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QUASISIMILARITY AND CLOSURES OF SIMILARITY
ORBITS OF OPERATORS

LAWRENCE A. FIALKOW

1. INTRODUCTION

In the theory of Hilbert space operators there are several relations which
play roles analogous to that played by similarity in the theory of operators on finite
dimensional spaces. In the finite dimensional case the Jordan form models each ope-
rator up to similarity, and this model preserves spectral and invariant subspace
structures. In the infinite dimensional case such relations as quasisimilarity and asymp-
totic similarity have been successfully used to model special classes of operators,
but the general properties of these relations have not been fully described. In the
present note we examine connections between quasisimilarity and asymptotic simi-
larity as a step towards a better understanding of these relations.

Let # denote a separable complex infinite dimensional Hilbert space and let
Z () denote the algebra of all bounded linear operators on #. Operators T and S
in Z(A) are similar if there exists an invertible operator X e .#(#) such that
TX = XS, ie, §S= X"'TX For T in L(¥#), let ¥(T) denote the similarity orbit
of 7, ie, A(T)= {SeL(H):Sis similar to T}, and let ¥(T)~ denote the norm
closure of #(T') in £ (). Operators T and S are asymptotically similar if LTy =
== P(8)~ (equivalently, T e #(S)~ and S e &(T)-). In [6] C. Apostol, D. Herrero,
and D. Voiculescu described the closures of the similarity orbits of operators and
they subsequently provided canonical models relative to asymptotic similarity (see
{5, Corollary 9.30]). .

Operators T and S are quasisimilar (T ~ S) if there exist operators X and Y,
each injective and with dense range, such that 7X = XS and YT = SY; for
TeLH), let(Tgs ={S e LH): Ty S}, the quasisimilarity orbit of 7. Quasisi-
milarity was introduced by Sz.-Nagy and C. Fo'ias in [35] where it was shown to be
an effective tool in the model theory of contractions; for example, quasisimilarity
models were given for C;; contractions [35, Proposition 5.3] and C,(N) contractions
[35, page 370]. Subsequently, quasisimilarity models for other classes of oper-
ators were obtained. It was shown in [3] and [37] that each algebraic operator is
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quasisimilar to an essentially unique Jordan model. In {7} w. S. Clan.'y charac.tenzec%
the (cyclic) subnormal operators quasisimilar to the unilateral shift, and in {18]

W. Hastings extended these results to subnormal operators quasisimilar .to mul'[j-
P. Y. Wu [38] characterized the contractions with

cyclic isometries. More recently. : !
ilateral shifts.

finite defect indices that are quasisimilar to multicyclic un

Certain general properties of quasisimilarity are also known. Suppose T = S.
If T has a proper hyperinvariant subspace, then so does S [27], and a certain sublat-
tice of the lattice of hyperinvariant subspaces is preserved [12]. (However, the full
lattice of hyperinvariant subspaces is, in general, not preserved [21].) Each compo-
nent of the spectrum of 7. o(T’). intersects 6(S) [22]; moreover, the essential spec-

trum of T, a.(T). intersects 6.(S) 11}, [36].

y

It is an interesting open problem whether, in this case, each component of
o (T) intersects a.(S) [14], [34]. Moreover, it is not fully understood how the appro-
ximate point spectrum of 7, 6.(T), is related to ¢,(S), or how the semi-Fredholm
domain of T, pse(T), is related to psg(S). It is known that, in general, quasisimilarity
preserves neither compactness [27] nor quasitriangularity [16].

There is no general connection between asymptotic similarity and quasisi-
milarity. For example, asymptotic similarity preserves spectra, approximate point
spectra, and essential spectra, while quasisimilarity does not, and quasisimilarity
preserves point spectra while asymptotic similarity does not. Nevertheless, in the
sequel we will show that in certain cases in which the aforementioned difficulties
concerning semi-Fredholm behavior can be resolved, quasisimilarity and asymp-
totic similarity are closely related. In this connection, we study the following quasi-
similarity orbit inclusion property of an operator 7,

(T)es = L(T),

and we pose the following problem:

PROBLEM 1.1. Which operators satisfy the quasisimilarity orbit inclusion pro-
perty?

For A, T € #(5¢), one necessary condition that A belong to & (7)~ is that
o(T) = o(A), so in studying Problem 1.1 we are led to consider operators satisfying
the following quasisimilarity spectral inclusion property :

10)] o(T) < 6(A4) for every operator A4 quasisimilar to T.

Hyponormal, compact, and spectral operators satisfy (Z) [8], [11]. Since simi-
larity preserves the spectrum, each operator T satisfying (T),, = &(T) clearly satis-
fies (Z). D. Herrero [25] proved the remarkable result that the set {7 € £(#):
(T, = S(T)} is norm dense in (). In particular, each normal operator N
with finite spectrum satisfies (N)ys = F(N) [25, p. 104], and an arbitrary normal
operator M may be approximated in norm by normal operators having finite spectra;
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these facts do not, however, seem to aid in the description or approximation of
the operators in (M),,. The orbit inclusion property for an operator T is clearly
equivalent to the identity (T)g = (T)~: in this case, up to approximation,
quasisimilarity reduces to similarity.

In Theorem 2.1 we provide a sufficient condition for the orbit inclusion pro-
perty. As an application, in Corollary 2.2 we prove that a normal operator has the
orbit inclusion property if and only if each isolated point of the essential spectrum
is isolated in the spectrum. Among the non-normal operators with the orbit inclu-
sion property, we exhibit the universal quasinilpotent operators (Corollary 2.6)
and the cyclic hyponormal operators T having no normal eigenvalues and for which
o.(T) = bdry(o(T)) (Corollary 2.13). In particular, operators with the orbit inclu-
sion property .include each cyclic hyponormal unilateral weighted shift (Corollary
2.14) and each cyclic subnormal operator quasisimilar to the unilateral shift (Corol-
lary 2.15). In [29] M. Raphael proved that quasisimilar cyclic subnormal operators
have equal approximate point spectra and equal essential spectra. In Proposition
2.16 we use these results to obtain the stronger conclusion that quasisimilar cyclic
subnormal operators are asymptotically similar.

In {12, Theorem 4.8] it was shown that quasisimilar (injective) bilateral
weighted shifts have equal spectra. In Section 3 we extend this result to approximate
point spectra and essential spectra. We prove in Proposition 3.9 that (excluding
one exceptional case) quasisimilar bilateral weighted shifts are asymptotically similar.

We conclude this section with some additional notation. For T in Z(#),
let 0 (T) denote the point spectrum of 7, and let ¢/(T) and ¢ (T) denote, respecti-
vely, the left and right spectra of T; thus o(T) = ¢,(T). Let ker(T) and ran(7)
denote the kernel and range of 7. For a linear subspace .# < 5, let dim .# denote
the algebraic dimension of .#. For an operator 7, let nul(7) = dimker(T) and
rank(T) —= dim ran(7"). We denote similarity of operators by ~ and unitary
equivalence by = .

Let #(#) denote the ideal of all compact operators in Z(#), and for T
in Z(),let T denote the image of 7 in the Calkin algebra Q(#) = L(H)/ A (H#)
under the canonical projection. Thus ¢.(T) is the spectrum of 7 and 7T is semi-
-Fredholm if and only if 7 is left or right invertible in Z(#°); for other properties
of semi-Fredholm operators and essential spectra see [15], [26], [28].

