator in any
admissible space; see Theorem 3.3.

The proof of Theorem 2.1 demonstrates that, in the case 1 < p < 2, the
spectral measure associated with the extended pseudo-unitary operator Ty is
obtained by extension of the set function £+ P(E) from the ring # to the c-algebra
2. We wish to show now for 2 < p < oo that if [T is an extended pseudo-unitary
operator in any admissible space for .7, then the associated spectral measure must
arise by extension, from £, of the set function P.

Let g be a fixed element of a locally compact abelian group G. If F = {z,, ...
..., 2, is a finite set of distinct points in T, then ¢ denotes the characteristic
function of the disjoint union of cosets

where I'; ={yel;(g,7) =12z}, | <j<n We remark that ¢, is a p-multi-
plier; see the proof of Lemma 1.4.

Let E belong to the ring of sets . Then there exists a (unique) finite family
of pairwise disjoint intervals I; = [a;, b;), 1 <j < n, with I; < [0, 2n) for each
Jj=12,....nanda; # b, if j #* k, such that

(8) E=\J{e';rel]}.
j—1

The associated set of left-hand endpoints, {emf; 1 €/ < n}, is denoted by £()

i,
and the right-hand endpoints, {e /; 1 </ < n}, by E(+).

LeEmMMA 3.1. Let 2 < p < oo, G be a locally compact abelian group and g € G
be an element of infinite order. Suppose that T is an extended pseudo-unitary operator
in an admissible space Y, with associated spectral measure Q: # — L(Y). Let E be
an element of the ring of sets R. If 1: LP(G) — Y is the associated imbedding satisfying
(2) for the operator T, then

CQENS, & + -— CQUEN, &) — ; CQEEMMN, &) =

Al
2
)
1
= (PEY, o1 + -g- (Slog) . 01> == CSlogglfr €01,

7 — 1086
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Jfor each f € LP(G) and & € Y'. Moreover, for each /. € T,

QA = 1S[p, S fe L7G),
and hence,

(10) QUEN = 1P(E), [fe L%G).

Proof. Since both P and Q are finitely additive on 2, it suffices to verify (9)
for the case of a single arc E = {e"; ¢ € [a, b)}.
Since , Ty is pseudo-unitary with Q as resolution of the identity, we have

Ty = S zdQ(z2).
T

Then for any integer k, positive or negative, the bounded measurable function
zw>z*¥ z € T, is Q-integrable and

Sz*’ 40() = , T ;

T

N
see [18; Proposition 1.1} for example. So if $(z) = Y " IS a trigonometric

n==N

polynomial on T, then

() O(,Ty) = S¢(z) d0().
T

An application of Lemma 1.1 shows that
{12) P, Ty) = D(,T)y.

Suppose now that /€ L?(G) and ¢ € Y'. Then

(13) COENS, & = ngd<Qlf, &.

T

Let {F,}%, be the sequence of Fejér kernels on T. Then the uniformly bounded
sequence of trigonometric polynomials

o=y F., r=1,2,...,
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converges pointwise on T to the function

1 1
V=Lt S ey T 5 iy
Hence, it follows from (11), (12), (13) and the Dominated Convergence Theorem
that

>

CO(ENS, & + —;- OIS, & — %— (O, & =

(14) - S () dCQE), € = lim S &,()dCQ(N, £ =

¥ —o0
T

= 1im (@, T, &) = lim (P, (,T)f, £ o 1.

r~ 00

A simple calculation shows that @,(,T) is the operator corresponding to
the p-multiplier

0, y—>d,g,9), yer,

for each r=1,2,.... Since sup{lllolll,;r=1,2,...} <co and {9,}2, con-
verges pointwise on I' to the function

, 1 1
0= ¢ + 5 X iy — -'-2%

iar ®
:el(l}

(see Lemma 1.4 and its proof), it follows from Lemma 1.3 that the last limit in
(14) is equal to

1iSet).

