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WIENER-HOPF OPERATORS
WITH PIECEWISE CONTINUOUS
ALMOST PERIODIC SYMBOL

JINGBO XIA

INTRODUCTION

Several authors have studied the index theories of different types of singular
integral operators with piecewise continuous symbol, see [11], [12], [14], [15].
Basically, their results are generalizations of corresponding theory for the same type
of operators with continuous symbol. What makes significant difference is that in
the noncontinuous case the discontinuities of the symbol represent a part of the
essential spectrum for the corresponding operator and become a part of the curve
in the index counting. In the context of von Neumann algebra, these results may be
categorized as type I, theory. In the present paper, we shall develop a type Il
analogue.

It is well known that there is an index theory for Wiener-Hopf operators
with continuous almost periodic symbol where the analytical index is obtained via
a faithful representation in a type Il factor A~ (see [6], [7], [4]). We are interested
in adding discontinuities to these almost periodic symbols. We know that every
continuous almost periodic function is identified with its Gelfand transform on
RE, the Bohr compactification of R. Also, there is an obvious way to identify each
piecewise continuous periodic function with an element in L®(R®). We simply
mix these two types of functions to produce a C*-algebra &, which is also considered
as the uniform closure of all the piecewise continuous almost periodic functions.
The main object of the study is the C*-algebra /() generated by Wiener-Hopf
operators on H*(R) with symbols in &. For each W, € (%), the symbol ¢ is
regarded as a function on R®. Intuitively, since the von Neumann algebra /" comes
from the group measure space construction on Rx R, it should be large enough
to accommodate a faithful representation of /(). Indeed it does. What we shall
do is to extend the representation p used in [7] to & (%). Then the Breuer index for
A" serves as an analytical index for &/ ().



148 JINGBO XIA

In order to characterize the Fredholmness of 4 = Z Ik[ W‘ij € 4 (S), we shall
Y
introduce the symbol +(4) = ¥, [] ¢ , defined on Rx [0, 1] for A. Thus the discon-
i k

tinuities of the individual symbols ¢;, become visible as a part of the range of s(4).
The calculation of the essential spectrum is carried out through the localization
of C*-algebra introduced in [9]. We shall show in the text that if ¢,y have dis-
continuities of different periods then W, and W, represent elements of completely
different types in the local algebra. So where the discontinuities are mixed, the
spectrum of local operator is extremely complicated. But our interest at this stage
is not to tackle the kind of complication but just to explore possible generalizations
of existing index theory. Therefore we shall restrict the attention to certain sub-
algebras of /(<) in the present paper and defer the difficult cases for further
investigation. In Section 7, we fully explain the remaining problems.

The rest of the paper is arranged as follows. In Section 1, we explain in detail
the function algebra & whose elements we shall regard as piecewise continuous
almost periodic function. We construct the C*-algebra (%) and extend the repre-
sentation p in Sections 2 and 3. Then we prove that the commutator ideal of &(&)
is mapped by p into the ideal in 4" generated by the trace class elements in Section 4.
Section 5 is devoted to the calculation of the local spectra and essential spectra for
certain operators. In Section 6, we prove the existence of mean motion for certain
symbols and identify minus the mean motion with analytical index.

The author gratefully acknowledges that this work is inspired by a problem,
which also involves the discontinuities of symbols and was considered in [17],
suggested by Professor Joel Pincus.

1. ALMOST PERIODIC FUNCTIONS

We shall denote by CAP(R) the continuous almost periodic functions. The
maximal ideal space R® of CAP(R) is called the Bohr compactification of R. RP
has a natural group structure induced by that of R and R with its original topology
and additions is a dense subgroup of R® (see [16], §1). For each fe CAP(R),
its Gelfand transformf"e C(R®) is considered as the extension of f to the whole
R® and, for simplicity, we shall write f(x) (=f (x)) for x € RB. Also, for each
f e CAP(R), the limit

T
1
im —— dt=M
lim Sf(t) t = M())
T

exists and is called the mean of f. M(+) is a positive functional on CAP(R) = C(R®).
As a matter of fact, the measure associated with M(-) is the normalized Haar
measure on R , which we denote by m. Thus the Gelfand transform of {f,} < CAP(R)
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is a Cauchy sequence in L(RB, m) if and only if
limsup{M(|f, — f,1®) :n,k > L} =0
Looo

(see [1]). The dual group of R® is identified with Ry, the real line with discrete topo-
logy. In other words, each A € R, isidentified with 2(¢) (= ¢!* for¢ € R).

A function 5 defined on R is said to be a piecewise continuous periodic
function if

(i) there exists a € R, a # 0, such that #(t + a) = y(¢) forall t € R;

(ify n is continuous on [0, @ + 1] except possibly a finite number of points
Tiy oo ey ’L'k;

(iii) at these exceptional points, Iinln(t) exist, j =1, ..., %, and, as a conven-

I—rzj

tion, ]im+i7(t) = n(z)).

-7

The algebra of symbols, &, is the uniform closure of the algebra generated
by CAP(R) and all the piecewise continuous periodic functions described above.
We shall describe a dense subalgebra of & whose elements are relatively simple.

It is easy to see that a piecewise continuous periodic function % is the sum
m+ ...+ n where each 5;, j=1,..., k, is a piecewise continuous periodic
function such that each period contains only one jump discontinuity. Let  be
a piecewise continuous periodic function with period 2¢ and on (—a—¢, a+¢) 5
has only one discontinuity at 0. Straightforward calculation shows that 5 has a
Fourier series expansion

® 1
1) = a eikr:z/a ¢ - eimn/a
n(r) Y, @ +cY) p

k=—o00 n+0

where Y, g, e/« is the Fourier series of a continuous periodic function. For
w, b €R, let

1 .
nm_b(t) — 2 _n___ e\2nn(l—b)/m

n#0

for t € (b — w, b + w)\{b} and, as definition,

rlw,b(b) = lim ”w,b(t)-

t»b"

By the Fourier series expansion argument used above, we can also conclude that
there exists a constant ¢ such that

Hab(t) — chgit)



JINGBO XIA
150 '

is continuous. For w, b € R, 0/2 > 6 > 0, let &, ; be a continuous periodic fuaction

such that
Ewps|U o + b — 82, nw + b + 8/2] = 1,
" heZ

Eun s (RNURAG + b — 3, 200 + b + 8]} = 0
v neZ

and

0<&ps< L.

Thus forany p € Z, it is easy to see that 7,4, y ~— M p€pw b w4 1S @ continuous function.
Therefore 7,4, 5 X Mg c = Mo b X Ngo,e X J1 + Naw o fo = N sl 81 T Mo 82 + Mo o2
where f;, f2, & and g, are continuous periodic functions. If nw + b = mw —+ ¢ for
some 1, m€ Z, then n, (1) =1, o(t — b) =1, o(t — Mo + nw — ) =1, o(t — ¢} =
© < Ny (#). In this case 7, yie, o = nf,',, = hy + hun, » Where /i and hy are continuous
periodic functions. If (Zw + b)) N (Zw + ¢) = D, then the distance between these
two sets is positive. Let d be one halfof that distance. Thenn, y1, . = o Mo, Co.cs +
- "w_br’w_c(l - ém_c,ﬁ)- By the definition of ém_c_& ’ nm,béw_c,b and nm,c(l - ém,c,é) are
continuous. Hence in any case, %, yf, c = fo + Al p + hafl, . Where kg, by and
h, are continuous periodic functions. Using induction, we have derived:

Lemma 1.1. Letp,,....,pr€Zandb,, ..., b, € R, then

k k
H ”p .m,b. = Z ']w,b f; +j‘0
et i3 4

where fo, 1. ..., fi are continuous periodic functions.

By the definition, functions of the form Y, /; 11 Mo b, 3T dense in &. By
F] k JKj

~Lemma 1.1, we can easily show that
L

N P
; 1 I,\I n"’/’k’bjk - Z 8p 1 r,'lpq'bpq K

p-=1 q==

where g,, ..., gy € CAP(R). and for each p, i, ..., /".,,,_‘!J are pairwise linearly
independent over Q, the rational numbers.

