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THE SPECTRAL CATEGORY AND THE CONNES
INVARIJANT r

P. GHEZ, R. LIMA, J. E. ROBERTS

INTRODUCTION

In this paper we describe a new approach to the harmonic analysis of the
action of a locally compact group G on a von Neumann algebra M. In particular,
one would like to understand how the action of G on the linear space M is related
to the algebraic structure of M. In the context of von Neumann algebras, the natural
step is to compare the action of G on M with the continuous unitary representations
of G and to relate the product and adjoint in M to the tensor product and conjuga-
tion of such representations.

When G is abelian, the theory of spectral subspaces is a useful tool for analyzing
the action. This theory was first formalized by Arveson [!], although most of the
basic techniques had long been used in theoretical physics. For non-abelian groups,
no such formalism exists as yet, although there is again a long practical tradition
in theoretical physics of treating particularly the action of compact non-abelian
groups in terms of multiplets of operators transforming according to a given
irreducible representation ¢ of G. The corresponding spectral subspace M, appears
naturally as a subspace of H¥®M rather than of M itself. Here H, is the Hilbert
space of the representation ¢ and HJ its dual space. Spectral subspaces of this type
were introduced in [16] in the case of a compact group and will be employed here
in preference to the subspaces of M proposed by Evans and Sund [6] as they have
the advantage of exhibiting explicitly the transformation law under G.

For non-abelian groups, the spectral subspaces on their own are not much
use but must be seen as part of a wider structure termed the spectral category
which includes the algebras of spherical functions of Landstad [8]. These algebras
arise naturally in studying spectral subspaces because, whereas the left support of
M_ is in the fixed-point algebra, its right support is a projection in the corresponding
algebra of spherical functions.

Spectral subspaces for reducible representations appear naturally when
relating the product in M to the tensor product of representations, since the ir-

reducible representations of non-abelian groups are not closed under tensor products.
9 — 1086
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Their inclusion in the formalism is vital because, not only does the cross product
then appear as part of the spectral category, but there is also a natural action of the
representation theory on the spectral category. Both of these features will be exploited

in an essential way.
On the other hand, although the spectral subspaces M, for reducible repre-

sentations generalize the notion of point spectrum, they are no substitute for a
notion of continuous spectrum. Thus our dual object for a locally compact group
G is the representation theory of G treated in a purely algebraic fashion without
notions of topology or Borel structure. For this reason, we can at most hope that
our methods will prove adequate to handle integrable actions of G (cf. [3; ITI)).
The first part of this paper introduces the spectral category, compares it
with other categories associated with the action of a group on a von Neumann algebra
and uses it to define various invariants for the action. No attempt is made to exploit
these invariants in a systematic way. Instead, in the second part of this paper, we
concentrate on a single invariant, the Connes invariant I', generalized to the case
of integrable actions of non-abelian locally compact groups. We are able to obtain
satisfactory analogous of most known results for abelian groups. This serves to
establish the utility of the spectral category as a device for harmonic analysis.

1. THE SPECTRAL CATEGORY

Let G be a locally compact group and let #(G) denote the W*-category
[7) of Hilbert spaces carrying continuous unitary representations of G, i.e. an object
of #(G) is a Hilbert space H, where ¢ : G — Z(H,) is a continuous unitary repre-
sentation of G on H,. An arrow from H, to H, is any bounded linear map from
H, to H,. As an abstract W*-category #°(G) is independent of G up to equivalence.
In particular #°(G) is equivalent to the W*.category of Hilbert spaces #. Like #,
H#(G) carries a natural monoidal structure (tensor product) and to economize on
notations we shall suppose that both #(G) and # have a strictly associative tensor
product, i.e. that they are strict monoidal W*-categoriesV. #(G) differs from #
in that it carries a natural action of G, defined on the objects by gH, = H, and on

the arrows by

x € (H,, H) — gx = t(g)xa(g)*.

Furthermore

g(x®y) = gx®gy.

1) A convenient way of actually realizing this would be to use a full monoidal subcategory
of Example 3.4 of [14], where the von Neumann algebra M would properly have to be taken from

some large universe.
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We denote the monoidal W#*-category of fixed points of #(G) under this
action by Rep(G); the object corresponding to H, will be denoted simply by o.
Thus ¢ € (o, 7) if t € (H,, H,) and 1(g)t = to(g). In other words, Rep(G) is just the
monoidal W*-category of continuous unitary representations of G.

Now Rep(G) also acts in a natural way on #°(G): to each object ¢ of Rep(G)
corresponds a functor H, - H,®H,; x —» 1,®x and to each ¢ € (g, 1) corresponds
a natural transformation

H, - 1®l, € (H,®H,, H®H,.

The actions of G and Rep(G) on #(G) commute.