For T e £(), a closed subspace .# of A is invariant for T (or T-invariant)
if T.d < /.

A finite or denumerable sequence of closed subspaces of o, {.#,}7 ., is
a basic sequence if

i) for each k, .#, and V.#, (closed span) are complementary in J#, and

n#k
it) if m = oo, then ﬁ( V .#,) = {0}
k=1 nzki1l
If T e £(F) and the #,’s are invariant for T, the sequence is said to be a
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basic sequence for T. The notion of a basic sequence is due to C. Apostol [1], who
used this concept to characterize the operators quasisimilar to normal operators (see
also [12], [i41, [25}). ‘

Finally, we denote by ¢, the Jordan nilpotent k-cell acting on C* (1< k < oo).
Acknowledgment. The author thanks the refere for many helpful sugges-
tions. ’

2. QUASISIMILARITY ORBITS CONTAINED IN CLOSURES OF SIMILARITY ORBITS

In this section we present conditions on an operator T that are sufficient to
Suarantee that (T),, =« &(T)~. Since each operator 4 € &(T)- satisfies o(T) <
< o(A), we will begin by formulating a property that implies the quasisimilarity
spectral inclusion property. To this end we require some notation and terminology.

For a subset A < C, let A* = {J:/ e A} and let [A],.,, denote the set of
isolated points of A, ie., [A],, = (e A2 ¢[AN{}]-}. For T in 2(#),
let 64,(T) = {J € C: (T — 7)"x{’'¥ 5 0 (n — o0) for some nonzero x in’ A, the
“quasinilpotent” points of the spectrum of 7% Thus [6(T))is01 S 04n(T) [32, p. 424],
and cleacly o (T) < o,(T) < a(T), o (T%)* < 6, (T*)* < 6(T*)* = o (T).

We recall that if 4, T, X ¢ L(H), AX = XT, and X is injective, then the fol-
lowing properties hold:

i) 0,(T) < 0,(4);

i) nul(7 — 2)* < nul(4 — J), e C, k=12, ... :

i) rank(7 — A < rank(4 — )f, s eC, k = 1,2, ...

V) 640(T) < 04y(A);

v) If ./ # {0} is a T-invariant subspace of #, then o(T |. /)N 6(A) # O {11y;
vi) Each nonempty closed-and-open subset of (T} intersects o(A);
vii) Each component of ¢(7) intersects a(A) [22];
viii) [0(T)]iso1 © a(4).
Properties i)—iii) follow immediately from the relation (A — 2¥X = X(T — i),
and iv) follows from the inequality (4 — L)kxy| V% < WXTVAT — 2)kp| V5 (e o2,
k=12, ...). Properties v) and vi) are contained in [I1]. The refinement in vii) is
proved in [22], while viii) follows from vii) or iv).

(o)

If the injective intertwining operator X also has dense range (i.e., X is a quasi-
affinity), then T is a quasiaffine transform of A and (o) may also be applied to the
equation T*X* = X*A4* If A and T are quasisimilar, then the conditions described
in (o) become symmetric in 4 and 7, e.8., 0 (T) = a,(A), etc., and in the sequel.
references to (o) will be to this symmetric version. Moreover, when 4 and T are
quasisimilar, additional spectral relationships between A4 and T arise, such as those
described by the essential spectra intersection theorems of (111, [13], [17], (341, [36].

Note that if 4 is quasisimilar to 7, then [00u(T) U 0, (T*)*]~ = a(A). Thus,
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if we are interested in the inclusion o(T}) = o6(A), it suffices to consider the resi-
dual set ¢'(T) = o(T)\6,(T) U 6,,(T*)*]-. The following property describes the
condition that ¢’(T) supports sufficiently many spectral subspaces of T or T*.

(c’) If @ is an open subset of C and ¢ N 6'(T) # O, then there exists a non-
zero T-invariant subspace .# such that ¢(7 ..#) < ¢, or there exists a nonzero
T*-invariant subspace 4" such that (7% A7) < ¢@*.

Lemma 2.1 If'T € L(H) satisfies (6), then 6(T) = o(A) for every A quasi-
similar to T.

Proof. Let Ae(T),, and let X and Y be quasiaffinities such that 4X =
= XT and YA —=TY. It suffices to prove that ¢'(T) = ¢(4). Suppose /€
e 6'(T)\o(A) and let ¢ be an open set such that e ¢ and ¢ nNo(4) = 0.
Condition (6’) implies the existence of

i} a T-invariant subspace .# with o(T |.%) = ¢, or

il) a T*-invariant subspace A" with ¢(T* | A7) < @*.

Since ¢ no(4) =0, in case i) we have a contradiction to (¢)-(v); since
0¥ No(A*) =0, in case ii) we have a contradiction to (c)-(v) applied to
ARY* = Y*T*,

REMARK. Each normal operator satisfies (6'); we do not know whether every

hyponormal operator satisfies (¢'). The operator T = Y. @ g, does not satisfy (Z)
E=1

[27] and thus does not satisfy (¢'). In this case, o(T") is the closed unit disk and
o'(Ty={L:0 < |/ € 1}

CoroLLary 2.2, If ¢'(T) =, then T satisfies (¥).

Note that ¢'(T) = @ is satisfied by operators T such as diagonalizable normal
operators, quasinilpotent operators, the adjoint of the unilateral shift, etc.

Recall the concept of a decomposable operator as defined in [9]: every normal,
spectral, or compact operator is decomposable [9, page 33]. 1t is clear from[9]
that every decomposable operator satisfies (6'); note. however, that the unilateral
shift satisfies (¢’) although neither it nor its adjoint is decomposable (see [9, page 10]).

CoOROLLARY 2.3. Let T be in L (). If 4 # {0} is a T-invariant subspace such
that S = T |./ is decomposable and ¢'(T) < o(S), then T satisfies (X).

Proof. For A € (T, [11, Corollary 2.12] implies that 6(S) = 6(4), and thus
(T) = [04,(T) U 0 (T*)*]~ U a'(T) < a(A) U o(S) < a(A).
We now state the main results of this section.

THEOREM 2.4. The following set of conditions implies that an operator T € L(H)
satisfies the quasisimilarity orbit inclusion property.

D) [0l Mieor < [6(Teer-

2) T satisfies the spectral property (¢');
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3) int(a (T)) = int(o (T%) = O,

4) For each ;. € [6(T));,,,, let H#(;. T ) denote the Riesz subspace of T cor-
responding 1o the isolated subset {;} < o(T ). Either (T—/) #(G,T)=0 or
(T — /) H(2,T) is noncompact for every k > 1.

Condition 3) will be used to relate the semi-Fredholm behaviour of any
A € (T)qs to the semi-Fredholm behavior of 7. Condition 2) 1s used only to insure
that T satisfies the spectral inclusion property (X) (and may thus be replaced by the
weaker hypothesis that T satisfies (X)), Hypotheses 1) and 4) are related to the known
phenomenon that quasisimilarity does not preserve compactness [27]; these hypo-
theses will be discussed below. We will show at the conclusion of this section that
none of hypotheses 1), 3), or 4) is necessary in order to conclude that (T)gs = L(T)-.
Indeed, for i = 1,3,4 there exists an operator T; that fails to satisfy property i) but
for which (T)qs = F(T). As stated above, hypothesis 2) may be formally replaced
by property (X£); however, we know of no operator satisfying the orbit inclusion pro-
perty that does not also satisfy (¢'). In any case, hypotheses 1)—4) yield positive
results for both normal and certain non-normal operators T in cases when
(T & L(T). To clarify these hypotheses it is helpful to consider special cases.

