SPECTRAL PROPERTIES OF GENERALIZED MULTIPLIERS

FLORIN RĂDULESCU

In the present paper we shall be concerned with an extension of the commutator and the multiplier of two operators. Namely, given S, T acting on Banach spaces X, Y and θ an analytic complex valued function, defined in a neighbourhood of the Cartesian product $\sigma(S) \times \sigma(T)$, we define an operator $\theta(S,T): L(Y,X) \mapsto L(Y,X)$ so that for simple functions such as $\theta(z,w) = z - w$ or $\theta(z,w) = zw$ we obtain the commutator and the multiplier of S, T (i.e. the operators C(S,T)V = SV - VT and M(S,T)V = SVT, respectively).

We shall prove directly that the mapping $\theta \mapsto \theta(S, T)$ from the algebra of germs of analytic functions in neighbourhoods of $\sigma(S) \times \sigma(T)$ into L(L(Y, X)) is a morphism of algebras, and using this result we shall deduce an evaluation for the spectrum of $\theta(S, T)$ (see also [3], [5]).

Following the ideas from [4], we shall obtain some spectral properties of $\theta(S, T)$; the main result is Theorem 10, which is an extension of the results obtained in [4].

For definitions and main techniques used in this paper we refer to [8].

1. DEFINITIONS AND GENERAL RESULTS

Let X, Y be two Banach spaces, and let $S \in L(X)$, $T \in L(Y)$ be two bounded operators. Let D_S , D_T be two open sets containing $\sigma(S)$ and $\sigma(T)$, respectively. Let $\theta: D_S \times D_T \mapsto \mathbb{C}$ be an analytic function. If Γ_S , Γ_T are two regular contours contained in D_S and D_T , surrounding $\sigma(S)$ and $\sigma(T)$ respectively, we define:

$$\theta(z, T) = (2\pi i)^{-1} \int_{T_T} \theta(z, w) (w - T)^{-1} dw.$$

For V belonging to L(Y, X), we define:

$$\theta(S, T)V = (2\pi i)^{-1} \int_{\Gamma_S} (z - S)^{-1} V \theta(z, T) dz.$$

278 FLORIN RĂDULESCU

It is obvious that $\theta(S, T)$ is a bounded operator from L(Y, X) into L(Y, X) which does not depend on the particular choice of Γ_S and of Γ_T . If θ has the particular form

$$\theta(z, w) = \sum f_j(z)g_j(w),$$

where f_j , g_j are analytic functions on D_S and D_T respectively, then using the analytic functional calculus, we obtain:

$$\theta(S, T)V = \sum f_i(S)Vg_i(T).$$

By putting $\theta(z, w) = z - w$ or $\theta(z, w) = zw$, we obtain the commutator and the multiplier.

LEMMA 1. Let $0': D'_S \times D'_T \mapsto \mathbb{C}$ be another analytic function and suppose that $\sigma(S) \subseteq D'_S$, $\sigma(T) \subseteq D'_T$. In this case we have:

$$(\theta\theta')(S,T) = \theta(S,T)\theta'(S,T)$$

Proof. We may suppose that we have an open set U with regular boundary Γ_S' such that $\sigma(S) \subseteq U \subseteq \overline{U} \subseteq D_S \cap D_S'$, and that Γ_S surrounds \overline{U} . If V belongs to L(Y, X) then we have the equalities:

$$\theta(S, T)\theta'(S, T)V = (2\pi i)^{-1} \int_{\Gamma_S} (z - S)^{-1}(\theta'(S, T)V)\theta(z, T) dz =$$

$$= (2\pi i)^{-2} \int_{\Gamma_S} \int_{\Gamma_S'} (z - S)^{-1}(z' - S)^{-1}V\theta'(z', T)\theta(z, T) dz dz' =$$

$$= (2\pi i)^{-2} \int_{\Gamma_S'} (z' - S)^{-1} \int_{\Gamma_S} (z - z')^{-1}V\theta'(z', T)\theta(z, T) dz' dz -$$

$$-(2\pi i)^{-2} \int_{\Gamma_S} (z - S)^{-1} \int_{\Gamma_S'} (z - z')^{-1}V\theta'(z', T)\theta(z, T) dz dz'.$$

Using the Cauchy integral formula the second integral is null while the first is equal to:

$$(2\pi i)^{-1} \int_{\Gamma'_{S}} (z' - S)^{-1} V \theta'(z', T) \theta(z', T) dz' =$$

$$= (2\pi i)^{-1} \int_{\Gamma'_{S}} (z' - S)^{-1} V(\theta \theta')(z', T) dz' = (\theta \theta')(S, T) V,$$

where we used the multiplicativity of the analytic functional calculus.