(eia}

(SIRLS: €01 = CPAEY, Eon) 4+ - (Slo Mo o1 — (St
Therefore,

CQEX, & + »; Qe & — ;-(Q({e"‘})'f, &=

= (PE), Eo 1) + ; <S[(p(cib)]f, Eord — ; (S[(p{cia}]f, &=,

This proves (9).
It remains to show that

(15) QDY = 1Slewlf, fe L"(G),

for each point 2 € T. We shall, for simplicity, treat the case 2 == 1.
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Let fe C .« C_, where C_. denotes the space of continuous functions on G
with compact support. It follows from the Dominated Convergence Theorem for
vector measures [14; Theorem 1I 4.2}, that

Noxo
T

O((1}f = tim S(N + 1)1 Fy(@) dQG)Y,

1t follows from Lemma 1.1 that

W+ lrlg FU) Q@ = (N + D A Toif = 1N + DR T,

T
forcach N:= 1,2, ... . Since 1 is continuous, it suffices to show that
(16) lim (VN + D=2 Fy(T)f = Slowl/,
N-oo

in LP(G). Now the Fourier transform of

N
(N4 DUFETY =WV + D=t Yy, (L= inl(N + 1))=Y, T

n:=—N

is the function

o (VDY (L — N + D=1 (g, ) =

an =N
= (V + D Fal(g, DSy, yeT,
for each N := 1,2, ... . Notice that if (g, y) = 1, then each function (17) has the

value f(y) at y. For all other values of v,

lim (N + 1)~*Fy((g, N)(y) = 0.

N-ooo

Observe that f‘e LYT) since f e C, * C, and so
(N + D FGT" = X ep-nf

in L) by the Dominated Convergence Theorem (cf. (17)). It follows from the
Hausdorff-Young inequality that (16) is satisfied and hence, that (15) is valid (for
A 1) whenever fe C, = C,. A routine approximation argument shows that (15)
is valid for any f € LP(G). This completes the proof of the lemma.
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REMARK. Although it is not needed, we remark that Lemma 3.1 is actually
valid for all 1 € p < co. Of course, a different argument for the validity of (10)
is nceded when 1 < p < 2. Furthermore, for any 1 < p < co, if the closed sub-
group of G generated by g is isomorphic to Z, then it can be shown that

QUANY = 0 =1S[pwlf, fe LXG),
for each 4 € T. Hence, in this case, Q is necessarily a continuous measure on T.

The next lemma is needed in §4. We place it here since it is closely related
to Lemma 3.1.

LemMA 3.2. Let T, Y and Q be as in Lemma 3.1. Let {E;}2, be a sequence
of setsin R, and { f;}32, = LP(G) be any bounded sequence. Then

sup | COUEN,. &) + - CQUEII . & = - COEDI 23 < oo,

for each CeY'.

Proof. By the triangle inequality, it is clear that the given supremum is not
greater than

(18) 2 sup{[<tf;, Q(EYEY s Ee B,j—1,2, ...}

But, (18) is finite as {1f; ;j = 1,2, ...} is a bounded set in ¥ and {Q(E)¢ ; E e B}
is an equicontinuous part of Y’ (since Q has equicontinuous range; see §1).

For the remainder of this section let G == R and, without loss of generality,
take g = —1. Then the corresponding translation operator _,7, which we write
simply as 7, is given by

(THE) =fs—1), seR,
for each fe L?(R).

THEOREM 3.3. Suppose that 2 < p < oco. The operator T is not an extended
pseudo-unitary operator.

Proof. If T were an extended pseudo-unitary operator in an admissible space
Y, with associated spectral measure Q : & — L(Y), then it follows from (10) that

(19) CQEN, &> =(PE), L 1), Ee &,

for each f€ LP(R) and & € Y’, where 1 : L?(R) —» Y is the associated imbedding
satisfying (2). Since {01 ;¢ € Y’} is a total subspace of LYR) and Q is equi-
continuous, it is clear from (19) that Theorem 3.3 is proved if we verify the follow-
ing construction.
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LemMma 3.4. If h is a non-zero element of LY(R), there exists a sequence of sets
E; € R, and a sequence of elements f;€ L”(R), j= 1,2, ..., satisfying {{f;il, <1
Jor each j, such that

lim [{P(E))f;, )| = oo.

j-00
Construction. Let y denote the kernel on Z given by (0) = 1/2 and

0 if n # 0 is even
i/mn if »is odd.

wm={

Then , which is the characteristic function of the arc {ei* ; 0 <t < n}, is an /-multi-
plier on T for all [ € (1, c0).
Let N be a positive integer. Define a function K : Z — C by

) i2qje Y . .
Ky(j) = (e — DY(j), JjeZ.
Then,
Ko(Dl = 2lsinmj2= Y- 1y(j)l, jeZ.