Clearly, every normal operator N € ZL(H) satisfies 2) and 3); moreover, if /
is an jsolated point of ¢(N), then (N—A).2(/%, N) = 0. Indeed, we will show that
for normal operators, Theorem 2.4 is best possible:

COROLLARY 2.5. A normal operator N € L(H) satisfies (N)ye = F(N)~ if
and only if [6,(N));,, < [6(N)]

Each quasinilpotent operator in £(#) satisfies 1), 2), and 3) trivially. A quasi-
nilpotent Q is universal if #(Q)~ contains every quasinilpotent operator in £(#)
{23], [26]. In [2], [23] it is proved that a quasinilpotent Q is universal if and only
if Q% is noncompact for every k > 1; therefore, a universal quasinilpotent operator
satisfies 4).

COROLLARY 2.6. If Q € L(#) is a universal quasinilpotent, then (Q)os = F(Q)~.

We note that a direct proof of Corollary 2.6 can be obtained without recourse-
to Theorem 2.4. Indeed, if Q is quasinilpotent and A is quasisimilar to Q, then A
Is biquasitriangular, ¢(4) = ¢.(4), and o(4) is a connected set containing 0 [I,
Theorem 3.1]. It follows from (4] that A is a norm limit of quasinilpotents (indeed,
a limit of nilpotents); thus, if Q is universal, then 4 € F(Q)-. We do not know
exactly which quasinilpotent operators satisfy the orbit inclusion property. Here we
note only that there are known examples of infinite rank compact quasinilpotent
operators K for which (K),, = £(K) or for which (K)q ¢ #° () (so that
(K)qs & F(K)7); these and related examples will be discussed below.

The proof of Theorem 2.4 depends on results of C. Apostol, D. Herrero, and
D. Voiculescu [5], [6] which characterize the closure of the similarity orbit of an
operator. Since we will refer to these results in some detail, for ease of reference we:

isal*



QUASISIMILARITY AND CLOSURES OF SIMILARITY ORBITS 22%

include a version of them sufficient to our purposes. Before doing so, we require
some additional terminology. :

For T in Z(#), let ps(T) = {/. € C:T — / is semi-Fredholm}, the semi-
-Fredholm domain of T; for /€ pse(T), let ind(T — /) = dimket(T — 7)) —
—dimker(T — 2)* and let min.ind.(T — 2)* = min(dim ker(T —2)*, dim ker(T—
— 2)*®) (k = 1). Let 64(T) and 6.(T) denote, respectively, the left and right essen-
tial spectra of T [15); thus 01(T) = C\pse(T) = 61(T) N 6.(T).

If ¢ is a nonempty closed-and-opzn subset of a(T'), let P, denote the Riesz
idempotent for T corresponding to ¢ and let # (o, T) = ran(P,) denote the Riesz
invariant subspace for T corresponding to ¢ [30, p. 31],[32, p. 421]; when ¢ = {/}
(~ € C), we denote P, by P; and #(a, T) by # (%, T). Let 6(T) = [6(T))isot N pse(T),
the set of normal eigenvalues of T [26, p. 5]; thus oo(T) = {} € [6(T)]iso1*
dim#(4, T) < c0).

If Ze[oT))isa and ¥ : Q) - L(H#,) is a faithful =-representation of
the Calkin algebra, then the Riesz Decomposition Theorem [32, p. 421), [30] im-
plies that (7T is similar to (2 + Q,) @ R,, where Q, is quasinilpotent and R, — /
is invertible. Following [5, p. 4] we define a function k*+(/, T) (} € C) by
O lf / ()E [ae(T)]isol- ‘ -

1 ifie [Ue(T)]isol and Q/‘, =0.

n if 2 €[0,(T))iso1> @; is nilpotent of order n > 2, and Q%'+ Q%

k+(2,T)— ¢ 1s not invertible.

n+ 12 if 2 €[6.T))iso1, Q, is nilpotent of order n > 2, and
Q41 + QF is invertible.

+oo if 2 €[0.(T)]isot and @, is not nilpotent.

As in [5, p. 4] we further define 0.(T) = {2 € [6.(D)iso1 : | < k*(4,T) < + o0}
(the “essentially nilpotent” points of the spectrum of 7) and o0m(7T) = {/¢€
€ 0ne(T):k*(2, T)=n + 1/2 for some n, | < n < -~oo}.

Hypothesis 4) of Theorem 2.4 implies that k*(-, T) is valued in {0,1, -+o0},
so in particular, ome(T) = O and 6,.(T) = {4 € [6(T)isor : (T — 2)| # (7, T) = 0}.
(In the last identity we are also assuming hypothesis 1).) Hypotheses 1) and 4) are
used to exclude an obstruction to orbit inclusion similar to that which occurs when
a compact operator is quasisimilar to a noncompact operator.

We require the following theorem of C. Apostol, D. Herrero, and D. Voicu-
lescu [5], [6].

THEOREM 2.7.[5, Theorem 9.1] Let T € L () satisfy ome(T) = int (6(T)). An oper-
ator A € L(H) belongs 1o S (T)~ if and only if A satisfies the following properties:

(S) (spectral conditions) oo(4) = 64(T) and each component of 1 {A)\0G(A)
intersects o (TYNG(T).
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(F) (Fredholm conditions) pse(4) < pse(T), ind(; — A) = ind(2 — T) for
each 7 € psp(A), and min. ind.(~.—A)Y = min. ind.(2. — T)* for each J € psg(A),
k=12, ....

(A) (algebraic properties) dim #(%, A) = dim.#(; ,T) for each ; € co(A),
and k+ (5, Ay < k*(, Ty for each ;. € C. If ;. € 6,(A) is isolated in o(A), then i
is isolated in o(T) and

rank((. — A" # (%, A)) < rank((. — T # (G, T)) for all k > k+(, A).
As noted in [ 5, p. 5], properties (S) and (F) also imply that o(T) < o(4)

and each component of 6(4}) intersects 6(7'),and that ¢ (T) c 6.(A) and each com-
ponent of ¢.(A) intersects o (7).

Proof of Theorem 2.4. We will show that if T satisfies properties 1)—4) and 4
1s quasisimilar to 7, then A satisfies (S), (F), and (A) of Theorem 2.7. Well-known
properties of semi-Fredholm operators and the hypothesis that int(e (7)) =
= int(c (T*)) = @ imply that pse(T) 1 o(T) = 6o(T): since A € (T)gs, (0)-(i)
implies that psg(A4) r 6(A4) = o,(4). Thus we have

(21) o(T) = co(T) v olre(-T)s O'(A) = ao(A) L_J 0'],-5(/1).

We will first show that A4 satisfies the Fredholm property (F). Since T satisfies
(6'), Lemma 2.1 implies that

2.2) o(T) = o(A).