Now let « denote a g-continuous action of G on a von Neumann algebra M.
Then we can form?V the W*-category #(G)®M; it also carries an action of G,
the tensor product of the actions on #(G) and M, so if x € (H,, H), y € M, then

g(x®y) = gx®@a,(y) = 1(g)x0(g)*Ru,(y), gedq.

The fixed points under this action will be a W*-category denoted by Sp(M, «) and
called the spectral category of the action. The objects of this category will be denoted
o®u, T®u, ...,s0 thatf € (c®a, t®a) if and only if

te(H,, H)M
and

iQu,(t) = (1(g)*®@Di(c(g)®1) geC.

Since the action of Rep(G) on #(G) commutes with the action of G, Sp(M, «)
carries an induced action of Rep(G). Thus an object ¢ of Rep(G) gives a normal
s=-functor F,:

F(t@u) =Rt
F(x)=1,@x

and each 7€ (0,0’) gives a bounded natural transformation F(t)€(F,, F,)
defined by

F(t),ge = t®1,®1.

The spectral category is intimately related to various W*-categories of modules
which can be used to study the W*-system {M, a}. We have relegated this discussion
to an appendix so that the main results can be reached with a minimum of formalism.

1) This is a special case of the tensor product ARB of two W*-categories. The objects of
AR B are denoted A®B where A and B are objects of U and B respectively. (A®B, A'QB') ==
= (4, A"Y®(B, B') where the tensor product is defined analogously to the tensor product of von
Neumann algebras.
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2. SPECTRAL SUBSPACES AND SPECTRAL INVARIANTS

If ¢ is a continuous unitary representation of the locally compact group G
then we write

M, = (c®a,i®@na)

where i denotes the trivial representation of G on the Hilbert space C. Although the
linear spaces M, introduced in {15, 16], are not subspaces of M, they are a usefui
generalization of the notion of spectral subspace to non-abelian groups. They have
the advantage that their elements are determined by a simple explicit transformation
law under G. Thus x € M_ if and only if x € (H,, C)®M and

1®2,(x) = xo(g)®1 ged.

An element of M_ thus corresponds to the physicists’ notion of a multiplet of oper-

ators transforming under G according to the representation ¢.

We will now discuss the relation of M, to other useful generalizations of the
notion of spectral subspace, restricting our attention to irreducible representations
of a compact group. If x € M, and € (C, H,), then xt®]1 is an element of M and
may be termed an irreducible tensor of type o in M. The linear space of such tensors
is the spectral subspace M(c) of M introduced by Evans and Sund [6] in the more
general context of actions on Banach space. M(o) is the image of M under a pro-
jection p, onto the subspace of those elements of M which transform under G
according to some multiple of the representation o. Specifically, we have

Po(3) = d(a)S (o)) duls),  yeM

where d(o) is the dimension of ¢ and p is the normalized Haar measure.
The relation between M, and M(c) can be made more precise: both M,

and M(c) have an inner product with values in the fixed-point algebra M® =
= ([(®a, iRa):

{x', xy =x'x* x,x'eM,
Yy = S"x(y’y*) du(g) », 5" € M(o).
Pick e; € (C, H,),i = 1,2, ..., d(g) with efe; = §;; ; then the maps w; : M, - M(c)

defined by
wi(x) = meeié@l
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have adjoints w¥ : M(c) — M, relative to the inner products given by
wi(y) = V(o) S #,(y)efo(e)* @1 dulg).

It may be verified by direct computation that the w, are isometries expressing M(o)
as a direct sum of d(s) copies of M,. The right supports of M, and M(s) are
the same projection of M+, However the left support of M,, a projection of
(c®u, c®a), is equally important, although not in evidence if one just looks at
M(6) =« M. Perhaps the most important advantage of M(o) is expressed in the

simple equation
M(o)* = M(5)

where & denotes the conjugate representation. This shows, in particular, that the
left support of M(o) is just equal to the right supports of M(5) and M- .

There is a third variant on the notion of spectral subspace combining, as far
as possible, the separate advantages of M(c) and M,. Let d(¢)i denote the trivial
representation of G on the representation space H, of g, and set

M= (6®ux, do)iQu).

As a linear space this is again a direct sum of d(¢) copies of M, and is therefore
isomorphic to M(o). In fact the map p, : M — M(o) factorizes through Mec: if
y € M, set

po(y) = S o(8)* ®t,(y) dyu(g) € Mo

then
Po(y) = d(@)Tr(p°(y))

where Tr : #(H,)®M — M is the conditional expectation determined by the trace.
If x € Me?, then

d@)Tr(x) = Y, (F ®D)x(e;®1) = d(0) Y, wi(e} ®1x)

showing that x — Tr(x) is an isomorphism of M? and M(s). A simple computation
shows that the inner product on M(o) is related to the (d(c)i, d(c)i)-valued inner
product on M7 by

d(o)XTr(x"), Tr(x)*> = Trx'x*.

