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HOMOTOPY INVARIANCE OF THE ANALYTIC INDEX
OF SIGNATURE OPERATORS OVER C*-ALGEBRAS

JEROME KAMINKER and JOHN G. MILLER

INTRODUCTION

A proof of the Novikov conjecture for finitely generated free abelian groups
was given by Lusztig in [6] using the Atiyah-Singer Index Theorem for families
of operators. It was observed by Miscenko [11] that a family of elliptic operators
parametrized by a compact space X can be viewed as a single operator over the
C#*-algebra C(X). In [6] the space X was the n-dimensional torus, T”, and the operators
were signature operators. Since C(T") = C*(Z") Miscenko was led to consider
signature operators over the algebras C*(I'), where I' is a countable discrete group.

In this paper we generalize some of the results in [6] to the non-commutative
case. The methods used are based on [6] and [14] and on the theory of Hilbert
modules as developed by sevéral people (e.g. [10], [8]). This latter theory allows
great simplification of previous work on these questions. Our goal was to prove
the homotopy invariance of the signature operator (considered as an element of
K-homology) on a closed manifold. This result is expressed in the form of a com-
muting diagram which, in current terminology, relates the Novikov Conjecture
to the Strong Novikov Conjecture [13]. Our main result, Theorem 4.1, corresponds
roughly to Theorem 3 (p. 24, Part 2) of Kasparov’s Conspectus [7]. In Section 6
we indicate the changes necessary to handle algebras without unit. This has appli-
cations to homotopy invariance properties of the signature operator along the
leaves of a foliation of a compact manifold, as suggested to us by Paul Baum and
Alain Connes. We briefly sketch how a Theorem of theirs also follows from our
results.

1. PRELIMINARIES ON HILBERT MODULES

DerFNITION 1.1, Let 4 be a C*-algebra with or without unit. A Hilbert 4-module
is a complex vector space, M, which is a right 4-module provided with an 4-valued
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inner product,
(,): MxM—> A4

satisfying

1) (, ) is sesquilinear over C;

i) (x, ya) = (x, y)a;

i) (x, y)* = (3, x);

1v) (x,x) = 0 and (x, x) = 0 if and only if x = 0;

v) M is complete in the norm || (x, x)|[V2 = || x||.

REMARK. We assume that 4 is separable and all modules are countably
generated. If 4 has a unit then unitary modules are to be understood.

DeriniTiON 1.2, Let M and N be Hilbert A-modules. Then L(M, N) is the
set of linear A-module maps, 7, such that there isa T% : N - M satisfying (Tx, v) =
= (x, T*y) forallx e M and y € N.

Every T € L(M, N) is bounded. The set L(M, M) = L(M) is a C*-algebra.
Even if not explicitly stated, all maps between A-modules are required to have
adjoints.

DeFiNition 1.3. If x € N, y € M, define 0, , € L(M, N) by 0, (2) = x(y, z).
The compact maps are the closed linear span of the 0, ,. They are denoted K(M, N).

The set K(M, N) is a L(M)-L(N) bimodule and K(M, M) = K(M) is a closed
two-sided ideal in L(M). A map which factors through a finitely generated module
is compact.

Let H, ={,®A, the Hilbert space of A. The following Stabilization Theorem
of Kasparov will be needed later.

ProrosiTION 1.4. [8]. If M is countably generated then M @ H, ~ H, .
We will have need of the following theorem of Miscenko.

ProposiTioN 1.5. [11]. If fe L(M, N) is surjective then there is a self-adjoint
projection p : M — ker(f). Moreover, there is a map j : N — M satisfying fj = 1.

Miscenko’s proof appears to have a gap but Bill Phillips, Larry Brown and
Maurice Dupré have provided a correct version.

DEFINITION 1.6. If M is an A-module then the dual module is M' == L{(M, A),
with the 4-module structure provided by (fa)(x) = a*f(x).

In the unital case the inner product, ( , ), induces an isomorphism y : M — M’,
where Y(x)(y) = (x, y). The inverse is given by y-1(f) = f*(1).