If « is an isolated point of a(A4), then o € o(T) ((6)-(viii)), and (2.2) shows that o
is isolated in o(7); thus we have

(23) [O'(A)]isol < [U(T)]isol .
1t now follows from [34, Lemma 5] that
(2.4) oo(4) = o((T).

Moreover, from (2.1), (2.2), and (2.4) we have psp(4) = p(A) U 6y(4) =
< p(T) U oo(T) = pse(T), ice.,

@2.5) pse(d) = pse(T).

We thus conclude from (o)-(ii) and (2.5) that A satisfies property (F).
We next show that 4 satisfies property (A). Note first that if ¢ is a nonempty
closed-and-open subset of both ¢(4) and o(7T), then

(2.6) dim #(c, A) = dim #(c, T).
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Indeed, if X is an injective operator such that AX = XT. then P,(4)X =XP(T)
111, Lemma 2.1}, so

dim # (s, A) = dim P,(A)# > dim P ()X =- dim XP (T)# =
= dim P(T)# = dim #(c, T);

now (2.6) follows by symmetry in 4 and T. The reiations (2.6) and (2.3) immedia-
t2ly show that

2.7 dim 37 (2, Ay = dim # (2, T} for each / € g,(4).

Observe now that if / € o,(A) is isolated in 6(A4), then / is isolated in o(T") and
2.8) rank[(Z — A1 H# (G, A)] < rank{(Z — T | o#(4, 7)) for k=12, ....

That / is isolated in o(T) follows from (2.3) (and (2.6) implies that 4 € ¢.(T))
ff Y is an injective operator such that YA = TY, then Y(; — AYP,(4) = (A —
— TYP,(IY and thus .
rankj(Z. — T)* | A# (4, T)) = rank[(A — TY | P(T)#] = rank[(—T)* | P(T)YH] =

= rank(} — TYWP(T)Y = rank[Y(} — AYP;(4)] = rank[(} — A)*P;(4)] =
= rank[(A — A)Y | #(4, A)].

We now verify the following inclusions:
{2.9) [0 Dot < [0(Aisors  [0(D)isor © [0 D)]isen
Let a be an isolated point of ¢.(4), but suppose that « is not isolated in 6(4). Thus,
from (2.1), there exists a sequence of distinct points {a,} < o(AY\o (A1) = o4(4)
such that o, »a (n - o0); (2.4) shows that a, € g(T) and thus o€ o (T)
{15]. Since « is not isolated in 6(T), hypothesis (I) of Theorem 2.4 implies that there
is a sequence of distinct points {f,} < ¢.(T) convergent to «. Since o(T) < o(4),
B, € a(4), and since « is isolated in o.(A4), then for large #, f, € 6(4) \ 0.(4) =
=04(A) < 6,(T); this contradicts the fact B, € 6(7). Thus a is isolated in o(A).
Moreover, (2.3) shows that o is isolated in a(7). Since a € ¢.(A4), it follows from

134, Lemma 5] that a € 6 (T), i.e., @ € [6(A)]iso1 and a € {6 (T)];. ;-
To complete the proof of (A) we will show that

2.10) k*(. A < k*(.T) (. eC).
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We may assume that 7 € [0.(4)}ior, and thus, from (2.9), 7 € [6(4)}isar and
7. € [0(T)]ieor < [6(D))isr. Thus k*(2, T) > 0, and it suffices to consider the case
when | < k+(/, T) < ~oc. In this case, our hypothesis on T shows that (7 — /)

H(2,T)=0, and since (4 — /)P,(4)X == X(T — 2)P,(T) =0 for some quasi-

affinity X, it follows that (4 — 7)P.(A) == 0, whence k+(, /i) =1=k*(., T
From (2.7), (2.8), and (2.10) we see that A satisfies property (A).

Since g4(4) = 64(T), to prove that A satisfies (S) it suffices to show that each
component of oy.(4) ™\ 6,.(4) intersects 6.(T) N 6,.(T). To this end, we first esta-
blish that

(2.11) [6),e(A) . G pe(Aisot © 6T\ 0,(T).

Let o be an isolated point of 61,.(4)\04.(A4). We consider first the case when « is not
an isolated point of ¢.(4). In this case, let {a,} = 6.(4) = 71,.(4) be a sequence of
distinct points convergent to «. Since x is isolated in oy,(4)\on(A), then o, €
€ One(A) <[ (Aisor = [0(TDisor ((2.9)). Thus & € o (T)\6(T)]isot = 0(T) \Gne(T).
In the case when « is isolated in 6.(A4), then (2.9) implies that « € [6.(T)io =
< [6(T}isor. If % € 64(T), then hypothesis 4) of Theorem 2.4 implies that k+(;, T) =
= 1; since o €[o(A)]iso1, (2.10) implies that 1 < k+(x. A) < k*(x, T) =1,
contradicting the fact that x ¢ o,(A4). Thus % ¢ 6,(T) and (2.11) is established.

It is easy to see that oye(A)\one(4) and o.(T)\0,(T) are compact; to show
that each component ¢ of oe(A)\Gne(A) intersects o .(T)\on(T), it thus suffices to
consider the case when ¢ is a closed-and-open subset of Gie(A) N 0on(A4) (see [22,
p- 48]); in view of (2.11), we may also assume that ¢ is an infinite set.

Suppose that ¢ is an infinite closed-and-open subset of a,re(A)\anc(A) and
suppose that ¢ is an open set such that ¢ < ¢,

2.12)  [ore(ANNGef{A)] N~ =06, and [6(T)\o(T)IN00~ = O.

We assert that 4 = 0,(4) n ¢ is finite (or empty); indeed, if {&,!2.; is a sequence
of distinct points of 4, with &, —» o (n — oo), then (2.12) shows that « € 6, and
%, € One(A) < [0 .(A)]isor © 6(T). Thus a € 6,(T), and since a is not isolated im
o(T), then u € [o(T)\one(T)] N o, contradicting (2.12). Now we conclude that
4 is finite, so by taking ¢ smaller, we may assume that o,(4) N~ = @ and

=

2.13) oe(A) N~ =0, (AN~ = (6 (A \On(A)) N0~ =0

We next claim that 4 = g4(4) n ¢ is finite or empty. Clearly, all limit points
of A bzlong to 6.(4)n ¢~ = o. If A is infinite, let {x,} = A be a convergent se-
quence of distinct points of A and let a = lim a,. Since 2, € g,(4) N ¢ < 6o(T) 1y
n¢ < do(T) n ¢ (the first inclusion uses (2.4)), then « € ¢ (T) [15], and since =«
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i< ~ot isotated in 6(T), then  is not isolated in 6 (T) (hypothesis 1). Thus x € [0.(T)"
+.{T)] © o, a contradiction to (2.12). Since A is finite, by further shrinking ©
we may assume that ao(4) n @~ = O, and thus

{2.14) o(A) 2o == [og(A) S ore(AD] 0@~ = oie(A) 0~ = 0.

The last relation shows that ¢ is a closed-and-open subset of o(4). Let 1 =
-6(T) ~ ¢. Property (0)-(vi) and (2.2) imply that

t=o()nt=0d)cona(T)=0cd)ne na(T)==0n a(T),

and thus t is nonempty and compact. If 7 is infinite, let « be a limit point of t.
since o(T) = 6o(T) U 61re(T), then 2 € 6 (T)\[o(Dlisot  0(T)\[oAT)]sso1; hence
1€ [0.(T)\on(T)] N0, a contradiction to (2.12).