Note too, that if we let G act on M by x — a(g)®1x,
Tr(o(g)®1x) = Tr(xo(g)® 1) = Tr(i®@x,(x)) = &, Tr(x)

o that this action corresponds to the original action « on M(a).
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We can describe the antilinear isomorphism from M¢ to M? directly without
passing through M(o). Let J, : H, - H_ be an antiunitary map with J,6(g) =
= 6(g),,g € G. Let &, = J,e; and set

¥ = Z (€;e7 ®@)x(e;e] ®L).
IyJ

The map x — X is the required antilinear isomorphism from M< to M. If x is
regarded as a matrix with values in M, then X corresponds to the “complex-con-
Jjugate matrix”. Unfortunately, this operation is a priori only well defined when
d(o) < +-co.

The pivotal notion of this paper is the spectral category rather than the spec-
tral subspaces. It not only contains the spectral subspaces M, and M¢ but also the
von Neumann algebras (6 ®«, c®a). If o = i, this is the fixed-point algebra M®,
if o is irreducible (c®a, c@«) is the algebra %(5) of spherical functions associated
with G in the sense of Landstad [8]. Whilst if p denotes the right regular represen-
tation of G then [4]

(p®@a, p@a) = W*(M, %)

is the cross product of M by the action o of G. The spectral category thus unites
these apparently disparate elements into an algebraic structure carrying a natural
action of Rep(G) and, for this reason, is a natural tool when investigating the
action « of G on M.

The spectral category also leads us to some natural spectral invariants for
the action. We shall define spectral invariants so that they are subsets of objects
of Rep(G) saturated under unitary equivalence. It then becomes meaningful to
ask whether these invariants are closed under tensor products, conjugate and
subrepresentations. In this context, it is useful to note than an invariant closed
under tensor products, subrepresentations and conjugates of one-dimensional
representations is automatically closed under conjugates of finite-dimensional
representations. For, if ¢ is a d-dimensional representation, its conjugate ¢ may be
realized by setting

6(g) = deto(g)~'a'(g). g€GC

where ¢’ is the d-dimensional representation induced by ¢ on the space of totally

antisymmetric tensors of rank d — 1 and g — deto(g) is nothing but the 1-dimen-

sional representation on the space of totally antisymmetric tensors of rank d.
The natural definition of the spectrum of o in this framework is

Sp(e) = {o € Rep(G) | M, # 0}.

Obviously, if ¢ € Sp(x), ¢ < 1, then t € Sp(a) and the computations in this section
show that Sp(x) is closed under conjugates of finite-dimensional representations.
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Of course even if M is a factor, knowing that o € Sp(e) does not tell one
much about the action, since if e € M?, e # 0, 1, we do not a priori know whether
this information bears on eMe, (I — e)Me, eM(1 — ¢) or (1 — e)M(1 — e). Our
next invariant sheds some light on this question. We define

QSp(x) = {o € Rep(G) | clo@) == c(i®u)}

where c(c®ua), in conformity with the notation of [7], refers to the central support
of c®ua in the W*-category Sp(M, «). Clearly o, ¢’ € QSp(x) implies 0 @0’ € QSp().
Also, since tensoring by o, being normal =-functor, preserves quasi-equivalence
[7; Corollary 5.6], QSp(x) is closed under tensor products and conjugates of
l-dimensional representations. If ¢ € QSp(«), then (c®u, c®a) and M® are
Morita equivalent [7; Remark 7.9].

An action will be said to be guasi-dominant if the regular representation
p € QSp(x). Tensoring the equality c(p®«) = c(i®a) by o, it now follows that every
object of Rep(G) is in QSp(x). Thus all objects of Sp(M, «) are quasi-equivalent and
hence have central support 1, i.e. are generators of Sp(M, ).

The term dominant was introduced by Connes and Takesaki [3] for the action
of separable locally compact groups on o-finite von Neumann algebras. These
separability conditions allow one to restrict attention to separable #(G) and make
Sp(M, ) into a o-finite W*-category. An action is then dominant if M= is properly
infinite, i.e.if /®a has infinite multiplicity, and if i@« and p@« are equivalent as
objects of Sp(M, o). Hence, in their context, a quasi-dominant action is dominant
if and only if M* is properly infinite (cf. [7; Proposition 7.12]). When working up
to multiplicity, the more economical notion is quasi-dominant.

For the remainder of this paper, the important class of actions will be the
integrable actions, also introduced in [3]. For our purposes, it is convenient to define
an action « to be integrable if p®a is a generator in Sp(M, «), or equivalent if
c(i®a) < c(p®a). It will be shown in Appendix B that this terminology is consistent
with the usage of [3]. An integrable action is quasi-dominant if and only if i@«
is a generator in Sp(M, ). In this case the center of the fixed-point algebra, the
center of the cross product and the center of the spectral category are ail isomorphic.
In fact, the action is integrable if and only if the map z — z,4, is an isomorphism
from Z Sp(M, ) to ZW*(M, «) and it is then quasi-dominant if and onlyif z — z;g,
is an isomorphism from Z Sp(M, «) to ZM=.

