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SPECTRAL PROPERTIES OF GENERALIZED MULTIPLIERS

FLORIN RADULESCU

In the present paper we shall be concerned with an extension of the commutator
and the multiplier of two operators. Namely, given S, 7 acting on Banach spaces
X, Y and 0 an analytic complex valued function, defined in a neighbourhood of
the Cartesian product o(S)xo(7T), we define an operator O(S, T): L(Y, X) >
+ L(Y, X) so that for simple functions such as 0(z, w) = z — w or 0(z, w) = zw
we obtain the commutator and the multiplier of S, T (i.e. the operators C(S, T)V =
= SV — VT and M(S, TV = SVT, respectively). «

We shall prove directly that the mapping 0 +— 0(S, T) from the algebra of
germs of analytic functions in neighbourhoods of ¢(8)xa(T) into L(L(Y, X)) is a
morphism of algebras, and using this result we shall deduce an evaluation for the
spectrum of 6(S, T) (see also [3], [5]).

Foliowing the ideas from [4], we shall obtain some spectral properties of
8(S, T); the main result is Theorem 10, which is an extension of the results obtain-
ed in [4]. ‘

For definitions and main techniques used in this paper we refer to [8].

1. DEFINITIONS AND GENERAL RESULTS

Let X, Y be two Banach spaces, and let S e L(X), T € L(Y) be two bounded
operators. Let Dy, Dr be two open sets containing ¢(S) and o(T), respectively. Let
0: Dgx Dy~ C be an analytic function. If I'y, I'; are two regular contours con-
tained in Dg and Dy, surrounding ¢(S) and o(T) respectively, we define:

0z, T) = (2ni)~? S 0z, w)(w — T)~1dw.

Ir

For V belonging to L(Y, X), we define:

6(S, TV = Q2nri)~* \ (z — S)~"WVO(z, T) dz.

Bl
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It is obvious that 6(S, T) is a bounded operator from L(Y, X) into L(Y.X)
which does not depend on the particular choice of I's and of I'y. If 8 has the par-
ticular form

0(z, w) = Y. fi(2)g;(w),

where f;, g; are analytic functions on Dg and Dy respectively, then using the ana.
lytic functional calculus, we obtain:

0(S, TW = Y, [(S)Vg/T).
By putting 8(z, w) == z — w or 0(z, w) = zw, we obtain the commutator and the

multiplier.

LEMMA 1. Let 0': Dgx Dpv> C be another analytic function and suppose
that o(S) € Dg, o(T) € Dy. In this case we have :

00') (S, T) = 0(S, T (S, T).

Proof. We may suppose that we have an open set U with regular boundary
I's such that 6(S) € U < U < Dgn Dg, and that I's surrounds U. If V belongs
to L(Y, X) then we have the equalities:

(S, T)0'(S, TV = (2zi)-? S (z — S)-XO'(S, Tz, T) dz =

Is

= (2nmi)-? S S(z — S)~Y' — S)"WO'(Z, T)b(z, T)dzdz’ =

f's r"g
— (2ri)-? S G — S (z — 2)-1W0'', TY6(, T)dz’ dz—
FS s

—(2ni)—2 S (z— 51 S (z — 2)-Wo'(z', T)8(z, T)dzdz'.

Using the Cauchy integral formula the second integral is null while the first is
equal to:

ni)-1 S (' — $)-We'(, TG, T)dz =
rg
= (2ni)-1 S (' — )W)z, T)dz' = (0¢'XS, TV,
rg

where we used the multiplicativity of the analytic functional calculus.



GENERALIZED M ULTIPLIERS 279

REMARK. We may consider the operators Ly and R, on L(Y,X) given by
L{V) - SVand Rp(V)- - VT. We note that (L, Ry) is a commuting pair and that
the joint spectrum of this pair (in the sense of J. L. Taylor [7]) is contained in a(Lg) >
6(Ry) = 6(S)Xa(T). Moreover, by Corollary 111.8.17 from {8),

O(Ls. Rp)V - - (2rzi)“‘-’5 S 0(=. w)(z — Lg)=2(w — Ry)-2V dz dw =

fsfr

= (2ni)-*2 S S 0, w)(z — S)y"Ww — T)=tdzdw -= (S, T)V.

Fgry

This shows in particular that the mapping ¢ — 6(S, T) is an algebra homeo-
morphism, by Theorem 4.3 from [6). Nevertheless, our Lemma 1 is a direct argument.

CoroLLARY 2. We have the following inclusion :
o(0(S, T)) < {0(z, w): = € 6(S), wea(T).