Thus 7 is finite; let 7 = {a,, ..., %,} = o(T) N ¢ < o. Since [6{T)\ue(T)}I 0
ng = O, for each i, either a; € oo(T), or a; € one(T) N [0(T)]isor and (7' — ;)|
#(x;, T) -0 (hypotheses 1) and 4)). Thus TP(T) is algebraic (with minimal
polynomial p).

Let f denote the characteristic function of ¢ U 7. Since ¢ and 1 are isolated
subsets of a(4) and o(T) respectively, / is analytic in a neighborhood of ¢(4) U
i o(T) and thus f(4)X = Xf(T) [11, Lemma 2.1]. Since f(4) = P,(A4) and f(T) =
~: P(T), then AP,(A)X = AXP(T)= XTP(T), and so FAP(ANX = Xf(TP(T))=
— 0. Since dg = do(A | P,(A)#) < 6(AP,(A)), then do, and hence o, is finite.
This final contradiction implies that ¢ intersects 6.(T)\one(T). Thus A satisfies
property (S) and the proof of Theorem 2.4 is complete.

We next consider some examples concerning the hypotheses of Theorem 24
In [25, p. 107] D. Herrero discusses compact operators K with the properties that
o(K) is denumerable, K admits no denumerable basic sequence of invariant sub-
spaces, and (K),s = S(K). Clearly 0 € [0 (K)isot N[0(K)]isol> 5O this example shows
that hypothesis 1) is not necessary in order to obtain the conclusion of Theorem
2.4, Nevertheless, a stronger variant of hypothesis 1) is necessary for orbit inclu-
sion, as the following result shows.

PROPOSITION 2.8. Let T € L(#), let ). € [6(T)lisot, and suppose there exists
a sequence of distinct points {1,}5%.1 = ao(T) such that lim L, = A If there exists a
T-invariant closed subspace N such that the family N, # (4, T), #( T), ... Is @
basic sequence for T, then for each k, 0 < k < o0, there exists A, € (T)gs Such that
k+(4, /Ik) > k. In particular, if in this case k*(4, T) < oo, then T does not satisfy
the quasisimilarity orbit inclusion property.

REMARK. If {#(};, T)}2; is a basic sequence for T, the hypothesis will be
satisfied with 4 = {0}.
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Proof. Assume first that the existence of the A4,’s has been established. If
k+(s, T) < oo, let k denote an integer larger than k*(z, T). Now k*(/, <k«
< k*(z, ;1&) and thus, from [5, page 7], A, € (T), \&(T)~. We will show how to
construct A, the other A,’s may be produced by suitable (minor) modifications
of the following method.

For n > 1, let #,=X(,,T). For n >0, let 2(n) = n(n — 1){2 and let
My =K gy i1+ - - = H qinery- Since 4, A, Ho, ... isa basic sequence for 7.
it follows readily that A", %, .#y, .#,, ... is also a basic sequence for 7. Let A"
My, A, ... denote isomorphic copies of A, .#y, .#,, ..., and let H =N &

DY) @ .#/! (an external orthogonal direct sum). Using the technique of C. Apos-
i==0
tol [1] (see also [12], [25]), we see that there exist operators R € LN, R, e L(AYD

(i >0)such that R~ T4, R, x T.#;, and R" = R @ Yo R, is quasisimilar
i==0
to T. Moreover, since .# is a complemented invariant subspace for T, it follows

hat o(T|A) < o(T), 6 (T . N) < 0(T), and thus A cannot be a limit point of
o (TA). Hence if 2 € 6.(R), then 2 € [6(R)]isor-

The Riesz Decomposition Theorem [32, p. 421] implies that 6(R,) = o(T|. 4, )=
= {Jamys1> - - -» Aatns1))> SO there exists an orthogonal decomposition
) =P ... © L,
such that R, is similar to an operator of the form

S, = QP+ N D ... ®(fh+ N2,

where A = A,(,y+; and N is nilpotent. Thus, up to an additional similarity, we
may assume that |N®|| < 1/n foreachi, I <i<n-+ 1

Let e denote a unit vector in £ and define the operator W{: £ — £
by W{(v) = (1 /i)(v, e¢)et™ (1 <i <n). Since the A’s are distinct, the oper-
ators AW + N have mutually disjoint spectra, so Rosenblum’s Corollary [30,
Corollary 0.15, p. 9] implies that S, is similar to an operator T, in Z(.#,) whose
operator matrix relative to () is of the form

NG e
/1‘(9_") ‘|L N‘(Z") Wé”)

Wi

M+ N
Thus [27, Theorem 2.5] implies that T is quasisimilar to 4 = R® } @ T,, sO
n=0

it suffices to prove that k*(4, /i) = o0,
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0

et ¥V, =T,— S, (n=0), and let V = Y er. For each k > 1, either

n=0
vE= 0 @Gf k> n), or Vi = (1jk!) (if n > k), so clearly V¥ is quasinilpotent, and
the same reasoning shows that ¥* is not compact forevery k > 1. Let K =0, &
=3 oo n--1
2YL®6,—,)=0-0Y ( . @ (/:(i")—/‘.)—"\/'}")). Since lim /,=/ and
n==0 " n=0 i—1
N{™ is a finite rank operator with "N < 1/n, then K is compact, and 4 — K =
== R @ (V + 4). Since / is not a limit point of ¢ ,(R), then /. is an isolated point
of a.(4), and since V* is noncompact for every k > 1, it follows that k+(z, A~)= +oo
(cf. [26, p. 231)).

Proof of Corollary 2.5. As noted earlier, each normal operator N € £ (H#)
satisfies 2) and 3) of Theorem 2.4, Moreover, if N satisfies 1), i.e., if [6.(N)]iso1
=[a(N)]iso1, then N also satisfies 4), and thus (N)ys © F(N)~.

For the converse, suppose / is an isolated point of ¢.(¥) but 2 is not isolated
in o6(N). Thus there exists a sequence of distinct points {4,}%°, = 64(N) such that
iy > A (n > 00). Let #, = ker(N — /,) = #(/,, N) and let &/ =H# © \J #,.

n=1
The normality of N readily implies that 4", #,, #,, ...,"is a basic sequence for N.
Since k*(Z, N) = 0, it follows from Proposition 2.8 that (N),, ¢ F(N)~.

In contrast to Proposition 2.8, the next resulis (which we state without proof).
show that no finite subset of o,(T) can prevent an operator from satisfying the orbit
inclusion property.

PROPOSITION 2.9. Let T € L (#) and o € 6o(T). If A is quasisimilar to T, then

there exist complementary A-invariant subspaces 'y, A's, such that A"y ~ T\# (o, T )
and A\, q~ T1# (6(T)\{o}, T).
s

REMARK. In general, x will not be an isolated point of 6(A) (see [34, p.
112)).

CoRrOLLARY 2.10. Let T € L(#), let o denote a finite subset of o(T), and let
0’ = o(T)\o. Then (T),, = {A € L(H): there exist complementary A-invariant
subspaces A'\(A), A 'y(A) such that A\ \(A) ~ T|#(a, T) and A|A (4) ~ TI# (6, T)}.
Thus, if (T|#(0', T))g © S(T\H (o', T))~, then T satisfies the quasisimilarity
orbit inclusion property.