The final invariant to be discussed in this section is the monoidal spectrum :

MSp(«) == {0 € Rep(G) | c®@a ~ d(o)i®u}.

Here ~ denotes the equivalence of objects in a W*-category. This definition improves
on [14; Definition 6.3] in that it can be employed even if M® is not properly infinite
(cf. [14; Proposition 3.6]). MSp(x) is closed under tensor products, direct sums and
conjugates of 1-dimensional representations.
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To illustrate the role of this invariant, let G act on L*(G) by right translations.
Let w, be the unitary operator on #(L¥G, H,)) defined by

(w.Xg) = 0(2)i(g), ¢ € L¥G, H,).

w, intertwines c®p and d(6)i®p and is an element of (H,, H,)®L®(G); hence
every object of Rep(G) is in the monoidal spectrum of the action of G on L®(G).
The same is now true of any action which is the dual of a coaction as follows at
once from [9; Theorem 11.2.2ii)] and the functoriality of the spectral category.

As is well known, the converse is not true even if G is abelian since M can be
a twisted cross product by an action of G. It is precisely for this reason that the
study of faithful, ergodic actions of compact abelian groups is interesting [10].

3. THE CONNES INVARIANT I

We come now to the problem of defining the analogue of the invariant I’
introduced by Connes [2] for the action of abelian groups. His defining formula
I'(z) = (M Sp(«,), where e runs through the non-zero projections of M* and the

spectrum is understood in the sense of Arveson, makes it clear that the reduced
actions z, on the von Neumann algebras M, are now involved in an essential way.
This formula was examined by Evans and Sund [6] for the action of compact non-
-abelian groups, who gave an example to show that theorems valid in the abelian
case now fail. We shall define two other invariants, denoted I'y(x) and I',(2), which
can be used to give analogues of theorems valid in the abelian case and which coin-
cide for quasi-dominant actions. For reasons already given we restrict ourselves
to integrable actions.

We define I', (o) = (M) QSp(«.), where e runs through the (non-zero) projections

e

of M= This definition involves the spectral categories Sp(M., o,) of the reduced
actions. However since (c®«, , T®a,) can be identified with {tr€ (6@, T®@«) | 7 =
= 1(l,®e) = (1,®e)t}, it will not be necessary to introduce these reduced spectral
categories explicitly. The first result gives alternative characterizations of I';(%).

PROPOSITION 1. The following eight equivalent conditions define o € I'\(2):

a) ci®o,) = clo®e«,) in Sp(M,, a,), e € M*~.

b) Given projections e € M®, f € (e®ua, c@a) with 0 # f < 1,®e, there exists
te (c®u,i®a) with etf # 0.

¢) c(elge > 1,®€, e € M*.

a’), b’) and c') obtained by restricting attention in the above to projections
ee ZM®.

d) cle)og. = 1,®e, e € ZM*.

¢) c(i®a) > c(o®u) and et = t1,Qe, t € (c®, iQY), e € ZM".
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Proof. a) implies a’) implies b’) trivially. Since by [7; Proposition 5.2],

cle)sge = sup  s(et), b) and c) are equivalent and so are b’) and ¢’). Further ¢'):
te(o®a,iQa)

implies ¢) since c(e) = c(e) where € is the central support of e in M*. Now b) implies.
that c(i®a,) > c(c®u«,), e € M. 1f this inequality were strict for some e € M?,,
we could find e € M® 0 # e <e with et(l,®¢") = e't(1,®e)(1,®¢') =0,
t € (c®a, i®a). Hence b) implies a) and the first six conditions are equivalent.
Applying ¢’) to (1 — e) € ZM?, we deduce

l — c(e),,®, > C(] —_ e)¢,®¢ = 10®(1 —_ e).

Thus c(e)sg. < 1,®e so ¢’) implies d). Now d) implies €) trivially. If e € ZM*,.
e) implies

[cle)ige — €]t = t[c(e)spe — 1,®e] =0, 1€ (6®ua,i®x)

and hence that c(e);g, = e since the right support of (c ®@a, i®a)is 1. Thus e) implies
d) and a fortiori ¢’) completing the proof.

If ¢ e I')(¢) and © < o then t € I'(«). Since, picking an isometry v € (z, o)
and using d), we have

C(e)r®«z == (U*®1)C(e)u®¢(v®1) = 1t®e'

Bearing in mind the stability properties of QSp(x), we see that I';() is also closed
under direct sums, tensor products and conjugation of finite-dimensional repre-
sentations.