Proof. Take a point 2 which does not belong to the set on the right side and
consider the function u,(z. w) = (/L — 0(z, w))~! which is analytic and weli defined
in a neighbourhood of ¢(S)xa(T). By virtue of Lemma 1, / — 0(S, T) is inver-
tible and (4 — O(S, T))~* = (S, T). This ends the proof.

If Zis a Banach space and W an operator acting on Z, and if z is an element
of Z, we denote by y,(z) the local (analytic) spectrum of z with respect to W;
if in addition, W has the single valued extension property, then we denote by z,(-)
the analytic Z-valued function defined on C\y,(z) which satisfies

(E — W)zy(&) =z for every ¢ in C\p,(2).

We denote by Z,,(F) the spectral maximal subspaces associated with W (i.e.
for a closed subset F of C we have:
Zy(Fy={zeZ:y,(2) = F}).

If g is an analytic L(Z)-valued or complex-valued function defined in a neigh-
bourhood of v,(z), we put:

[sOV))z = (2mi)-1 Sg(:)zW(ﬁ) dc,
r

where W is supposed to have the single valued extension property, and I' is an arbi-
trary contour contained in the domain of g which surrounds y,(z). (The brackets
indicate that in this case g(W) is not completely meaningful; it would be meaning-
ful if g were analytic in a neighbourhood of ¢(W); in this cass we would have

gW)z = [g(W)]z.)
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The following lemma is a slight improvement of the multiplicativity propert\
of the local analytic functional calculus (see [1]).

Lemma 3. If g is an analytic L(Z)-valued (or complex-valued) function defined
in a neighbourhood of 74(2), z € Z, and if [ is analytic complex-valued in a neigh-
bourhood of o(W), then we have:

[(f8) () = [gW)I(f(W)z2).

Proof. We have to prove that

Sg(é)(f(i) — [z ($)dE —= 0,
a
where I is a regular contour contained in the domain of f and g, which surrounds
yw(z). But this follows from the obvious fact that we can write f(&) — f(W) ==
= h{W)<¢ — W), where the mapping ¢+~ h(W) is analytic operator-valued.
This ends the proof.
(We must remark that the local analytic spectrum of f(W)z with respect to W
1s contained in y,(z) so that the term [g(W)] f(W)z is meaningful.) .
Similary we can prove the following lemma:

Lemma 3. If g is an analytic complex-valued function defined in a neighbourfhood
of vw(2), z € Z, and if [ is analytic complex-valued in a neighbourhood of o(W), then
we have:

[(foW))z = fW)[g(W))=.

Now if 0, is an analytic complex-valued function on Dgx Dy ,, where y is
an arbitrary element of ¥ and Dz , an open neighbourhood of y;(y), while V' is an
element of L(Y,X), then we define

[0.(S, T)V]y = (2m)1 S (2 — S Wb, Ty dz =

Ts

= (2ri)~? S S 0,(z, w)(z — S)~Wyp(w)dzdw,
rS rT,y
where I'; , is a contour contained in Dy ,, which surrounds y;(y). The brackets

indicate that in this case 8,(S, T) is not completely meaningful but if 0, is analytic in
a neighbourhood of ¢(S)xa(T), then

[6:(S, T)V1y = 60i(S, T)Vy.

LemMa 4. On the preceding conditions and if h is analytic complex-valued
on Dp , we have:

[ORXS, THV]y = (@(S, THVINT))y.
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Proof.
OGS, TYWIh(T)]y = (2mi)~? S z— S)y"W0(z, TNT)lydz =
s

- (ri) g ( — $)-WIOh)z, T)hdz = [(H)(S, TYV 1,

Ty

where we used Lemma 3’

2. SPECTRAL PROPERTIES OF (S, T)

The main resuit of this section is Theorem 10 which characterizes the location
of the local (analytic) spectrum of 0(S, T') with respect to the properties of the spec-
tral maximal subspaces of S and 7, when both_S and T are decomposable.

For every closed subsets £ and K of C we denote by

07 (K)={z€a(S):(3) we F such that 0(z, w) € K}.

If 0(z, w) = z — w then 07 (K) = (F + K) n a(S).

Throughout this section we shall suppose that S, T are decomposable oper-
ators (see [8]).

The following proposition allows us to prove that 6(S, T) has the single valued
extension property but we shall prove a more general result that is needed in the
proof of Theorem 10.

PROPOSITION 5. Let G be an open connected nonvoid subset of C andlet Y, < ¥
be a closed subspace of Y invariant under T that satisfies the following conditions:
(@) For every y € Yy and w € C\y(y) we have y(w)e Y,.
(b) The space generated by the set:
eye: 107,44 =0}
is dense in Y. .
Let V: G — L(Yqy, X) be an analytic function such that

(2 — O(S, TIY )HV(2) = 0.

