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ABELIAN OPERATOR ALGEBRAS
AND TENSOR PRODUCTS

JON KRAUS

One of the central results in the theory of tensor products of von Neumann
algebras is Tomita’s commutation formula: if .# and .#° are von Neumann
algebras, then

) M RN = (M BN,

It was observed in [15] that if we let ¥; and %, denote the projection lattices of
A and A respectively, then (1) can be rewritten as

&) alg ) B alg ¥, = alg(Z, ® L»).

This version of Tomita’s formula makes sense for any pair of reflexive algebras
alg ¥, and alg.?,. It remains an open question whether the tensor product for-
mula (2) is valid when alg.¥, and alg.¥#, are arbitrary reflexive algebras. However,
{2) has been verified in a number of special cases [15, 17, 19, 20, 21, 22, 23]. In par-
ticular, it is known that if %, is a commutative subspace lattice that is either com-
pletely distributive [23] or finite width [19], then (2) is valid for ¥, and any subspace
lattice .#, . One of the main results of this paper is that if 7 is a subnormal operator
acting on a Hilbert space o, or if T is a (BCP)-operator on # (or more generally
if Te ANO(Jf)), then (2) is valid when %, = lat(T) and %, is any subspace lattice.

The proofs of the results concerning the tensor product formula (2) in [19,
22, 23] and this paper all make use of slice maps. If .# and A4 are von Neumann
algebras, and ¢ is in the predual .#, of .#, then the right slice map R, (see, €.8.,
[33]) is the unique o-weakly continuous linear map from .# &.4 —.4" such that

R(A® B)= @(A)B, Ae.l,BeN.

The left slice maps L,: . # QN =M, Y €N, are similarly defined. A o-weakly
closed subspace & of B(##) (the algebra of bounded operators on #) is said to have
Property S, [22] if whenever J is a o-weakly closed subspace of a von Neumann
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algebra .4", we have
AeS @V R(A)eT foralipe.#,, — SR F.

It is shown in [22] that if alg %, has Property S,, then (2) is valid for any subspace
lattice #,. Thus if every o-weakly closed subspace & has Property S, then the
tensor product formula (2) is valid for all pairs of subspace lattices &, and &,. In
Section 2 of this paper we prove the rather surprising fact that the converse is true.
Moreover, we show that if there is a g-weakly closed subspace of B(#) without
Property S, , then there is an abelian reflexive subalgebra of B(s#) without Property
S, . It seems very likely that there are o-weakly closed subspaces without Property §,,
and hence that there are o-weakly closed abelian algebras without Property S,. We
have not been able to produce such an algebra, but we are able to show that cer-
tain important classes of o-weakly closed abelian algebras do have Property S,.
This both narrows the search for an algebra without Property S, and provides new
information about these classes of algebras. In Section 3 we prove (as a special case
of a more general result) that H*(R) has Property S, . In Section 4 we show that if
T is either a subnormal operator on J# or is in A“O(J/f), then &/(T') (the Ac-weakly
-closed subalgebra of B(s#) generated by T and /) has Property S, . Since it is known
that for such operators we have /(7)) = alglat(7), this implies the result about
1at(T) mentioned above.

1. PRELIMINARIES

In this paper we will always assume that Hilbert spaces are separable. A sublat-
tice Z of the projection lattice of B(2#) is said to be a subspace lattice if it contains
0 and 7 and is strongly closed. If the elements of & pairwise commute, % is a com-
mutative subspace lattice. If & is a subspace lattice, alg ¥ denotes the set of oper-
ators in B() that leave the (ranges of the) projections in & invariant. If & is a sub-
set of B(#), then lat &, the set of projections left invariant by the elements of &,
is a subspace lattice. A subalgebra & of B(s#) is reflexive if o = alglat oZ. Note
that the reflexive algebras are precisely the algebras of the form alg ¥, where & is
a subspace lattice. If ¥, < B(#,)and &, = B(H#,) are subspace lattices, &, @ &L»
is the subspace lattice (in B(#; ® #,)) generated by {P,® Py: P L, i=1,2}.