ProposiTioN 1.7. The sets L(M, N) and K(M, N) are independent of the A-valued
inner products on M and N, provided that the inner products give equivalent norms.
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Proof. We may assume that 4 has a unit. If not consider modules over 4
as modules over A+, with 1 € A+ acting as the identity. The sets L(M, N) and
K(M, N) remain the same.

Let I': M — N be given. Suppose that N has inner products y; and , and 7
has an adjoint, T, with respect to i, . Then the adjoint of 7" with respect to y, is
T*0),) "W, Similarly, if ¢, and ¢, are metrics on M and T* is the adjoint of T
with respect to ¢, , then (@,)~'p,7%* is the adjoint with respect to ¢,. For the
compacts, the map 0, ,(z) defined using ¢, becomes Ox,<p1_1q72(y)(z) with respect to @y.

A consequence of Proposition 1.7 is that projections onto and inclusions of
topological direct summands have adjoints. Further, a topological direct summand
has an orthogonal complement with respect to any metric. This follows by applying
Proposition 1.5 to the projection onto a topological complement.

DermiTionN 1.8. If T e L(M, N)is invertible modulo K(M, N) in the sense that
there is an S € L(M, N) satisfying ST — I € K(M) and TS — I € K(N), then T
is Fredholm. The Fredholm maps are denoted F(M, N).

There is a map, called the analytic index, Ind: F(M, N) — K,(4) satisfying

(i) Ind(T) =0 if T is an isomorphism;

i) Ind(Ty @ T3) = Ind(Ty) + Ind(Ty);

i) If 7, ~ T, then Ind(7,) = Ind(T,), where *‘~** denotes homotopy;

iv) If 4 has a unit, and M, N are finitely generated, then Ind(T) = [M] — [N];

v) Iff: A — Bisahomomorphism, then there is a map f, , defined by sending
Tto T ®, 1, making the following diagram commute

f
F(M, N)—*> F(M®, B, N® , B)

Ind Ind
f& .
Ko(4) ——— Ky(B)

In (iii), “homotopy’’ means a norm continuous path.

2. HERMITIAN COMPLEXES

From this section on 4 is assumed to have a unit unless expicitely stated
otherwise.

DerFINITION 2.1. A Hermitian complex is a bounded co-chain complex of
Hilbert A-modules ¥ = {%", d'}}i|<,» with a Hermitian product {, ) : €' x€~" - A,
satisfying

) Lx,yay = {x, yya;

1) {x, 0¥ = (p, x);

i) {dix,pd = {x, d~"" ).
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Moreover, if €’ is the complex with (€')" = (€~7) and (d")" == (d~~1)", then { , )
induces a chain map ¢ : ¥ — ¢’ which is required to be a chain homotopy equi-
valence.

If one is given a chain homotopy equivalence of complexes of A-modules,
@ : % — %' which is symmetric in the sense that

%

(4 (g,
G

gln

commutes, then setting {x, 3> = ¢@(x)(y) yields a Hermitian complex, where ¢’
is the transpose of ¢. In general we denote a Hermitian complex by (%, ¢).

DEFINITION 2.2. A homotopy equivalence of Hermitian complexes, /1 : (%, ¢) —
— (2,4, is a chain homotopy equivalence for which the following diagram com-
mutes up to chain homotopy

¢ 5

Ill Th'
[4

G —— 9.
DeriNiTiON 2.3. A Hermitian complex (¥, ¢) is regular if © 1% — €' is an
isomorphism.

We will need a non-commutative analog of a theorem of Lusztig [6].

PROPOSITION 2.4. Let (¢, @) be an Hermitian complex. Then there exists a
regular complex (¢, ¢) and an adjointable injection i : € — € which is a chain horo-
topy equivalence admitting a left inverse and which satisfies ¢ = i’ @i.

Proof. The proof in [6, Proposition 1.3] carries over if one uses Proposition
1.5 at several points.

