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FACTORING TRACE-CLASS OPERATOR-VALUED
FUNCTIONS WITH APPLICATIONS TO THE CLASS A,,

H. BERCOVICI, C. FOIAS, and C. PEARCY

1. INTRODUCTION

Let 2# be a separable, infinite dimensional, complex Hilbert space and let
P(#) denote the algebra of all bounded linear operators on J#. If T e L(H),
let &/, denote the dual algebra generated by T, i.e., the smallest subalgebra of Z(#)
that contains 7 and /4 and is closed in the ultraweak operator topology. Moreover,
let O denote the quotient space C,(#)/+ <, where C,(#) denotes the trace-class
ideal in £ (H#) under the trace norm and L7, denotes the preannihilator of =7
in C;(3#). One knows that o ;. is the dual space of Q4 and that the duality is given by

(& (A, [L}y = tr(AL), A€oy, LeC\(H)

where [L] denotes the image of L in Q. If x and » are vectors in #, we write, as
wsval. x ® » for the rank-one operator in Cy(#°) defined by

(x @ 3)w) = lu, vOx, ue.
Then, of course, [¥ ® ¥] € Qr, and it is easy to see that
@) A, [x @ ¥]) =A%, ¥), Aesdr, x,yed.

In a similar vein, if T denotes the unit circle in C, we denote by L” = LP(T),
1 < p < oo, the usual Banach spaces of Lebesgue p-integrable functions on T and
by L® = L*(T) the Banach space of essentially bounded measurable functions on T.
One knows that L= is the dual space of L' under the pairing
2
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Furthermore if for 1 < p < oc we denote by H? = H?(T) the subspace of L? con-
sisting of those functions whose negative Fourier coefficients vanish, then one know,
that H* is a weak®-closed subspace of L> and that the preannihilator 1(H>) of H*
in L' is the space Hj consisting of those functions g in H! whose analytic extension
gtoD=={ieC: /. <1} satisfies 2(0) = 0. It follows easily that H> is the dual
space of L''H} under the pairing

2.

d
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cl_,ﬁ

If T is an absolutely continuous contraction in Z (%) (i.e., a contraction whose
unitary part is either absent or absolutely continuous), then the pairs of spaces
{y, Qr) and {H*, [}/H}} are related by the Sz.-Nagy— Foias functional calculus.
@r: o — H> defined by

O(f) =AT). feH>.

The mapping @ is a norm-decreasing, weak*-continuous, algebra homomor-
phism, and the range of @ is weak* dense in & (cf. [9, Theorem 3.2}). It therefore
follows from general principles that there exists a bounded, linear, one-to-one map
@7: Or — LY/H} such that ¢, = @F.

In [4, T], we defined the class A = A(#) to be the set of all absolutely con-
tinuous contractions in Z(#) such that @, is an isometry. In this case one knows
(cf. [9]) that @, is a weak* homeomorphism of H* onto &/ and ¢ is an isometry
of Oy onto LYH}. Furthermore, if n is any cardinal number with 1 € n < ¥N,,
we also defined in (4, 1] the class A, = A (#) (o consist of all those T in A with
the property that for every system {[L;}}oci j<n Of elements of O, there exist
sequences of vectors {x;}o<;c, and {1;}o<;-, from J# such that

(5) ['\.i ® .‘vj] = [Li_l]’ 0 S lzj <n.

Operators in the class A,,0 have a rich dilation theory, which is expounded in [4, I,

and they also have huge invariant-subspace lattices, which enabled us to establish

in [4, H] that such operators are reflexive. Thus it is of considerable interest to find

additional classes of operators contained in Ay , and this is one of the main func-
[}

tions of this paper. We show that the (soon to be defined) classes (BCP),, 0 <0 < 1,
which arise naturally from many different perspectives, are contained in AN This
leads to a better understanding of the class AN itself and shows, in partlcular that

Ay, contains many contractions whose spectra coincide with the unit circle.

But to locate additional operators in A,,o is by no means the only purpose of
this paper. We also, with the help of the notion of the functional model of a con-
traction as developed in {21}, continue to expand the scope of [2], carrying to frui-
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sion two new ideas. The first is to solve systems of equations in the space LY(T)

instead of in a quotient space O =~ LY Hj, and the second is yet another generali-

zation — to solve systems of equations in L'(6), where ¢ is any measurable subset

»f T. We are confident, in view of [24], that these results will be pertinent to research
cn the invariant subspace problem for contractions with spectral radius one.

The following lemma, which we prove in § 3, contains the essence of the idea

that allows us to consider systems of equations in L(T) and L'(o) in place of Q.

LemMma 1.1. If T is any completely nonunitary contraction in (), and x
and y are any vectors in #, then there exists a unique function in L\(T) (depending,
of course, on T, x, and y), to be denoted by x -y, whose sequence of Fourier coeffi-
cients {c,(x -y} _o is given by

(6) c_(x-y) =LKT"x, ), (‘,,(X'_l’) = (T*"x, ¥, n= 0,1,2,....
Moreover, the expression x-y is linear in x, conjugate linear in y, and satisfies

{7 or((x ® y)) = [x-y],

where, of course, [x @ )] is the coset in Qr of x ® ¥y and [x-y] is the coset in L*{H}
of x-y.

Thus, given a completely nonunitary contraction 7 in A(s#), by making use
of this lemma we may and do consider systems of equation in L(T) of the form

®) xpyi=fij, 0<ij<m,

where {fi;}o<i j<n is an arbitrary nx s array of functions in L', and, of course, if
XiJoci<n and {¥;}o<j<n are sequences of vectors from # that solve (8), then these
sequences also solve

9 ®@yl=e7(f5]), 0<ij<n,

which is equivalent to (5), so T € A,. Carrying this idea one step further, if ¢ is a
measurable subset of T, we may replace (8) by the weaker system of equations

10$) (xi-yplo = file, 0<i,j<nmn,

and try to solve this system (under a weaker hypothesis on the operator T). Theo-
rems of this nature will be found in § 6.

Finally, the manner in which we accomplish these objectives of solving systems
of the form (5), (8), and (10) is to prove some factorization theorems for certain
trace-class operator-valued functions F:o — C(#). These results show that
we can write F= Y*X where X and Y are Hilbert-Schmidt operator-valued
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functions which also satisfy additionai conditions relevant to T. These fac-
torization theorems are interesting in their own right, and we expect to demon-
strate their utility in network theory and realization theory in future papers.

2. PRELIMINARIES: (BCP)y, OPERATORS

In this section we define and say a few words about the classes of operators
{BCP)y, =« ZL(H), where 0 < 0 < | and ¢ is a measurable subset of T, since it s
for certain of these classes that our ability to solve systems of equations of the form
(8) or (10) wil! be demonstrated in § 6. With ¢ as indicated, we say thataset A c D
1s dominating for o if almost every point of ¢ is a non-tangential limit of a sequencs
of points from A.

For any completely nonunitary contraction 7 in £(#) and for any u in D.
let us write 7, for the M6bius transform

(1) T, - (T — ul)\(I — GT)~.

One knows that each 7, is a completely nonunitary contraction along with 7

(cf. [2], p. 14]), and for every 0, 0 < 0 < 1, we define the sets

LTy — {peD:info(T2THV?) < 0}, and

(12)
RAT) = [ e D :info(T,TH) < 0).

Clearly, for any such T, L,(T) = R,(T) = D, so our interest focuses on the interval
0 € 0 < 1. Furthermore it is easy to see from (12) that u € Ly(T) if and only if
i € 03(T), the left essential spectrum of 7. Hence it follows from (I11) and (12)
that

L(T)= a{T) = Ly(T), 0<0<1,

and similarly that
Ry(T) = 06.e(T) = R(T), 0<0 <1

Putting these relations together, we deduce that
(13) 6{(T) = LT UR(T) =« LT URLT), 0<f < 1.

Thus we define, for every @ with 0 < & < I and for every measurable subset ¢ of T,
the class (BCP)g,, to be the set of all completely nonunitary contractions T in L(H)
for which the set L, U R, is dominating for o. For brevity we write (BCP), for
the class (BCP)gr. We observe from (13) and [19] that (BCP), = (BCP), and,
moreover, we show in § 7 (Example 7.2) that the (obviously increasing) family
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2(BCP)gjo<q.-1 is strictly increasing. To give the reader some intuition as to what
it means for a completely nonunitary contraction T to telong to (BCP),, we intre-
duce the sets J4(T), defined by Apostol in [I]:

(1% (D)= (0T)nD)y (e Do (T):0 ((T) — ul)~* > 1,(1 — p),

where, as usual, = denotes the projection of #(.# ) onto the Calkin algebra. We will
show in §7 that
(5 (T e LyT) U Re(T), 0<0 <,

so if (4(T') is dominating for T. i.e., if it is the case that the essential resolvent of T
grows rapidly near sufficiently many points of T, then T will belong to (BCP),.
It turns out, in fact, that there exist operators 7 in (BCP),, 0 < @ < 1, such that
a(T)nD — O (see Example 7.2).

3. PRELIMINARIES: FUNCTIONAL MODELS

In this section we review briefly various preliminary material that will be
needed in the sequel. In particular, we recall some facts about the functional model
of a contraction operator, as developed in [21], because such models will play a
major role in what follows.