GENERALIZED MULTIPLIERS 279

REMARK. We may consider the operators L_S and R_T on L(Y, X) given by $L_S(V) = SV$ and $R_T(V) = VT$. We note that (L_S, R_T) is a commuting pair and that the joint spectrum of this pair (in the sense of J. L. Taylor [7]) is contained in $\sigma(L_S) \times \sigma(R_T) = \sigma(S) \times \sigma(T)$. Moreover, by Corollary III.8.17 from [8],

$$\theta(L_S, R_T)V = (2\pi i)^{-2} \int_S \int_T \theta(z, w)(z - L_S)^{-1}(w - R_T)^{-1}V dz dw =$$

$$= (2\pi i)^{-2} \int_{\Gamma_S} \int_{\Gamma_T} \theta(z, w)(z - S)^{-1} V(w - T)^{-1} dz dw = \theta(S, T) V.$$

This shows in particular that the mapping $\theta \mapsto \theta(S, T)$ is an algebra homeomorphism, by Theorem 4.3 from [6]. Nevertheless, our Lemma 1 is a direct argument.

COROLLARY 2. We have the following inclusion:

$$\sigma(\theta(S, T)) \subseteq \{\theta(z, w) : z \in \sigma(S), w \in \sigma(T)\}.$$

Proof. Take a point λ which does not belong to the set on the right side and consider the function $\mu_{\lambda}(z, w) = (\lambda - \theta(z, w))^{-1}$ which is analytic and well defined in a neighbourhood of $\sigma(S) \times \sigma(T)$. By virtue of Lemma 1, $\lambda - \theta(S, T)$ is invertible and $(\lambda - \theta(S, T))^{-1} = \mu_{\lambda}(S, T)$. This ends the proof.

If Z is a Banach space and W an operator acting on Z, and if z is an element of Z, we denote by $\gamma_W(z)$ the local (analytic) spectrum of z with respect to W; if in addition, W has the single valued extension property, then we denote by $z_W(\cdot)$ the analytic Z-valued function defined on $\mathbb{C} \setminus \gamma_W(z)$ which satisfies

$$(\xi - W)z_W(\xi) = z$$
 for every ξ in $\mathbb{C} \setminus \gamma_W(z)$.

We denote by $Z_W(F)$ the spectral maximal subspaces associated with W (i.e. for a closed subset F of \mathbb{C} we have:

$$Z_w(F) = \{ z \in Z : \gamma_w(z) \subseteq F \}$$
).

If g is an analytic L(Z)-valued or complex-valued function defined in a neighbourhood of $\gamma_W(z)$, we put:

$$[g(W)]z = (2\pi i)^{-1} \int_{\Gamma} g(\xi)z_W(\xi) d\xi,$$

where W is supposed to have the single valued extension property, and Γ is an arbitrary contour contained in the domain of g which surrounds $\gamma_W(z)$. (The brackets indicate that in this case g(W) is not completely meaningful; it would be meaningful if g were analytic in a neighbourhood of $\sigma(W)$; in this case we would have

$$g(W)z = [g(W)]z.$$

280 FLORIN RĂDULESCU

The following lemma is a slight improvement of the multiplicativity property of the local analytic functional calculus (see [1]).

LEMMA 3. If g is an analytic L(Z)-valued (or complex-valued) function defined in a neighbourhood of $\gamma_W(z)$, $z \in Z$, and if f is analytic complex-valued in a neighbourhood of $\sigma(W)$, then we have:

$$[(fg)(W)]z = [g(W)](f(W)z).$$

Proof. We have to prove that

$$\int_{\Gamma} g(\xi)(f(\xi) - f(W))z_{W}(\xi) d\xi = 0,$$

where Γ is a regular contour contained in the domain of f and g, which surrounds $\gamma_W(z)$. But this follows from the obvious fact that we can write $f(\xi) - f(W) = h_{\xi}(W)(\xi - W)$, where the mapping $\xi \mapsto h_{\xi}(W)$ is analytic operator-valued. This ends the proof.

(We must remark that the local analytic spectrum of f(W)z with respect to W is contained in $\gamma_W(z)$ so that the term [g(W)] f(W)z is meaningful.)