Let # and .4 be Hilbert spaces, and let & < B(#)and 9 < B(A') be o-weakly
closed subspaces. Then & ®  denotes the o-weakly closed linear span of
{S®T:SePand Te 7}, and we set

F(&, T)={A e B(#)B BX): R(A)e T for all ¢ € B(#),

and Ly,(4) € & for all ¢ € B(A),}-
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L)
&
'»)

(it is easily checked that we can replace B(.#)and B(.#) in the definition of F(&, .7)
by any von Neumann algebras./# and .4 containing & and 7 {22, Remark 1.2}
Note that it is immediate from the defirition that ¥ & 7 = F(¥, 7). It is an
open guestion whether the subspace tensor product formula

3 P TN=-FRT

is always valid. Tomiyama proved in [33] that (3) is valid when & and .7 are von
Neumann algebras. His proof uses Tomita’s commutation theorem, and, in fact,
Tomita’s theorem is equivalent to the validity of (3) for all von Neumann algebras.
Hence (3) can be locked at as a very general version of Tomita’s commutation
formula.

A o-weakly closed subspace & has Property S, ifand only if F(¥, 7)) =% & T
for all g-weakly closed subspaces 7 [22, Remark 1.5]. It is shown in {22, Theorem
1.9] that every semidiscrete von Neumann algebra (and hence every type I von
Neumann algebra [13, Proposition 3.5]) has Property S,. It is also shown that
J(F,) (the regular group von Neumann algebra of the free group on two generators)
has Property S, {22, Theorem 1.18]. A von Neumann algebra is said to have the
CCAP (completely contractive approximation property) [16] if there is a net {®,}
of o-weakly continuous, completely contractive maps of finite rank from .# to ./
such that the net {®,(4)} converges o-weakly to A for all 4 in .Z. (A linear map
$:.4 — ./ is completely contractive if supj!®,. < 1, where @, = ® ® 1, is the

map from .# ® ./#,(C) to itself given by D.((4;;D) = [9(4;)].) By definition [13],
semidiscrete von Neumann algebras satisfy a stronger property than the CCAP
(the maps &, can be chosen so that @, is completely positive and ®,(I) = I), and
De Canniére and Haagerup proved in [12] that Z(F,) has the CCAP. (Haagerup has
classified the discrete groups G for which Z(G) has the CCAP [16].) Hence the next
result generalizes Theorems 1.9 and 1.18 in [22].

THEOREM 1.1, Let .# be a von Neumann algebra with the CCAP. Then .% has
Property S, .

Proof. Since ./ has the CCAP, an argument similar to that preceding Propo-
sition 3.1 in [13] shows that the identity map on .#, can be approximated in the
topology of simple norm convergence by finite-rank linear maps from .7, to ./#,,
whose adjoints are completely contractive maps (from .4 to .#). Using this fact
and [22, Lemma 1.17], the proof of Theorem 1.9 in [22] can be easily modified to
show that .# has Property S, . %

It is quite possible that all von Neumann algebras have Property S, . However,
at present there are no examples known of von Neumann algebras with Property
S, which do not have the CCAP. In particular, it is an open question whether
RSL3, Z)) (which does not have the CCAP [16]) has Property S,.
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2. THE EQUIVALENCE OF THE SUBSPACE TENSOR PRODUCT FORMULA
AND THE REFLEXIVE ALGEBRA TENSOR PRODUCT FORMULA

In this section we prove two results which together imply that the subspace
tensor product formula (3) is equivalent to the reflexive algebra tensor product
formula (2) in the sense that (3) is valid for all pairs of o-weakly closed subspace &
and 7 if and only if (2) is valid for all pairs of reflexive algebras alg %, and alg &, .

THEOREM 2.1. Suppose there is a o-weakly closed subspace of B(#) which
does not have Property S,. Then there is an abelian reflexive subalgebra of B(H#)
which does not have Property S, .