Let #" and 4" be separable, complex Hilbert spaces, and let L(A, N) denote
the Banach space of all bounded linear operators T mapping # into 4. Let
Coo(J,.47) denote the subspace of L (", 4) consisting of all compact operators,
and for each p, 1 € p < o0, let C, (A, .4") denote the Schatten p-class of all those-
T in Co(A, &) for which

1T, = (1 41P)VP < - oo,
J
where {1;} is the sequence of eigenvalues of (T*T)V/? repeated according to their mul-
tiplicities. We will use from [11] various properties of the Banach spaces C (X', A").
Particularly important will be the zrace class Cy\(A', 4} and the Hilbert-Schmidt
class Cy(H", /). We recall that if S, T e Cy(A', &), then T*S € Cy(A, H) and
iT#Slly < Ty |S]le; cf. [11, p. 104]. Furthermore, if {e;} and {f,} are any ortho-
normal bases of " and &, respectively, then '

I Tlly = ()11 Te; %)

for every T in Cy(A", #7) and
Tl < X}‘KTej Sl
g
for every Tin Cy(", A"); cf. [11, p. 111}. We write C,(#") for C, (A", ") and recall’

also that each C,(X'), | < p < o0, is a selfadjoint ideal in (") that is a Banach
space under the norm |- ||,; moreover, the map 7" — T'* preserves the norms |||}, ..
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We turn now to a discussion of functional modeis for contractions. It is
well-known from [21] that every completely nonunitary contraction in L(H) is
unitarily equivalent to an essentially unique functional model. In order to describe
functional models, recall that if & is any separable (complex) Banach space, and
o is any (Lebesgue) measurable subset of T, then the Banach spaces L”(g, &), con-
sisting of measurable, p-integrable, &-valued functions are defined for every p,
1 < p < oo (cf [6, Chapter 17]). We will write simply L”(&) for L?(T, &). The Hardy
space H?(6), 1 < p <00, is the subspace of L”(&) consisting of those functions f
in L?(&) whose Fourier coefficients

1 ?:1 —int it
e(f) = -2-7{56 f(e") dt

vanish for all n < 0.

Now let %" and A" be separable Hilbert spaces. We denote by Le(Z(A, Ve))
the Banach space consisting of all essentially bounded, strongly measurable func-
tions ¢ from T into £(#", ) under the norm

l Pl = ess sup[[@(e™)]i.
T

(A function @: T - L(A,A") is strongly measurable if the function $(ek is
measurable for every vector & in ") The space H®(# (A", A")) consists of all func-
tions @ in L(L (A", #')) whose Fourier coefficients ¢,(®) vanish for all n < 0.

Given such a @ in Lo(L(A", &), we define the (generalized) Laurent ope-
rator My: LX(A") — L*(A") by the formula

(MoK)(e") = d(eDk(e"). k e L¥(X).

It is easy to see that M, is bounded and satisfies (|Myfl = [|P]ic. Moreover,
we define the (generalized) Toeplitz operator Ty: HAA) - H¥(N') associated with &
by the formula

Toh =P

H(4)

Myh, he HYX),

where, here and henceforth, we employ the familiar notation P, for the (orthogonal)
projection whose range is the subspace .#.

Turning now to the business of introducing the functional model of a contrac-
tion operator, let & and %, be separable, complex, Hilbert spaces. A contractive
analytic function is any triple {#, & ., @} where @ is an element of H(Z(F, %))
such that ||@[l, < 1. Given such a @ in H®(L(F, F,)), it is easy to see that M,
maps HXF) into HX#,) and hence that Ty, = M |HXF).

If {#, #,., O} is any contractive analytic function, we define the function
4 = A4, in L*(F(F)) by setting

AE") = Iy — O OE)2, eifeT.
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(The strong measurability of 4 is a consequence of the strong measurability of ©.
Throughout the paper we write ‘"¢ € T’ to mean “‘for almost all e T”.)
This permits us to define the Hilbert space (of functions)

(16) H o =H.(O) = HAF,) ® (M, LA(F))-

which is a subspace, of course, of L3(#,) @ LXF). Since L3 F,) © L¥F) is
canonically isomorphic to L3(# , @ #), it is sometimes useful to regard J# . as a
subspace of this latter Hilbert space, and therefore as a Hilbert space of functions
u: T - F, @ F. Observe that %, is obviously invariant under the unitary oper-
ator U= M on LX(# . & F), where A is the function in H*(L (7 ., @ %)) defined
by A(e") == eI o-. Finally, a calculation shows that the mapping « » Tou@®
@® M, u of H*(#) into A, is an isometry, so

an 4 =%0) = {Tou® Mu:ue H(F)}

is a subspace of ", , and another calculation shows that ¢ is invariant under U.
Thus, given any contractive analytic function {#, #,, O}, we may define the
functional model Hilbert space . '

(18) H(O) = ,(O) © %0O)

associated with {F, #,, O}, and also the functional model operator
(19 S(0) = ProyM 41#(0)

acting on 2#(0). Since #(O) is a semi-invariant subspace for M, we have
S(O) = PyioyM4 #(0), and
20)
SOy = P peyM " #(O)
for every positive integer n.

The model operator S(@) is a completely nonunitary contraction and every
completely nonunitary contraction 7" in Z() is unitarily equivalent to a certain
model operator [21, p. 248]. In order to describe the model operator associated with
such a T, we recall from [2]1, Chapter V].that every function @ in Ho(L(F, F4))
has an analytic extension 6:D > L(F, F,) defined, for example, by the strong
Poisson integral

27
- R ] ] 2 . .
O(re"™) = — S ! O)dr, 0<r<le'eT
2n 1 -~ 2rcos(t —t) + r?
Moreover, O is bounded on D and satisfies ||@{jc = sup||@(})]| = [|@ , so that
2D

if {#, #,, O} is a contractive analytic function, then |@|l,, < 1. Furthermore, if

10 — 1305
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one begins with any bounded analytic function 6: D-¥%(#.#,), then O has strong

radial limits O(e¥) = lim O(re y almost everywhere on T, @ € H>(L(F, F L)),
rj1

O, = é «> and the Poisson integral of @ is O. Thus a function @ in
H>(L(F, 7 ,)) can, equivalently, be given by specifying a bounded analytic
function @:D — L(F, 7).

Now suppose that T is a given contraction in £(#), write Dy = ([ — T*T)12,
Dy, = (I — TT*)*2, and define the subspaces Z, and Z,. of # to be the closures
of the ranges of D, and Dj., respectively. It is easy to see that

(1) ‘ TD; = Dy.T,

and therefore that 79, c %;.. Moreover, a calculation shows that the analytic
function @, defined on D by

22) Or(1) = [—T + iDp(I — JT*)-'D,}|Gy, €D,

satisfies ;]érf}w < 1 (cf. [21, p. 238]), so the associated boundary function @ belongs
to H°(Zr, Z1-), and we call the contractive analytic function {21, Zr., 04} the
characteristic function of T. The point of this construction of @ is that one knows
from [21, Chapter VI] that T is completely nonunitary if and only if 7 is unitarily
equivalent to the model operator S(@;) arising from this contractive analytic
function.

Thus, in what follows we will study a given completely nonunitary contrac-
tion T in £(5#) by working with the (unitarily equivalent) model operator S(@r)
acting on the model space (O ).

The first order of business is to provide a proof of Lemma 1.1.

Proof of Lemma 1.1. Let T be a completely nonunitary contraction in Z(#),
and let © = @; be the characteristic function of 7, so that T is unitarily equivalent
to the model operator S(@) acting on the Hilbert space #(0) c LAF , ® F) via
a unitary operator W: # — #/(@). For any vectors x and y in 5, write x(-)=Wx,
¥(-) = Wy, and define

3) (x-3) @) = (@), ¥ Dspes e €T

That x-y € L' follows easily from the inequality
[Kx(e™), y(e)] < % (e + lvE D),

valid almost everywhere on T, and that the expression x-y is linear in x and
conjugate linear in v is immediate from (23). To establish that the Fourier
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coefficients ¢,(x-y) satisfy (6), we compute, using (20):

KT, »> = KWTWHWx, Wyy = {S(0)x(-), y(-)) =

(24) = (P yyMix(-), y(- 1) = {Mix(-), y () =
2z
= 'ZL S <ein1x(ei1)’ )'(eir)>.7$@:7 dr = C—n('x 'y), n = Oa ]: 23 R
T
0

and 2 similar computation shows that {(T*"x,y) == ¢,(x-y) for n=1,2,....
The uniqueness of the function x-y in L! satisfying (6) is obvious, so that it remains
only to establish (7). From (24) and (2) we obtain

(e, x-p) = T"x, ) = Pr(e™), [x @ ] =
- <ei"19 (PT([X ® y])>’ n= 07 ls 27 Tty

and since the polynomials are weak*-dense in H®, (7) follows immediately.

We next note some elementary relations between 7 and its characteristic func-
tion. From (21) it is immediate that

(25) TG+ = T(ker D;) < ker Drs = @i,

and a trivial calculation shows that Tl@% is an jso}\metry of @7 onto Dis. Since we
also have T2y < @1 from (21) and T|2; = — O (0) from (22), we conclude that

26)  T*T = 010/01(0) ® Ipoa,. TT* = 6100100 ® Ixoz,s-

This, 1 turn, yields
inf o, (T*T)2) = inf 0,((O0)*0 (0)), and
27
inf o (TT*)2) = inf 0 ((O(0)0 1 (0)*)2),

where we set inf 6,(4) == 1 whenever A is a positive contraction acting on a finite
dimensional Hilbert space.

Furthermore, if ¢ € D and 7, is the M&bius transform in (11), then one knows
from [21, pp. 14, 240] that each 7, is a completely nonunitary contraction since
T is, and that the characteristic function of 7, coincides with the contractive ana-

lytic function {2;, @1, ©,}, where
A ~ A4
(28) é,() = 0, _—) leD, peD.
1+ a2
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Thus, applying (27) and (28) to the operator T

u+ We obtain
inf 6 ((T*T,)2) = inf 6 ((Or(1)*O (1)) ?) and
(29)

inf o (T,T2)"%) ~ inf 6,063 ()6 1(1)*)"2).

These relationships will play a significant role in Section 5.

We continue now to try to motivate the discussion in Sections 5 and 6 by
noting that if we have fixed a model Hilbert space # (@) and a model operator
T = §(0), then the system of equations (8) with n = N, takes the form

B0) S = (ryr ) = {xle"), A5 05, JEN, €€ T.