In this case V(2) is identically null for every 7 in G.

Proof. First we observe that by (a) it follows that (w — T)~ly belongs to
Y, for every y in Y, and for every w in C\o(7) so that 6(T' | ¥,) < o(7T) and there-
fore 0(S, T}Y,) is defined.
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We shall first prove the following inclusion:
M 7s(VOR) € 0, (2], (V) e G, (VY ye Y,

To prove this, suppose that ¥ and / are fixed : passing to the complement we have
to prove that:

B = {ne Dg:(¥) wey(0). 001 w) # i} = C V().

Let 5, be fixed in B and let ¥, be a relatively compaéi open néighbouthood
of ny so that ¥, < B (it is obvious that B is an open set).
By an easy compactness argument, it follows that there is an open neighbour-

hood Dy, of () such that for every point w in D, and n in ¥, we have 0(y, w)#
# A so that the map r,(w) = (4 — 0(n, w))~1 is analytic and well defined in Dy ,. We
define

h(z, w) = (n — )70, w) — 0(n, w))r,(w),

hy: Dgx Dy == C, and we observe that

) m— Dz, w) =1 — (4 — 0z, w)r,(w).
For # in V) define
R(p) = [h(S.T'Y V(M)

and note that thc map 5 — R(n) € X is analytic in V, (remark that by (a) yriy (¥) &
< y7(y), (¥) y € Y, so that the term [A(S, T| Y,)V(L)]y is meaningful). Using (2)
and Lemma 4 we obtain:

(n — SR = V(@A) — (2 — 0(S. TIY WV (D (T Yol = V(A

since (1 — O(S, TIY WV (2) = 0 by hypothesis. Hence
Ve = C\s(V(2))

so that we have proved (1).
For any fixed / in G we consider D, , to be the open disk with center at 2 and
radius r (v being so small that D, , is contained in G). Then from (1) we have that:

(V@Y € 0, (Dy), (V) 2 €Dy
whence
V() € X0z 0D, (V) 2 €D,

and hence for every /' € G. Since r was arbitrary small we obtain

V() € X0, (7))



GENERALIZED MULTIPLIERS 283

Since this holds for every 2’ in G, we obtain

(V) = Qa {0;56,(GD), (V) 42 eG

T

whence V(2 )y =0, (V) 2’ € G, for y in dense subspace of Y, (by (b) and since S
has the single valued extension property). This ends the proof.

COROLLARY 6. 0(S, T) has the single valued extension property.

Proof. Since T is decomposable, every point in Y can be written as a sum

of elements z such that the diameter of 7,{(z) is smaller than a fixed 4 > 0. But for é

small enough, we have that the intersection (M) 87 ({/}) is void if the diameter
2eG

of Fis smaller than  (by the uniform continuity of 8), where F is an arbitrary closed
subset of C contained in Dy . Therefore. ¥ satisfies conditions (a), (b) in the preced-
ing proposition and hence (S, T) has the single valued extension property.

From now on we shall consider a fixed ¥ in L(Y, X) and for this V we consider
the analytic function V(%) defined on C\ygp(V) such that (A — M)V(2) = V for
every / in C\yq(V), which exists because 9 has the single valued extension
property (by 9t we denote the operator 6(S, T)).

LemMMA 7. For every v in Y we have

15(Vy) < 05 oy m).
Proof. Fix y in Y. We have to prove that:
B, = {n€ Dg: (V) we yr(»). 0(n,w) ¢ yap(V)} = C>y5(Vy).

Taking a point 5, € B,, for every relatively compact open neighbourhood E of n,
such that E < By, there is a neighbourhood Dy, of y;(y) such that 0y, w) ¢ ygp(V),
(V) y e £ and (¥) w € Dy ,. We consider the analytic X-valued function R: Ev+ X
defined by

R(n) = ¢ S S h,(z, w)(z — S)=1V(0(n, w)yr(w) dz dw
FS F,’.‘y
for n in E, I't, a contour contained in Dy, surrounding y7(3), ¢, = (27mi)~ *
v =1, 2, and h,: DgX Dy~ C the analytic function defined by

hy(z,w) = (n — 2)7*O0, w) — 0(z, w)), we Dr,z€ Ds\{n}

and if y € Dg then /,(y, w) is the partial derivative with respect to z evaluated at
(7, w) of the function (z, w) = — (8(n, w) — 8(z, w)). It is obvious that

(n — 2)h,(z, w) = O(n, w) — 0(z, w).
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We shall prove that (§ — S)R(y) = Vy and the proposition will follow. We have:

0 — S)RO) = o S S (@ — S)-16(n, WV (B(n, w))yy(w) d di —

rer

S Ty
— ¢ S S (z — Sy W(O@®, w)B(z, Tyr(w)dz dw =
rS rT,y .
=q S O(n, w) — (S, THV(O(, wh)y,(w) dw =
ry,

=¢ S Vyr(w)dw = Py,

r
Tsy
by Lemma 3 and because of the equality

On, w) — O(S, THV(O, w)) =V,

since 0(1, w) € C\yqqu(V), (V) n € E, (¥) we Dy .