DEFINITION 2.5. A grading of a Hermitian complex (%, ¢) is an involution
T:% — % satisfying

i)y :9 ¢,

i) ©2=1,;

iii) ' = @1,

iv) o(z(x)(x) > 0 if x # 0.
Then, denoting (x, ) = {z(x), x>, we have (1(x), ) = (x, ©(y)) and (d(x),y) =
== (x, zde(¥)). That is, with respect to ( , ), 7 is self-adjoint and the adjoint of
18 1d7.
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PROPOSITION 2.6. A regular Hermitian complex admits a grading. Any two
gradings are homotopic through gradings.

Proof. We follow Karoubi [5]. Let ¢ be the Hermitian structure and let ¢
be the A-valued inner product on %°. Let k = y~'p. Considered as an element of
the C*-algebra L(%°), k is self-adjoint and 0 is not in its spectrum. Define p, and
p_ by the formula

i ) z—k

Y4

1 dz
P, =

where y, and y_ are curves surrounding the positive and negative parts of the
spectrum. Set 1= p, —p_ on %°. Let (¥°), and (¥°)_ be the +-i and —i eigenspaces
for 7. Note that ¢ is positive definite on one and negative definite on the other,
and that they provide an orthogonal decomposition of ° with respect to . It is
then readily checked that 7 is the required grading on %°. Outside the middle
dimension the grading is determined by 1 = y~1p : ¥ - ¥~/ for i > 0.

For the uniqueness up to homotopy, note first that every grading 7 arises
from the above constructions, for if they are applied to the inner product ¢t we
recover 7. Since the constructions depend continuously on the inner product it
is enough to show that any two of them, ¥, and y,, are homotopic. Applying
Kasparov’s Stability Theorem reduces one to the case where the module is #, . The
element Y1y, is self-adjoint with respect to , with positive spectrum. Let s be
its positive square root. Then ,(s(x))(s(3)) == Y¥a(x)(»). Since s is invertible, the
contractibility of the invertibles in L(H ), [9], yields the result.

Another non-commutative analog of a theorem of Lusztig [6] which we will
have need of is the following.

ProprosiTION 2.7. Let h : € — D be a chain map which induces isomorphisms
on homology. Then h is a chain homotopy equivalence.

Proof. The standard proof works if one makes use of Proposition 1.5.

3. FREDHOLM COMPLEXES

DermNITION 3.1. A co-chain complex of Hilbert modules, €, is a Fredholm
complex if it is chain contractible modulo the compacts. That is, there is a degree
—1 maph : € — & satisfying B+’ + d'-*h = I + k where k is compact.

For convenience we will write /' ~ g if f— g is compact. Note that if € is
finitely generated then it is Fredholm. Conversely we have the analog of a theorem
of Segal [14, Theorem 3.3].
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ProPOSITION 3.2. A Fredholm complex € over a C*-algebra with unit is cliain
equivalent to a finitely generaied complex.

Proof. Assume inductively that ¢ is finitely generated for i < s and consider
the chain map

n—-1 n +1
(6"— 1 d (6 n d (6'11+1 ¢ % n+2
j hn+1d"1 ]h"+1
X 7 4’ ¥
0 %" A 0

Since d"~ " factors through a finitely generated modulz it is compact, and /%" x~
N - 'Yt & T is Fredholm. By taking the sum of each row with the ele-
mentary complex 0 - H, — H, — 0 we may assume that €” ~ #/,. According 0
Miscenko and Fomenko [11], hd has a decomposition (id), @ (hd)e : M"@ N> P @,
where (hd), is an isomorphism and N” and Q are finitely generated. Let p
be the projection of 4”7 onto P. Then ker(phd) == N". Let M"*! be the image of
M under o and N"*1 = ker(ph). Then "+ - M"** @ N"%1, since if i is the inclu-
sion of P, d((hd);7*@0)i splits phr and has image M***. It follows that d : M"@N* —
- M AL s in diagonal form and an isomorphism on the first summands.
¢ is thus homotopy equivalent to

(‘n—l Nn 5 1\7n+1 5 (6114}2

which is finitely generated in degree n.

DEFNITION 3.2. Let (%, @) be a regular Hermitian Fredholm complex and
choose a grading 7. The signature operator of € is Dy = {d — rdt)!%’*‘ . Then
Dy 6+ - %, where ¢+ and ¥~ are the 41 and - -1 eigenspaces for 7.