Let 4" be a Hilbert space with an orthonormal basis {¢;};e~. Then the system (30}
can be rewritten, at least formally, in the form

an - F(e'") = Y(e'")y*X(e"),

where X(e) and Y(e") are linear transformations from 4" into Z . ® F that satisfy
X(e")e; = x;(e'"), Y(e")e; = y,(e"), je N, and F(e”) is the lmear transformation
on.# whose matrix with respect to the basis {e;};en is given by [/ jen

Therefore we will consider the equation (31), where X and Y are elements of a space
of functions defined on T and taking values in LA, F o @ F). while Fis afunc-
tion defined on (some measurable subset ¢ of) T and taking values in (A"
For technical .reasons we will take X and. Y to belong to the Hilbert space
LHCy(N', F . @ F)) and F 1o belong to the space L!(a, C,(A")). Of course. we want
our solutions X and Y of (31) to eventually provide families of vectors
{x;}ien and {y;},en in #(0), and to this end, we say that an element X of
LAC(N, F , @ F))is #(O)-oriented if the function Xa in L2 (/ @ F) defined by
(Xa)(e") = X(e")a belongs to J#(O) for each a in.A".

LemMA 3.1. The set of all #(O)oriented functions in LAC(A", Z e @ F))
Jorms a closed subspace.

Proof. The lemma obviously follows from the inequality

IEXGHL-(, o7 SO iXlic 7 05y 9EA

which itself follows from the various definitions and the fact that | 4} < | Al for
every operator A in Co( N, F\ ® F).
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Lemya 3.2, For every pair X and Y in LCo( A", F, & F)), the function
Y*X defined by (Y*X)(e")- Y(e")*X(c”), e" e T, belongs to L Ci(47)) and
satisfies

(32) 'YX < X Y%

LYC, 6.4 LAC 4, 7,870 - LAC, F es )

Moreover. if Y =: X, (32) becomies an equality.

Proof. The lemma follows from a straightforward computation using the
definitions, the inequality

Ye(e)X(e) 4 < [ X(e¥) 2 Y(e¥)
(which becomes an equality if Y .-~ X), and the Schwarz inequality.

In order to study the system of simultaneous equations
(33) 11 = [-"f'}’j]’ fij el', i,jeN,

in LY/H}, we will also need the subspace H}(C,(.¥)) of LY(C,(A4")) which consists
of those functions £ in LY(C,(.#")) for which the Fourier coefficients ¢,(F) of F vanish
for all n £ 0. In line with our previous notation, we denote by (LY/HNC,(A))
the quotient space L(C,(A)/HYC(.4)) and by [F] the coset in (LY H)(C(A)) of
the function Fin LY(Cy(A")).

4. SOME SPECIAL ELEMENTS OF #(0) AND LZ(Cz(J.'“, F.0F)

In this section we construct some particular elements of the spaces #° (&) and
LA Cy( ', 7, ® F)) that will play a basic role in § 5. The operator T will always be
assumed to be a completely nonunitary contraction that is a model operator 7= S(0),
acting on a model Hilbert space #(0Q). We continue to use in this section all of the
notation and facts concerning S(@) that were developed in Section 3. Before we
begin our program, we make one final comment in the way of motivation for what

foilows. In [9] a large role was played by the elements [C,] in Qy that satisfy

(34) A, G = f(3), feH=, )eD.

Moreover, one of the first lemmas in [9] showed that the [C,] could be approximated
arbitrarily closely in QO by elements of the form [x ® x], where x is a unit vector
in J#. Recall from [19] that when T € (BCP), then @,: H® — & and ¢r: Or— LY/ H}
are isometric isomorphisms, Thus it follows immediately from the Poisson integral
formula that ¢([C,]) = [|p%], where p, is the H*-function defined by

(%) pu(e) = (1 — w21 — pe)~, peD.
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Indeed,
oo CD) = T, (CD = 1) =

_ S LB feydi = (fLpL D, fe H.
27! - et 2

Therefore it is reasonable that the first step in our program will be to show that the
functions ;p}. can be approximated in L' by functions of the form x-x for certain
vectors x in #(©). To this end, we introduce, for every function f in H?and every
a, in &, the function f-a, in H*(# ) defined by

(f-a,::)(e“) - f(ei')a*, ele T

It is immediate from this definition and (23) that if we set x == p, -a,@0in LA(F . ®F),
then x.x = Ipil whenever a, is a unit vector, but the problem is that, in general,
x ¢ 3#(0). Thus we introduce the functions p, # a, defined by

(36) Py ¥ ax=Profp, a.®0), peD, a,eF,.

In order to compute an explicit formula for these functions, we need a lemma.
Recall that it is an easy consequence of the Cauchy integral formula (cf. [20, p. 235])
that

37 (1 — lu»)"2g(w) = <g P>ye. neD, ge H
LemMa 4.1. If @ is any function in H*(L(F, F)), then

(38) Ta(p,-ay) = p,-(P(w¥ay), peD, a,eF,. .
Proof. For every u in HX%), we have

<u’ T;(Pu'a*)>112('¢) = <T(I'u! p“.a*>H2(3;*) =

2

- Ln S (B(e)ule™), pu(e“)a=';>f;a dr —

- L S P DNl @ di —
2 *
0

= (1 — |2 (D)), a,) g,

by virtue of (37) and the easily derived fact that the function A — (@ﬁ(,l)ﬁ(,l),a;)
is analytic on D and has as boundary function the function eV — (D(e)u(c"), a,>
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in H?. Thus, continuing along the same lines, we have

(1 — pXBWi), a:dr, = (| — w2, dwrayy,, =

i

Ve
s

f

PLENu(E"), BuFayd s dt=<u, p, ($(1)°a)) 2, -

w1

which proves (38).

Returning now to the derivation of an explicit formula for p, # .., we note
that if a,€ #,, then

(P,a) @0 e, (O)= H(F,)® [MUXF)}~. pneD,
and thus by virtue of (18),
{39) Py ¥ Ay =(p,-ay) ®0— Pyoy(py-as) @ 0),

where 4(0) is as in (17). If we denote by V: H¥(%) - X ,(O) the isometry of
H*Z) onto 4(O) defined by Vu = Tju @ M,u, then V can be regarded as the

column matrix
(lu
4 ’

and it follows easily frop this and (38) that
Pyo(p,as) ® 0) = VV*(p,-a,) ® 0) = V(T¥(p,-ay) =
= V(p,-(OW*a) = To(p,- (O ay) ® My(p,- (O ay).

Putting this together with (39) gives us the desired formula.

LemMa 42, If pe D, ay € F, and p, # a, is defined as in (36), then for
almost all e € T, we have

40)  (p, # a)e") =pe"){[ax — O()O(W*a,)) ® [——A(C“)é(u)*a*]}.
In the same vein, if we define the functions p,Va in LAF, ® %) by
@) (p,Va)e") = e p,NOEa ® 4(e*)a), ¢"€T,peD, aeZ,

then also (p,Va)-(p,Va) = |p:| whenever a is a unit vector in &. Therefore, as
before, we are interested in obtaining an explicit formula for the elements

42) p,00a= Pyelp,Va).
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An easy calculation shows that the p,7a are orthogonal to %(0) in LX(F , & F),
and thus we have from (18) that

P.Sa= Py fp,7a)

Furthermore, since the function k, () == A(e")e "p,(e')a) clearly belongs to
{M,L¥F)}~, it is immediate that

P.Xr’__("'))(puva) = (PH’J(fa)hy,a) @ kn,a
where
By (€)= € ¥p,(€)O(e")a =

= (I — p)* {(——l—) O(ei')a} =
e —

' o iy é ~
= (l _ {“12)1/2 {(_u_)g - (e”*l_—#—) @(ﬂ)a}

e — n

Since the first function in this last expression clearly belongs to H*( %) and the
second function can be seen to be orthogonal to H*(F ) by a calculation, we have
established the following formula.

LemMA 4.3. For any fixed p in D and a in F, we have, for almost all €* € T,

(43) (p, Oa)E") = e~ p, (e {(O)a — O)a) ® Ae*)a).

Since in this paper we are interested in solving systems of equations of the form
(5), instead of a single equation, the functions p, # ay and p, [Ja in #(O) are
not sufficient for our purposes. Therefore using formulas (40) and (43) we introduce
two analogous families of functions in L¥(Co(A, F, @ F)), where A is an arbi-
trary separable Hilbert space.

For every A, in Cy(A', # ) and every u in D we define the function p, # A,
by setting

@) (p, # A)E = p, {4 — OEHOWA,) ® [—AEHOW)* 4,])}.

LEMMA 4.4. For every p in D and Ay in Co( N, F ), the function p, 4 Ay is
an H(@)-oriented element of LNCo(AN ', F . @ F)) that satisfies

(45) ”pll #* A*“Lg(Cz(,,V, FBF) < ”A*HZ N
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Proof. By virtue of Lemma 4.2, for every a in .4~ the function (p,# A )a coin-
cides with the projection onto /(@) of P, (A.a) © 0, so it will follow that P A,
is yf(@)—oriented once we know that p, % A, € L¥CN,F, S F)). Now
suppose that {e;};¢, is an orthonormal basis of .4". Then

i

27

a -2 o : 9
Pu F As p2eh, 7 050 APy E ALY Fdr=

A
et

23

1 2 -
(46) == Z 2n S (P,a ¥ A s)(e") ;‘ og dr == z :([’p # Ale; x) =

=z JjeJ

= Y PP (43e) @ 0). 50y < X Pu-(Ase) © 0.5, o)<
jeJ F

| R i.2 o " a2 . 02
< 2 .!P,,::H%'A*ej‘?f“ i E ':A$’ej.'.'..“"'3 ="A.".
jeJ JjeJ :

These inequalities show, at the same time, that p, # A, € LX(Cy(.V", F, ® F)) and
that (45) i1s valid, thus completing the proof.

The second family of functions to be introduced is defined as follows. For
every A in Co(A", F) and for every u in D, we set

@n (P, O AE) = e FEN{O()4 — O()A] ® A4}, HeT.
The following lemma is the counterpart of Lemma 4.4 for these functions.