Similary we can prove the following lemma:

Lemma 3'. If g is an analytic complex-valued function defined in a neighbourhood of $\gamma_W(z)$, $z \in \mathbb{Z}$, and if f is analytic complex-valued in a neighbourhood of $\sigma(W)$, then we have:

$$[(fg)(W)]z = f(W)[g(W)]z.$$

Now if θ_1 is an analytic complex-valued function on $D_S \times D_{T,y}$, where y is an arbitrary element of Y and $D_{T,y}$ an open neighbourhood of $\gamma_T(y)$, while V is an element of L(Y,X), then we define

$$[\theta_1(S, T)V]y = (2\pi i)^{-1} \int_{\Gamma_S} (z - S)^{-1} V[\theta_1(z, T)]y \, dz =$$

$$= (2\pi i)^{-2} \int_{\Gamma_S} \int_{\Gamma_{T, y}} \theta_1(z, w)(z - S)^{-1} Vy_T(w) \, dz \, dw,$$

where $\Gamma_{T,y}$ is a contour contained in $D_{T,y}$, which surrounds $\gamma_T(y)$. The brackets indicate that in this case $\theta_1(S,T)$ is not completely meaningful but if θ_1 is analytic in a neighbourhood of $\sigma(S) \times \sigma(T)$, then

$$[\theta_1(S, T)V]y = \theta_1(S, T)Vy.$$

Lemma 4. On the preceding conditions and if h is analytic complex-valued on $D_{T,v}$ we have:

$$[(\theta h)(S, T)V]y = (\theta(S, T))V[h(T)]y.$$

Proof.

$$\theta(S, T)V[h(T)]y = (2\pi i)^{-1} \int_{S} (z - S)^{-1}V\theta(z, T)[h(T)]y dz =$$

$$= (2\pi i)^{-1} \int_{\Gamma_S} (z - S)^{-1} V[(\theta h)(z, T)] y dz = [(h\theta)(S, T)V] y,$$

where we used Lemma 3'.

2. SPECTRAL PROPERTIES OF $\theta(S, T)$

The main result of this section is Theorem 10 which characterizes the location of the local (analytic) spectrum of $\theta(S, T)$ with respect to the properties of the spectral maximal subspaces of S and T, when both S and T are decomposable.

For every closed subsets F and K of C we denote by

$$\theta_F^{-1}(K) = \{ z \in \sigma(S) : (\exists) \ w \in F \text{ such that } \theta(z, w) \in K \}.$$

If
$$\theta(z, w) = z - w$$
 then $\theta_F^{-1}(K) = (F + K) \cap \sigma(S)$.

Throughout this section we shall suppose that S, T are decomposable operators (see [8]).

The following proposition allows us to prove that $\theta(S, T)$ has the single valued extension property but we shall prove a more general result that is needed in the proof of Theorem 10.

PROPOSITION 5. Let G be an open connected nonvoid subset of \mathbb{C} and let $Y_0 \subseteq Y$ be a closed subspace of Y invariant under T that satisfies the following conditions:

- (a) For every $y \in Y_0$ and $w \in \mathbb{C} \setminus \gamma_T(y)$ we have $y_T(w) \in Y_0$.
- (b) The space generated by the set:

$$\{y \in Y_0: \bigcap_{\lambda \in G} \theta_{\gamma_T(y)}^{-1}(\{\lambda\}) = \emptyset\}$$

is dense in Y_0 .

Let $V: G \mapsto L(Y_0, X)$ be an analytic function such that

$$(\lambda - \theta(S, T|Y_0))V(\lambda) \equiv 0.$$

In this case $V(\lambda)$ is identically null for every λ in G.

Proof. First we observe that by (a) it follows that $(w - T)^{-1}y$ belongs to Y_0 for every y in Y_0 and for every w in $C \setminus \sigma(T)$ so that $\sigma(T \mid Y_0) \subseteq \sigma(T)$ and therefore $\theta(S, T \mid Y_0)$ is defined.

We shall first prove the following inclusion:

$$\gamma_{S}(V(\lambda)y)\subseteq \theta_{\nu_{T}(y)}^{-1}(\{\lambda\}), \quad (\forall)\ \lambda\in G,\ (\forall)\ y\in Y_{0}.$$

To prove this, suppose that y and λ are fixed; passing to the complement we have to prove that:

$$\mathbf{B} = \{ \eta \in D_S : (\forall) \ w \in \gamma_T(y), \ \theta(\eta, w) \neq \lambda \} \subseteq \mathbb{C}^*, \gamma_S(V(\lambda)y).$$

Let η_0 be fixed in B and let V_0 be a relatively compact open neighbourhood of η_0 so that $\overline{V}_0 \subseteq B$ (it is obvious that B is an open set).