The preceding results suggest the following question that appears to be open.

QUESTION 2.11. Let T € L(#), let 6 denote a nonempty closed-and-open
subset of o(T), and let o' = o(T)\o. If A is quasisimilar to T, do there exist
complementary A-invariant subspaces ., N such that AL/L/CTS' T #(, T) and
AL/V;S/ T\#(c', T)?
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An affirmative answer to this question would permit spectral decomposition
techniques to be employed in studying the orbit inclusion property (as was done in
2 limited way in Corollary 2.10).

Hypothesis 3) of Theorem 2.4 is not a necessary condition for the orbit inclu-
sion property. In [25, Theorem 3], D. Herrero exhibited operators T such that
(1,, = L(T)and o(T) # 61(T), so that either int(o (7)) # O or int(o (T%)) # O.
In the case of the unilateral shift U, int(o(U*)) # @ and (U),, # L(U) [7],
[18], but U does satisfy the orbit inclusion property. We will prove the following
more general result.

ProrosiTioN 2.12. An operator T e L(H) satisfies (T)gs = L(T)~ if it
has the following properties :

D [o(D)]isoi N[0o(T)})~ = O;

2) T satisfies (Z);

3) T is cyclic, int(o (T)) = @, and int(a(T)) < pse(T);

4) k*(-, T) is valued in {0, 1, -o00}.

Proof. Property 4) implies that 6,(T) = ©@. We will show that each operator
quasisimilar to T satisfies (F), (A), and (S) of Theorem 2.7. Much of the proof is
very close to the proof of Theorem 2.4, so we give a sketch and supply details only
when necessary.

Since T is cyclic, then nul(T — /)* < 1 (4 € C) [24, Proposition 1(i)]. Thus,
since int(o (7)) = O, it follows that

215 pse(T) n int(a(T)) = p§e(T) = {4 € psp(T) :ind(T — 4) = —1}
and nul(T — 2) = 0 for all 4 € p§(T). It follows that
(2.16) 0(T) = o(T) and  pse(T) N o(T) = p§E(T) U oo(T).

A result of D. Herrero [24, Theorem 1] implies that each component of p{G(T) is
simply connected, and thus

(2.17) [PSEAD] 1 [6e(D]isot = O

(note that bdry(pSe™(T)) < 01l T) \[0.(T)]iso1)- Now hypothesis 1), (2.16), and (2.17)
imply that

(2 18) [ae(T)]isol < [G(T)]isol .

Let A be an operator quasisimilar to 7. Since quasisimilarity preserves cycli-
city [24, Proposition 1(vii)] and int(c (4)) = int(o,(T)) = @, then (as above)
pse(4) 0 6(4) = p§(4) U a(4),

(2.19) nul(d — 2) =0 for all 2 in p§EP(4), and

6.(A4) = o11e(A).
Since T satisfies (X) it follows as in the proof of Theorem 2.4 that 64(4) < oo(T);
moreover, p§EP(4) = int(p§P(4)) < int(a(T)) < pse(T) (hypothesis 3). Since also
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p{A) = p(T), we conclude from (2.19) that pse(4)< psp(T), and thus property (F)
holds.

To prove property (A), it follows as in Theorem 2.4 that dim# (s, A) =
== dim¥# (2, T) (/. € 6o(4)), and that if / € 6o(4) © [0(A)]isor, then 7 € [o(T)}isos
and rank(4d — 2)* #(7, A) < rank (T — 2 3#(:, T) (k = 1). It also follows as
before that if 7 € [6.(4)]isor. then / ¢[oo(4)]~. Since A is cyclic, [6.(4)}isor 0}
2 [p§F"(A))~ = O, and thus (as in Theorem 2.4),

(220) [O'e(A-)]isol < [G(A)]isol and [Ge(A)]isoﬂc [ae(T)]isol-

Using (2.20), hypothesis 4) shows (as before) that k+(i, A) < k+(}, T) (i€ C),
so property (A) holds.

It remains to prove property (S). Exactly as in Theorem 2.4 we may prove
that [01e(4)\One(A))isot © 0 (T)\0ne(T). It thus suffices to show that each infi-
nite open-and-closed subset ¢ of 6y (4)\on(A4) intersects o (T)\on(T). Assum-
ing the contrary, let ¢ denote a bounded open set such that ¢ < ¢,

(2.21) [O1(ANGre(A)] o~ = a, and [0 (T)\oue(D]n ¢~ = D.

Exactly as before, we may assume
(2.22) (AN =0, o(A)ne=0, and o =op(A)No".

We assert that p{EP(4)n o = @. Let H be a component of pEP(4). Now
(2.21) and (2.22) imply that bdry(H) n bdry(¢) < o(4) n bdry(p) = @. Since
H is simply connected [24] and op(d)Ne — 6 # &, we conclude that
either H- < ¢ or H-n ¢ = @. Suppose there exists a component H, of p§g(4)
such that H < ¢. Since H, < int(s (4%)*) = int(6(T)) = p§e(T), there exists
a component K of p§g(T) such that H, = K. Since bdry(K) < 6 (T)\on(T), (2.21)
implies that bdry(K) n ¢~ = @. Let @ denote the component of ¢ that contains
H{. Since bdry(K)n0- =@, then Hf < ¢ < ¢— < K. Since 0 is a component
of ¢, then bdry(0) = bdry(p); thus if x € bdry(@) < K < p§(T), then
x € bdry(@) nint(6(A4)) = a(A)\o(4) (use (2.22)), and so x € p§P(A). Since
x € bdry(y), the component of x in p§gV(4) is neither disjoint from ¢ nor is it
contained in ¢. From this contradiction we conclude that pge(4)n ¢ = @, and
by also using (2.21) and (2.22) we see that ¢ is a closed-and-open subset of g(A4),
Le, o(A)ne-=oc(A)n ¢ = 0.

Let
(2.23) 1=0(T)n ¢ (= o).

If K is a component of p§g(T) (co(4)) and Kn ¢ # @, then (2.23) implies that
K- co, so bdry(K) < o 0 [6.(T)\on(T)], a contradiction to (2.21). Thus p${E(T) n
n ¢ = @, and it follows as in the proof of Theorem 2.4 that 7 is finite. Exactly as

in Theorem 2.4, we obtain a contradiction to the fact that o is infinite, so the proof
is complete.

2 -~ 1305
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Recall that if S is a hyponormal operator and 4 € [6(S)]sor, then H#(4, S) =
=ker(S—/) (see [I3)). If ;e 0,(S), then ker(S— /) reduces S, so
SV ker(S—J)is normal; thus if S is separably acting, then int(ap(S)) = (.

A€o _iS;
Let pre a hyponormal operator in Z(H#) and let Y be as in the definition of
k+(2, T). If ;. € [6.(T));501, then since S = y(T) is hyponormal and ; e [6(S) ot
it follows that (S — J)#(;, §)=0, ie., k¥, T)=1.

CoRrROLLARY 2.13. If Te LK) is a cyclic hyponormal operator, 6(T) = O
aind c(T) = bdry(a(T)), then (T)ys € #(1)-.