LEMMA 4.5, For every p in D and A in CAN", F), the function p, O Ais an
H(O)-oriented element of LXCAN, F, ® F)) that satisfies

1w O Allzcr, 5,000 < M-

Proof. By virtue of Lemma 4.3, for every a in 4" the function (p, [] A)a coin-
cides with the projection onto # (@) of p, (] (4a), so the proof can be concluded by
the following sequence of inequalities similar to (46):

”pu D 4 ”;‘z(cc(”_y*@f» = j;-’ ”PJf’(('))(ppV(Aej))”‘zﬂ‘(O) <

| 12 —
< jz 1PV (A_ej)sz(y*e_,,-, =

2n
-y ~2'— S =P EMNOE) de; ® AV Aes o5 dr =
G 0

2n

-3 2 S 1P ()1 Ae; |12 dt = T lide;| = 4],
JjeET 2w Ir ¥

where, just as in the proof of Lemma 4.4, {e;};cs is an orthonormal basis for A",
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We conclude this section with the following result, which is similar to
Iemma 4.3 of [9].

LemMA 4.6. Suppose pe D and Z € LX(Cy A", F, @ F)). Then for every
bounded (in . ) sequence {A,}2., in Co( A", F) such that {A%,}2 | converges
to zero in the strong operator topology, we have

@) lim Z%(p, # dga) pic o = M 0 AL 1 gy = 0.

n—%0

Furthermore, if {A,)} is any bounded (in , - ,) sequence in Co( A", F ) such that {A*} ,
converges to zero in the strong operator topology, then

@) Nim 250, O Aoy = M (2 O AN Zlpc iy = 0.

100

Proof. The proofs of (48) and (49) are almost identical, so we only prove (48).
Furthermore the equality of the two limits in (48) is obvious, because

ZH(pu # Ae))E) = (P, # Asn)*Z) )
for ¢! € T. Suppose now that we have shown that for e € T,
(50) hm 1ZE)*(py # Ae)E) =
‘Then, since from (44) we have
1ZE" (P # A)®)h < [IZ(E)iz 3 pu(e™)] [ Asal'z

for each fixed e, we obtain

lim | Z%(p, # A*n)”Ll(Cl(.A")) =0

from the Lebesgue dominated convergence theorem. Thus, to complete the proof,
it suffices to prove (50). But (50) follows from the following general fact, whose
proof we sketch below: If W and {C,}®, are Hilbert-Schmidt operators such that
the sequence {||C,ll,}5>, is bounded and {C¥}%, converges strongly to zero, then
[[WC,ll, = 0. (Sketch of proof: If W is the rank-one operator W = x ® y, then

WGl = li(x ® MG, =[x @ (CENIL = ||x]|- [CFyll - 0.

Since the result is true for rank-one operators, it is true for all finite-rank operators,
and this set is dense in the space of Hilbert-Schmidt operators in the Hilbert-

~Schmidt norm. Now use the fact that {|WC,|l; < [[W]LllChllz € ||W s GupllC,lls)
-to conclude the proof.) :
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3, SOME NEAR-FACTORIZATION LEMMAS

In this section we establish matricial versions of the approximation lemmas
common to papers in this area. The operator T will always be a completely nonuni-
tary contraction that is a model operator T = S(O) acting on a model Hilbert space
#(0), so the results of the preceding sections are applicable. Throughout this sec-
tion .4~ will denote a separable, but otherwise arbitrary, complex . Hilbert space
and o a measurable subset of T. If f € L(c) and X € C,(.#"), then we denote by fX
the element of Li(s, C,(47)) defined by setting (fX)(e") = f(e“)X for e"e€ o.
If Fe LMC, (A7), we write [F] for the coset of F in the quotient space
{LYH(CA)) = LYC (A HYCL(A)).

The first step in our factorization technique consists of an “operator-valued™
version of the usual device of approximating the functions 'p%; by products of the
form x -y with x, y € #(0@); cf. [2, Lemma 2.2] and {9, Lemma 4.3].

. Lemma 5.1. Suppose ue€ D, 0<0<1, and A,,B,e Co(N,Fy). If
OW)*Bux|ly < O“B*Xnys for all x in &, then

(Sl) “[ipi:BﬁA* - (py 3 B*)f.'(p” #* A*)][E(LI/H}))(CI(J')) < 0I1A$ii2hB*HZ'
If, in addition, we have ﬁé(,u)*A*xl}y- < Ofjdyxis, for all x in &, then

Proof. Tt follows easily from (44) that if a, ® a € F, ® F, then, for almost
all e“e T,

{(p, # B(E)*Nay @ a) = p,("){(Bf — BfOW)O(e")"ay, — BIO(u)4(e")a}.
Thus, using the definition in Lemma 3.2 and the identity

Oy O(") + A Me) =I5, €€,

we get
(P2BE Ay — (P, # By)*(p, % A} =
— [P ) BE A, — [BE — BXOWOE) Ay — OEOM) 4,] —
(53) —[— BB (A — AE)OWw) A, ]} =

= 1Pe{BEOWO ) Ay + BOE)OW* Ay — BLO(OW Ay} =

= [P (eD2BEO(OE)* Ay + |p, (") {BIO(EY) — BEOW}OW)* 4y



368 ii. BERCOVICI, C. FOIAS, and C. PEARCY

Furthermore the second term on the right in the last equality can be written as

p.(e")2{B2O(E") — B2O(W)) OW)*A, ==
(54)

= {P")O[E)*B, — p,(e")O()* B} ?*p,(eOW)*A,,,

Esd

and we know from (38) that for every x in .47,

p,(e")OE")*B,x — P,.(Ci')é(#)*Bg-\' =
) {Mé(pu : Bka) - T?)(pa : B,,x)}(e“) ==
(55)
IMS(p, B.x) — Pg{:(ﬂMg(pWB,v,.\')}(e") -

i {PL"(;)GH:(}—)(M;(pu - B::x))}(eit)7

which shows, by virtue of the way one computes Fourier coefficients, that the
function

e’ - p,(e)OE")*B, — p,(eMO()*B,
belongs to LYC,(A, 7)) © HXCy(.¥', F)). It follows that the function
e’ - {p,(6)0(")*B, — p,(")OW)*B,}*

belongs to Ho(Co(F,.¥")), and therefore the product in (54) belongs to H}(Ci(A7)),
since the function ’

eir —Ppu(eit)é(}l)*A*

clearly belongs to H2(Cy(A", #)). This means that we may neglect the function in
(54) in computing the (LY HH)(C(A)) norm of the function in (53), and thus we
have
MBI AL — (P # By # AN mtyc o <
2z

l . ~ I
S or S 11P.*B3OG)OC") Ay lic (i dt <
via

0

2r
1 . ~ .
<= S |9, O)* By [l A, ds =
T

0

= 1001 B, Il M. le-
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If {e;i;c, is an orthonormal basis for.4", then, by hypothesis,

¢36) OB, i=Y OB L <Y 6% Bue; >, =6 B,

€7 j€s -

ey

E]

so (51) is proved. To prove (52), we must also estimate the norm of the Hj-func-
tion in (54). We do this using the Schwarz inequality and the inequality " Y*X, <
<Y X g

1-:!
-nglm@vewa-—m@w@m>s}m@06w)A e dr <
0

2

1 2z 1
(57) < (—77[ S Py (e")O(e”)‘ B e p”(e")O(;l) B, C 4 ) df) b
0

o ( 1
s -
21r

The second factor equals p]@(u) ‘A..1ly, and a calculation like that in (54), using the
hypothesis, shows that N

160G A,y < 0:A. .
To estimate the first factor on the right hand side of (57) we choose an orthonormal
basis {e;};e; of 47, and we compute using (55):

1/2
() 21O, urﬂm)‘

c'_,‘l,';”

1 c ; [T [ " 2
— S | pe)OE") B, — p(e")OG)*B.lic v, »dl =
T o

0

1 . Son SN . 2
_2——' ﬂp,,(e")@(e"_)"B::ej - py(e")e(ﬂ)*B:;ejl:f dr =

St

jeJ
1P
jeJ

< ¥ 108, = X IBuesl, = 1B, 13-

jied

‘ 2
Lﬂ(f)G)Hg(.’i)(Mg(l)# ) B=i=€f))HL"'(f) S

Thus the H}-function in (54) has norm less than or equal to 04, |l2[iB,!», and (52)
now follows from the decomposition in (53).

The following lemma is the analog of Lemma 5.1 for the functions p, [J A.