By an easy compactness argument, it follows that there is an open neighbourhood $D_{T,y}$ of $\gamma_T(y)$ such that for every point w in $D_{T,y}$ and η in V_0 we have $\theta(\eta, w) \neq \lambda$ so that the map $r_{\eta}(w) = (\lambda - \theta(\eta, w))^{-1}$ is analytic and well defined in $D_{T,y}$. We define

$$h_{\eta}(z, w) = (\eta - z)^{-1}(\theta(z, w) - \theta(\eta, w))r_{\eta}(w),$$

 $h_n: D_S \times D_{T,v} \mapsto \mathbb{C}$, and we observe that

(2)
$$(\eta - z)h_{\eta}(z, w) = 1 - (\lambda - \theta(z, w))r_{\eta}(w).$$

For η in V_0 define

$$R(\eta) = [h_{\eta}(S, T|Y_0)V(\lambda)]v$$

and note that the map $\eta \mapsto R(\eta) \in X$ is analytic in V_0 (remark that by (a) $\gamma_{T|V_0}(\nu) \subseteq \varphi_T(\nu)$, (\forall) $y \in Y_0$ so that the term $[h(S, T \mid Y_0)V(\lambda)]y$ is meaningful). Using (2) and Lemma 4 we obtain:

$$(\eta - S)R(\eta) = V(\lambda)y - (\lambda - \theta(S, T|Y_0))V(\lambda)[r_n(T|Y_0)]y = V(\lambda)y,$$

since $(\lambda - \theta(S, T|Y_0))V(\lambda) \equiv 0$ by hypothesis. Hence

$$V_0 \subseteq \mathbb{C} \setminus \gamma_S(V(\lambda))$$

so that we have proved (1).

For any fixed λ in G we consider $D_{\lambda,r}$ to be the open disk with center at λ and radius r (r being so small that $\overline{D}_{\lambda,r}$ is contained in G). Then from (1) we have that:

$$\gamma_S(V(\hat{\lambda}')y) \subseteq \theta_{\gamma_T(y)}^{-1}(\overline{D}_{\lambda,r}), \quad (\forall) \ \hat{\lambda}' \in D_{\lambda,r}\,,$$

whence

$$V(\lambda')y \in X_{S}(\theta_{\gamma_{T}(y)}^{-1}(\overline{D}_{\lambda,r})), \ (\forall) \ \lambda' \in D_{\lambda,r}$$

and hence for every $\lambda' \in G$. Since r was arbitrary small we obtain

$$V(\lambda')y\in X_S(\theta_{\gamma_T(y)}^{-1}(\{\lambda\})).$$

Since this holds for every λ' in G, we obtain

$$\gamma_{S}(V(\lambda')y)\subseteq\bigcap_{\lambda\in G}\{\theta_{\gamma_{T}(y)}^{-1}(\{\lambda\})\},\quad (\forall)\ \lambda,\lambda'\in G$$

whence $V(\lambda')y = 0$, $(\forall) \lambda' \in G$, for y in dense subspace of Y_0 (by (b) and since S has the single valued extension property). This ends the proof.

COROLLARY 6. $\theta(S, T)$ has the single valued extension property.

Proof. Since T is decomposable, every point in Y can be written as a sum of elements z such that the diameter of $\gamma_T(z)$ is smaller than a fixed $\delta > 0$. But for δ small enough, we have that the intersection $\bigcap_{\lambda \in G} \theta_F^{-1}(\{\lambda\})$ is void if the diameter of F is smaller than δ (by the uniform continuity of θ), where F is an arbitrary closed subset of C contained in D_S . Therefore Y satisfies conditions (a), (b) in the preceding proposition and hence $\theta(S,T)$ has the single valued extension property.

From now on we shall consider a fixed V in L(Y, X) and for this V we consider the analytic function $V(\lambda)$ defined on $\mathbb{C} \setminus \gamma_{\mathfrak{M}}(V)$ such that $(\lambda - \mathfrak{M})V(\lambda) = V$ for every λ in $\mathbb{C} \setminus \gamma_{\mathfrak{M}}(V)$, which exists because \mathfrak{M} has the single valued extension property (by \mathfrak{M} we denote the operator $\theta(S, T)$).

LEMMA 7. For every y in Y we have

$$\gamma_{S}(Vy) \subseteq \theta_{\gamma_{T}(y)}^{-1}(\gamma_{\mathfrak{M}}(V)).$$

Proof. Fix y in Y. We have to prove that:

$$B_1 = \big\{ \eta \in D_S : (\forall) \ w \in \gamma_T(y), \ \theta(\eta, w) \notin \gamma_{\mathfrak{M}}(V) \big\} \subseteq \mathbb{C}^{\searrow}, \gamma_S(Vy).$$