Let &= {ijl'[nl.’ b :f; € CAP(R) for each j, A;, ..., 4, ... are
j k J s ;’ j’ 3
pairwise linearly independent over Q}. It is clear that we have:
PROPOSITION 1.2. ¥, is a dense subalgebra of & .

Since 7, , is a periodic function, it has the usual Fejér polynomials approxi-
mating sequence {o,}. Recall that o, has the following properties: §o,,/l0 < [[1l.]lc0 »
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. 1 .
o, (1) ="y, di— eikiti=b)o where 0 < df < 1,
k0

atw
litn S 164(t) — 7l o021 = 0

u

for any a € R, and limd} = 1 for each k. Since

n~»00

now

1 o
. S 0t} = Mo (1)1 = S lou(t) — no 5(0)i%d1,
0

n

we also have
. . L
lim lim | ——
2T

n—+oo T— co

I
L

ldn(t) - r’w,b(t)lg dt] = 0.

Another important property of the Fejér approximating polynomials is that for
any ¢ > 0, {o,} converges to n, , uniformly on R\\J(kw + b — ¢, ko> + b + ¢).
keZ

For each 7, ,, it is not hard to construct a sequence of periodic functions {v,}
of period wso that v,(kw + b)) =0,ke Z,0< v, £ 1, ¢, € U,4, and limv,(¢) = 1

£
H-» OO
pointwise. Since v, is periodic, the pointwise convergence also means that

lim|jv, — IHLZ(RB) = 0. This construction can be generalized. Let {5, b .,nw.,b'}
n—oQ 1 7k

be a finite family. Then we can produce a sequence {v,} = CAP(R) such that
vpw; +6)=0, peZ, 1 £j<k, 0<v, <1, v, < Vyyqy, limy,(t) =1 and

llirg}\v,, — IHLG(RB) == 0. Note that if f;, ..., f,, € CAP(R), #; is the product of some
elements in {’7“’1"’1’ cees n“’k'bk}’ J=1,..,m, then v(foy+/fim+ .- + [ ulm) €
e CAP(R).

Functions N b > @ b € R, serve as the building blocks of discontinuities for
functions on &. But in some sense, it scems that a function as simple as 7, 1, .
should not be viewed as being “‘piecewise continuous’’. The following is the reason.
Suppose (Zw + b) N (ZA + ¢) = @ and 1 and w are linearly independent over Q.
Then (Zw + b) U (ZA + c), the discontinuities of 5, 41, ., has accumulation points
in RE. In fact, let § and ¢ be continuous periodic functions such that 0 < § < 1,
0 < ¢ < | and the zeros of § and ¢ are, respectively, exactly Zw + b and ZJ -+ c.
Since the distance between Zw + b and Z1 + ¢ is 0, inf{o(¢) 4 5(1) : t € R} == 0.
On the other hand, o(¢) ++ d(¢) does not have zeros on R. Thus the compactness
of R® forces ¢ + 6 to have zeros on R®\ R, which are, obviously, accumulation
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points of (Zw -+ b) U (ZA + ¢). And indeed, n, 4, . should be regarded as a
function on R®. Therefore it is conceivable that the investigation of the C*-algebra
generated by Wiener-Hopf operators with symbol in & will face certain technical
complexities beyond those caused only by “‘piecewise’” discontinuity. As we explained
in the introduction, our interest at this preliminary stage of the investigation is
not to tackle the technical details, but rather to explore the new phenomena that
do not exist if the symbols are continuous. Hence in this paper we shall develop
the full index theory only for the C*-algebras generated by Wiener-Hopf operators
whose symbol is in certain subalgebras of & in which the algebraic operations do
not generate new accumulation points of discontinuity.

The following are the subalgebras that we are particularly interested in.

Let A= {n, ,d;:i€l}, where 6,e CAP(R) and d(suppd;n (Zw; - b)),
suppd; N (Zow; + b:-))l >0 fori #j. Let S, be the algebra generated by CAP(R)
and A. We shall develop the index theory for the C*-algebra generated by Wiener-
-Hopf operators with symbols in S,. As a convention, when we use notation S,
we shall mean an algebra of functions described as above.

LemMma 1.3, Let ny, ..., 0 € A, then there exist f,, ..., f. € CAP(R) such
that
k
NLovee N = 2 nif;-
J--1

Proof. Let ny=n, ,0,, i=12, and let c=d(suppd,n(Zw, + b)),
suppdy N (Zwy -+ by)) > 0. Then it is easy to see that both ¢ , #, and
1771
(1—-2¢, , Jm are in CAP(R) (see the paragraph preceding Lemma 1.1 for the
1Y

4

definition of ¢ . oJ- Hence nuny =mlng, , 1+ nlm(t —¢, , ). The rest
1:91 U JS N
of the proof is the routine induction procedure, which we omit.

The following are examples of S, .
i) Fixw > Oandlet 4 ={p,,:be R}. Then S, is the algebra generated by

CAP(R) and piecewise continuous functions with the fixed period w. But note
that the discontinuities of functions in S, may not be of period w. For example,
it is easy to see that if m is a positive integer, then 1,,, , = %, ,f + g, where f and
g are continuous periodic functions.

Let w and A be linearly independent over Q. For & >0, let 5,
=1 —&op.e€aceMrc- If keZis such that d(ki + ¢, Zo + b) < ¢/2, then 7,
vanishes on a neighborhood of kA + ¢. If t € Ris such that d(t, Zw + b) > &, then
12(1) = 1, (2).

ii) Let {w; :j € Z} be pairwise linearly independent over Q. By the discussion
above, there are {§; :j € Z} = CAP(R) such that 0 < §; < 1, 6, is not identically
zero on Zw; + b; and

d(suppd, N Zw; + b;, suppd; N Zw; + b;) > 0
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ifis#j LetA={n, b d; :j € Z},then S, contains functions whose discontinuities
do not have any perlodlclty

ii1) Obviously we can construct various mixtures of the two kinds of algebras.
described above. We shall omit the details.

2. WIENER-HOPF OPERATORS WITH PIECEWISE CONTINUOUS SYMBOLS

Now we introduce the C*-algebras of Wiener-Hopf operators with piecewise
continuous almost periodic symbols.

Let H%*(R) be the Hardy space of analytic functions on the upper half plane,
which is considered as a subspace of L2(R). For each ¢ € L°(R), let W,=PM |H*R)
where M, is the multiplication by ¢ and P is the orthogonal projection from
L%(R) onto H*(R). Let S be any subalgebra of &, we denote by &/ (S) the C*-algebra
generated by all W, with ¢ € S. The algebra &/(CAP(R)) is simply denoted by <.
The commutator ideal of &/(S) is denoted by #(S) and that of &/ by €. This setting
L2(R), H%(R) and (%) gives a clear picture of the operators we study, but it is.
not convenient to work with. Let § be the Fourier transform on L2(R), then
FHYR) = LHR.), FPF 1 =y and §M , &1 = T, where (T,f)(x) =f(x — 7).
The analysis will be carried out mostly in the setting L¥(R), L3R, ) and F L (S)§F -1

3. TYPE II,, FACTOR AND REPRESENTATION

We need a commonly used type I, von Neumann algebra which comes
from the group-measure space construction due to Murray and von Neumann
(see [8], [7], [4]). Let . be the Hilbert space LA(R)®L*(R,) = LY Rx R,), where
R, is the discrete reals and the measure on it is the counting measure. On %, we
define

(M, f)(x, 1) = @(x)f(x, 1)

and

(Tof)(x, 8) = flx — 2, t — 2)

for ¢ € L*(R) and 1 € R. {~ T,:9peL2R), )€ R} generates a type II_, factor
A (see [8], p. 136) into which the algebra d(?) will be represented. As usual, the
dimension function is normalized so that for }; M T,1 € 4 and ®; € L°(R) n LY(R),

the normal faithful trace t is given by 7(}; M%TAJ_) = S @o(t)dr where 4, = 0.