LEMMA 5.2. Suppose € D,0<0<1,and A, Be Cy(N', F). If”é(y)AxHy‘ <
< 0lAx"z for all x in A", then

(58) H[lpi'lBA (pu D B) (pu D A) t (L HO)(C () = 0'A1[21312
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If, in addition, we have f@'\(y)Bx s, <0 Bx 5 for all x in A", then
(59) PLBA — (0, DB (5, TA) .y < 2045 B 5.
ge

Proof. It follows easily from (47) that for every o, @ ae ¥, ® F anc
almost all e € T, we have

{(p, T B)e")*}(a, ® a) = e"p,(e"){[B*O(")* — B*O(u)*la,, +~ B*A(e")a}.
Thus, as in the previous proof, we obtain A
{p2B*A — (p, 0 B*(p, O A)}E") =

= p(e") 2 BT A—[B*O(e")* — B*O(u)][O(e") A — O()A] — BA(e") A} =
(60) A A ~ A
= P H{ B0 O A + B*0(e")*O()A — B*O()*O(wA} =
= i () 2B*OE O + | p, (") 2B*Ou)*[O(")A — O(u)Al.
The second term on the right in (60) can be written as
e 2B* O[O — O(u)A] =
61
. . A ) o) iy ___ é
= [e¥p,(e")B*O()*1(1 — 'pni2)'/? {m(eei? oy (U)] A.
Since the function e —»ei’p,‘(e“)B*@A(u)* clearly belongs to HYCAZF 4, &),
O(") — O(u)
eil —nu
the function in (61) belongs to HJ(C,(.#7)). Thus we may neglect that function
in the computation of the (LY H})(C,(A")) norm of the function in (60). Therefore:

‘[ipilB*A - (py D B):::(pu D A)]:!(Lll'H(]])(Cl(A’)) s

while the functione! — ( )A € H{Cy(AN', F4)), it follows that

P13 B*O(y* O Allc ) d1 <

<T

N
St

a2

< 1P Bl OG0 ATy dr = |[Blll|6G0)Al-

]
2r

S 3

A computation analogous to (56) and using the hypothesis shows that Hé(u)/{ﬁz <
< 0114}, and therefore (58) is proved. To prove (59), we notice that the function

o) — é(u) ]Aa
eit — i

el o (1 — ulla)l/z[
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coincides with the projection onto H%(F# ) of the function

hp.An(eil) = (e-i,)py(_eil)g(eh)Aa
(cf. the proof of Lemma 4.3). To complete the proof it suffices to obtain a suffi-

ciently good upper bound on the L'-norm of the function factored in (61), which
we now do, using the Schwarz inequality:

22
1 {. I A i AL
WT;S ;p,,(e")?"B""O(y)ﬂ@(e")A . QQI)A]iCnM’) dr €
© '
2 ) 2y
] it 1 i i I i : ; @(C") - Q(jl) e
< (TS P.(e") 210G B dr) ( HS a- )[ P ]A 2dt) :
1 0

The first factor equals i[é(u)Bii2 and a calculation like that in (56), using the hypo-
thesis, shows that
OB/, < 0)|Bl,.-
To estimate the second factor on the right hand side of (62), we choose an
orthonormal basis {¢;};es of .#°, and we compute:
27

__ﬁS (1 llz)]/:’. [Q(e_")‘—ﬂ][’ dr =
e’ —u

-ni ity ___ :’2
=3 -J;;S!!(l - zmﬂ)w[@(e ) O(u)] o di—
~ ! -
0

it __
e I 'z,

:J;Jl Pﬂw; y M ae 2z o S .2:,||”u~48,-||12(93) <
<Y i1 Ae;12 = L4]5.
jeJd
Thus the Hl-function in (61) has norm less than or equal to 0||Al,]| Bll,, and (59)
follows.

if ¢ is any measurable subset of T and f'e€ LY(C,(A)), then we write f| o
for the restriction of the function f to o, so, of course, f[a e LYo, Ci(A)).

Lemmas 5.1 and 5.2 point the way to the version of [2, Lemma 1.2] appro-
priate to our context.

LEMMA 5.3. Let ¢ be any measurable subset of T and let A be a subset of D
that is dominating for ¢. Then the closed absolutely convex hull of the set

{(UpA1 Cho:pe A, Ce C(AN), ||Cly < 1}

coincides with the unit ball in LYo, C,{(A)).
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Proof. Let [P }Z , be an increasing sequence of finite-rank projections in
L(AN) converging strongly to 7,-, let fe LYo, C,(A47)), and define the sequence
{g.} = L(o, Cy(.47)) by setting

g.(e") = P f(e")P,, e €o, neN.
Obviously

o v “
& e m S Oecgiy TEN

and it is immediate from the Lebesgue bounded convergence theorem and the fact
that ' P,XP, — X | — 0 for every X in C,(4") that “g, —f u» ™ 0. Since
the g, may be regarded as elements of Lo, C(P,/)), it suffices to prove the
lemma under the additional hypothesis that 4" is finite-dimensional. In this case it
is known (and clear) that the dual space of Ll(o, C,(47)) can be identified with
L>=(s, &£(.47)) under the pairing

1

(&, = > ‘Str(¢(ei')f(ei’))dt, & e L2(o, L(A), [fe Lo, Ci(A)).

c

n

It is an easy consequence of the Hahn-Banach theorem (cf. [9, Proposition 2.8] that
to complete the proof it is enough to show that

“d)lng(a,Q(J}‘)) = Sup{!<¢7 (Api;C)la>. :Au € A* C € Cl(m)’ EJCHI < ]}
for every @ in L>(6. £(.47)). We obviously have for every fixed C in C,(A")

2

(@, (pECYo) = LSJ—_L— (r(@,)C) dr,

2n ¥ el —

where the function @, coincides with @ on ¢ and @, = 0 on T\a. Thus (&, (ip2|C)le)
coincides with the Poisson integral of the function 7 :e'' — tr(®,(e¥)C) evaluated
at u, that is, I’;(u). Since, by Fatou's theorem (cf. [21, p. 185]), A(e') coincides almost
everywhere on T with the nontangential limit of /1, we see that
sup{ <@, ( p2CYod tp € A} = sup h(w)! =
€A
©3) ‘

== ess sup'a(et’)’ = ess sup'tr (®(e)C).
T G

Therefore, to complete the proof, we show that

64) supfess sup/tr(@(e)C)! : Ce C(AN), |'Clly € 1} == [l oo, 2y -

Since Itr(@(e")C)i < [[@(e)Cyy < [|@E)ICT,, it is obvious that the left hand
side of (64) is less than or equal to the right hand side. To prove the opposite ine-
quality, we choose a countable dense set {C,}%, in the unit ball of C\(A4"), and
for each » € N we choose a subset E, of o of measure zero such that

~ ess supitr(@(e)C,! = sup |tr(P(e)C,);.
° ”\EH
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Thus the left side of (64) is greater than or equal to
sup { sup tre(@(e")C,)} > sup{ sup tr(@(e“)C,,),} =
rneEN o\En n
n

#EN o\(U

= sup {supitr(®(e)C,) } = sup [P(") =P

wf -4y ?
U\(Ufﬂ) neN 5\“_;5") L, {570
i [

where we have used the fact that #(4") is the dual space of C,(#") under the
pairing {4, B) = tr(AB); thus, the proof is complete.

ReMARK 5.4, If the hypotheses of Lemma 5.3 are satisfied, one can deduce
easily from either the conclusion and the proof of this lemma, or by using the fact
that the operators of finite rank in the unit ball of C,(A4") are dense (in {-,) in
the unit ball, that, given f in LYo, C,(A4)), there exist points g, ..., 4, in A
and finite-rank operators C,, ..., C,, in C;(A4") such that

(65) f Z(Pa, 7)io l <e, }:ici.z\iﬂuacw»

{2, ¢ (4 s

Furthermore, if & > 0 and (65) is applied to the function (I — 8)f in place of f,
hen we infer the existence of sequences 4, ..., p,, in A and finite rank operators
Ci,...,C, in C{A") such that :

| n ’ e
%f z ([pu’ }L @, C L4 <+ iz, Cl(”"’))’ and
(66)

ZIHC,-HI < (U= 3fi g, Can”
/=

From properties of the quotient map, we have the following obvious
corollary of Lemma 5.3.

COROLLARY 5.5. If 4 < D is a dominating set for T, then the closed absolutely
convex hull of the set

{1PLIC):ne 4, Ce CN), |Cly < 1} = (LYHYC(A))
coincides with the unit ball of (L} HH(C,{A)).

The following proposition is an analog, in our setting, of [2, Lemmas 2.1
and 2.3]. The reader who is familiar with the earlier work in this area ([9], for
example) will note that unlike in [9], where a1(T) played a dominant role, this
proposition treats left and right spectral behavior symmetrically. It is also this pro-
position that allows us to avoid the hypothesis, in our main theorem, that either
the sequence {77}, or the sequence {T*"2., (for T = S(O)) tends strongly to
zero. We remark that it is an easy consequence of the polar decomposition and the
spectral theorem that if 4 is any operator in £(2, o) such that

inf o ((A*A)Y?) € § < 1,

1 -~ 1305
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then for every ¢ > 0, there is an infinite dimensional subspace .#7, of # such tha:
Ax <@ —¢) x., xe.Z..

PRrOPOSITION 5.6. Suppose T = S(@©) is any completely nonunitary contraction
in L(#), 0 <8 <1, and pu belongs to the set Ly U Ry in (12). Then for every C
in C(.V') and every positive €, there exist sequences {X,}%, and {Y,}&, (depending
on p and C) of H#(O)-oriented functions in LA(C(A", F, @ F)) with the following
Dproperties:

Jpilc—7Yix, ucu)) <@~ C,,

(") =[|pﬂC - Y;?Xn]:;(Lllgyé)(C ) < (0 + E)C'l »

i) lim Z°X, = lim’ Z°Y, =0

LMe, ) T - LNC ()

Jor every Z in L{Cy( N, F, @ F)), and
. Tyl PRl I YRt . e
(v) X LHC Ly, F, 8 PN AR '~Y"--L2(C2(4-,f$es5)) < Ca
for all n e N.

Proof. We recall from (12) and (29) that pe R, if and only if
infac((é)(p)b(y)’:‘)“?) < 0 and since 8 < 1, it follows from the remark following
27) that dim # ,, = N,. Thus, if u € R,, there exists an infinite dimensional sub-
space ¥, of #, such that 'f(t)(;z)*x*ﬂ < (6 + ¢/2)|x..|| for all x,, € 4,.. We choose
a sequence {V,} ; of isometries in L(A, 4,,) with pairwise orthogonal ranges: If
C = UP is the polar decomposition of C (P = (C*C)'/?), we define A,, = V, P2
and B8,, = V,PY2U* for n € N. Clearly then C = B} A4,, and ||B,,|l, = 4.l =
= {|C|}? for n € N. We now define X, =p, % A4,, and Y, =p,#B,, for ne N.
Smce A,, and B, have ranges contained in ¥, we have’

) A

16G)* A xll < (o =

and
1O B, xi| < (0 "r?) 'B,xll, xeWN, neN,

and therefore (i) and (ii) follow immediately from Lemma 5.1. That (iv) holds is
a consequence of Lemma 4.4. To prove (iii}, we observe that since the ranges of
the isometries ¥, are pairwise orthogonal, the sequences {4%,}%, and {B¥}2,
converge to zero in the strong operator topology on £(% . ,4"), and (iii) follows
immediately from Lemma 4.6.