Furthermore, K is the function given by
1 ifn<t<nt2m27y

Ky =1_1 ifo<r<2n2°V

0 elsewhere.

Beginning with the pair of functions K, and L, = K,, we carry out a Rudin-Shapiro
construction. If y denotes the character of Z given by

io_so=N
W)=, ez,

then y, denotes the character 72" for each n=:0,1,2,.... Define functions K,
and L, on Z inductively by

K,y = K, + L,
and

L,y = K, — v,L,,

for each n =0,1,2, ... . It follows (from the parallelogram law) that

K (DI® + L1 = 20K,(D1 + LD, JEZ,
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foreachn = 0,1, 2, ..., and hence, that
[K 21D+ [Lyea(DIP = 2" MK, JEZ,
for each n =0,1,2, ... . In particular,
(20) |Kv(DI® + I Ly()IF = 2V+3y( ) sin¥(nj2 ),  je Z.
LemMMA 3.5. There exists a positive constant B (independent of N) such that

Y (KD + ILy(DI) = p2va-tma,
jez

Proof. 1t follows from (20) and the fact that ¢ < 2, that
(KO + [Ly(DIDYe = 2+ j)| Isin7j2- V], je Z,

and, hence, that

|Ky(DI + [Ly(DIT = 2Vl sinm2~Ne,  je Z.

It follows from the inequality ¢t=1sins = 2/n, t € [0, /2], that

oo
T (KO + Ly > 3 29l fsin 2N >
JEZ j=1
oN~2
> n-2NeR Y (2 — 1)~9sin(2j — Dr2~M >
j=1
oN -2
> nN Y (2 — 1) 2r1 (2 — Dr2-N) =
j=1

= paNa-ama)

where f = m~729-% This completes the proof of Lemma 3.5.

It follows from Lemma 3.5 that we may construct a sequence {Uy}., of
kernels in such a way that each Uy is either K or Ly and

; 1 1/q -1
(Y UMDY = (_ /3) oN(a™ -12)
JEZ 2
Since g=* > 1/2, it follows that the kernels Wy = (1/2)(Uy + 6,), N > 1, satisfy

(Y, IWN(DIDY > 00, N —oco0.

jezZ
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Furthermore, the function WN takes only the values 0, 1 and is constant on arcs
corresponding to intervals of length (27)2-", for each N > 1. This is because the

R N
translates of the function K; by the amounts ¢*™?  k=0,1,2,...,2¥1 — |,
have disjoint supports.

LeEMMA 3.6. Let N be apositive integerand 2 < p < co. Foreachs=1,2, ...
denote by Wy  the kernel on R

WN,s = Z I/V.'\’(n)éns'
neZ

Denote by @ , the function defined pointwise on R by the formula

Q1) By () = lim (Wy = F,) (),

r-»>00

where {F,}2, is the sequence of Fejér kernels on T. Then
(i) Py s € M(R) and there exits a constant Ky such that

I|I¢N_s|l!q < ]{N’
for all s.

(i) S[Pu (f) = Wy s+,

- for all continuous functions f with compact support.
(iii) If h is an arbitrary element of LY(R), then

lim [| S[@y J(DIl, = llAll( ZZ [Wy(m)9)a.
ne

§—00

Proof. That the pointwise limit in (21) exists follows from classical properties
of Cesaro summability. Statement (i) follows from Lemmas 1.2—1.4. Indeed the
statement (i) is valid not just for the index g but for all indices in the range (1, co),
since I/f/N is a Fourier multiplier on the circle group for all such indicies.

It is now a simple calculation using Parseval’s formula and the Dominated
Convergence Theorem to verify (ii).