R
Let & be the C*-algebra of operators on L*R) generated by finite sums
Y M, T,1 , 9; € L*(R), 2; € R. According to [7}, there is a faithful representation P
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of # into 4. Clearly, § o/% 1 is contained in . We shall extend p to a faithful
representation of F/(&£)F -1 into 4. Let 4, be the closure of finite sums
5 X(aj.bj)TAj :4;€ R, —00 < g; < b; < oo}, where Kapb is identified with the

multiplication operator. %, is a subalgebra and contains F¥F -1 Indeed, it is
easy to see that $€& -1 is the norm closure of finite sums {}; Xapy LA AR i, € R,
77 +

b; > a; > 0}. Let Q : L(R) —» H2(R)" be the orthogonal projection.
LemMa 3.1. For fe CAP(R), $QMPF '€ %, .

iA .t
Proof. Tf f(1) = Y, ajel /" is a trigonometric polynomial, then it is easy to
.see that

o -1 _ ., e g ; == L a
FOMPF =1 = 4o AZ ajT,leR* = IR AZ ajTAjX((),_.},j) AZ au((AJ.,O)le'

T A .<0 .<0

J J J

"The assertion then follows from the usual limiting argument.

LEMMA 3.2. Forw,be R, §M, §-1%,c B,.

b

Progf. Indeed it suffices to show that forany ¢ < ¢, M, bSF-IX(a o€ B .
Let {o,} be the Fejér approximating polynomials of o (see §1), then obviously

JimFM. F-1y  =§ ' i §-1,
snliriechn Lo o M . [tis equally obvious that SFMa" T ™ a ey € By .

Therefore we only need to show that {FM, SF‘IX(G C)} forms a Cauchy sequence
in the operator norm topology. Since Xa o ' for

-
% -1
"m,hk X(a_c)

= ooy T epep ™ T ey 0
-any partition a < ¢; < ¢; < ... <, <c¢, we may assume that ¢ —a < njw.
Let {a, : —oo < k < oo} be a sequence which has only a finite number of nonzero

terms. Then for fe L3(R),

S Y T omiaty of )(t)thS X Wy knfer o s ipuny/ (! — Zhm@)i2dr =

R R
¢+ kalw ¢
-5 S a1 — 2krfw)fedi = ¥ |ak|zgtf<t>|2dt <Y I A,
k k

a+kxfe a y
. A . 1 A
Hence ]|Zaka,‘,t/a,x(a ollf < Y. a2 Since FM, §-1 =Y dr —[;-e-"‘-’/a’TZk,,,w, we

’ P " k%0

have

G [< 6 n m 1 2
188, 55, ., — SM, Sy, N < [z \dz — dp! T] :

k+0

“This completes the proof.
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Actually what we have shown is that if {c,} is the Fejér approximating poly-
nomials for , , , then for B e 4,,

lim||[¥ M, & - t—-8M, 1Bl = 0.

n—-00

‘This can obviously be generalized to:

COROLLARY 3.3. If {a}} is the Fejér approximating polynomials for Mo b s
j= , k, then for each B € A, ,

lim
n=00

k k
(SFHM{,;'SF’I—SFHMn bSF‘l)Bi‘:O.
jeel n wpb;

Jj=1 J’

CoroLLARY 34. For o e &, W, % < @.

Proof. Tt suffices to present the proof for ¢ € &,. By Lemma 3.2,
FW, 65 < #, since FEF5-'<B,. Then we only need to note that
A Boxg = FECF 1.

e +

COROLLARY 3.5, Let n == Moy b, -+ Ny by then for e CAP(R),
Wy — WyW,€5%.
Proof. $W, -t — W, W, F -1 =FPY-YFM,F-NFOMPF ") € %, .

Now we start extending p. Let F : LR,y) — L*(R®) be the Fourier transform,
then the umtary operator &~ 1®F LARx Ry) - L2(R)OL2(RB) induces a faithful
represnetation p’ = (& - 1®F)p(J’ 1QF)-1 of.%‘ in A = & - 1®F)JV(£’F 1Q®F)-1
It is easy to see that (& - 1®F)T,(é}’ LQF)~ 1 = M ®M ia. and that for e LA(R)®

®LARE), (M iz @ Mjs. )(x) = e[ is. fx)] — Miac.+.0/(x), where f(x) is regarded
asan element in L2(R®) and M, the multiplication by ¢ on L%R®). Thusif g € CAP(R),
then [(F 1@ F)p(§W, &~ 1)(0’ 1QF) =1 U|(x) = (P@1)Mgpes H[(PRI)%)(x), where
P®1 is the orthogonal projection from L*R)®L2(R®) onto H2(R)®LRE),
% € LA(R)®LAR®E), and the exact meaning of the right hand side of the equality
is the value of (P®1)f at x where () = Myu+ \[PR1U)(y), y € R.

LeEmMA 3.6. Ler {g,} = CAP(R) be such that ||g,llc < L and

T

(*) lim [ lim 71; S lg.(t) — g(l)l2dt] = (.

nooo | Tooo
-T
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Then s-llmp(fFW &-1) exists and is independent of the choice of {g,}. If, in

n—-oo

particular, g € CAP(R), then

s-hmp(éFW F-1) = p(FW,F-1).

n—o0

Proof. Since {|g,llo € L, g can be regarded as an element in L2(RB) n L*(RB).
(+) implies that on L2(RE), s-limMg o+ = Mg+ .y for x € R. Thus the existence

of s-lim(F 1@ F)p(§¥ W 1)(J '®@F)-! follows immediately and therefore so

n-»o0

does s-lim p(EFW §- 1). It is clear that if g = O then the above strong limit is

n—oo

zero too. The second assertion is obvious.

Recall that an element in &, has the form ¢ = f, + fin, + ... + fin, where

fo, .-, J € CAP(R) and each #5; is the product of a finite number of elements in
{o» : @, b € R}. By the properties of Fejér approximating polynomials of 7, ,,
for each n; w2 have a sequence {pj} = CAP(R) such that {pj|l < L for certain

L >0 and liml|pj — '71”L 2(RB, = (. We define

7n— 00

PEWSF ) = ImpEW, ;1

n— oo

<t fy 1)")0)7 -
Lemma 3.6 guarantees that the definition of p(& W& ~1) does not depend on the
particular choicz of {pj}. Elements 2 H with ©j € &y are dense in ().

So if p is to extend to a representatlon of SJ"M’(V)J 1, then naturally
PFY, g WooH =Y, IkI pEW, Y.
J 3 J

At this stage, however, it is not at all obvious that this p is even well defined. Never-
theless, we shall proceed to prove that p really extends to a faithful representation
of &.o/(F)F -1

LEMMA 3.7. If B€ €, then BW, € € and p(FBS 1) (§ W,§ 1) = p(FBW,F Y.

Proof. We define function ¢, by replacing every 7, , in the definition
of ¢ by its a Fejér approximating polynomial. Then by Corollary 3.3,
limjBW, — BW,| =0.80 p(FBF -H)p(F W, §-1) = lim p(§F BF ~1)p(F W, &)=

= lim p(FBW, 1) = p(FBW,F-Y).

n— oo

LemmA 3.8. Let v € CAP(R) vanish at the discontinuities of ¢ € Fy. Then
W,W,e o and

PEWS-DpEFEW,EF-1) = p(FW,W,F-D).
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Proof. WW, = W,W,—~ W,, +W,,. By Corollary 3.5, W W, —W,, €
€ ¥ = . Note that vp € CAP(R), so W, W, e . Let ¢, be the same as in the
proof of Lemma 3.7, then

FE WS- DFEFW,F D) = lim 5 W,F-DHE W, §-1) =

n—o0

= lim[pEF (W, W, — W,, )5+ pEW,, &Y.

n—o0

Corollary 3.3 implies lim||[WuW,p" — W,,q,n] —[W, W, — W,ll =0 (in this

case, take B = F QM PF-'). Since v vanishes at the discontinuities of ¢,
lim|jve, — vo|l, = 0. Thus

271—-00

PEW,F-Vp(EW,FY) = §(E W, W,5 ).