Now we turn to the case that u € L,. As above, there exists an infinite dimen-

sional subspace ¢ of & such that Hé(ﬂ)x” < (0 +—2i) lix]lfor all xin . We choose

a sequence {W,}32, of isometries in Z(#, %) with pairwise orthogonal ranges.
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In this case we set A, == W,PV?, B, == W P¥2U? X, =p,[04,, and Y, =p, [ B,
for all n € N, and, as above, (i) — (iv) follow immediately from the definitions and
Lemmas 5.2, 4.5, and 4.6.

6. THE FACTORIZATION THEOREMS

In this section, we finally prove our basic factorization theorems and derive
several important corollaries. The following proposition is the counterpart in our
development of [2, Lemma 2.4].

PROPOSITION 6.). Suppose ¢ > 0, o is a measurable subset of T, and T = S(©)
is any completely nonunitary contraction such that for some 6,0<6 <1, T € (BCP), ,.
Suppose, moreover, that X and Y are #(@)-oriented functions in LA(Cy(N ', F ., ® F))
and F € g, C(AN)). Then there cxist H(O)-oriented functions X' and Y’ in
LACAAN , F o @ F)) such that

iF — (Y'*X")oli,s < Q0+ IF = (F*X)ol 6 0

(6. C ()

(67) X — X’
and

< WF— (X=Xl

”Lz«:cua EIN-ED) LMa, €D °

, > 2
¥ = Yllizg h o, 0 om < IIF— (¥ Xioljs, G’

Proof. If F(e") = (Y*X)(e'") almost everywhere on ¢, we can take X' =X
and Y' =Y. Thus we may suppose that w = ||[F— (Y*X)lo[i;2, ¢ (), #0-
>

Choose & > 0 such that §(1 + w) < ew/2. It follows from Remark 5.5 that there
exist points g, ; ..., g, in Ly U Ry and operators C,, ..., C,, in C{(A4") such that

(68) |F — (Y¥X)lo — \2 Py Cloll g, e, S 802
and =
(69) Y, iGlh < (I = d)o.

j=1

We choose now n > 0 such that m(m — 1)y < dw and [w 4 m(m + D < ew/2,
and define by a finite induction procedure 2 (@)-oriented functions Ry, ..., R,, and
Sys vy Sy in LYCYN, F . @ F)) such that the following inequalities are satisfied:

(70) 1P 1C) = STR I gy < @O+ MICH, 1 <j<m,

an ”RJ‘”L“(CH(//,f.Gay)) <HGHYE, IS, < IGIF%: 1<j<m,

“Lfgcn(f/, F,0F)
IS5 Xl 2 ISERI<n, 1<), k<m,j#k,

(72)

<n, HY*Rj]

€, Lhe,wn <M

IIR;RkllL](Cl(J-)) < %, ”S}ﬁSk“Ll(Cl('V)) <n 1 <.]’ k <€ m, .I ?é k'
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Indeed, suppose that 1 < p< m and that the functions R; and S; have been chosen to
satisfy (70), (71), and (72) for j < p. By Proposition 5.6 (with nin place of &), there
exist sequences {X,}o%, and {¥,}2, of 5#(0)-valued functions in LYCy( A", F,BF))
satisfying conditions (i) — (iv) of that proposition for y =y, and C = C,- It
follows from condition (jii) that if we set R, = X, and S, = ¥, for n sufficiently
large, then the inequalities (72) will be satisfied for 1 < j, & € p. Since for ‘this
choice of R, and S,, (70) and (71) follow for j = p from conditions (i) and (iv),
the’ induction is complete. ' ' S

We define now X' = X -+ Z Rj!, Y =Y+ Z §;, and note ﬁrst,ihgt,' .
i i1

Lyl yiZ, U Y 7S 2N Y < ..
X=X A 7, @ F) i =Xy - X )*«L‘(clu—n <

m
Y “R}'Rf!!ﬁclw» T YRR ey <
j=1 ik t

m
2
< Zl IRz u 5, & 5 T 1M — D <
=

< $ 0G4 m(m — 1y < (1 — 8o + m(m — Dy,
f==1

J

by virtue of (72), (71), and (69). Therefore

I1X'— X, | < o2

C (425, %)

by virtue of the way n was chosen, and exactly the same computation shows that

also \Y' — Yl e (4 5 @5y < @2 On the other hand,
2 e

IF = Q* X0l 3, ¢ S IF = (X*X)l0 — X P3| CIo 1, ¢ iy +
J=
+ Y HP:lej“'S;“.RJUL‘(clm) + YN Rillac oy +
j=1 j=1 1

m
+ Y 157X 2ot Zk W87 Rill e oy <
i

in
m

S ewf2 + 20 +n) Y, NGl + mn 4 mn + m(m — Dy <

Jj=1

< ewf2 + (20 + N + m(m + 1y
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by virtue of (68), (70), (72), and (69), and therefore the inequalities (67) follow from
our choice of .

.- The proof of the following proposition is almost identical to that of the above
proposition, but it makes use of the estimate (ii) in Proposition 5.6 instead of ().

PROPOSITION 6.2. Suppose '€ > 0 and T = S(O) belongs to the class (BCP),
for some 0 satisfying 0 < 0 < 1. Suppose, moreover, that X and Y are 3#(O)-oriented
functions in L¥Cy(A", F, @ F)) and [Fle (LNJHWC,(AN)). Then there exist
H(O)-oriented functions X' and Y' in LY(Cy (N, F,. ® F)) such that

th 34 eyt . = .
SF1—[Y X]*-<L‘:H0‘)(C,(,r» SO+ [Fl—[Y X]~-(L‘;H5)(clu'))’

vyt i W 12
WX — Xn,_e(ci)(_,-,y_ @_g))< ILF] —[Y=X]] fa /Ho)(C )’
and
1/2
Y — Y}'mcu Fy ©F) < A[FT = [YeX]) IU- THGUC (4))
N Proof. As in the proof of Proposition 6.1, we may suppose that @ = |[[F] —
— (V¥ Xl mtye (yy # 0 Choose & > 0 such that 8%(1 + (1 + 6"3w) < ew/2.

Next’ choose a function G e LYC,(A)) such that [G] = [F] — [Y*X] " and
1GIlag Gy < (I + 0Y)w. It follows now from Remark 5.4 (with §'2 in place
X

of J) that there exist points gy, ..., 4, in Ly U Ry and operators C,, I. . Cp
in Cy(A4") such that

(1" X 7G| rL ey <20 IO )

and

m

3 G < 0 = 3]Gl 0ppy < 0~ Do

It follows from our choice of § that we have

t

[}

I

{F1— [Y*X]1— ¥ [p2] ' < gw/2.
i Z "1 IJ(L /H(l,)(C [7%)

We have therefore obtained the analogs of (68) and (69) for the space
(LY HH(C,(A), and from this point the proof proceeds like that of the preceding
proposition, with the only change being that (70) is replaced by the estimate

10721 G = 15 Ry o < © + IG5

Thus no more need be said about the proof.

It will be worthwhile for future applications to know that the X’ and Y’ that
arose .in the.conclusion of Proposition 6.1 can be controlled on T\ s, and that is
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the purpose of the following corollary. The notation if" , where r < T,

- 1o Lir, 2)
means, of course, f T/ -
' COROLLARY 6.3. The functions X' and Y' provided by Proposition 6.1 can be
chosen such that

Y i,
X X“L‘(r\a.cau'. F L OF)N <&

and

1 — ri

LHTNo, C 4. 7, BF) <&

Proof. If A < D is dominating for the subset 0 « T and x > 0, then the set
A, = {ped: {ipllpe, < a} is also dominating for ¢. Indeed, it suffices
to consider the function
@) ) = - S P dr, peD,
n
TN\o

which is the Poisson integral of the characteristic function ¥ = I1ne of T\ . Thus
J N coincides almost everywhere with the nontangential limit of #. If e¥ € o,
0= X’r\a(e“) is the nontangential limit of u at e, and {y,}®., is a sequence‘of
points in A converging nontangentially to e¥, then 1#(x,)| < a for n sufficiently
arge, so u, € A, for such n. Thus, in the proof of Proposition 6.1, the points py, . . ., ly

can be chosen so that Hlp‘:j[l[,_la\o) <o It is easily seen from (40), (43), and

the definition of the functions {R;}/_, in that same proof that

Rl < 3P, EOIC I e eT, L <j<m
Therefore :
A9 R Rl e, ey < M P Mt IG 1 < 92Cll, 1</ < m,

so we obtain from (74), (72), and (69) the following estimate:

7 2 ! ! <
1" = Xlzana, i 5,090 = IX = XX = Ol om <
m :
s < Zl IRFRi 3 e, € am T }gk“Rf*R" e, <
P

<%y, ICilly + m{m — Dy < 9 aw -+ m(m — D)y,
Jj=1
and the rightmost member in (75) is less than ¢ if « and 5 are chosen sufficiently

small. Since a similar estimate holds for {|Y' — Y| LT\, €yl #, 050 ° the proof

is complete.

ReMARK 6.4. It will be important for future applications of the techniques
in this paper to notice that in Propositions 6.1 and 6.2, if one were given initially
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a finite set Z,, ..., Z; in LACo(A", F . ® F)) and n > 0, then X’ and Y’ defined
in those proofs could have been chosen so that

GZEMX — X)?:Ll(cl(d_» <y and [ZF(Y — Y);I}Ll(cl(m, <n I<igk

Indeed, it follows from Proposition 4.6 that the functions R,, ...,R, and Sy,..., S,
can be chosen so that

y <glm, 1<i<kl<jsm

IZER" < ylm, Z_’:ZijhLl(Clw»

JeLNe )

We are finally prepared to prove our basic matricial factorization theorems.
Note that with the choice o = T the first theorem applies to (BCP),-operators.