Proof. Hypothesis 1) of Proposition 2.12 is satisfied trivially, and property 2)
follows from [8]. The preceding remarks show that k*(., T) is valued in {0,1} and
that int(o (T)) = @. Since 0(T) = bdry(e(T)), then int(o(7)) < psp(T). Thus
properties 3) and 4) hold and the result follows from Proposition 2.12.

2

COROLLARY 2.14. If T is a cyclic hyponormal unilateral weighted shift, then
(T)gs =« (7).

Proof. Since T is cyclic and hyponormal, then T # 0, o,(T) = O, and the
spectrum of T is a disk of positive radius [33, Theorem 4, Theorem 8, Proposition
26]. The fact that int(o(7)) = pse(T) follows from [33, Theorem 6, Theorem 8§,
Proposition 26], and thus 6(T) = bdry(s(T)). The result now follows from
Corollary 2.13.

COROLLARY 2.15. If T is a cyclic subnormal operator quasisimilar 10 the unila-
teral shift, then (T)qs < F(T)-.

Froof. Since T is quasisimilar to the unilateral shift U, 6 (T) = @. 1t follows
from [8} that T and U have equal spectra, and it follows from [7], [29] that they have

equal essential spectra. Thus ¢ (7) = 0.(U) = bdry(a(U)) = bdry(o(T ), and the
result follows from Corollary 2.13.

It follows from Corollary 2.5 and [24, Proposition 1 (viii)] that there exist
cyclic diagonalizable normal operators that do not satisfy the orbit inclusion pro-
perty. Does each pure cyclic subnormal operator have the orbit inclusion property?
We do not know if this is the case, but an affirmative answer would be consistent
with Corollary 2.15 and the following result.

PROPOSITION 2.16. Quasisimilar cyclic subnormal operators are asymptoti-
callv similar.

Proof. Let A and T be cyclic subnormal operators, 4 e T. As noted above, A
and T have equal spectra and equal essential spectra, so cyclicity implies (as above)
that psp(A) = psp(T), and (F) follows. As before, 6¢(4) = 6o(T) and k+(), 2) =
= k*(2, T) (1 € C). The rest of the proof of (A) follows as in Theorem 2.4. Since
Oire(A) = g.(A4) = g (T) = aiee(T) and One(A) = [o(D]isol = [0(T)]isol = a0l T),
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sroperty (S) holds, and since ue(A) = ome(T) = O, the result follows from
Theorem 2.7.

To examine hypothesis 4) of Theorem 2.4 we consider quasinilpotent oper-
ators. As noted in [25, page 107], there exist infinite rank compact quasinilpotent
operators K such that (K),, = &(K); each strictly cyclic compact injective uni-
lateral weighted shift has this property [25], [20), [33]. This example shows that
avpothesis 4) is not necessary for orbit inclusion. More simply, note that if T'is a
nonzero finite rank nilpotent operator, then clearly T does not satisfy bypothesis
4), but nonetheless (T)qs = S(T). Indeed, if T is a finite rank nilpotent, then so is
each A € (T),,, and rank(T’) = rank(4’), nul(T?) = nul(4’) for all j > 1. It now
follows from [26, Corollary 2.8] that A is similar to T.

In contrast to these results, note that no infinite rank compact nilpotent operator
satisfies the orbit inclusion property. More generally, we have the following result.

ProPOSITION 2.15. If T is a nilpotent operator and T* is an infinite rank compact
aperator for somek>1, then T doe snot satisfy the quasisimilarity orbit inclusion
property.

_Proof. By a result of C. Apostol, R. Douglas, and C. Foias [3] and L. Wil-
liams [37), T is quasisimilar to a Jordan nilpotent operatorJ, and thus T* is quasi-
similar to J*. Since T* has infinite rank, so does the Jordan operator Jk and thus J*
is not compact. Since each similarity of T* is compact, it follows that JE¢ F(TH)-,

and thus J ¢ (7).

Remark. The first example above concerning quasinilpotent operators shows
that we cannot replace “nilpotent” by ‘‘quasinilpotent’ in the preceding result.
On the other hand, T. Hoover’s example [27] shows that not every compact quasinil-
potent satisfies the orbit inclusion property.

QUESTION 2.16. Which quasinilpotent operators and which nilpotent operators
satisfy the quasisimilarity orbit inclusion property?

3. EQUALITY OF ESSENTIAL SPECTRA OF QUASISIMILAR BILATERAL
WEIGHTED SHIFTS

Let {e,} _., denote an orthonormal basis for #. For a bounded sequence
%= {a,}72 o < C, we define the bilateral weighted shift W, € #(#) by W,e, =
= 0,e,,y (1 € Z). We consider only injective shifts (all o, # 0) and up to unitary
equivalence we may assume each «, > 0 [33, Corollary I, p. 52}. From [11, Theorem
4.2] we have the following criterion for quasisimilarity of (injective) bilateral
weighted shifts.
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Lewmyma 3.1. Bilateral weighted shifts W, and W, are quasisimilar if ond only
if the following conditions are satisfied:
1) There exists an integer k such that
sup (% ... % 3.0y ... Bicy) < oo

i> max(1,! -&)

and
sup - (Boy ... Boqian)i(2oy oL 2ly) < 00
iz max(l,1 —&)
2) There exists an integer m such that
sup By Biciim) (o .. 22} < 00
i>max(l,t —m)
and

sup  (%_y A m)/ By o) < 00

i>max(1,1-rm)

Using this result, it is shown in [!1] that quasisimilar invertible bilateral
weighted shifts are similar, but that there exist quasisimilar weighted shifis
that are not similar; in any case, quasisimilar shifts have equal spectra [11, Theorem
4.6]. We will show that quasisimilar shifts also have equal approximate point spectra
and equal essential spectra. As an application, we will show that (excluding one
exceptional case) quasisimilar shifts are asymptotically similar.

PROPOSITION 3.2. Quasisimilar bilateral weighted shifts have equal approximate
point spectra.

We defer the proof briefly to present an application.

COROLLARY 3.3, Quasisimilar bilateral weighted shifts have equal essential
spectra.

Proof. Let W, and W, denote quasisimilar weighted shifts. From [33, Theo-
rem 9] we know that either

1) 6,(W,) = o,(Ws) = O and dimker(W, — 2)* - = dimker(W; — A)* < 1
(LeC)or

i) o,(W¥) = ap(W,T) = @ and dimker(W, — /) == dimker(W; — 1) < |
(4 € Q).

In case i), W, — / is Fredholm if and only if W, — i has closed range,
or, equivalently, if and only if W, — 7 is bounded below. Thus ¢ (W ,) = ¢, (W),
0.(Wy) = 0,(W,), and the desired conclusion follows from Proposition 3.2. In case
ii), we apply the same argument to W> and W},»k, which are also quasisimilar bila-
teral weighted shifts.

In order to prove Proposition 3.2 we require additional notation. Following
W. Ridge [31], for a bilateral weighted shift W, we define

W)t = limsup (% ... &j4q- 1)V

n jz0
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+his parameter, and several others defined below, are used in [31] to describe the
approximate point spectrum of W,. Let # . = V {e,} and let W} denote the uni-

nz0
Joteral weighted shift on 2 = defined by Wle, = x,e,.; (n > 0); clearly r(W )+ =
- (7). the spectral radius of W;.