Taking a point $\eta_0 \in B_1$, for every relatively compact open neighbourhood E of η_0 such that $\overline{E} \subseteq B_1$, there is a neighbourhood $D_{T,y}$ of $\gamma_T(y)$ such that $\theta(\eta, w) \notin \gamma_{\mathfrak{M}}(V)$, $(\forall) \ \eta \in E$ and $(\forall) \ w \in D_{T,y}$. We consider the analytic X-valued function $R: E \mapsto X$ defined by

$$R(\eta) = c_2 \int_{\Gamma_S} \int_{\Gamma_{T,y}} h_{\eta}(z, w)(z - S)^{-1} V(\theta(\eta, w)) y_T(w) \, dz \, dw$$

for η in E, $\Gamma_{T,y}$ a contour contained in $D_{T,y}$ surrounding $\gamma_T(y)$, $c_k = (2\pi i)^{-k}$ k = 1, 2, and $h_n: D_S \times D_T \mapsto \mathbb{C}$ the analytic function defined by

$$h_{\eta}(z,w)=(\eta-z)^{-1}(\theta(\eta,w)-\theta(z,w)),\quad w\in D_T\,,\,z\in D_S\diagdown\{\eta\}$$

and if $\eta \in D_S$ then $h_{\eta}(\eta, w)$ is the partial derivative with respect to z evaluated at (η, w) of the function $(z, w) \mapsto -(\theta(\eta, w) - \theta(z, w))$. It is obvious that

$$(\eta - z)h_n(z, w) = \theta(\eta, w) - \theta(z, w).$$

284 FLORIN RÄDULESCU

We shall prove that $(\eta - S)R(\eta) = Vy$ and the proposition will follow. We have:

$$(\eta - S)R(\eta) = c_2 \int_{\Gamma_S} \int_{\Gamma_{T,y}} (z - S)^{-1} \theta(\eta, w) V(\theta(\eta, w)) y_T(w) \, dz \, dw -$$

$$- c_2 \int_{\Gamma_S} \int_{\Gamma_{T,y}} (z - S)^{-1} V(\theta(\eta, w)) \theta(z, T) y_T(w) \, dz \, dw =$$

$$= c_1 \int_{\Gamma_{T,y}} (\theta(\eta, w) - \theta(S, T)) V(\theta(\eta, w)) y_T(w) \, dw =$$

$$= c_1 \int_{\Gamma_{T,y}} V y_T(w) \, dw = V y,$$

by Lemma 3 and because of the equality

$$(\theta(\eta, w) - \theta(S, T))V(\theta(\eta, w)) = V,$$

since $\theta(\eta, w) \in \mathbb{C} \setminus \gamma_{\mathfrak{M}}(V)$, $(\forall) \eta \in E$, $(\forall) w \in D_{T,v}$.

LEMMA 8. Let W be an open nonvoid connected subset of C and let δ be a positive number. Then there is an open covering $\{G_j\}_{j=1}^n$ of $\sigma(T)$, G_j with diameter less than δ , such that for every family of closed sets $\{F_j'\}_{j=1}^n$, with

(c)
$$F'_j \subseteq G_j \cap \sigma(T)$$
, $j = 1, \ldots, n$,

(d)
$$F'_j \subseteq \bigcup_{i \neq j} F'_i$$
, $j = 1, \ldots, n$,

we have $\bigcap_{\lambda \in W} \theta_F^{-1}(\{\lambda\}) = \emptyset$, where $F = \bigcup F_j'$.

Proof. Let us denote by θ_z the function defined on D_T by $\theta_z(w) = \theta(z, w)$ $z \in D_S$. We have to find a covering $\{G_j\}_{j=1}^n$ of $\sigma(T)$ such that $\bigcap_{\lambda \in W} \theta_F^{-1}(\{\lambda\}) = \emptyset$, for every closed subsets F_j' , $j = 1, 2, \ldots, n$, which satisfies (c), (d). This is equivalent to find a covering $\{G_j\}_{j=1}^n$ such that W is not contained in $\theta_z(\cup F_j')$ for every closed subsets F_j' , $j = 1, 2, \ldots, n$, which satisfies (c), (d) and for every z in $\sigma(S)$.

If this is not true, then for every open covering $\{G_j\}_{j=1}^n$, of $\sigma(T)$ with open sets of diameter less than δ there exist some closed sets $\{F_j'\}_{j=1}^n$, for which (c), (d) are fulfilled and for which there exists a z in $\sigma(S)$ such that $W \subseteq \theta_z(\bigcup F_j')$.