THEOREM 6.5. Suppose 0 < 9 < 1/2, 0 < ¢ < 1 — 20, and ¢ is a measurable
subset of T. Suppose also that T ==S(O) is a completely nonunitary contraction such
that T € (BCP), ,, Fe LYo, Cy(A#), and X and Y are given 3 (O)-oriented functions
in LACAAN, F . ® F)). Then there exist H(O)-oriented functions X' and Y’ in
LYCH AN, F, ® F)) such that F(e) = Y'(e*)*X"'(e") almost everywhere on o,
while

172

X’ — X U= QO+e)) | F=(Y X0 l[L, .-

LYC A F B FN
(76)

g - — : N -1l F = 12
H Y YHL'(CS(J', y*@g;)) < (l (2GT8)U ) IHF-(Y X)‘GHL‘(U, Cl("r)) .
Furthermore, the set of all #(O)-oriented functions X" in L(Cy(N ", F , @ F)) for
which there exists an H#(©)-oriented function Y in LACy( N, F ,, ® F)) satisfying
Fle)y = Y"(")* X"'(e") almost everywhere on o is dense in the subspace of alf
H(O)-oriented functions.

Proof. We shall construct sequences {X,}%., and {Y,}%, of #(@)-oriented
functions in LACy(A', F, ® F)) such that X, =X, Y, = ¥, and

0D IF = (YEX)Io g ¢ 4y < QO+ & IF — (YD)l | 5, c
air = Xallize v, 5, 0m < QO+ O"IF — (V*X)lo |5, ¢ () » and
(78)
“Yn“l‘l - Y””L?‘(Cg(_r, f‘f};ﬁ"}) S (20 + 6)"/2”F - (‘Y*X)Io‘llzf(g‘cl(ér))

for all n > 0. Indeed, the inequality (77) is obviously satisfied for n = 0; suppose
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now - that #(@)-oriented functions {X,}%_; and {Y,}5_, have been chosen so that
(77) is satisfied for 0 < n < k and (78) is satisfied for 0 < n < k — 1. An appli-
cation of Proposition 6.1 with F— (Y;7X,)a, X,, Y, in place of F, X, Y yields
J(O)-oriented functions X,,, and Y,,, such that (77) is valid for n=k=
and (78) is valid for n = k. Thus, by induction, sequences {X,}2, and {Y,)=,
exist having the desired properties. It follows from (78) that these sequences are
Cauchy in LX(Cy(N", F . @ F)), and thus converge in norm to functions X’ and Y’.
respectively, which must be #(@)-oriented by Lemma 3.1. It is obvious from the
continuity of the product (X, ¥) — Y*X and (76) that F=(Y'*X")¢ in LY5,C,(4")).
To see that (76) is satisfied, we compute

. .

Ty o i ; .

GX' = an.'(czuf, FoOFN T E C A & I <
'ne0 [LC 55 © 7))

< [§ @0 + ew} IF = (2 X)l6l e, c <

n=0

< (1= Q0+ ey®)F — (VX6 oy

A similar computation for ||Y’ — Y}, completes the proof of (76).

A, F, @ F))

To prove the last statement of the theorem, let X°be an arbitrary #(@)-orient-
ed function. An application of what has already been proved with X = tX°, t > 0,
and Y = 0 yields the existence of #(@)-oriented functions X_ and Y. such that
F(e") = Y (e")*X (") almost everywhere on ¢ and such that

X, — X9, <1 — (20 + eV FpYE

2 1 Y
(C W F, F)) L(a, Cl(”.g »

Thus
lim 172X, — X0,

00

and since F = ((Y )*(r-1X))lo in Lo, C,(A")), the proof is complete.

0,

HCyh 7, © #))

The following theorem follows from Proposition 6.2 exactly as the preceding
one followed from Proposition 6.1, so no proof need be given.

THEOREM 6.6. Suppose 0 < 0 < 1,0 <& < | — 0, and T=S(O) is an oper-
ator in (BCP),. If [F]e (LYHI(C(A)) and X, Y are #(O)-oriented functions in
LACAN', F, ® F)), then there exist H(Q)-oriented functions X' and Y' in
LY Cy (N, F . @ F)) such that [F]=[Y'*X’] and

’ 97 — r 1/2
X" = Xllze v, 7,00 < (U= @+ FHIIF] ~ XL e, oy
(79

A ' —v “LZ(C2(J", F,05) S U= @+ e |(F] — [Y*X] ”(If’/H%NC,m)'
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Furthermore, the set of all #(O)-oriented functions X' in L{CAN, F . ® F)) for
which there exists an (@ )-oriented function Y'' in LYCAAN", F o @ F)) satisfring
{F]=[Y""*X") is dense in the subspace of all #(Q@)-oriented functions.

REMARK 6.7. It is important for future applications to observe that if one
were given initially a finite set Z,, ..., Z, of functions in L¥Cy(A", F . @ F)) In
Theorem 6.5 or 6.6, then the resulting functions X’ and Y’ could be chosen to have
the additional properties

1ZF X — XD <& 1<i<k,
fi z( )i‘Ll(Cl(J’)} & !
and
127 = Dilpe iy <& L<isk
To see this, note from Remark 6.4 that we may impose the additional conditions
HZ;(XIPl-l W‘X")”LI(CI(,V)) < 2—“'15, 1< < k,
and

nzf(yu-n MY")i}LI(CI(A’)) <2 71 1< ; < k,

in the proofs of Theorem 6.5 and 6.6.

REMARK 6.8. It is also useful for future applications of Theorem 6.5 to observe
that the resulting functions X" and Y’ can be chosen to have the additional properties
X~ X2

(TN\e,Cp{ . 7, @ F)) <&

and

+
1Y = Yl ocyn 7, 0 20 < &

To see this, note from Corollary 6.3 that we may impose the additional conditions

HXtH-l - Xn“L < 2_”_15:

HINGC,hs 7, @ F)
and

”YtH-I - Yu”}_’,z < 27"l

(TN\oCy (4 F, ® FD
in the proof of Theorem 6.5.

The following corollary shows, in particular, that when T = S(0) € (BCP),

for some 8, 0 < 0 <1/2, one can solve finite systems of simultaneous equations
of the form (8).
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COROLLARY 6.9. Suppose 0 < 0 <1;2,0 < a,n € N, and ¢ is a measurable
subset of T. Suppose also that T = S(O)is a completely nonunitary contraction such
that T € (BCP), ,. Let {x;}7_,, {y;}5., be given sequences of vectors in H#(O) and

{fii}2 ;=1 be a doubly indexed sequence of functions in L'(c) satisfying

(80) N./‘u - (xi‘yj).ai;l_l(u) <, ] < l,./ < n

Then there exist sequences {x;}., and {y;}1_, in #(O) such that for almost every
e’ e g,

(81) i€ = (x]-y)e¥), 1<i,j<n,

and

B2)  x; — xili < (I — 0O~ tna2,  Hy; — yii < (1 — (20)Y2)~'na'’2,
I1<i,j<n

Proof. Let & be a Hilbert space with orthonormal basis {e;}7_1, and define
functions X, Y in LX(Co (A, F, @ F)) and F in LX(C,(A")) by setting, for e’ € T,

X@ee; = x;(e"), Y(ee; == v;(e™), 1<j<n,

and
A n .
F(ee; = ¥ fuleMe, 1 <j,k<n.
f=1
The computation

(Y2 XNEej, e = CXlee,, YHDend = Cxfe"), ¥(e)> = (ty-p,)(e) =

= <Z (xj 'yk)(eil)ek H emx, ei‘ € Ta 1 <j= m < n,
k=1 /
proves that
(Y5 X)(e")e; = ¥ (x;-y)(e)e,
k=1
almost everywhere on T, and therefore that

®3)  (F—(Y*X)lo)e")e; = i [fu@) — (- )eMe, 1<jk<n,
k=1
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almost everywhere on 6. Thus, using the fact [11, p. 111} that the trace-norm of a
matrixis less than or equal to the sum of the moduli of the matrix entries, we:
obtain from (83) and (80) the upper bound

) e - i{. -
F— (VXY 3 oy, = ;—S (F — (Y?X) 6)(e") 1dr <
(84)
i a7 ; - 2o - .
< —S Z L@ — (x; -3 )(E") dr = Y. S — (x50 ) O 1y < n*y' < n*a
2% jk=1 Jk=1

[

where 2’ < x is chosen sufficiently close to . Consequently, given ¢ > 0, it follows.
from Theorem 6.5 that there exist 3#(0@)-oriented functions X’ and Y’ in
LACyN, Z .. ® F)) satisfying (76) and F(e") = Y'(e¥)*X'(e") almost every-
where on o. Also, (76) combined with (84) yields

(85) X — x

. —_ . a2y -1 y1/2
LAC 47, @.‘7))(1 (20 — &' In(x)

and the same bound for Y’ — Y

e, 7, 0 90 If we define

xie") == X'(eMe;,  vie®) = Y'(eMe;, efeT, 1<j<n,

then it follows from (83) (with X and Y replaced by X’ and Y’) that (81) is valid
almost everywhere on o, and the corollary follows because

(I — (20 + &) ~In(a’)/2 < (1 — (20)/2)~1 paV/2

if £ is chosen small enough.

REMARK 6.10. If follows easily from Remark 6.8 that given ¢ > 0, the sequences.
{xi}i-1 and {¥}7.; of vectors appearing in (81) and (82) can be chosen so that

’ o . [ S
By HLe(T\aﬂs@ﬁ) <é& 1 <7< n, and similarly for the l'}f”L"’(T\a,Sr‘a o5

The proof of the following corollary is almost identical to the proof of Corol-

lary 6.9, except that it uses Theorem 6.6 instead of Theorem 6.5, and is therefore:
omitted.