LEMMA 3.4, If W, ~ W, then t(W,)* = r(Wp)*.
4s
Proof. We may assume W, ‘W, < 1 and we may thus also assume that

+he integers & and m of Lemma 3.1 are nonnegative. In particular, there exists a
constant M > 1 such that

(g .- % e) < MPBy...B8.) G=1)
and

i) Bo .- Bicram) < Mg ... 2;_y) (G =1)
Form >k +m and j 2 1, we have

@ o Fapey) = @ G B, (g 2 y) <
<My Bren-1-Dl - - 21) <
<M* By ... Bisn-1-)Bo - -- Bj-14m) =
- MBjam - Bio1inm)

For j--0,
(g . %) < MBo ... Bor—) < M*(B ... Bucad)-
Thus
S_up (‘xj LA “j-i—n—l) < Mz S‘Up (ﬁj+lﬂ e ﬂj—l-{-n-'k_) s
jz0 iz0

< M2 sup (ﬁj+m . 'ﬁj—1+n—k)a

jz—m

and so [[(WIY||< M2 F)==%+m™|. Now [I1, Lemma 4.7] implies that r(W7) <
< r(W}). By symmetry, we have r(W ) * = (W) = W3y =r1Wy+.

LEMMA 3.5. If W, ~ Wy, then W} is bounded below if and only if W} is bounded
q
below.

Proof. Let k, m, and M be as in the proof of Lemma 3.4. If «; > 0>0
(i = 0), then for i > 2 + m, inequalities i) and ii) imply that

Bi-i= B - 'ﬁi—Zﬁi—l)/(ﬂO oo Bice) >
> (Ol - tora )/ (MPg oo g ) =
= (UMD @iy - - - %imrsi) > (1 MPFETTL

Thus W} is bounded below if W is, and the result follows by symmetry.
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For T € Z(#), let m(T) = inf | Tx; thus for S€ L(#), m(TS) = m(T)m(S)
x. =1
[33, page 68]. Note that m((W;)") = inf (%; ... z;,,_,); following [31], we define
i>0

iW,)* = liminf (x; ... a;,, ,)V".

n jz0

LemMma 3.6. W7 is bounded below if and only if W} is bounded below for some

n 2zl
Proof. If W;" is bounded below, then m(W ;") > 0 and thus 6 = inf (; . ..
i»0
cee@ynoy) > 0. If N> ||W5, then for j = 0, af/N > (4;/N) ... (@ 1,_o/N) >
> 6/N" > 0, so W} is bounded below; the converse is obvious.

LemMMA 3.7. If W, ~ W, then i(W,)* = i(W;)*.
qs

Proof. If W} is not bounded below, then Lemma 3.6 implies that for each n,
m(W}™ = 0, whence i(W,)* = lim m(W;")'/" = 0. In this case, Lemma 3.5 implies

that m(W§) = 0, so the preceding argument shows that i(#;)* = 0. We may thus
assume that both W, and W, are bounded below. We retain the notation of the
proof of Lemma 3.4. Forj > k -+ 1,

O - Fypey) =
— (G- %oy 0 e Gy ) o)) >
> UMD Bo - .- Bisn-14mBo - .. Bj1-) =
= (UMHB;—x - - - Bivn-r4m):

Thus
inf (... 04,21 2
iz»k+1
> (1/M?) inf (ﬁj—k .Bj+n—1+m) =z
izk+1
= (1/M?) 1n£ Bi-k - Bivn-14m) =
iz
= (/M) m (WY +mHk) >
> (MmO m( Y.
Now
mWin=min{(g ... oy_y), ..., (... Geyn-1)s 0 @ .o 0ip_1)} >

jzk+1

> min {(o ... @yoy)y ey @ - - Gy 1)y (LMEYmW ™) m((W £ )" +5)}.
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Foreach j, 0<js k—1,
(@ .. %yspy) 2
z (M) (B, --. ﬂj+n—1+m)/("o cee aj—l) =
= (l/M) (ﬁo e ﬁj+n—1+m) = (l/'MZ),n((WI;—)néij) >
= (1M m(W 5 "ym((W 5 y"+).
Thus
mWE™ = (1/M)m(W§") min m((W; )y,
oci

EVAS

and so
W)+ = limmW ;"™ > lim m(WEmV" = i(Wp)+.

The result now follows by symmetry.
Following [31], we define the following additional parameters for a shift W, :

W)~ = liminf (y,_y - 7'

n k<o

(W,)- =lim sup (V-1 - Po=)V"

LemMA 3.8. If W, ~ Wy, then (W)~ = i(Wy)~ and t(W,)~ = r(W;)-.

Proof. Let f, = e_, (n € Z). Relative to the orthonormal basis {f,}, W¥ and
W are bilateral weighted shifts such that the weight sequences for (W;)* and
(W §)* are, respectively, a_q, ot_g, 05, ... and f_;, B_,, f_s, ... . Since W} ~ W,

Lemma 3.4 implies that r(W,)~ = t(Wi)* = t(W;)* = r(W,,)4 and Lemma 3.7
implies that i(W,)~ = iW)+ = i(W3)* == i(Wp)~.

Proof of Proposition 3.2. In [31, Theorem 3] Ridge proved that for a bilateral
weighted shift W, if r(W,)- < i(W,)*, then

0, W) = {21 iW)* < 121 < 1) *} u {2 i) <12 < 1(W,)-);
otherwise,

o,(W.,) = {2 : min (i(W,)", i(Wy)+)§TA[ <max t(W,) -, t(W,)*)}.

From this result, and Lemmas 3.4, 3.7 and 3.8, it is clear that quasisimilar bilateral
weighted shifts have equal approximate point spectra.

We conclude with an application concerning asymptotic similarity.
PrROPOSITION 3.9. If W, ~ W, and 0 is not an isolated point of o (W)
gs
( = 0.(Wp)), then W, and Wy are asymptotically similar.
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Proof. The results of [11] and the preceding results of this section imply that
a(W,) = o(Wy), o (W) =cdWy), pse(W,)= pse(Wy), 6.(W,) = 6ie(W,), and
6o(W,) == . Since our hypothesis implies that ,.(W,) = @, Theorem 2.7 shows
that W, € #(W;)~; the result follows by symmetry.

The following example shows that in Proposition 3.9 we cannot dispose of
the hypothesis that 0 ¢ [6.(W ,)}isor-

ExampLE 3.10. Define the weighted shifts W, and W, as follows:
1) o,==f,=1/n for n < 0;
2) The weight sequence {«,}% 4 is given by

1/2,1,1/4, 1/4, 1, 1/8, 1/8, 1/8, 1/8, 1, (8 terms of 1/16), 1, ...;
3) The weight sequence {,}2, is given by

1/2v2 1/212 1/4,1/2, 172, 1/8, 1/8, 1/8, 1/812,
1/8'2, (7 terms of 1/16), 1/4, 1/4, ... .

It is straightforward to verify that with k == 0 and m = 1, W, and W, satisfy
the hypotheses of Lemma 3.1, and thus W, and W) are quasisimilar. Clearly W,
is compact and W, is noncompact, so W, ¢ S (W;)~. T. Hoover’s example showing
that quasisimilarity does not preserve compactness involves operators with denu-
merable sequences of finite dimensional reducing subspaces; in contrast, neither
W, nor W, admits a pair of complementary nontrivial invariant subspaces (see

(19, [25D).

Research partially supported by a National Foundation Research Grant.
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