We consider a lattice consisting of squares with sides of length less than $\delta/2\sqrt{2}$ that covers C. By the compactness of $\sigma(T)$ we can choose a finite number P_1, \ldots, P_k of them which also cover $\sigma(T)$. For $\varepsilon > 0$, $\varepsilon \le \delta/4\sqrt{2}$ consider $P_i^\varepsilon = \{z \in C^\varepsilon : |z| \le C^\varepsilon \}$

 $: d(z, P_i) < \varepsilon \}$. Clearly the diameter of P_i^{ε} is less than δ . We denote the boundary of P_i by ∂P_i . Plainly $\{P_i^{\varepsilon}\}_{i=1}^k$ is also a covering of $\sigma(T)$. Set $Q_i^{\varepsilon} = \{z \in \mathbb{C} : d(z, \partial P_i) < \varepsilon \}$.

From our hypothesis, it follows that there are some closed sets $F'_j \subseteq P^*_j \cap \sigma(T)$, which satisfy (d), and there is a z_{ε} in $\sigma(S)$ such that $W \subseteq \theta_z$ ($\cup F'_j$). By (d), we obtain

$$F'_i \subseteq \bigcup_{i \neq i} P^{\varepsilon}_i \cap P^{\varepsilon}_i \subseteq Q^{\varepsilon}_i, \quad \text{for } i = 1, \ldots, n.$$

Hence $F'_i \subseteq Q^e_i \cap \sigma(T)$.

Thus for every $\varepsilon > 0$ there exists an z_{ε} in $\sigma(S)$ such that

$$W \subseteq \theta_{z_i}(\sigma(T) \cap \{z \in \mathbb{C} : d(z, \cup \partial P_i) < \varepsilon\}).$$

Letting $\varepsilon \to 0$ and using an easy compactness argument we obtain that there is a z_0 in $\sigma(S)$ such that:

$$W \subseteq \theta_{z_n}(\sigma(T) \cap (\cup \partial P_i)).$$

Since W is open and nonvoid, and since θ_z is analytic we obtain a contradiction by the following remark.

REMARK. Let D be an open subset of C, let f be an analytic function $f: D \mapsto C$, and K a compact subset of D with void interior. Then f(K) is a subset of C of the first Baire category, and hence cannot contain a nonvoid open subset of C.

Proof. We write $D = \bigcup_{n} D_{n}$, where D_{n} are disjoint open connected nonvoid

subsets of C. Because K is compact, there is a p such that $K \subseteq \bigcup_{n=1}^{p} D_n$, and we can

write $K = \bigcup_{n=1}^{p} K_n$, where each set $K_n = D_n \cap K$ is compact.

For every n = 1, 2, ..., p we have that either f is constant on D_n or f' is not identical null on D_n .

Let $n \in \{1, 2, ..., p\}$ be such that f' is not identical null on D_n . Since f' is also an analytic function and K_n is compact there exist $w_1, ..., w_q \in K_n$ such that $f'(z) \neq 0$ for every $z \in K_n \setminus \{w_1, w_2, ..., w_q\}$ and hence by the inverse mapping theorem for analytic functions there are two open sets V_z , W_z with the property $z \in V_z$, $f(z) \in W_z$ and f is a homeomorphism from V_z onto W_z . We select an open neighbourhood V_z' of z such that $\overline{V}_z' \subseteq V_z$. Since

$$K_n \setminus \{w_1, \ldots, w_q\} \subseteq \bigcup_z V_z',$$

and since the usual topology on C has a countable basis, we can find a countable subset $\{z_r\}_{r\in\mathbb{N}}$ of $K_n\setminus\{w_1,\ldots,w_q\}$ such that

$$K_n \setminus \{w_1, \ldots, w_q\} \subseteq \bigcup_{r} V'_{z_r},$$

FLORIN RĂDULESCU

and hence

$$K_a \setminus \{w_1, \ldots, w_q\} \subseteq \bigcup_r V'_{z_r} \cap K_a \subseteq \bigcup_r \overline{V}'_{z_r} \cap K_a$$

But $\overline{V}'_{z_r} \cap K_n$ is a compact subset of V_{z_r} with void interior and f is a homeomorphism from V_{z_r} onto W_{z_r} , so that $f(\overline{V}'_{z_r} \cap K_n)$ is also a compact subset of C with void interior.

Finally we obtain

$$f(K_n) \subseteq \bigcup_r f(\overline{V}_{z_r}' \cap K_n) \cup \left(\bigcup_{s=1}^q \left\{ f(w_q) \right\} \right)$$

where each set in the right side is closed with void interior.

If *n* is such that *f* is constant on D_n then the image of K_n by *f* is reduced to one point. We conclude that $f(K) = \bigcup_{n=1}^{p} f(K_n)$ is contained in a countable union of closed sets with void interior.