LeEmmA 3.9. Let ¢,, ..., 0, € P4 and let v € CAP(R) vanish at the disconti-
nuities of @y, ..., @,. Then WL,W,,,1 oW, ed and

PEWFIEW, TN ... pEW, ) = pEW,W, ... W, Y.

Proof. We use the induction. By Lemma 3.8, we have p(§F W, -1 p(§ leﬁ-l) =
= p(§ WWIST -1 + FK& -1) where v, vanishes at the discontinuities of ¢,, ..., @,
and K € ¥. Thus by the induction hypothesis and Lemma 3.7 we have

PEWITHEEW, 1) ... pEW,F Y =

=5("G]—'W0(P1W¢o Tt

Wo S0 + pEKW,, ... W, =

Pk
= ;N)(EJF[WL.(,,1 + KW, ... W, &) = [)(SFW,,W,J,1 o W, 0.
CoroLLARY 3.10. If @, € &, and v vanishes at the discontinuitics of ¢, , then
3 TLAE Wy, § B WS Y, TLAE W, 4] =
= PO TL W, WIS LW, 8.
Before finally presenting the proof that p preserves the operator norm, we

need one more lemma.

Lemma 3.11. Let {A,} be a sequence of bounded self-adjoint operators on
Hilbert space H such that 0 € A; < A, < ... € 4, < ... and s-limA, = A.

Then lim||A,|| = ||4|).
n—0o0

n
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This fact is perhaps known to every operator theorist. But since we are unable
to find a standard reference, we include a proof here for completeness.

Proof. Suppose the contrary. Then it would be true that limj4,l} > | A]l.

We may assume that lim||4,{ =1 and ||4]]| =1 — ¢ for certain ¢ > 0. Pick n,
n—-co

such that |4, || > 1 — /4. We can find an x, € H such that ||x,||=1 and (A,,o.\‘o,xo)z

= 1 — ¢/2. Since A, A“o for n = ny, we have (Axy,xy) = lim(4,x,, Xg) >

Z (4, Xo, Xo) > 1 — ¢/2. This is a contradiction.
Now we fix {9, } = &, and let {v,} = CAP(R) be a sequence such that each
v, vanishes at the discontinuities of ¢;’s, 0 < v, < I, v, < v,4,, limy,(r)::1

and limnv,, — 1y =0 (see §1). Then 0 < W, < W, ., 0<pE W, F-1)<

n-oo L¥(RB) LI
< ~(SFW LI s-:m;W == 1 and, by Lemma 3.6, s—lim[)(é‘FW 2T —,(R iR
Let T = 2 H W,, and S == y Hp(JW -1), then since S* p(J‘W -1)§ <
< 8 p(cS’W 5 1)S T=W, T W, Te,gi Ir, gS =S and p preserves

operator norm on J&id’ -1 llSnz = || S*S|| = l1ml[S ‘pF W, F "‘1)SU =
= lim[|5(F(T*W, T)§ -N)|| == limi| T*W, T|| = | T*T]| = T,

n—-00 n-00

This shows that p does preserve the operator norm of 7. Thus p extends in
a natural way to a faithful representation of & o/(¥)F ~1into JV—7R+de¢V7R <R,
Let p be the pullback of p to «#(%), then this is the desired faithful representat10n

But the discussion above may yield a general result which we shall need in
Section 5. Let H be a Hilbert space and let « : &/ — Z(H) be a faithful represen-
tation. By the process of extending p, it is easy to see that to extend « to a faithful
representation of &/(%), we only need

(3.12) if {f,} = CAP(R), |[fille < M hmf(x) == f(x) a.e. on R and lim|f, —

n—00
— fil 4 = 0, then s-lima(W, ) ex15ts and, in the event fe CAP(R).
equals x(W));

L*RB) n-0
(3.13) forany 4 = ¥ [I W‘ij e (%), there exists an increasing sequence v, <
7 Tk

-0
L*(RB) .
W, ; 1;[ W, € o and x(W, ) ; l;[ o W,,) =AW, JZ IkI W,,) if we
fieﬁne oc(Wq,jk) as the strong limit of {a(W} )} where {f,} is an approximat-
ing sequence of ¢ .

What we have actually proved is:

LeMMa 3.14. Let o : o > FL(H) be a faithful representation which satisfy (3.12)
and (3.13). Then « can be extended to a faithful representation s4(¥) — L (H).

n

€v,€ ... €1, < ... <1 in CAP(R) such that ip, — 1]
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4. THE COMMUTATOR IDEALS

The representation p carries ¢ into the ideal of compact operators in A" (see
[7]). We shall prove that p(4(%)) is contained in the compact operators in 4.
Denote the ideal of compact operators in A4 by ¢, which is the norm closure of’
the trace ideal.

LemMA 4.1, Let n; =1, b J=1, 2 where w, and w, are linearly independent
s
over Q. Then

p( WrIIVVrz2 - erlrrg)
belongs to the Hilbert-Schmidt class of /.

Proof. Without loss of generality, we may assume that w,=1, w,=w is irratio--
nal and b, = b, == 0. Let {¢}} be the Fejér approximating polynomials of »;, j =1, 2,

1 (4
respectively. Then A, = =W, W W = Y — dSRR T, o mw)] 5
% %k im0 1171 ’
where T, = ; T ,0 < d,’:"’ <1, j= 1,2, and ]imd,’f’f =1 (see §I) Hence
LA [R+ AXR}' .
- 00
1 -
(L’T‘AI?Akg}'—lz ———— d,’;&ldz’ldtz\l’2(1"]"2}:(0,qw)qu_p’]q"..,"mx(o'",w)+ Z M(PAT;. -
n—-mo=p-—qw MAPq =
= Z 2“; (dl‘ 1)2 d'l;lz 2 (0 mw) + Z - (d:’; 1 2((],’;1 2)/(mw nanw) + 2 ]t‘[ T
nme MMEN Mw>n
Thus
PATA)S Y, —+ T - - < oo,
nimeMN% S, nm?

By the definition of p (see §3),

/’([I'Vrill/Vrl2 = Wy V' IWy Wy, — "Vrzluz]) = S'}}im p(AZAY).

Therefore p( Wy, Wa, — Wy y,) belongs to the Hilbert-Schmidt class of 4.

REMARK. Observe that W, W, — W, , = PM, QM, P. If we exchange the
roles of L*R ) and L%(R_),and P and Q, it is clear that the above proof also
shows that 'zﬁ(ﬁ,’f/ﬂ) < M < co where /Ik =: QM ,PM ,Q. Hence for any

%k %%

o, pe, p(PM ,OM, PM, QM,P) also belongs to the Hilbert-Schmidt class of 4.
LEMMA 4.2. Let y; = Mo b J=1,2,...,k where wy, ..., w, are pairwise

linearly independent over Q. Then p( Wy oo Woyo — Wy, ',,k) EA.
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Proof. We use the induction. Suppose that the lemma is proved fork — 1 > 2
By the induction hypothesis, it suffices to show that

P W m— W W) EX.
Let 4 = Wapooog— W Wy, = PM, ... M, QM,P. We have
Woone Woo = Waoone W, =
=Wy = Wa oo Wy IWo =Wy oo Wy W, Wy 1

Wy oo Wy Wy — W, =K,

-2 1 "’k—a"k) W”k-1

and by the hypothesis p(K) € . Therefore by the remark preceding the lemma,

p(A(A + K)*) = p(PM,, ... M, OM, PM, OM, M, P) =

”Lz

= p(...[OM, PM,,_0] ...)

is a compact operator in A", Hence p(4)*p(4) = p(A*A) is compact. Obviously,
50 is p(A4). This completes the proof.

Note that this proof is the only place in the whole paper where we need the
assumption that w,, ..., w, are pairwise linear independent over Q.