THEOREM 3.3. If (%, @) is a graded regular Hermitian Fredholin complex,
then Dy is a Fredholm operator.

Proof. We have a chain homotopy, /1, with id = dh ~ I. From this it follows
that dh and hd are idempotents modulo K(%), the compacts. By the argument of
[1,p. 149] applied to the image of dh in L(%)/K(%) we may obtain a scif-adjoint
projection p whose lift back to L(%), p. satisfies p® ~ p,p* = p, pdh ~ dli, and
dhp =~ p. Define a new chain homotopy by h - (I — pYhp. We will show that
h — tht is a parametrix for d — tdr. The computation requires & number of
identities.

i) dp ~ 0 and d = d{I — p).
iy (I~ phd =~ I — p).

iy (I - p)d ~ 0 and d ~ pd.
iv) id -+ dh =~ I
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This follows from (i), (ii), and (iii).

v) dth ~ 0 and htd ~ 0
This will follow from prd ~ 0 and dr({ — p) ~ 0. For the former ptdt ~ p*d* =
=: (dp)* =~ (d(I — p)p)* ~ 0 and the result follows since t is an isomorphism. The
second part is similar,

vi) ptp = 0 and (7 — p)yt({ — p) = O
For the first ptp ~ prdhp ~ 0 and the second is similar.

vit) ©p &~ (I — p)r.
This follows from (vi).
viii) tdh ~ hdx.
For this ©d({ — p)ip ~ tdhp =~ ©p = ({ — p)t = (I — phdr =~ ([ — p)hpdx.
Now we compute using (iv), (Vv)x and (vii)) (d — 1{11')(7f — Tht) =
<dlh—(dthyt—1(dth)4-tdht =~ dh-+hdr*=dh--hd = I. Similatly (h—tht)(d—tht)~ 1.
Finally note that D, is the composition of the inclusion of ¢+ into ¢, d -— tdr.
and the projection of ¢ onto ¥~ and it readily follows that D, is Fredholm.

COROLLARY 3.4. Let (%, @) be a regular Hermitian graded Fredholm complex.
If (@, @) is contractible, then Ind(Dy) -= 0.

Proof. Since € is contractible there is a chain homotopy /1 with dit - hd = I.

The proof of Proposition 3.3 may now be executed with equality, ¢-="", replacing
“ 2", The conclusion is that D, is an isomorphism and hence Ind(Dy) =: 0.

The next step is to show that Ind(D,) is independent of the choice of the
grading 7. To accomplish this requires some naturality properties of the index.
Let f: B - A be a homomorphism of C*-algebras and let & be a complex over B.
Let f4(&) be the induced complex over A4, with fu (&) = & ®,z A. If &is a graded
Hermitian Fredholm complex, then it is a direct check that f,. (&) has these same
properties. If [, i Fu(6+,E67) = F (fu(£1), fo(67)) is the induced maps on the
Fredholms, then f.(D) == Df#m. Hence, by 1.8(v), we obtain f,(Ind(Dy)) :=

- Ind(Dy (&)

DEFINITION 3.5. Let (%, @) be a regular Fredholm complex. Choose any grading
7, and let D, be the associated signature operator. Define the signature of (6, ¢)
to be Sign(%, ) = Ind(D,). We will usually drop the ¢ and denote this by Sign(%).

PROPOSITION 3.6. Sign(¥%) is independent of the choice of .

Proof. By Proposition 2.6 any two gradings 7, and 7, are connected by a path
of gradings 7,. Let % be the complex over A== = C(I, A) with G = C(I %). One
defines d, 7, and ¢ ¢ in the obvious ways (e g. di (A)(!) =d" (A(t))) Then @ is a regular
Hermitian complex. Moreover, dh -+ hd — 14k, with k a constant path in
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C(I, K(%)) = K(%) so that & is Fredholm. By Proposition 3.3, Ind(D;) is defined
as an element of KO(A~). There are evaluation maps e,, ¢, :A— A. Since e, ig
homotopic to e; we have (eo)*(Ind(D(z,)) = (el)*(Ind(Da)) in Ky(A4). Since (e,)*(%;)
is % with the grading t, we obtain the desired result.