LEMMA 9. Let $\delta > 0$, let W be an open nonvoid subset of C and let $\{G_j\}_{j=1}^n$ be the open covering from Lemma 8. Let $\{F_j\}_{j=1}^n$ be a family of closed sets such that $F_j \subseteq G_j \cap \sigma(T)$ and

$$\sum Y_T(F_j) = Y.$$

Let $\tilde{Y} = Y \oplus \ldots \oplus Y$ (n times), $\tilde{T} = T \oplus \ldots \oplus T$ (n times), and let

$$\widetilde{Y}_0 = \left\{ \widetilde{y} = \bigoplus_{i=1}^n y_i \colon y_i \in Y_T(F_i), \sum_{i=1}^n y_i = 0 \right\}.$$

Then \tilde{Y}_0 satisfies conditions (a), (b) from Proposition 5.

Proof. That \tilde{Y}_0 satisfies condition (a) is obvious (see also Lemma IV.6.6 and the proof of Theorem IV.6.7 from [8]).

To prove (b) note that for every $\tilde{y} = \bigoplus_{i=1}^n y_i \in \tilde{Y}_0$, we have that $\gamma_T(y_j) \subseteq F_j \subseteq G_i \cap \sigma(T)$ and

$$\gamma_T(y_j) \subseteq \bigcup_{i \neq i} \gamma_T(y_i), \quad j = 1, \ldots, n,$$

(since $\sum_{i=1}^{n} y_i = 0$). Therefore the sets $F'_j = \gamma_T(y_j)$, j = 1, ..., n satisfy conditions (c), (d) in Lemma 8 and hence

$$\bigcap_{\lambda\in\mathcal{W}}\theta_F^{-1}(\{\lambda\})=\emptyset,\quad F=\bigcup_{i=1}^n\gamma_T(y_i),\quad (\forall)\ \tilde{y}=\bigoplus_{i=1}^ny_i\in\tilde{Y}_0.$$

But this is exactly condition (b), since

$$\bigcup_{i=1}^n \gamma_T(y_i) := \gamma_{\widetilde{T}}(\widetilde{y}).$$

THEOREM 10. Let K be a compact nonvoid subset of C. Then the following statements are equivalent:

- (i) $\gamma_{\mathfrak{M}}(V) \subseteq K$.
- (ii) $\gamma_{\mathcal{S}}(Vy) \subseteq \theta_{\gamma_{\mathcal{T}}(y)}^{-1}(K)$, $(\forall) y \in Y$.
- (iii) $V(Y_T(F)) \subseteq X_S(\theta_F^{-1}(K))$ for every closed subset F of $\sigma(T)$.

(If $\theta(z, w) = z - w$, then $\theta_F^{-1}(K) = (F + K) \cap \sigma(S)$ and we obtain the Theorem IV.6.7 from [8].)

Proof. The implication (i) \Rightarrow (ii) follows from Lemma 7 and (iii) is merely a rewriting of (ii). So the difficult part of the proof is the implication (iii) \Rightarrow (i).

Let $\lambda_0 \notin K$. We shall show that $\lambda_0 \notin \gamma_{\mathfrak{M}}(V)$. Let $0 < \varepsilon < d(\lambda_0, K)/4$ and let W be the open disk with center at λ_0 and radius ε . By the uniform continuity of θ there is a $\delta > 0$ such that:

(3)
$$|\theta(z,w) - \theta(z,w')| < \varepsilon$$
, $(\forall) z \in \sigma(S)$, $(\forall) w, w' \in \sigma(T)$ with $|w-w'| < \delta$.

With δ as before, we consider the covering $\{G_j\}_{j=1}^n$ from Lemma 8. Since T is decomposable, we can find closed sets $F_j \subseteq G_j \cap \sigma(T)$ such that $Y = \sum_{j=1}^n Y_T(F_j)$. We denote

$$Y_j = Y_T(F_j), \quad X_j = X_S(\theta_{F_j}^{-1}(K)), \quad j = 1, \ldots, n$$

and from (iii) we have $V(Y_j) \subseteq X_j$ for j = 1, ..., n. We denote by $V_j, V_j : Y_j \mapsto X_j$, the restriction $V_j = V_j Y_j$ and let $\mathfrak{M}_j = \theta(S^j X_j, T_j Y_j)$ for j = 1, ..., n.

Using Corollary 2 for $\theta(S_i, T_i)$ we obtain that

$$\sigma(\theta(S_j, T_j)) \subseteq \theta(\sigma(S_j) \times \sigma(T_j)) \subseteq \theta(\theta_{F_j}^{-1}(K) \times F_j), \quad j = 1, \ldots, n.$$

This inclusion, the fact that the diameter of F_j is less than δ , as well as (3) show that $W \subseteq C \setminus \sigma(\mathfrak{M}_i)$ for j = 1, ..., n.