LEMMA 8. Let W be an open nonvoid connected subset of C and let § be a
positive number. Then there is an open covering {G;}1.., of o(T), G; with diameter

less than o, such that for every family of closed sets {F}}}_,, with

(C) F},ngna(T)a j:l’-"’n’

@) F cUF/, j=1,...,n

itj
we have (M) 05'({A}) = O, where F =y F; .
: A€W

Proof. Let us denote by 0, the function defined on Dy by 0,(w) = 0(z, w)
z € Ds. We have to find a covering {G;}7_, of o(T) such that (M) 85 ({1}) = O,
IeW

for every closed subsets Fj, j= 1,2, ..., n, which satisfies (c), (d). This is equi-
valent to find a covering {G;}/_, such that W is not contained in 0,(y F}) for every
closed subsets Fj, j=1,2, ..., n, which satisfies (c), (d) and for every z in o(S).

If this is not true, then for every open covering {G;}%,, of ¢(I') with open
sets of diameter less than J there exist some closed sets {F}},, for which (c), (d)
are fulfilled and for which there exists a z in ¢(S) such that W < 0_(u F).

We consider a lattice consisting of squares with sides of length less than 5/21f 2
that covers C. By the compactness of ¢(7) we can choose a finite number P,, .. ., P,

of them which also cover o(T). For ¢> 0, & < 8/4) 2 consider Pi={zeC*
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:d(z, P;) < ¢}. Clearly the diameter of P is less than . We denote the boundary of
P; by dP;. Plainly {P{}¥ , is also a covering of o(T). Set Q; = {z € C:d(z,0P;) < &}.

From our hypothesis, it follows that there are some closed sets F; < P§ 0 o(T),
which satisfy (d), and there is a z, in 6(S) such that W< 0,5( U F}). By (d), we obtair

FleUPNPcQ;, fori=1,....n
JjFi
Hence F/ < Qina(T).
Thus for every ¢ > 0 there exists an z, in ¢(S) such that

W <6, ((T)n {ze C:d(z,udP;) < &}).

Letting ¢ — 0 and using an easy compactness argument we obtain that there is a
zo in 0(S) such that:
W c Gzo(a(T) n(udry)).

Since W is open and nonvoid, and since 8, is analytic we obtain a contradic~
tion by the following remark.

REMARK. Let D be an open subset of C, let / be an analytic function f: D+ C,
and K a compact subset of D with void interior. Then f(K) is a subset of C of the
first Baire category, and hence cannot contain a nonvoid open subset of C.

Proof. We write D = |_J D,, where D, are disjoint open connected nonvoid:

P,
subsets of C. Because K is compact, there is a p such that K c{_ D,, and we can:
n==1

p
write K = | K,, where each set K, = D, n K is compact.
1

P

For every n =1, 2, ..., p we have that either f is constant on D, or f” is not
identical null on D,.

Let.n e {1,2,...,p} be such that /' is not identical null on D,. Since f' i3
also an analytic function and K, is compact there exist wy, ..., w, € K, such that
f'(z) # 0 for every z e K,\{w,,w,, ....w,} and hence by the inverse mapping
theorem for analytic functions there are two open sets V., W_ with the property
zeV,, f(z)e W, and [ is a homeomorphism from V, onto W,. We select an open:
neighbourhood ¥, of z such that V] < V. Since

(i ) ’
KXy, .,w e\ UV,
z

and since the usual topology on C has a countable basis, we can find a countable
subset {z,},en of K,\{w,, ..., w,} such that

’
K\{wy, cow b e UV,
r
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-and hence
K \[wy s uwd e U V;’.n K,<U V;r.ﬁ.l(,,.
T T

Bui 17," (K, is a8 compact subset of. 3 with void interior and f is -a homeo-
morphism from V,, onto W,’, 50 thatf(l'/;' f K,) is also a compact subset of C with
void interior.