Following Lusztig, [6], we will associate an element o(%, @) € Ky(4) to a
regular, finitely generated complex. It is the image of the symmetric signature of
Miscenko [10] and Ranicki [12] under a natural map which will be discussed in
mere detail in Section 5.

Using the argument of Proposition 2.6 we may express ¥° = (€%, @ (¥")-,
where ¢ is positive definite on (¥°), and negative definite on (4°)_ .

DEFRINITION 3.7. If ¢ is a finitely generated regular Hermitian complex then
o(?, ) = [(€9)+] — [(¢9)-].

That (¥, ¢) is independent of the decomposition follows from the next
proposition.

ProrosITION 3.8. If (€, @) is a finitely generated Hermitian complex, then
a(%, ¢) = Sign(¥).

Proof. Define a grading on 4° to be multiplication by 1 on (€%, and multi-
plication by —1 on (¥°)_ and extend it to . Since ¥ is finitely generated Sign(%) =
= [¢*] — [¢~]. If M is the sum of the ¢’ in non-zero degrees, one may check
that M+ =~ M- so that Sign(¥, ¢) = [(¥"),] — [(¥°)-].

We note for the next section the following fact.

PRrOPOSITION 3.9. If [+ € — @ is a chain equivalence and € is Fredholm, then 9
is Fredholm also.

Proof. Let g: 4 — @ be a homotopy inverse to f. Note that & is Fredholm

if and only if I, ~ k, k compact. (Here “~"" denotes chain homotopy.) Thus,
I, = fg = [(I,)g ~ fkg, which is compact, so & is Fredholm.

4. DEFORMATIONS OF FREDHOLM COMPLEXES

In this section we prove the main theorem. This result and Proposition 2.4
allow the signature to be defined as a homotopy invariant of non-regular complexes,
as observed by Lusztig.

THEOREM 4.1. Let (¥, @) and (6, ) be regular Hermitian Fredholm complexes.
Let f: € — 2 be a homotopy equivalence of Hermitian complexes. Then Sign(¥) =
= Sign(2).
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Proof. For each i, 0 €t €1, we construct a Fredholm complex, (&,, ¢,).
The modules &, will not change, but the differentials and the Hermitian structure
be deformed. Given f: ¥ — @ consider the maps, for 0<t<1/2, g, : 4> 4®9,
defined by g,(x) = ((cosnt)x, (sinnt)f(x)). The complex &, is the mapping
cone of g,. Thus

—di 0 0
8 = C'@C @D di = |(cosat)[ d' 0
(sinmt)l 0 dgt

We will define a Hermitian structure on &, by the following device [14]. Consider
each row of the diagram

g
¢ —s% ®D——->0
8
0—> QP ——F
to be a double complex. The map T, is defined by

T o= [ (sin2mt)f "Yf —(sinnr)(cos mt)f
! —(sinnt)(cos ne)f (cos?mtw
This induces a map of double complexes. The mapping cones of g, and g; are the
ordinary complexes obtained from these double complexes. Thus, T, induces a

map 0,: &, — &; . One checks directly that 8, is symmetric. It remains to show that
0, is a chain equivalence. For this consider

h

9—'—»@@9—-)0

| b

00— 202 ——> G’
where /,(x) = ((cos nt)x, (sin xf)x), and

S = [ (sin® s )y —(sinzt)(cos nt)lp]

—(sinnt)(cos nt ) (cos? )y

Let &, be obtained in the same way that &, was above. Let P : %, - &%, be the
chain map defined by
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0 cosmt sinmt
H, -0 0 0
0 0 0

Then d,H, ' Hd,- - PS,. where

[_Ql 0 0

Similarly. one gets G, so that J,G, — G,d, =I — §,P. Thus §, is a chain equi-
valence. Since 0, -~ (" @ I)S(f @ {) and f is an equivalence we obtain that 0,
is onc also.

Define (6,. 0)for 1/2< ¢t < 1 byé, ==&y pand 0, =2 — 20 yf @ 2t - e,
Since f"yf is chain homotopic to ¢, it follows that 0, is a continuous family of chain
equivalences which will yield the required family of Hermitian forms.