To prove (iii), suppose that 7, is a continuous function of compact support.
Then by (ii),

ISI@x Jho)lly = | W s * hollg = olly( S | Wa(m)|)¥a

neZ

for all sufficiently large s, so (iii) is immediate when /2 = ;. In the general case,
let ¢ > 0 be given. Then we can choose a function /1, as above satisfying ||1 — h,ll, < &.
By (),

| S[Py J(h — ho)lly < elllDy Jlll, < Kye.

Then (iii) follows by a routine approximation argument.
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Conclusion of proof of Lemma 3.4. It follows from Lemma 3.6 that, given
a nonzero element /1 € LY(R), we can choose a sequence of kernels {¥;}7>, on R,
each of the form Wy , s being appropriately large for the chosen N, such that:

(a) for each j, there is a set E; which is a finite disjoint union of arcs in T
such that

e () = Vi) = lim (1 * F)()

r—o0 J

pointwise a.e. (cf. proof of Lemma 1.4 for the notation); and
(b) ;]Vj*/vrﬂq—-;oo as j — co,

where 71(x) == i(—x). Hence, there exists a sequence {f;}%., in the unit ball of L°(R)
such that

| v |
i(S[(p};j]f}, | = ’S]}(——x)Vj* ll(x)dxi — 00
2 |

as j » oo. But

Slox\1; = PE);

since, if 4 is an end-point of an arc of E; (i.e. A € E(l) U Ei(r)) the set {y ;e = i}
is of measure zero. Therefore, [(P(E))f;, hy| — co. Lemma 3.4 is thus established,.
and the proof of Theorem 3.3 is complete.

4. TRANSLATIONS IN ARBITRARY GROUPSFOR 2 < p < o0

The proof that the translation opsrator T = _,T of §3 is not an extended
pseudo-unitary operator clearly exploits the noncompactness of the group R.
We assemble in this section a number of observations which show that what really
counts is the compactness or otherwise of the closed group {g) generated by the
element g of G: the operator ,T is extended pseudo-unitary precisely when (g}
is compact. Our treatment deals with the case where (g)> is metrizable, but that
restriction can probably be removed. In any event, our intention is not to strive
for the utmost generality but to illustratz the phenomena of significance: the dis-
tinction between the cases 2 < p < oo and 1 < p < 2, and the effect of compactness
of the group (g) on the extended pseudo-unitariness of the operator ,T.

LemMMA 4.1. Let G be a locally compact abelian group and g € G. Then the
group generated (algebraically) by g is either closed and topologically isomorphic to
Z, or has compact closure.

This lemma is a particular case of Theorem (9.1) of [10].



106 G.1. GAUDRY and W. RICKER

THEOREM 4.2. Let G be a locally compact abelian group, and suppose that
&g € G generates a subgroup isomorphic to Z. If 2 < p < oo, then the transiation
operatcr T is not extended pseudo-unitary.

Proof. This follows the same lines as that given in §3 for the line group R,
but with some new features. We remark that the construction in §3 is in the first
instance a construction for the integer group Z, and it is only in the final stage that
the kernels carried by Z are transferred to the group R (cf. Lemma 3.6). In the
more general case, the transfer Lemma 3.6 has to be modified in a natural way.
The kernels Wy  are defined as

Wy = Y W), -

neZ

The formula (21) then has the form

&y () = lim (Wy * F,)((sg. 7)), yerl.

The statements (i) — (iii) of Lemma 3.6 then hold in the general setting.

The remainder of the construction following Lemma 3.6 goes as before.
Notice however that, with the same notation as used there, we may not have that
Sleg 1f; is equal to P(E))f; since end points of arcs in T may have pre-images in T,

J

under the mapping y > (g, 7), y € I', that are of infinite measure. However, this
possibility is taken care of by reference to the formula (9) and Lemma 3.2. Notice
that for a given s = ¢ o1 € LYG), the sequence of sets {E;}/2, and the functions
fi»i=1,2, ..., were constructed so that (cf. (9))

I<S[<p;j]f,-, Iy = <QENY;, & + ;— COE Iy, & — % CQUE(DNf;5 &5

tends to co as j — oo, This contradicts Lemma 3.2.