LemMmA 4.3. Let 7; = nwi.bjfj, J=1,...,k, be such that f; € CAP(R) and
d(supp f; N (Zw; + b;), supp f; 0 (Zw; 4- b)) = ¢ > 0. Then

w. + —W. ...W. e%.
My ! g
Proof. Denote & = é“’v”r""“’ and 5; = Ha, b, - Observe that (1 — &), € CAP(R)
and if dtkws + by, Zw, + b)) > ¢, then fi(kw, + by)fs(kw, 4 by) = 0. Hence
nafif2€ € CAP(R). Therefore by Corollary 3.5,

Wy Wi, = Wa,Was,1,(mod ) = (Wye Wy s, 1, + Wa-omns,s,) (mod 6) ==
= (m;l I’Vt'r/gflf2 -+ W(l—‘g)'lltlgflfg) (mod¥) = W'7177:, (mod ¥).
The rest of the proof is essentially the same as the induction procedure in
Lemma 4.3. However, since this time we are working in the C*-algebra /(%) in

which elements may not have polar decomposition, we must make certain in
the induction that 4%4 € & yields 4 € ¢. But since € is an ideal in /(%) (see
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Corollary 3.4), in the quotient algebra /()6 |4 -+ F(° = H(A + ‘6)"(./1 -4 D).
Hencn A €% 1f A*A4 e ¢ and the proof of the ]emrm to]]oWs -

Now we ¢ ~n¢1der [W,7 b, ] where @ and A are hn“ar]y dependent over Q.

By §1,n, 5 == 1, ,fl 4 f0 and #; , = 1, &1 + Lo yvhere J.8:€ CAP(R) P==1,2,
If Zp -+ ¢ Zy--b, then g, = 1,5. Otherwise, d(Zy -+ ¢, Zp + b) > 0, there-
fore [W,, ,, b] € €. In any event, we have W, W,,Lc] e?¢if o and A are
linearly dcpendent over Q.

Combining this with Proposition 1.2, Corollary 3 5 and Lemma 4.2, we thus
have proved:

b’

.. THEOREM 4.4. p(€()) is contained in the ideal of compact operators in N,

Let S, he the subalgebra of & generated by a family 4 of functions such
that the d]st“nc between the discontinuities of zny two is greater than zero, as
described in Secfion’'1. Then Lemma 4.3 vields immediately:

THEOREM 4.5. The commutator ideal of <¢(S ) is the same as €.

5. THE MAXIMAL IDEAL SPACES OF QUOCTIENT ALGEBRAS

Denote 4, == p(A(S)) and H = A7 N.#. In the quotient algebra W,,v'%7,
the subalgebra p.g//j is identified with CAP(R), whose maximal ideal space is
RE, sce [7, Lemma 2.3, Remark 3.7]. Let 2 (¢,) be the ideal of 4", (resp. H(5))
generated by A (resp. %) and all p(W,) (resp. W,) where ¢ € CAP(R) == C(RB)
such that ¢(x) == 0. Corollary 3.5 says that &//% is contained in the center of &/(¥)/¥,
hence we have the following localizations of quotient algebras: the sequences

0->% > AF)> & _AF)E,
X€ER

and
O-H >Ny —> @ NH,

x€R

are exact, see [10] and [9, §4]. We denote by [A4], the equivalent class of A4 in the
Eluotient algebra &/ (%)/%,. or that of A in A"/, in the event A € A";. The main
task of this section is the computation of the spectrum o([4],).

Obviously, if ¢ € CAP(R), then o([W,],) = a([p(W,)],) = {(p(x)}. Now let
us consider the case A=W, . Note that the range of —in, , is [—=, #]. Let F be
the closure of Zw -+ b in RE. If x ¢ F, then there exists 6 € CAP(R) == C(RB)
such that §(x) =1 and 8|F = 0. Thus dn, , can be regarded as a function in
C(R®) and (dn,, ;) (x) does not depend on the choice of 6. Hence we may define

11 — 1086
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N 1(X) = (81, ) (%). It is casy to show that m(F) = 0 where m is the normalized
Haar measure on R®. Hence #, , may be identified as an element in L*(R®). For
x € RB, let C, be the ideal of & generated by all ¢ € CAP(R) such that ¢(x) -: 0,
By Corollary 3.5, it is easy to show that if y € C,, then W, € ¥,.

Let 5 = Moo, b, =+ e, by and F; —-Zw +b for j=1,...,k.

LemMA 5.1. Let fe CAP(R). If x ¢ (U F,) n (suppf), then a([Wyl,)=

j=1

= {§x)®)}. If xe F\ E{ F; then o([W5,,) < f(x) I¢I, g5, X [—70, m] Y =1,

3
Proof. If x ¢ ( UF ) n (supp f), then nf— (x)f(x) e C, and therefore
j=1

the first assertion follows. If x € F;\\ | _J F;, then if — f) II ooy 5, (x)nu b; € C,.

ief
The second assertion follows from the fact that the spectrum of w, T s is the range

of 7, ,, which is [—x, 7]i.

Lemma 5.2. If . x ¢ F = Zo + b, then o([p(W, Il = {1o s(¥)}; if x € F,
then a([p(W,,w'b)]x) > [—m, 7.

Obviously, only the second assertion needs a proof, which, unfortunately, is
rather complicated.

Let 5 :[w + b, 2w + b) - {ne'* : —n[2 < t < n/2} = C be a homeomorphism
such that n(® + b) = —ni (=i, (@ + b)) and  lim ) =mi= lim 7n, ().

t-+20+b-0 t+20 +b—0

Then weextend n periodically to R. It is easy to see that y — #,, , € CAP(R) and
(1 — e p)|Zw + b = 0. Hence [p(W,)], = [p(W,, b)]x if x e F. Thus it suffices
to prove that o([p(W)],) > [—n, n]i. Let E be the reglon enclosed by the semicircle
Cand [—=n, n]i. For each z in the interior of E, there is ¢ > 0 such that if we
define n,(t) = y(¢) for t € [kw + b, (k + w + b — ¢] and n.(¢) a linear function
linking #((k + Dw + b —¢) and —mion[(k + Do + b — ¢, (k + Dw + b), then
[nt) — z| 2 ¢ > 0 on R and the mean motion of #, — z is not zero. The function
n. so constructed has the property that the range of (4 — z)/(n, — z) is contained
in a sector whose vertex is the origin and whose central angle is strictly less than
7. Hence there is « € C such that ||a(n — z)/(n, — 2) — 1| < 1. This implies that

(W(,,_-),(,, -z) is invertible and therefore index p(W,_;)=indexp(W, _.) minus
the mean motion of n. — z # 0. On the other hand, if { is in the exterior of £, it
is easy to see that index p(W,_;) = 0. Hence the boundary of E, Cu —m=, =i,
is the essential spectrum of p{W,). Thercfore by the szcond exact sequence,

Culmmi= U ole(W)L).