Thus I'j(«) has the good algebraic properties we might expect of an analogue

of Connes’ invariant I'(#) which is a subgroup of G in the abelian case. However
I'y(«) is not stable under cocycle perturbations. Now, in the abelian case, I'(a) is
also the kernel of the restriction of the dual action to the center of the cross product
[3; Theorem IIL.3.2]. When G is not abelian, the center of the cross product will
no longer be preserved under the action of a dual of G. Nevertheless, the following
invariant I'y{x) is the natural analogue of the kernel of its restriction to the center
within the framework of this paper (See Proposition 2).

We define ¢ € I'y(«) if for each object t of Rep(G)

Z¢7®r®m = 1“®zr®u , z€Z SP(M, OC).

Again I'y(x) is closed under subobjects, direct sums, tensor products, and conju--
gation of finite-dimensional representations. Furthermore, d) of Proposition 1
shows that Iy(a) < I';y(x).

Since « is integrable Z Sp(M, a) and Z W*(M, o) are isomorphic and we can
expect that I'y(e) can be defined using the cross product. Let w, denote the unitary
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-operator on H,QL¥G) ~ L*G, H,) defined by:

(w,6)(8) = 0(g)é(g), &€ L¥G, H,)
then

W, € (c®p, d(0)i®p).

PROPOSITION 2. ¢ € I'y(®) if and only if w,®1 commutes with 1,®@z for each
z€ ZW*(M, a).

However, since p®a is a generator in Sp(M, «), we can find partial isometries
€ (t®a, p®a) with Y] vFv, = 1,¢, [7; Proposition 7.3]. Hence
k

. * —
1"®Zr®¢ - ,\Z 1, ®v; zd@ﬁ@al"@vk = Loee

and g € Iy(x).

Turning to the stability properties of I'y under a change in the action, we
first note that if we let G act trivially on Z(H) then Sp(MQ@B(H),a®]1) =
= Sp(M, )) @A(H) so that z - z®1 is an isomorphism from Z Sp(M, «) to
ZSp(M, a®1) hence I'y(a®1) == Iy(2) and I'(a®1) = T, ().

Now let g — a(g) be a continuous unitary cocycle for the action «, then the
perturbed action ,« is defined by

Mg(X) = a(g)a(x)a(g)*.

. is said to be square integrable if . is integrable [3; Chapter III]. If we regard M
as acting on a Hilbert space H and define, cf. [18], 4 € Z(L¥G, H)) by

(48)(g) = a(g=Ni(g), ¢ e LXG, H),

then A is a unitary operator implementing an isomorphism of W*(M, «) and
W*(M, ,a). Since w,® 1 commutes with 1, ® 4, we deduce from Proposition 2,

COROLLARY 3. If a is a square integrable cocycle for the action «, then
To(e) = Toy(,2).

Thus, if [«] denotes the set of all actions which can be obtained from « by
tensoring with a trivial action on some #(H) and then perturbing by a square
integrable cocycle, we have I'y(a) = I'y(B) V B € [¢]. We can now draw two simple
<conclusions on the relation between I'y and I'; .

PropOSITION 4. a) If a is quasi-dominant, I'\(¢) = ().

b) Ty(x) =BQ] ry(B).
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Proof. If o € I'(«) then by Proposition 1d)
Z,ge = 1e®Z,5,, 2 € ZSp(M,a).

If « is quasi-dominant, i®a is a generator of Sp(M, «) and, arguing as in the latter
half of the proof of Proposition 2, we see that ¢ € I'j(x) proving a). To prove
b), we simply consider the W*-system {MQ%(H ), a®adp}. a®adp is a quasi-
-dominant element of [x]. Hence I'/{a®adp) = Fy(a®adp) = Iy(x) proving b).

We close with some elementary remarks.

Let H={he G|a(h)=1,, a € I'y(a)}, then H is a closed normal subgroup
of G. In the case of compact groups since I'y(«) is closed under tensor products,
direct sums, subrepresentations and conjugations, I'y(«) corresponds to the set of
representations of G/H. The same remark applies to I';(«).

Any action of the form {#(H,), ado} is a cocycle perturbation of the trivial
action so that I'y(ad ¢) contains only trivial representations. Even for such simple
actions I'; can contain nontrivial representations. If ¢ is the irreducible two-dimen-
sional representation of P,, for example, I'; corresponds to the representations of
Py/Z; ~ P,. '

If o is an integrable action of a locally compact abelian group then using
[3; Theorem II1.3.2, Lemma III.3.3] or [11; Theorem 3.1], we see that I'y and I,
coincide with Connes’ invariant I' in restriction to irreducible representations.

We have restricted ourselves to integrable actions. For general actions of
locally compact groups what is missing is not so much a suitable definition of I'y
which might be defined using Proposition 2 or set equal to I'y(,&) for some square-
-integrable cocycle a but an invariant I'y(«) which can be computed using spectral
properties of the action «.