We have constructed a continuous family of Hermitian complexes where the
Hermitian forms and differentials change, but the modules remain fixed. Define a
single complex, %, over A = C(I. A) by % = C{, &, and d(E)N) - - d'(F(t)).
A Hermitian structure is defined by 9(3)(3)(1) = 0,(3(t), $(1)). We check that &
is a Fredholm complex. For this it is enough to show that § is homotopy equivalent
to a Fredholm complex. But, letting @, = PS* for 0 < £ < 1/2 and Q, = O,
for 1/2 <t € 1 we may obtain, as above, a map 0:6 -6 satisfying O ~ Ir.
Now, define j : C(I, 1) -é by j(=)(t) = (0, —(sinnt)x(t), (cos nt)a(r)), where C(I, &)
is a Hermitian 4 complex in the natural way. Then one checks that jis an isomorphism
onto the image of Q. Tt follows from this that jiCULG) & is a homotopy
equivalence with homotopy inverse j=10. Since C(I, @) is Fredholm, we are done.

We now have a Fredholm complex, &, 5), over A. Let (e,)#((f’), t=:0,1,
be its restrictions. These may be identified with the mapping cones of g,(x) : = (x, 0)
and g,(x) -= (0, f(x)) respectively. Since the mapping cone of an equivalence is
contractible, they may be expressed as 2 @ V and W @ ¥ where V and W
are cgntractible. Let (Ii,' %) be a regularization~ of (67’, 0). By Proposition 3.3
Sign(R) € Ky(d), and Sign({e;) s (R)) = Sign((en)s(R)). .

For each ¢, (¢,)(R) is a regularization of (e,)4(&) so we may write (e,)4{R) : -
22 D@ V' and (e)«(R) = W' @ €, with ¥’ and W’ contractible. Let the induced
gradings and forms on these be 7, and ¥,, # =0, 1. There exists an orthogonal comple-
ment to & in (e(,)#(k) with respect to the inner product y,t,. Applying 7, to this
-gives @+, the orthogonal complement with respect to y,, which is a complex. Define



HOMOTOPY INVARIANCE OF THE ANALYTIC INDEX 123

a new grading on (eo)#(k) to be the sum of any gradings on & and @*. Since Z* is
contractible we have Sign(%') =0, and by evident additivity Sign((ey)«(R)) =
= Sign(2). Similarly Sign((e,)4(R)) == Sign(¥), so Sign(¥) := Sign(2).

REMARK. The conclusion of Theorem 4.1 still holds when A4 is non-unital pro-
vided the complexes considered are quasi-regular. (See Section 6 for the notion of
quasi-regular.)

5. APPLICATIONS

In this scction we outline some of the applications of the theory of the pre-
vious sections. Let M be a smooth closed manifold, oriented and of even dimension,
with fundamental group 7,(M). Given a homomorphism of n,{(M) into a discrete
group I let p : M — M be the corresponding covering. We will denote by ¢! the
associated flat bundle with fiber CF(I'), the reduced C*-algebra of I'. We will define
below the signaturc operator of M with coefficients in y*, D¥. It is an elliptic C*(I')-
-operator in the sense of Miscenko and Fomenko. Theorem 4.1 will be used to
identify its analytic index.

To this end fix a smooth triangulation of M. Lusztig [6, p. 247] gives the
simplicial cochains of M with coefficients in the bundie " the structure of a finitely
generated Hermitian complex over CH¥(I'). This requires symmetrizing the cup
product and multiplying the product and differentials by i in odd degrees. Call the
result C*(M, C¥(T)).