XER

1 Here we use [/ —1 instead of i to avoid confusion.
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Like 7, ,, 7 can also be extended to a function on R, and it is clear that if x ¢ F,

o([p(W, ;] ) = {n(x)}. Since n(w + b, 20w + b)n [--7, n]i = O, it is also clear that
n(x) ¢ [—mn, 7)i if x¢ F. Hence

[—n, 7li = U a(lp(W))],)-
XEF
Thus to complete the proof of the lemma, we only need to show that for x, y € F,
a(lp(W))].) = o([p(W,)],). This, however, is another long story. What we shall do is
to show that the translation of symbols by ¢ € R® induces an automorphism on 4,
or equivalently, on .o7(&). This automorphism will induce 4"/, = A\ A, which
maps [W,], to [¥,],. But the difficulty is that # may not belong to R, thus this auto-
morphism cannot be constructed spatially. Thereforc we are forced to consider
the harmonic analysis on the Bohr group R®.
Let H2(R®) be the subspace of L%(RB) such that the Fourier transforms of its
elements are supported in Ry, , the discretc nonnegative numbers. For each ¢ €
€ L2(R®), we define W, —= P'M,| H¥R®) where P’ is the orthogonal projection from
L*(R®) onto A(RE). Let o/’ be the C*-algebra generated by all W, , ¢ € C(RP).
Proposition 3.3 of {7] asszrts that x : W, — W, extends to an isomorphism from
o/ to of’. Tt is casy to check that, like p, o also satisfies (3.12) and (3.13). Therefore
by Lecmma 3.14, o can be e‘(tended to an isomorphism from (%) to (%),
the C*-algebra generated by all W, ¢ € &. Since this is essentially a repetition of
what we did in Section 3, all the tcchnical details will be omitted. Let (U,f)(s) =
= f(s — t) for f € L*R®) and s € RE. Each element in R, is identified with an cigen-
value of U,. Therefore P'U, == U P’ and U7 *W,U, == W, where ¢,(s) = ¢(s + 1),
Hence Uy ' (F)U, = () if we can prove that & is closed under the translation.
Indecd we only need to show that the translation of an Mo,y is still in &. But for any

e Ry ——R“

S o o(8 + 1)A(s) dm(s) = (1) S o p(s -+ DA(s 4 t)dm(s) = 2t) (N 5, 4)
rB rE

and (1, », 4) # 0 ounly if 2 .= A7, where 2,(s) - exp(2nis/w) for s € R. Hence if
Ao(t) = exp(2nifjw) for some f € R, then the translation of Hop OY s f o~ If,
in particular, ¢ -:t; - t, where t, € Zow -+ b and 1, :kw -+ b, then 2y(r):

== lim Ay(k,@ -+ b — ke — 5) = 1 and therefore the translation of #,, , by ¢ is #, ,

H—00

itself. Hence a; : W, - W, extends to an automorphism on &/'(¥).
Leta, :p~loa~lecasaop, then «, is an automorphism on A7, and
a(p(W,)) - p(Wq,t) for ¢ € &. Thus we have proved:
LiMmmA 5.3. For each t € RB, the translation ¢ v~ @, = (- -+ t) induces an
automorphism o, o /V If, in particular, t=ty—t, and ty,t, € Lw - b, then
« oWy, ) = p(W,

b
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But what we need is the isomorphism induced by z,. Lemma 5.2 fol-
lows from the following lemma immediately.

LEMMA 5.4. «, induces an isomorphism
X NUH > N A

and, in particular, &, [po(W)], = [p(W,)], if X,y € Zo + b.

Proof. The second assertion follows from the second assertion of Lemma 5.3,
Since a_ , obviously induces the inverse of &,, we only need to show that x, induces
a homomorphism &, : N}/ H# . - N /H «_,. Clearly, it suffices to show that o(#",) =

< ._,, and this becomes obvious if we can show that «, " = #". Since «, is
continuous in the norm topology and trace class operators are dense in ¢ (see

[7. Lemma 2.3]), we only need to show thatif A € A is of trace class, then so is
a,(A4). Since, for trace class operator A, ||All, == ||[|A%A2)|, -« || A*A|¥* )3, where
| -1, and %} - !, indicate the trace norm and the Hilbert-Schmidt norm respectively,
the problem may be reduced to showing that if B belongs to the Hilbert-Schmidt
class, then so does «,(B) and ||« (B)|, < |[Bl,. Let B € A be of Hilbert-Schmidt

class. Then by the construction of p, there exists a sequence {B,} = 4", such that
s-im B, = B, s-lima(B,) = 2,(B), and each B, is of the form p(ZHWPik) where
k

n-oo n—00 K

Pj, are trigonometric polynomials. On L*(R, X Ry), let P,, == Lom xRy For eachfixed
m, '\B,P,ll; < ||B,llm <« Mm and s-limB,P, =- BP, . The Hilbert-Schmidt class

B0

of 4" can be regarded as a pre-Hilbert space with the inner product {7, §) == 7(T'S¥)
which induces the norm /| - {l,. Hence {B,P,, : >0} is a bounded set in that pre-Hil-
bert space and converges weakly to BP, . Thus by a convergence theorem due to

Mazur, see [13], we can choose B ,,...,B,, k- 0,1, ..., such that
"l nk
1 k
{ Y, B P, k> 0} converges to BP, in the norm | -!|,. Hence we can choosz
nk

Coj=1

a sequence {B™} ¢ A, such that !'BP, — B"P,|, < I/m, slimB":~ B,

m-=eo

s-limx (B™) := a,(B) and each B™ is of the form p('ZHW,,jk) where p;, are poly-
k

100 7
nomials.

On the space L*(R,), each Fp~Y(B"P,)¥ -1 has the form of a finite sum
Y T,;qu,j, where 4; # 2;if i # j and each ¢; is a finite linear combination of Xia >
0 <a< b <oo. Let B, be the automorphism on F(F)&F -1 induced by z,. It
is easy to see that B(7T,) = A(t)T;, where A € Ry is identified with the corresponding
character on RP. Thus Bito uy) = Bl — T,T_)=1 — a(t)(—a))T,T-,-
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=1—-T,T_,= Xo.a® therefore we also have ﬁ,(Mq,j) = ij' Hence
BASp B P,)*p~Y(B"P,)§ 1) =
o= Z M- ,("‘)-j)(’)T—A.T;..(}j) (’)M¢. + Z M¢ T}.M’)a
I ?j i i S %A

and |« (B"P,)|i = |[B"P,]ly < ||Bllz + 1/m. Since s-limo(B"P,) = «(B), we

m-0o0
may conclude that «,(B) is of Hilbert-Schmidt class and ||a(B)il, < ||B|ls. This
completes the proof.

To describe the spectrum of [A4], and [p(A4)], for 4 € &/(F), we need to intro-
duce a symbol for A. For each ¢ € &, we define

P*(t, 5) = sp(t — 0) 4 (I — 5)o(r)

on RX[0,1]. We equip R X [0,1] with the topology generated by open sets {tl} X
X (a, b), (t,t")x[0,1]u {t} x (', 1], (7, tA) x [0, 11y {At} X0, b'). Rx][0,1] with this
topology will be denoted by X. If ¢ € &, then ¢* is continuous on X. In fact, this
is the weakest topology on R X [0, 1] that makes ¢* continuous. For 4 = ZIIWM
J ok
where ¢, € &, we define +(4) = Y, [I¢% to be the symbol of A. Here we
J k
would like to bring to the reader’s attention the fact that in general (@y)* #£p*y*,
We shall say that {F,, ..., F,} is a collection of discontinuities associated
with A4 = Y I] W‘ij € (&) if all ;, belong to the algebra generated by CAP(R)
J k

and {r;wl_blfl, R nwp_,,pf,,}, and Z'&)j—}—[)‘j n supp f;= F;. If it happens that ¢;, € S,
where S, is a subalgebra of & described at the end of Section I, then we can choose
{Fi, ..., F,} for A such that F,n F, = @ if | # n. The following theorem holds
for A with ¢;, € &.

THEOREM 5.5. Let x € R. If x belongs to at most one F,, then o([A4],) =
o= o([p(A)]) = »(A4) ({x] x [0, 1]).
I3
Proof. The theorem is obviously true if x¢|_J F;. Suppose x € F,"\{J F;.

j1 Jj#l
Then by Lemma 5.1 and Lemma 5.2, [4], = p((W, ],) and [p(4)], :p([P(W,,l)]x)
where p is a polynomial such that +(4)(x, s) == p(s) and #, == Heoy b - The spectral
mapping theorem and Lemma 5.2 say that

o([A]) = p([—n, 7li) = o([p(A)],)-

Because p¢ < A, it is obvious that p¥, < A .. Therefore p induces a homomorphism
from (F)/€, onto N J# . Hence o([p(4)],) = o([A],). Taking into account the



166 JINGBO NIA

other inclusion, we have o([p(4)]) — o({A4),) == p([—~=, nli). But {4)(x,s)
== p(s(x — 0) + (1 — o), (x)) = p(sni - (1 — s)(—mi)). This gives the proof.
Let [A] ([p(A)]) denote the equivalent class of 4 in /()% (resp. JVJ%?‘).