For λ belonging to W we consider

$$R_j(\lambda) = (\lambda - \mathfrak{M}_j)^{-1} V_j$$

and we shall prove that:

(4)
$$\sum_{j=1}^{n} R_{j}(\lambda) y_{j} = 0 \quad \text{if } y_{j} \in Y_{j}, j = 1, \dots, n, \text{ and } \sum_{j=1}^{n} y_{j} = 0.$$

288 FLORIN RÄDULESCU

If we prove this, then it follows that

$$R(\lambda)y = \sum_{j=1}^{n} R_{j}(\lambda)y_{j}, \quad y \in Y, \ y = \sum_{j=1}^{n} y_{j}, \ y_{j} \in Y_{j}$$

is well defined, $R(\lambda) \in L(Y, X)$ and the mapping $\lambda \mapsto R(\lambda) \in L(Y, X)$ is analytic. Since for every $y = \sum_{j=1}^{n} y_j$, $y_j \in Y_j$, we have

$$(\lambda - \mathfrak{M})R(\lambda)y = \sum_{j=1}^{n} (\lambda - \mathfrak{M}_{j})R_{j}(\lambda)y_{j} = \sum_{j=1}^{n} V_{j}y_{j} = Vy,$$

it follows that $\lambda_0 \in W \subseteq \mathbb{C} \setminus \gamma_{\mathfrak{M}}(V)$.

So we have only to prove (4). We use the notations in Lemma 9. If we define

$$\tilde{R}(\lambda)\tilde{y} = \sum_{j=1}^{n} R_{j}(\lambda)y_{j}, \text{ for } \tilde{y} = \bigoplus_{j=1}^{n} y_{j} \in \tilde{Y}_{0},$$

then (4) is equivalent to:

$$\tilde{R}(\lambda)\tilde{y} = 0, \quad (\forall) \ \lambda \in W, \ (\forall) \ \tilde{y} = \bigoplus_{j=1}^{n} y_{j} \in Y_{0}.$$

But this is a consequence of Lemma 9, Proposition 5, and of the fact that the map $\lambda \mapsto \tilde{R}(\lambda) \in L(\tilde{Y}_0, X)$ is analytic and

$$(\lambda - \theta(S, \tilde{T} | \tilde{Y}_0)) \tilde{R}(\lambda) = V, \quad (\forall) \ \lambda \in W.$$

To prove the last equality observe that for every $\tilde{y} = \bigoplus_{j=1}^{n} y_j \in \tilde{Y}_0$ and for every λ in W,

$$(\lambda - \theta(S, \tilde{T}|\tilde{Y}_0))\tilde{R}(\lambda)\tilde{y} = \sum_{j=1}^n (\lambda - \theta(S_j, T_j))R_j(\lambda)y_j =$$

$$= \sum_{j=1}^n V_j y_j = V\left(\sum_{j=1}^n y_j\right) = 0.$$

This ends the proof of the theorem.

Acknowledgements. The author expresses his thanks to Professor F.-H. Vasilescu for suggesting the subject of this paper and for his valuable remarks. The author is also indebted to Professor M. Putinar for useful comments.

REFERENCES

- 1. Apostol, C., Spectral decompositions and functional calculus, Rev. Roumaine Math. Pures Appl., 13(1968), 1481-1526.
- 2. COLOJOARÁ, I.; FOIAS, C., Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
- 3. EMBRY, M. R.; ROSENBLUM, M., Spectra, tensor products and linear operator equations, *Pacific J. Math.*, 53(1974), 95-106.
- 4. Foias, C.; Vasilescu, F.-H., On the spectral theory of commutators, J. Math. Anal. Appl., 31 (1970), 473-486.
- 5. SLAVOVA, S. K., A one-sided inverse of a class of linear transformations (Russian), *Travaux Sci.*, *Univ. Plovdiv*, 18(1980), 65-84.
- TAYLOR, J. L., The analytic functional calculus for several commuting operators, Acta Math., 125(1970), 1--38.
- 7. TAYLOR, J. L., A joint spectrum of several commuting operators, J. Functional Analysis, 6(1970), 172-191.
- 8. VASILESCU. F.-H., Analytic functional calculus and spectral decompositions, Editura Academiei and D. Reidel Publishing Company, București and Dordrecht, 1982.

FLORIN RĂDULESCU
Department of Mathematics,
INCREST,
B-dul Păcii 220, 79622 Bucharest,
Romania.

Received April 5, 1984; revised November 7, 1984.