4. APPLICATIONS TO A CLASS OF ACTIONS

We clarify the relations between ZM<®, ZM, ZW*(M,a) for integrable
actions whose Connes invariant is maximal. Let n, denote the embedding of M
into W#(M, o) defined by:

(m(x))(g) = oz '(x)é(g), ¢ € L¥G, H).

Note that if x € M*® then n,(x) = 1, ®x.
For any action a we have an injection @ : Z(M)n M* —» ZSp(M, «) defined
by #(z), = 1,®z.

PROPOSITION 5. Let a be an integrable action of G on M, then the following
conditions are equivalent .

a) @ is an isomorphism.

b) ZM* = Z(M)n M® and o is quasi-dominant.
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) ZWH*M, o) < n(ZM).

d) ZW*(M, o) = n(ZM*).

e) T@o(a) contains every object o of Rep(G).
e’) I'y(a) contains every object 6 of Rep(G).
f) p € Iy().

f) p € I'(a).

Proof. a) and b) are obviously equivalent. ¢) could have been written
ZWHM, o) = n,(Z(M) n M*)and is therefore againequivalent toa). Since Z W*(M, x)
commutes with n,(M), d) is apparently stronger than ¢) but a glance at b) shows
they are again equivalent. a) implies e) trivially. Now by Proposition le) and Pro-
position 4 a), f') implies f). On the other hand, if p € I'y(x) then 200 = 1,24,
Vze ZSp(M,a). Thus x - 1,®x = m,(x) is an isomorphism of ZM* and
ZW*(M, a) so f) implies d), completing the proof.

For compact groups, it was implicitly shown in [15; cf. (3.6)] using condition
b) of Proposition 1 that b) follows from ¢’).

The original motivation for Proposition 5 comes of course from [2; Theorem
2.4.1] and [3; Corollary TII.3.4]. In this sense we have:

COROLLARY 6. Let a be an integrable action of G on M ; then W*(M, a) is a factor
if and only if o« acts ergodically on the centre of M and one of the equivalent conditions
of Proposition 5 hold.

Motivated by the discussion in [9; Chapter VI] and [12] we close by noting
conditions on the relative commutant which imply the equivalent conditions in
Proposition 5.

PROPOSITION 7. Let o be an integrable action of G on M. The following
properties imply the equivalent conditions of Proposition 5:

1) nfZM) n WM, a) = n (M).

2) n, (M) n W*(M, o) = n(M).

3) n (M) n W*(M, «) = n(ZM).

4) (MY nM = ZM and « is quasi-dominant.
Furthermore 1) = 2) < 3) = 4).

Proof. The equivalence of 2) and 3) is evident. Intersecting 1) with n, (M),
we see that 1) implies 3). Since ZW*(M, o) < n (M) n W*(M,«), 3) implies
condition ¢) of Proposition 5, so that in particular « is quasi-dominant. But now
3) implies 4) by [9; Proposition VI.1.5], [12]. 4) obviously implies condition b)
of Proposition 5, completing the proof.

Note that 2) holds whenever n,(M) is maximal abelian in W*(M, o).
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APPENDIX A: CATEGORIES OF MODULES

In this appendix, we relate the spectral category to categories of modules
associated with the W*-system {M, a}.

We regard H,®M ds a right M-module in the obvious way and give it a
M-valued inner product

<h@m, W @m'> = (h, i Ym*m';, h,h'e H,, m,m e M,
and a norm
Xl = |I<x, 3, x € H,QM.

H,®M is just a Hilbert direct sum of dim H, copies of M considered as a right
M-module and is an example of a self-dual right Hilbert module in the sense of
Paschke [13]. The bounded M-module homomorphisms from H, @M to H,QM
can be identified naturally with (H,, )®M, the set of arrows from H,QM to
H,®M in the W*-category #(G)®@M. A formal proof of these simple statements
can be got by noting that H,®M is a generator of #(G)®M and then invoking
{17; Theorem 2.3]. Now H,®M also carries a natural action of G:

gh®m) == o(g)h®ua,(m), he H,, meM, geG.

This action makes H,®M into a self-dual Hermitian {M, a}-module in the sense
of [17] and identifies J#(G)®@M as a full subcategory of the W#*.G-category
Hmod{M, «} introduced there.

Now, as discussed in Section 1, #(G) and hence #(G)®M carry a natural
action of Rep(G) commuting with the action of G. The action of Rep(G) extends in
an obvious way to an action of Hmod{M, a} commuting with the action of G.
It follows that I'Hmod{M, «}, the fixed-point W*-category of Hmod{M, «} under
G, carries an action of Rep(G) and contains Sp(M, a) as a full subcategory stable
under the action of Rep(G). ‘

Unlike Sp(M, a), 'Hmod{M, o} is closed under direct sums and has suf-
ficient subobjects and one might be tempted to use it in place of Sp(M, «) to study
the invariant I'. However, even if « is integrable, not every object of Hmod{M, «}
need be square integrable. Instead, one should consider the full subcategory
Hmod?{M, o} of square integrable modules and the corresponding fixed-point
category I'Hmod?*{M, «}, which still contains Sp(M, «) provided « is integrable.