COROLLARY 5.6. If' Fyn F, = O for | # n, then a( AD = a([p(A]) == (A}X)
and [A]} = [[p(A]} = hb(A).oo

Proof. Let w : = @, and » == b,. Then we can write
°(A) T2 Uy Ulrlu b 4. “m(”?(fib)m

where each u; has the form % JHod; for some v,, € & and the discontinuities of o
i o / 28 af

T 8
arc contained in | F,. If x € F == F,, then there exist {k,} < Z such that &
n#l
+th > xin RE w0 = b, -), i==1, .. ,m, are constants on [0, 1] and limits

n

w;(x) = lim v, (k,w ' b, 5) exist. Let p,(z) -= Z u{k,w-+b, 5)z and p(z)- 2 ulx)z.

1it-»00 ~=0

Then [A],‘n(,,+,, = pu(( W,,m o+ ») and [A], = p([W, ey b]x)‘ Therefore by Lemm.l 5.2
and Theorem 5.5, 6({A],) ~= p(I—n, nli) = U p({—7, 7li) == ) s(4) ({k,0 -+ b} X

n

X [0,1]) = s(A)(X). Since {F,, ..., F,} arc pairwise disjoint, we can apply this
argument to other w = w, and 6 = b,. Thus ¢({4],) = s(4)(X) for xe F, U ...

U F,. If x¢ U F,, then certainly o([4],) < s(4)(X). Hence U o([4],) <=
I-:1 xER

< o(A)(X). But [A] is invertible if and only if each [4]. s, see [9], Proposition 4.5,
s0 a{[p(A)]) = 6([A]) = 5(4) (X). But Theorem 5.5 implies that o{{p(4)]) = (4) (X).
This proves the spectral equality. Note that {F, ..., F,} is also a collection of
discontinuities associated with 4%A. The norm equality follows if we apply the same
argument to A*A4.

It was illustrated at the end of Section 1 that we can construct various sub-
algebras S, of & with CAP(R)and A = {n,, ,,6; : i € [} such that if 4 == ZH

O,l‘

with @;, € S, then the collection of discontinuities {Fy, ..., F,} assomatgd with

A hes the property that F,n I, = @ if /£ n. Let C(S,) be the C*-subalgebra

of C(X), the continuous functions on X, generated by all ¢o*, ¢ € §,. Originally,

+(A) is defined only for 4 = ZIk[Wq,jk. But the norm equality of Corollary 5.6
“d 5

says that s(-) can be naturally and uniquely extended to the whole £7(S,,).
Combining Theorem 4.5 and Corollary 5.6, we have:

THEOREM 5.7. oZ(S 4)/¥ is isomorphic to C(S ) via the symbol map A > s{A).
Furthermore, p(A) is Fredholm in & if and only if 0 ¢ +(4) (X).
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Proof. Only the last sentence needs proof. Obviously, the essential spectrum

of p(4) in A is contained in +(4) (X) = o([p(A4)]). But on the other hand, if p(4) — A
is Fredholm in &, since &,/ is a C*-subalgebra of A/, there exist T € A", and
Ky, Ko € X such that T(p(4) — A) =1+ K; and (p(4) —- DT ==1+- K,. This
means that K,, K, € 4 n Ay = A, therefore 1 ¢ o([p(4)]). This proves the theorem.

COROLLARY 5.8. The sequence
0> % - H(S,) > ® AP,
x€ER

is exact.

REemArk 5.9. We could have defined symbol +(A) as a function on R®x[0, 1].
In fact, if we let n}* (x, s) = 11,, ,(%) for x ¢ F == Zw + b and n¥,(x,8) == s(z;) +
+ (1 — s)(—n,) for x € F, then for each ¢ € &, ¢* is a well-defined function on
RB %[0, 1]). For4 = “;' l;[ W¢jk, we define 5 (A4) = ,2 l;lqo;; as a function on R® % [0, 1].
Then Theorem 5.5 can be restated as *““if x € R® belongs to at most one F,, then
a([4],) = o([p(A)],) = s(A)({x} X [0, 1])”” and the proof is exactly the same. With
this version of symbol the statement of Corollary 5.6 can be made stronger: ¢([4]) =
<1 a([p(A) == S(A(RB x[0,1]) (see [9], Proposition 4.5). Also, p(A4) is Fredholm
in A if and only if 0 ¢ S(4)(RB X [0, 1]). The reason we did not do so is that it is dif-
ficult to choose an appropriate topology on RE x [0, 1] that makes r]f’b a continuous

function. What causes the difficulty is the accumulation of Zw - » in RE. Of course
one can always choose the weakest topology on R® [0, 1] that makes all n¥*, con-

tinuous. But since one still does not know what the open sets are, this version of
symbols hardly provides any information about the maximal ideal space of .
(S 4)/€. This is why we defined the symbols as functions on X.

6. MEAN MOTION AND INDEX

For a piecewise continuous function ¢;, on R, there are continuous determi-
nations of argy(x, s) on X if Y(x,s) = Y, Hgo;;‘(x, s) does not vanish. We define
7k

mecan motion of Y to be the limit
N
lim — (argy (T, ) -- argy(—17T, 5))
Tooo 2T
if it exists. Obviously, if ¢;, are continuous almost periodic functions, then the mean

motion of ¥(x, s) exists and coincides with the mean motion of y(x) == Z o).
7k

Let S, be a subalgebra as described at the end of Section 5 and let inv C(S 4) denote
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the invertible elements in C(S ). Let € inv C(S ), then there exist {{,} <inv C(S,)
such that lim ||y — ¥,|l0 = O where each i, has the form ZH‘Pﬁ-’ i €Sy.
n~00 J k

We can choose argy, for each n such that at a fixed point x,, jargy,(x,, ) —
— argy,(xy, 8); < m. It is then easy to see that {argy,} converges to a continuous
function ¢(x, 5) on X and, obviously, this function can be regarded as an argy(xy, s).
Therefore we can extend the definition of mean motion to functions in inv C(S,),
subject to the existence of the limit.

THEOREM 6.1. For each Y € invC(Sy), the mean motion exists. Moreover,
if f€ CAP(R) is invertible and has the same mean motion, then there exists a path
in inv C(S ,) joining \ and f*(x, 5) = f(x).

Proof. Suppose that ¢ -= Y, TI;., where @, € S,. As before, we write
7k

'ﬁ = Uy + ul”ib + llm(l’]j’b)m,

where u,, ..., u, have the property that there exists an open set U containing

F=Zw -i b, such that for each y € U, u,(y, -) is constant on [0, 1] and u,(y, s)

is continuous on U, i = 1, ..., m. Let n,(x) be n, ,(x} if x¢\J[kw -+b - 1/,
! kEZ

kw--b) and the linear function joining n,, y(kw + b — 1/n) and —ni (:=1, y(kw+-b))
if xelkw + b — ln, ko + b). If Y € invC(S,), then there exists & > 0 such
that d(0, p,((—mn, n]i)) = O, where p(2z) = uylkw + b, 5) ++ (ko 4 b,5)z 4 ...
... +uy(kw 4 b, 5)z™. By the continuity of u; near F, there exists ¢ > 0 such
that if |y — (kw - b)| < & for some k, then [uy(y, s) + ... + u, (¥, $)z™ = (1/2)d
for all z € [—n, n)i. Let 1/n < ¢. Since n,(R) = [—m, n]i, it is obvious that for
t [0, 1],

lul)(y» S) + lll(}’, s)("]w,b + (l - t)')n)#(}’, S) + e
e (3, ) Oy + (L — DI)*7(, )] 2 % 5

for all y € R. Hence we have actually presented a path in inv C(S,) joining y and
¥, which does not have Zw + b in its discontinuities. Also note that argi(x, s) =
= arg(uy(x, s) + ... + u,(x, ) ((x))") + 2hn for x ¢ [kw + b — 1/n, ko +4- b] and
fixed h € Z. Therefore the theorem follows from a routine application of the in-
duction.