Finally we obtain

AK) SUSTLen K (CJ o3
r §=1

‘where each set in the right side is closed with void interior.
If.n is such that [ is canstant on D, then. the image of K, by f is reduced to

7
one point. We conclude that f{K) = |_J f(K,) is contained in a countable union
n .1

of closed sets with void interior.

LEMMA 9. Let & > 0, let W be an operi nonvoid subset of C and let {G;}]_y
be the open covering from Lemma 8. Let {F;}7_, be a family of closed sets such that
F, e Gino(T) and

Z YilFj) =Y.

Let Y=Y&...®Y (n times), T=T@& e ®T (n times), and let
)70 = {Y = @ Vi yi € Yo(F) 2 Yi= 0}-
-1 i=1

Then ?9 satisfies conditions (a), (b) from Proposition 5.

Proof. That 3’0 satisfies condition (a) is obvious (see also Lemma IV.6.6 and
the proof. of Theorem 1V.6.7 from [8)).
To prove (b) note'that for every ¥ = @ ¥, € Y,. we have that e Fis
' ' i=1
€ G;no(T) and
‘)}T(y.l) = U ':V’T(yi)' i i = i: NN (B

J#i
"
(since Z v, = 0). Therefore the sets F; = yr(yj),j: 1, ..., nsatisfy conditions
sl

(c), (d} in Lemma 8 and hence

Ag/ O;-l({;\-}) = 0, F = U yT(}"i)a (V) j; =@re i'o‘
i=1

f==1
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But this is exactly condition (b), since
n

U ) — v:00.

i1

THeOREM 10. Let K be a compact nonvoid subset of C. Then the following sta-
Zeients . are equivalent :
@ y(¥) & K
(D) 75(Vy) € 0, (K). (V) ye Y.
@) V(Y (F)) € Xy (0;1(1()) for every closed subset F of o(T).

(If 0(z, w) ==z — w, then 0;1(1\’ = (F= K)no(S) and we obtain the
Theorem 1V.6.7 from (8].)

Proof. The implication (i) = (ii) follows from Lemma 7 and (iii) is merely a
rewriting of (ii). So the difficult part of the proof is the implication (iii) = (i).

Let /, ¢ K. We shall show that i, ¢ ygu(¥). Let 0 < & < d(4,, K)/4 and let
W be the open disk with center at 4, and radius-¢. By the uniform continuity of 0
there is a & > 0 such that:

{3) 0@z, w)y — 0(z,w) <&, (¥) z€a(S), (V) w,w € d(T) with |w — w'] < 4.

With § as before, we-consider the covering {G;}%_, from Lemma 8. Since T

is decomposable, we can find closed sets F; = G; n o(T) such that ¥ = y Yo (F)p).
j-1
We denote

Y= Yo(F). X;= X0 (K), j=1,....n

and from (iii) we have V(Y;) < X;forj=1....,n. We denoteby V;, V;: Y; > X,
the restriction V; = V.Y, and let M; == 0(S'X;, T\Y)) for j=1,...,n
Using Corollary 2 for 0(S;,T;) we obtain that

o(0(S;. T)) = 0(a(S)*a(T) € 0007 (K)XFp),  j=1,...,n.

This inclusion, the fact that the diamcter of F; is less than J, as well as (3) show
that W < CN\a(M)) for j=1,...,n
For Z belonging to W we consider

Ri(3) = () — M)~V

and we shall prove that:

) Z Ri(Dy;=0 ify,eY;, j=1,...,n and Z y; =0.
jo :

i=1
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If we prove this, then it follows that
RG)Y =Y, RG)r, ye€Y, y=1Y v, ¥e¥,
VES! j=1

is well defined, R(2) € L(Y,X) and the mapping 2+ R(2) € L(Y, X) is analytic.

Since for every y =Y y;, y,€ Y;

;> we have

j-t

(2 — WRA)y = Y, (h— BIR,(Ay; = ¥, Vyy; = Vy,
-1 ji-1

it follows that 1, € W< C\yg(V).
So we have only to prove (4). We use the notations in Lemma 9. If we define

Ry = Y, RQ)y;, for j = @ ye Yo,
je1 j-1

i
then (4) is equivalent to:

RWDP =0, (VM AIieW, (V) 5= @ 5.

Jj 1

But this is a consequence of Lemma 9, Proposition 5, and of the fact that the map
A k(}.) € L( )70, X) is analytic and

(A— S, TIYDRC) =V, (MAeW.:

n

To prove the last equality observe that for every ¥ — @ y; € )70 and for every
IR

Ain W,
(4 — 0(S, TIVDRF = 3] G — 0(S;, T)HR,(Ay; ~

J

=Y ijj:V( yj):().
J=1 j=1

This ends the proof of the theorem.
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