REMARK. As noted earlier, the bilateral unit shift in [(Z), 1 < p < 2, is an
extended pseudo-unitary operator [18; Example 2.8]. Of course, this follows also
from Theorem 2.1. The situation when 2 < p < oo is a simple consequence of
Theorem 4.2; the bilateral unit shift is not an extended pseudo-unitary operator
in this case.

A partial converse to Theorem 4.2 is the following:

THEOREM 4.3. Let 2 < p <o0o. Let G be a compact abelian group and g
be an element of G. Then the Hilbert space Y = L¥G) is admissible for each of the
operators ,T and P(E), E € R, and ,T is an extended pseudo-unitary operator in Y;
its resolution of the identity in Y is the extension to B of the set function

Py :Ew> P(E),, Ee.
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Proof. If 1 : LP(G) —» L*G) denotes the natural inclusion map, then clearly
Y = L*G) is an admissible space for ,T’; the operator ,Ty given by

gT)’f:f(' +g), fE Ya

certainly satisfies (2) for ,7. Since each translation operator ,7y is unitary in the
Hilbert space L*(G), the proof is complete.

The remainder of our treatment deals with the case where the group {(g)
is metrizable.

Let G be a locally compact abelian group and G, be a closed subgroup
of G. A subset B of G is said to be a Borel section for the quotient group G/G,
if B is a Borel measurable subset of G and each coset of G, in G contains precisely
one point of B. We call the associated transversal mapping t the 1-1 mapping of
G/G, onto B such that

Wb+ G)=5b, beB.

The following result is a corollary of [5; Theorem 1}.

LemMMA 4.4, Let G be a locally compact abelian group and G, a compact
metrizable subgroup of G. Then there is a Borel section B for G|G, whose associated
transversal mapping is Borel measurable from G|G, onto B.

Suppose now that G and G, are as in Lemma 4.4. The associated transversal
mapping t induces an identification of the Haar measure on G/G, with a measure
on B which we denote by db. Consider then the mapping p of Bx G, onto G defined
by the formula

pb,h)y =b +h, (b,h)e BxG,.

The mapping p is a Borel isomorphism of BX G, onto G since the transversal
‘mapping 7 is Borel measurable.

Let 2 < p < oo, It follows from [10; Theorem (28.54)] that if f is Borel
measurable on G and belongs to L?(G), then the composition fo p € L?(B X G,)s
and

@) Sm" dg =S Slf(b + I dhdb.
G

0

Since G, is compact, and hence of finite measure,

S ( Sl’f(b EEPAYE dh)”2 db < oo.
B G
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Let Y denote the space of (equivalence classes of) Borel measurable functions F
on B X G, such that

(23) 1F)| = (S ( S \F(b, )2 d/z)p/2 db)w < oo.

0

Let 1 be the mapping of L?(G) into Y given by the formula

)b, 1) =f(b + h), (b,h)e BXG,,
for each fe L?(G).
Finally, if ge G and Gy = {g) is a compact metrizable subgroup of G,
let .z be the translation operator by amount g acting in L¥G,), and write T for
the operator on Y given by

Q@4 [Ty(F)(b, ) = F(b, hh + g) = [,tF(b, (), (b, h) € Bx G,
for each Fe Y.

LEMMA 4.5. Let 2 <p <oo, G be a locally compact abelian group and
g € G such that the subgroup G, = (g) is compact and metrizable. Then the space
Y with norm defined by (23) is an admissible Banach space for the operator ,T, and
the operator , Ty defined in (24) satisfies

(Tf = 1,Tf, fe L?(G).

Proof. The formula (23) defines a norm on Y and Y can be shown to be a
Banach space by using standard measure theory arguments. It remains only to
show that 1(L?(G)) is dense in Y.

If Fe Y and ¢ > 0, there exist a set B, of finite measure in B and a bounded
measurable function Fy on B X G, such that F, vanishes off By X Goand | F — Fil < &.
Let fy == Fyo p~1 This is a Borel measurable function on G such that 1(fy) = F;.
It is clear from the formula (22) that f, € L?(G). This completes the proof.

THEOREM 4.6. Let G be alocally compact abelian group and suppose 2 < p < co.
Let g € G be an element of infinite order such that Gy = {g) is compact and metri-
‘zable. Then the operator T is extended pseudo-unitary.