APPENDIX B

B.1. For an action « of a locally compact abelian group G on a von Neumann
algebra M, Connes and Takesaky introduced in [3] the concept of integrability:

o is said to be integrable when the set of x € M such that S.ag(x*x) dug) < + oo

G
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is o-weakly dense in M. dy, denotes left invariant Haar measure on G and the inte-

gral is defined as limit of the increasing net Socg(x*x) du,(g) indexed by compact sets
X

K of G. Also we shall consider right invariant Haar measure dgu, as specified

by the condition

Sf(g) din(g) = Sf(g)A(g"l) diu(e)

for any continuous function f on G with compact support.

In [9] such actions are characterized by semi-finiteness of an operator-valued
weight &, from M to M=,

In Section 2 we have proposed, for non-abelian G, to say that « is an integrable
action when the object p®u is a generator in the category Sp(M, ). Our aim in
the present appendix is to show the equivalence of the two definitions.

B.2. In Section 1, Sp(M, «) was defined as fixed points of the action %:
t = a,(t) = (@1 )M o(®)*®1), t € (H,QM, H®M), of G on the cate-
gory #(G)® M. We want to derive from this action an operator-valued weight of
H(G)®M onto Sp(M, a) whose semi-finiteness will characterize integrable «.

Let « be an action of a locally compact non-abelian group G on a W#-category
A for which objects are invariant, that is x,(t) € (4,B) Vg€ G whenever
te (A4, B) in .

Let @, = {re A |\ o (r*r)du g) < +oo}. Essentially for the same reasons
as for weights defined on a W*-category [7], we can see that Q, is a left ideal in 2

Let P, the closed linear span of {s*t|s€ Q,, t € Q,} and let P} = P, n A+ where
AU+ denotes the positive part of 2, i.e. elements t%¢, ¢ € .

Fort e P}, let &, defined by &,(t) =\ a,(t)du,(g). Clearly ¢, extends linearly

to P, giving a normal A=-valued weight on A. Moreover, if r€ P, and a e U=,
b € N=, with arb defined in 2, then

atbe P, and ¢ ath) = al,(1)b.

B.3. Following [3], we say that an object A of 9 is square-integrable if
0, N (A, A) is o-weakly dense in (4, A4).

LEMMA. Let e, be the right support of Q, N (A, A) in (A, A). Then A is square-
-integrable if and only if e, = 1 ,. Moreover e, € N and ae, = ega ¥ a € (4, B) n A=,
hence the mapping A — e, belongs to the center of U=,

Proof. For a von Neumann algebra M with an hereditary cone P+ in M+,
it is well known that the left support of the corresponding left ideal Q is s(Q) =
=2 V{ee Pt |e¥e = e}. Also the g-weak closure of Q is Ms(Q). Hence, if 4 is
a square-integrable object, then e, = 1 ,. The converse is trivial.
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Since P} is globally invariant under «, s(Q, n (4, 4)) = e, belongs to A*.

Ifte Q,n (B, B),ae N n (4, B), then ta € Q, hence ta = tae,. If moreover
z € (C, B), then z*tae Q, and, for any projection ¢ in P* n (B, B) we have
ea € Q,, so that ea = eae,. Hence ega = egae, and the result follows.

B.4. Using the previous lemma, we can characterize a square-integrable
object in the following way.

PROPOSITION. There exists a unique element c in the center of WU* such that an
object A is square-integrable if and only if c(4) < c.

Proof. Let ¢ = V{c(B) | B square-integrable object} € W*, For an object
A of U suppose c(4) < c¢. Then ¢, = 1, but, for any square-integrable object B,
the lemma in (Bl) gives

ae, =ega=a VaecWn(4,B)

hence ¢(B), < e, and so ¢, < e, that is, using again the same lemma, A is square-
-integrable.

We immediately see that any object quasi-majorized by a square-integrable
object is also square-integrable.

If we define quasi-dominant objects as objects whose central support in 2*is c,

we obtain also that dominant objects are quasi-equivalent. Quasi-dominant objects.
quasi-majorize any square-integrable object.

B.5. We give now some examples of the previous notions.

B.5.1. The category Rep(G) of unitary representations of a locally compact
group has been defined in Section 1 as fixed points of an action of G on 3#(G).
Square-integrable objects of Rep(G) correspond to square-integrable representations.
g in the sense that there exists a dense subset of vectors £ in H, such that

S (0(8)2, O du(e) < +oo.

In that case ¢ = c(A), where A is the left regular representation of G, which is a
quasi-dominant object (see [S] and [3], Example 2.8).