Miscenko and Ranicki [12] have associated to the simplicial cochains of M
an invariant g, the symmetric signature, lying in the symmetric surgery group
{P(Z[T]). We sketch its relationship to the o-invariant of 3.7. The inclusion Z(I') —
- CF(I") defines a map L*(Z[I']) — L*(C*(I')). Since 2 is invertible in C*(I') there
are isomorphisms L*(CH¥T)) ~ L'(CHI')), where i:- -0 for k even and =2
for k odd. The latter groups are respectively the Witt groups of Hermitian and
skew-Hermitian C¥(I')-valued forms on finitely generated free C¥*(I')-modules F.
There are isomorphisms L'(CHI)) = K(C*(I). For i=:0 this is ofF, ¢), for
i:=2 o(F,ip). If we denote the composition of the above homomorphisms
by m : L*(Z[T)) —» K(CHI)) then ma(C*(M, Z[T'))) - o(C*(M, CF(I))). We will
refer to this clement as the surgery obstruction of Miscenko and Ranicki.

Let Q*(M, ¥") denote the smooth forms on M with values in y*, modified
as above. Complete QP(M, ") with respect to the norm || f|], = |[X(I -+ AL, /D1 CET),
s € Z*, where A is the Laplacian. Denote the resulting Hilbert module by H?*(M).
The differentials extend as adjointable maps and we have a Hermitian Fredhoim
complex H#,

— H""”l(]\/[)——-——) Hp+1,s(M) Hp+2,s—1(M)

Let D* be the signature operator of H* as defined in 3.5.
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A version of the following theorem is stated in the literature, but only modulo
torsion [11].

THEOREM 5.1. The analytic index of D" is the surgery obstruction of Miscenko
and Ranicki.

Proof. By Proposition 3.7, o(C*(M, CXI))) = Sign(C*(M, CXI))). Thus it
suffices to show that Sign(C*(M, CXT))) = Ind(D"). Consider the maps of
complexes

CH(M, CH(I) - 2%(M, ") & H3(M).

The appropriate Poincaré lemma holds for each complex, so i and j induce iso-
morphisms on homology by the classical de Rham Theorem [2]. Hence, by Pro-
position 2.7, ji is a chain homotopy equivalence. Now i is the ‘“Whitney map”’,
and a direct check shows that ji satisfies the homotopy commutativity condition of
Definition 2.2. Thus C*(M, C¥T')) and H*(M) are chain homotopy equivalent
Hermitian Fredholm complexes, and by Theorem 4.1 Sign(C*(M, C¥())) =
Sign(H*(M)). But Sign(H*(M)) = Ind(D") by definition. This completes the proof.

It is convenient to assemble this into a diagram. We represent K-homology
tensored with Z[1/2] of a space X in a manner analogous to that used by P. Baum
and R. G. Douglas [1]. This version is based on unpublished work of P. Haskell.
The groups are formed from suitable equivalence classes of triples (M, E, f) where
M is a compact, oriented manifold, E is a vector bundle over M and f: M - X
is a continuous map. The equivalence relation called “vector bundle modification™
is changed so that one uses the K®Z[1/2] orientation associated to the signature
operator rather than the Dirac operator. If the bundles, E, are real we obtain
KO..(X)®Z[1/2], and if E is required to be complex we get K,.(X)®Z[1/2). There is a
complexification map c,, : KO, (X)®Z[1/2] - K (X)®Z[1/2] defined by ¢ (M, E,f )=
-=[M, E®C, f]. Note that KO, ®Z[1/2] is Z/4 graded and K, ®Z[1/2] is Z/2 graded.
It follows from results of Conner and Floyd that it is sufficient to consider triples
of the form (M’, 1, f), where 1 is the trivial line bundle. Define a map § : K(BI') —
— K (C¥(T')) by B(M, E,f]) = Ind(Df'('l'F)). It can be checked that B respects
the equivalence relation and, hence, is a well defined homomorphism.

Let L,(Z[I']) be Wall’s surgery groups, [15], which are periodic mod 4. By
[12] there are isomorphisms L*+*(Z[I'®Z[1/2] ~ L(Z[TD®Z[1/2]. Wall's map
1, : KO(BIN®Z[1/2] - L(Z[T')®Z[1/2] may be defined by sending [M, ], f] to
the image of 6(C*(M, Z[I'])) under the above identification. We now have

m®Z[1/2] : {Ly(ZII @ LLZITN} ®Z[1/2] » Ko(CHI)RZ[1/2].