COROLLARY 6.11. Suppose 0 < 0 < 1,0 < a,n € N, and T = S(©) € (BCP),.
Let {x;}]_1, {§;}-1be given sequences of vectors in () and {[f; 137 i1 be a doubly
indexed sequence of elements of L) H} satisfying

L] — [X;-yj]HLle(l) <o, 1<ij<n
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Then there exist sequences {xjyi_y and {yj}j_, in #H(O) such that

Ud=Ixiyjl, 1<ij<n,
and
aXe — X < (0 =0V gV Ty — pli < (1 — OV a?, 1 <4, j < n
The following corollary shows, as promised in the introduction, that for

{BCP),-operators T, the functional calculus @, in (2) is an isometry, ie., T € A,

COROLLARY 6.12. Let T be a (BCP), operator for some 8,0 < 8 < 1. Then
the maps ®r: H® — o/ and @1: Qr — LY Hy are isometric and surjective.

Proof. As noted in the introduction, it suffices to show that & is isometric,
.and we may suppose that 7' = S(@) is a model operator. It follows from the preced-
ing corollary (with n = 1) that for every u in D, there exist vectors x, and y,
in (@) with the property that [x,-y,] = [|p2l]. Thus, from (2), (7), (35), and the
Poisson integral formula, we obtain

AT 10> = LI, [%, ® 3,1) = B2, (X, @ 1) =
186)
= {f, 020%, ® 3D = <f, Ix,-n,d> = <f, 1p2> =flw), fe H™.

If we apply (86) to the function [, we obtain
i < IFDI Iy, fe H®, neN,
F@! < KDYy, fe H® neN,

:and hence ||fil, < ||f ()|, which completes the proof.

The following corollary, which is just a rephrasing of Corollary 6.11 using
Corollary 6.12 to identify the spaces L}/H} and Q(T) when T is a (BCP)g-operator,
was the essential tool used in [3] to prove that (BCP)-operators are reflexive.

COROLLARY 6.13. Suppose 0 < 0 < 1,0<a,neN,and T is'a (BCP)o-oger-
ator in L(H). If {(x}1, {9;}1-1 are sequences of vectors in K and {[L;}}] ;o1 i
a doubly indexed sequence of elements of Qr satisfying

”[Llj] - [xi ® y}] ”Q(T) <ua, 1 < i’ j < n,
then there exist sequences {x;}i., and {y;}3., of vectors in H# such that

[Lij] = [xl, ®Y}]v 1<L,j<n,



FACTORING TRACE-CLASS FUNCTIONS

["3]
[2.2]
A

and

Xp—xp < (L= 023 a2 po— 3l < (1 — 0¥ -ngl®, 1 <0 j <

ReMARK 6.14. It follows from Remark 6.7 that if, in Corollaries 6.9, 6.11,
and 6.13; one were given initially a positive number ¢ and a finite set z;, ..., 2,
of elements of J (or #(®)), then the resulting sequences {x/}f_, and {}}}7.,
could be chosen to have the additional properties:

X =x)z o p<e Oj—y)a,p<e 1<ij<n, 1<k<m.

The following corollary shows, in particular, as mentioned in the introduction,

that infinite systems of equations of the form (10) can be solved for (BCP),_,-oper-
ators when 0 < 0 < 1/2.

COROLLARY 6.15. Suppose 0 < 0 < 1/2, o is a measurable subset of T, and

T = S(O) is a completely nonunitary contraction such that Te (BCP)y .. If

{/:;}%=11s any infinite doubly indexed sequence of functions in LX), then there exist

sequences {x;}32., and {y;}%., in #(O) such that f;; = (x;-3,).e in LX(o) for 1 < i,
< oo.

Proof. Let A" be a Hilbert space with an orthonormal basis {e;}52,, and

choose inductively sequences {a;}2; and {b;}7°., of positive numbers such that

(87) aibjlzﬁj”[}(s) < 2_(i+j)’ 1 < ”] < ©o.

(Having chosen ay, by, . .., a,, b, so that (87) is satisfied for 1 < i, j € k, choose
@41 so that the required inequalities are satisfied for i =k + 1, j < k, and then
choose by, ; so that the required inequalities are satisfied for j =k + 1, i < k + 1))

Then, since Yy, aibj”.finLJ(a) < 4 oo, it follows from the Lebesgue monotone
i, j=1

convergence theorem that the series Y} a;b;| fi;(e")| converges at almost all e e g,
i,j=1
and for such e, we can define an operator F(e'*) € £(A") by setting

(88) F(ei')ej = Z ajbkf:"k(eif) €y 1 < j, k < Q.

k=1
Since the matrix for F(e¥) relative to the basis {¢;}%., has absolutely summable
entries, F(e") is bounded, and, in fact, belongs to C,(.#"). The function F: 6 - Cy(A")
is obviously measurable from (88), and

o

1 . 1 .
”F”L’(a,cl(m)): “2;‘8 £ dr < —Z—S iélaibj’fij(e“)l dr <

< ¥ a,-ijfijﬂLl(a) < Z 2-i+i) — 1.

hj=1 iJj=1
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Therefore, by Theorem 6.5 (with X = Y = 0), there exist 3#(0)-oriented func-
tions X’ and Y’ in L2(C2(M, ?:3, @ f)) such that F(eil) . Yl(eit)aXr(eil) for
almost all e € . We define

xi(€") = (1ja)X'(e")e;, y; = (1/b)Y'(eM)e;, e"€eT, 1 <1, j< oo

The vectors {x;}., and {y;}%., belong to #(@), and a computation similar to that
in the proof of Corollary 6.9 shows that f;;(e") = (x;-»;)(e") for almost all ¢" = g,
so the proof is complete.

The next corollary shows that all (BCP)s-operators, 0 < 6 < 1, belong to
the class A,,U in the terminology of [4], and thus to them we may apply our dila-

tion theory in [4].

COROLLARY 6.16. Suppose 0 < 0 < 1, T is a (BCP),-operator in L(H), and
{[Li;1}° -1 is a doubly indexed sequence of elements of Qy. Then there exist sequences
{x;}22, and {y;}7. of vectors in H# such that

(89) Ljl=[x;®y], 1<ij<oo.
Thus, in particular, {_J (BCP), = A,,o.
0<6<1

Proof. The argument proceeds just like that of the preceding corollary, using
Theorem 6.6 in place of Theorem 6.5, and employs the fact that for T e (BCP),,
0 € 0 < 1, we know from Corollary 6.12 that Te A, Thus no more need be said
about it.

The following result is an immediate consequence of Corollary 6.16
and [4, II].

COROLLARY 6.17. Every aperator T in \_J (BCP), is reflexive.

0<6<1

7. CONCLUDING REMARKS

We begin this concluding section with a comparison between the results
in §6 and the work of Apostol [1].

The following proposition shows that Corollary 6.17 covers the oper-
ators considered in [1].

PROPOSITION 7.1. Suppose T is an arbitrary contraction in L(H#). Then for
every 0 satisfying 0 < 0 < 1,

(90) Lo(T) © Lo(T) U R(T) = C(%)(T)

1-6



FACTORING TRACE-CLASS FUXCTIONS 357

Proof. It is an elementary fact from the theory of Banach algebras that
©on g (T TN0) = o (T, TS3¥2)N0), peD,
where 7, is as in (1!), and hence

LoN\o (T) = R{T)\o(T). 0<8<1,
or, equivalently,
92) LoT)y(@TInD)= Ry(T)u(@T) D) == L(T) 3 R(T), 0<9<1.
Furthermore, if 1 € D and g ¢ 0(7T), then an easy consequence of (11) is that

YTy — a7 < (T — gD~V m(T) i <
93

1
< -
(I — ju)info (T T,)"?)
since
(94) W — BTN < U — @), In(T)1] = Vinfo (T 1,0

Therefore from (14) and (93) we see that
LlTINo(T) = Lo(T), 08 <,

so we conclude from (92) that

| 95) (oT) = L(T)U RY(T). 0 <0 < 1.
In the opposite direction, if 4 € D\o(T), then from (11) we have
7(T,) " == ((T — pD)~n(l — aT) =
— (T — pD)~ (1 — WD — J(T — ) =

= (1 — (T — pD)* — gn(D),
so that
96) {m(T) 2 < 20 — DT — pD)~ 1 + 1.

If pe (L(TY U RLT)\o(T), then, by virtue of (01) and (94), we have

1/8 < {In(T,)~
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so we infer from (96) that

(3N ) A ()l 2y s

This implies the second inclusion in (91), so the proof is complete.

We note, finally, that if T is a completely nonunitary contraction such that
o(T) o T, then one knows from standard spectral theory that {7} = D for § > 1,
so the second inclusion in (91) is nontrivial only for 0 < 1/3.

We now give an example which, at the same time, shows, as promised in
§ 2, that the family {(BCP)g},<g.-, is strictly increasing, and that there exist (BCP),-
-operators whose spectra equal T.

ExampLE 7.2. Fix 0, 0 < 0 < 1, and denote by @ the function in H°°(,£( )

defined by @(/.) = 014, Z€D. It is obvious that {#, 5, 9} is a contractive analytic
function, and so we may set T=S(0). ft is obvious from (29) that L(T)=R,(T)=
while Ly(T) = Ry(T) =D if 0 < 6" < 0, and so T belongs to (BCP), but not
to (BCP), for 0 < 0. This shows that the family {{BCP),},<, -, is strictly increasing.

It is also clear from the characterization of the spectrum of an operator in
terms of its characteristic function [21, Theorem VI.4.1] that the spectrum of the
operator T == S(@) constructed above coincides with T. (It can easily be seen that
T is a bilateral weighted shift operator of infinite multiplicity with weight sequence
{. . 1p. e, 01, 14, 1, ...}, and Tis obviously similar to the unweighted shift
of infinite multiplicity.)

Acknowledgement. The authors acknowledge with great pleasure their colla-
boration with Professor Béla Sz.-Nagy on[22], [23], and [24], as well as on an early
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