B.5.2. 1In [7], weights on a von Neumann algebra M have been described as.
objects of a W*-category # (M) obtained as fixed points of an action of R-on a cate-
gory equivalent to M.

Square-integrable object with respect to this action correspond to
integrable weights ¢ in the sense of [3], i.e. those for which the subset
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+00
g a?(x¥x)dt < +oo} is o-weakly dense in M. (s(¢) denotes

o
-0

0,= {x € My,

the support of ¢.) In that case ¢ = c(¢p) for a dominant weight ¢.

B.5.3. One-cocycles for an action of a locally compact non-abelian group G
on a properly-infinite o-finite von Neumann algebra M studied in [3] can also be
considered as objects of a W#-category ZY(G, {M, a}), as in Appendix A, which is
obtained as fixed points of an action of G on a W¥*-category equivalent to M.
In that case, square-integrable cocycles in the sense of [3] correspond to square-
-~integrable objects for this action and ¢ = c(a) for a dominant cocycle a.

B.6. In the following proposition we apply these ideas to the category Sp(M, «)
.considered as fixed points of the action of G described in B.2. We shall see that ;@M
is a square-integrable object if and only if p®« is a generator in Sp(M, a) (i denotes
the trivial representation of G), hence our definition of integrable action coincides
with the one in [3).

PROPOSITION. Let a be a o-continuous action of G on M. The following condi-
.tions are equivalent :

1) The object H@M is square-integrable,i.e. the set {xe M

Sag(x*x)du,(g)<+oo}

is g-weakly dense in M.
2) c(i®a) € c(pa) in Sp(M, a).
3) p®u is a generator in Sp(M, a).

An action satisfying these conditions is said to be integrable.

Proof. 2) = 1). Using Lemmas 2.11 and 2.10 of [3] we see that the object
H,®M is square-integrable for the action described in B.2. The proposition in B.4
then shows that 2) = 1).

2) < 3). 3) = 2) is clear. Now suppose 2). Then c(e®a) < c(e@®@pR)
Vo € #(G) since tensoring by ¢ is a functor. Moreover c{d® p®a) == clp® «)
since s®p and p are quasi-equivalent objects in Rep(G). Hence result.

1)=2). Let ae M= If at=0 Ve (p®u«, i®Qa) implies a = 0, we have
c(p®a)ipe == 1 and 1) = 2) is proved. But, if we denote ad the action of G on
H#(G) described in Section 2, we have n®y = (yn)®1 € (H,, H)QM)n 0.
Vye(H,, H)N Qua, Yye Mn Q¥, hence t = (n®y) € (p®a, i®0a), and, if
0::al,(n®y) = ¢, (n®ay) then (M®y)X®1 =0 Ve (H:, H). Since MnQ}F
is o-weakly dense in M, the conclusion follows from the next lemma.

B.7. LEMMA. For any x € Q¥ , there exists a net {ng}, ng € (H,, H) 0 Quq
and a net {&}, Exe(H;, H,), such that x =1im&, (ng®@x),x®1 for the o-weak
- K

topology.
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Proof. First of all, if n € (H,, H;) and %1 is a continuous function with
compact support, then, for any function f in LG, dy,), we have:

(f, S ady(n*n) dp(g)f ) = S (fs p(n*np(g)*f)dulg) =
— S (np(8)*f, np(e)*f) dulg) < +co

since nf" = (L, nf") = (*L, ) =Sﬁ(h)f’(/1)d#z(/l) < +oo Ve LXG, du).

Hence # € Qaq- ,

This shows that we can choose ng € (H,, H)N Qaa and &g € (H;, H), K
compact set in G, such as #kl and &1 be positive continuous functions with
support in K and satisfying the normalization condition:

Snxp@*c,( din(g) = Sﬁ (1 (hg-Y)A(g)~ > dyuy(h) dyui(g) =
— Sﬁﬁ ()1 (hg =) A dpts(h) da ) =
- Sm ()1 (g~ A(gh=21 dpy(h) dys (g) =

= S';ﬁ (W A(h)~ 2 dp(h) S Cxl(g™4(e)~ 2 dp(g) = L.

Since xng®1 € (H,, H)®M n P, we deduce that, V& € M., ,

|B(@~(Ng @)@ 1) — P(x)| = [Ex @ P, (Mg @ X)) — P(x)] =

= lS(ﬂxp(g)”‘fx¢(ag(x))—‘15(x)) du()| < Slll(pldj(ag(x» — O(x)|

and the lemma is proved when we choose subsets K decreasing to {eg}.

B.8. Another immediate consequence of the previous lemma is that for inte-
grable action «, the collection of spectral subspaces M, defined in Section 2 is
o-weakly total in M. More precisely, the subspace M, is o-weakly dense in M since
in that case Q, is o-weakly dense in M.

10 — 1086
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