By this theorem, for each element in inv C(S ), the mean motion is a complete
set of homotopy invariant. Thus, naturally for each A € Fred((S,), ¥), we define
the topological index t-ind(4) to be the minus mean motion of s(4). As usual, we define
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the analytic index a-ind(A4) =: ind(p(A)), the index of p(4) in A". Since t-ind(4) =
== a-ind(A4) if 4 € Fred(s¢, ¥) (see [7], Theorem 2.2), we have:

THEOREM 6.2. A € Fred(o£(S,), €) if and only if s(A) is invertible in C(S,)
and if this is the case

a-ind(A) = t-ind(A4).

We can derive the similar results for Wiener-Hopf operators with matrix
symbol. For example, for each positive integer n we have a diagram

0> CRM, - L(S,)OM, - C(S,)®M, -0
P

O OM, —— S'QOM, > N|A XM, - 0

where M, is the collection of all n x n matrices, the horizontal sequences are exact
and the vertical arrows are injective. In particular, if ¢ € S, ®M, and |detp*| >
> 0 > 0, then W, belongs to Fred(/(S,)®M,, ¥®M,) and the analytical index
of p(W,) is minus the mean motion of detp*. Since these are consequences of
standard abstract nonsense plus Theorem 6.1, we omit the details.

7. REMARKS AND PROBLEMS

We have developed the index theory for algebras «/(S,). One would presume
that it should be possible to develop the index theory for o#(%) in a similar pattern,
However, this one step further encounters a number of substantial difficulties. The
following are the main problems.

First, we should decide which ideal # in /(%) gives the natural Fredholm
structure. By Theorem 4.4, there are, at least apparently, three ideals in /(%) : € <
= ¥(&¥) « p~'A". The quotient algebra is expected to provide topological
invariants. Intuitively, £ = (%) is a natural choice. It is also reasonable to expect,
no matter what £ is, that if p(W, W, — W,,) € A then W, W, — W,, € #. On the
other hand, we know that p(W, W, W, ) € A if w and 4 are linearly inde-

T’ Tae 0 TobMie

pendent over Q; but we have not yet been able to prove that W,,wa,,“ ~
— W,,m e € %(&) not its contrary. This seems to bring up the doubt that €(%)

is the most suitable choice. However we have reason to believe that actually % =
== p~1". But until this (or the contrary) is proved, which ideal to choose remains
a question.

Second, how do we define symbols for elements in .«/(¥). For 4-= Y I] W""jk €
J ok
€ (&), we cannot simply define s(4) = Y, I[qoﬁ‘ with @#(x, 5) being s¢;(x—0) 4
7k
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-+ (1 — $)p;(x) any more. For example, let 4 := w,. OW,,/I o~ W, o0 where o

and 4 are linearly independent over Q. Then simple calculation shows that

&gt — (n n. V#] — 0 it x#0

[ﬂw,o'h,o (flw,oﬂz,o) 1= {—n(2s 0P 4 mi@s — 1) if x = 0.
But p(A4) € X, so the correct symbol of A should be identically zero however it is
defined. What causes the difficulty here is that the collection of discontinuities
{Fy, ..., F,} associated with 4 does not have pairwise empty intersections. But we
belicve that off the intersections £, n F,, the symbol of A4 is given by our formula
in Section 5 and that on the intersections, we can ‘“‘reduce’ the symbol defined in
Section 5 in certain appropriate ways to obtain the correct symbol for 4 € /().
Third, the essential spectrum calculation for 4 € &/(¥) is extremely compli-
cated. Again, the difficulty comes from the intersections F,n F,. If, say, x € F,n
N F,\ U F; then simple calculation shows that [p(4)], = p((W,].., [W,],) where p is

J#n,l
a pelynomial in two variables and » and { have the discontinuities F; and F, respec-
tively. So the only spectral information which we can obtain is that o([p(4)],) o
o {plals), b(s)) : s € 4.} where ., is the maximal ideal space of 4,/# . and
a(.#) = b(dl,) - [—n, n]i. Unless [W,], commutes with [¥,],, one would expect
that o({A4],) is even more complicated.

Finally, what is the appropriate topological index for £/(&%). We can prove
that if @;, € &, is not in thc closure of the range of Y = ;Iklt,o;;, then the

mean motion

.1
Jim - @rg¥(T, 5) — arg (=T, 5)

still exists. Since we have not yet been able to connect this mean motion with any

topological invariant when ¢;, € &,, the proof of the existence of the above limit

will be presented elsewhere. But the question here is that does this mean motion

give any kind of index. It is unlikely that for ¢;, € &, the mean motion constitutes

a complete set of homotopy invariant. Nevertheless, we still expect that minus the

mecan motion coincides with the analytical index of 4= Z l;Iijk if it is Fredholm.
J

REFERENCES

1. BestcovitcH, A. S., Almost periodic functions, Cambridge University Press, 1932,

2. BoHR, H., Almost periodic functions, New York, Chelsea, 1947.

3. BreuERr, M., Fredholm theories in von Neumann algebras. I, Math. Ann.,178(1968), 243 —254;
II, Math. Ann.,180(1969), 313 —325.



WIENER-HOPF OPERATORS 171

4.

10.
11,

12.

14.

15.

16.

17.

18.

Carty, R.; Pincus, J., Mean motion, principal functions and zeros of Dirichlet series, Integral
Equations Operator Theory, 2(1979), 484--502.

. Carriy, R.; Pincus, J., Mosaics, principal functions and mean motion on von Neumann alge-

bras, Acta. Math., 138(1977), 153--218.

. CoBuRrN, L.; DoucLas, R., On the C*-algebras of operators on a half-space. I, Inst. Hautes

Etudes Sci. Publ. Math., 40(1971), 59 —67.

. CoBurN, L.; DoucGLas, R.; SCHAEFFER, D.; SINGER, 1., On the C*-algebras of operators on a

half-space. II: Index theory, Just. Hautes Etudes Sci. Publ. Math., 40(1971), 69 —79.

. DixMiER, J., Les algébres d’opérateurs dans Uespace hilbertien (Algébres de von Neumann)
s o p I g b4

Paris, Gauthier-Villars, 1957.

. DoucLas, R., Banach algebra techniques in the theory of Toeplitz operators, C.B.M.S. Regional

Conference No. 15, Amer. Math. Soc., Providence, R 1., 1973.
DoucLas, R., Local Toeplitz operators, Proc. London Math. Soc.,36(1978), 243-272.
GOHBERG, [.; KRUPNIK, N., The algebra generated by Toeplitz matrices (Russian), Funkcional..
Anal. i PriloZen., 3; 2(1969), 46 —56; English transl., Functional Anal. Appl., 3(1969),.
119--127.

GouBERG, I.; KrRUPNIK, N., Singular integral operators with piecewise continuous coefficients and
their symbols (Russian), /zv. Akad. Nauk SSSR Ser. Mat., 35(1971),940--964 ; MR
454:981.
. Mazur, S., Uber konvex Mengen in linearen normierten Riumen, Studia Math., 4(1933)
70---84.
PoweR, S., Hankel operators with discontinuous symbol, Proc. Amer. Math. Soc., 65(1977),
77--79.

POWER, 8., The essential spectrum of a Hankel operator with piecewise continuous symbol,.
Michigan Math. J., 25(1978), 117--121.

SHUBIN, M., Almost periodic functions and partial differential operators (Russian), Uspekhi’
Mat. Nauk, 33 :2(1978), 3 -47; English transi., Russian Math. Surveys, 33(1978),.
1-52,

XA, J., Traces, indices and spectral theory of Toeplitz operators on multiply connected domains,,
Dissertation, State University of New York at Stony Brook, 1983.

Xi1a, J., Piecawise continuous almost periodic functions and m2an motions, Trans. Amer. Math.
Soc., 288(1985), 801 —811.

JINGBO XIA
Department of Mathematics.,,
The University of lowa,
Towa City, Iowa 52242,
U.S.A.

Received February 20, 1984.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [445.039 677.480]
>> setpagedevice