These maps fit together into the following diagram.
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THEOREM 5.2. The following diagram commutes,

Ko(B)®Z[1/2) O Ky(CHIM)®Z[1/2]

Cx nt

{KOy(BI') @KOx(BIN)} ®Z[1/2] LN {Lo(ZII) @ Ly(Z[I' ]} ®Z[1/2].

Proof. Let y' be associated to f, :m(M)—TI. We must show that
{m @ Z[2DI((M, 1, f1) = Ind(D") ® Z[1/2]. By Theorem 5.1 Ind(D") ==
= me(C*(M, Z[I'])). The result follows from the definition of /,..

COROLLARY 5.3. Assume T is torsion free. If BRZ[1/2] is injective, then the
Novikoy Conjecture holds for ', modulo Z[1/2].

Proof. The Novikov Conjecture, modulo Z[1/2] is equivalent to [/, being
injective. Since c,, is injective, the result follows.

If I' is not torsion free (e.g. I' = Z,@Z,) then BRZ[1/2] need not be injective.
[t is possible, however, that f is always an isomorphism (without any tensoring)
if I is torsion free.

There is an analogous diagram for the odd case. Note that /.®Q being in-
Jjective is equivalent to the Novikov Conjecture and B®Q being injective is the
Strong Novikov Conjecture, [13]. The relation between these notions depends on
whether m®Q is injective, about which little seems to be known. Our formulations
are based on the ideas of Miscenko and Kasparov. Note, however, that the diagram
commutes after tensoring with merely Z[1/2] rather than Q, hence contains odd
torsion information.

6. THE NON-UNITAL CASE AND APPLICATIONS TO FOLIATIONS

In this section we merely indicate the adjustments necessary to handle the case
when A does not have a unit. One can no Jonger expect that a Hilbert A-module M
will satisfy M =~ M’. One defines Hermitian and Fredholm complexes as before,
except that ¢ : ¥ — €’ is not required to be a chain homotopy equivalence. The
notion of regularity must be changed to require that ¢ : € — ¥’ is injective with range
the space of functionals representable as (x, ) where ( , ) is the Hilbert A-module
inner product. We will call this being quasi-regular. This is exactly the condition that
(7, @) become regular when extended to be a complex over A+, the unitalization
of A4, by letting 1 € A+ act as the identity. Then, if ¥ is Fredholm, D, is Fredholm
over A*. It follows from Proposition 1.7 that D, is also Fredholm over 4 and
Ind(D,) € Ky(4*) comes from Ind(Dy) € Ko(4). Thus one may work with A+
modules throughout and the conclusion of Theorem 4.1 still holds when A does
not have a unit.
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Now, let M and M’ be compact manifolds foliated by # and # ' with the leaves
of both oriented and of even dimension. Let /7 : M — M’ be a leaf preserving
homotopy equivalence. Fix Riemannian metrics on M, M'. Let QF*(M) be the
complex of differential forms along the leaves. One may complete these to be a
complex of Hilbert C*(M, #)-modules with a quasi-regular Hermitian structure
provided by the w-operation and the Hilbert module structure, [3]. It is a Fredholm
complex via the parametrix for the signaturc operator and thus has a well-defined
signature in K, (C*(M, #)).

Next, following Baum and Connes, one uses the homotopy equivalence to
construct a bimodule which provides a Morita equivalence between C*(M, 7) and
C*(M’, #') which are then stably isomorphic, hence, being stable C*-algebras, are
isomorphic. Using this isomorphism we may consider both complexes to be over
C*(M, #). The given homotopy equivalence yields a chain homotopy equivalence
of the complexes and our general theory applies. Thus the signatures of the complexes
are equal. This being the same as the index of the respective signature operators we
obtain the following theorem of Baum and Connes.

THEOREM 6.1. [0]. Let M and M’ be compact manifolds with foliations F and
F'. Assume that the leaves are oriented and even dimensional. Let i : M — M’ be
a leaf preserving homotopy equivalence. Let Dj; and Dg. be the signature operators
along the leaves. Then Ind(Dg) == Ind(Dg.) in K(CHM,7)) = Ky(CH*M', F')).

The results of [0] also handle the case of odd-dimensional leaves.

The first named author was supported by a grant from the National Science Foundation.
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