Proof. Consider first of all the unitary operator .t on L¥G,). So there exists
a spectral measure Q in L¥G,) such that

(25) o = S zdQ(z).
T

The set function @ has an explicit description: if E is a Borel subset of T, then
Q(E) is the operator corresponding to the 2-multiplier y((g, -))-
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Let B be a Borel section for G/G, (cf. Lemma 4.4) and Y the Banach space
of Lemma 4.5. Now define the set function Q,, with values in L(Y), by stipulating
that

[Q(EYF](b, h) = [Q(E)F(b, )I(h), (b, h) € BXGy,

foreach F e Y and E € B. In other words, the action of Q(£) on F € Y corresponds
to holding fixed each b € B for which F(b, -) € L¥G,) and acting with Q(F) on
the resulting function on G,. It is necessary to show that this component-wise
definition of Q(E) has sense. This involves checking a number of measure theoretic
statements. The kind of arguments involved are written out in detail for a similar
procedure in Lemma 1.3.2 of [4], and will not be repeated here.

Observe that each operator Q(E), E € 4, is of norm at most 1 ; thatif H e Y’,
then H can be identified with a measurable function on B X G, for which

S ( S \Hb, Iz)|2dh)q/2 db < oo
B

(]

and finally that

(26) COHE)F, H) =S<Q(E)Ffb, *), H(b, -)>db, FeY.
B

It follows from (26), the uniform boundedness of the family of operators {Q(E) ;
E € #} and the Orlicz-Pettis lemma, that Q, is a spectral measure, necessarily
equicontinuous as Y is a Banach space.

Finally we must show that if , 7'y is defined by (24), then
Ty = SZde(Z).
7

It follows from (24) that this involves proving

S<""tF(b’ ), Hb, +)ydb = S 2d(Q()F, H,

B T

for each F e Y and H € Y. For the operator .t we have the spectral representation
{25). So we have to prove that

@7 S ( S 2dCQG)F, -), Hb, .)>) db = Szd(QY(z)F, H.

B T T
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Now if E is an arc in T, then it follows from (26) that

S (S 1:4COFG, ), Heb, ) ) b = \<o®F®, ), HE, )y db= SxEd<QyF, H).
J
B T B T

Hence,

28) S(SschF(b, ), He, -)>) db = Ssd<QyF, HY,
B T T

for all functions s that are simple relative to the ring of sets Z. If s = ¥} %), » then
the left-hand side of (28) equals ’

S N2 QEF®, -, H, -)) db,
B
Assuming that i|s|l, < I, we have
29) | YK QENF®, -), Hb, )| = KL% QENF®, -), Hb, -))| <
< | E@, i Hb, il

since ¥ «;Q(E)) is an L2-multiplier operator of norm at most 1. Choose a sequence
{s.}, of simple functions based on # that converges uniformly to the identity
function on T and satisfies [|s,ll, < 1, n=1,2, ... . Since

Ss,.d<QF(b, 3, H(b, ) —+Szd<Q(2)F(b, ), H(b, -)y, 1t — oo,
T T

for almost all b, we conclude from (29) and the Dominated Convergence Theorem
that the left-hand side of (28), with s replaced by s,, converges to the left-hand side
of (27). At the same time the right-hand side of (28), with s replaced by s, , converges
to the right-hand side of (27). This completes the proof.

REMARK. It is clear from the results presented that in many cases certain
non-trivial translations in L?(G), although not pseudo-unitary in the space L"(G)
itself, can nevertheless be treated as pseudo-unitary operators in some natural
admissible space for the operator, containing L?(G). As such, they still fall into the
class of operators which can be treated by the classical methods of spectral theory
introduced by N. Dunford. However, it was also established that when 2 < p < co
there is a large class of translation operators which is not covered by the classical
theory of spectral operators. Any integral representation of the form (1) for such
operators can never be interpreted as being with respect to some g-additive measure
on a g-algebra. A more extensive theory of integration is needed to give a satisfactory
treatment of the spectral properties for operators of this type, such as that based
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on the notion of spectral family rather than spectral measure, [1; §4], [9]. The theory
of integration with respect to measures of infinite variation, recently developed in
[13], appears also to provide a suitable framework for such problems.
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