Proof. If A were finite dimensional, then every subspace of B(s#) would have
Property S, {22, Proposition 1.7). Hence 5 is infinite dimensional. Let &% be a
o-weakly closed subspace of B(#°) without Property S, . Let 4 be the set of all ope-
rators on # @ s which admit a matrix representation of the form (/OI i),

A
where 2. € C and S € &. Then it is easily checked that # is an abelian o-weakly

closed algebra. Suppose that 2 has Property S, , and let P be the projection (3 (;) .

Then P*#P = {(g i) : Se 5’”} also has Property S, [22, Proposition 1.10]. Let

5 be the two-dimensional Hilbert space with basis {e;, e,} and define U from
H D H 10 K R Hs by

U(“\’@J’):X®€1+}’®€2'

Then U is unitary and U(P*BP)U* = & & CE,,, where Ey, € B(s#5) is the operator
that maps e, to e, and e, to 0. Hence & & CE,, has Property S, and so & has Pro-
perty S, [22, Proposition 1.15]. But this is a contradiction, and thus Z does not have
Property S, . Let & = # ® CI, where I denotes the identity operator on #°. Then &
does not have Property S, [22, Proposition 1.15). Since s is infinite dimensional,
B(# @ #) ® CI has a separating vector, and so & is reflexive. (More generally,
every g-weakly closed unital subalgebra of a von Neumann algebra with a separat-
ing vector is reflexive [26, Theorem 3.5].) Let ¥ be any unitary map from (3 @ ) ®
® A onto #. Then Vo/V* is an abelian reflexive subalgebra of B(s#) without Pro-
perty S, . %

THEOREM 2.2. Suppose & is a reflexive subalgebra of B(3#) without Property
S,, and let ¥y = latsl. Then there is a subspace lattice ¥, such that alg.#, ®
® alg ¥, # alg(L, ® Z»).

Proof. Since &£ does not have Property S,, we can find a Hilbert space ¢

and a o-weakly closed subspace & of B(X') such that & & & # F(sf, F). Let
{Ei;}i j=1 be the usual basis of matrix units for the 2X2 matrix algebra M,(C).
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Let ©={@®(E; -~ Ep)~ S®E,:i€C,Se¥}, where I is the identity
. (I S\ .
operator on X, (Note that % can be naturally identified with { ( /0 . ) 12€C,

A
Se# } . ) Then % is a o-weakly closed unital subaigebra of B(#") & M,(C). Let

# =% ®CIL Since F(£,%)# 4 @ %, # must be infinite dimensional [22,
Proposition 1.7}, and so & is a reflexive algebra [26, Theorem 3.5]. Define a map
@ from B(#) @ B(H) to (B(#) @ B(A N R MAC) S B(A)by &(T) = TR E;,® L
Let 4" = B(A#') @ M,(C) & B(A'). For ¢ € B(#),, , let R, denote the right slice map
from B(#) @ B(H") — B(A") associated with ¢, and let fi¢ denote the right slice map
from B(#) @A — A associated with ¢. Then it is easily checked that

@ RAKTY) = RAT) ® Ex, ® 1,

where we make the obvious identification between (B(#) ® B(A)) ® M,(C) ®
@ B(x) and B(s#) ®.A". Now let T be an operator in F(&, &) which is not in
o ® &. It follows from (4) that &(T) e F(B(#), B). Moreover, since B(A") has
Property S,, Te & & B(#), and so ®(T)e o ®A. Hence ¢(T)e F(A,5B).
However, ®(T) is not in &/ ® . For it is easily seem that T ¢ & ® & implies that
T® E,¢ ®%, which in turn implies that ¥ =T E.® ¢~ 4.
Hence F(of, B) # o @ R. Let &, = latB. Then F(L, B) = F(alg ¥, alg L) =
= alg(¥, ®@ Z,) (see [22], p. 372), and so alg &, R alg Ly = A ® B # F(A, B) =
= alg(*gl ® 32)- 7

COROLLARY 2.3. Let .# be a von Neumann algebra without Property S,, and
let &, be the projection lattice of 4. Then there is a subspace lattice &y such that
alg ?, @ alg ¥, # alg(Z, ® Z,).

Proof. Since .4 does not have Property S, , .4’ = alg.¥; also does not have
Property S, [22, Proposition 1.16). Hence we can apply Theorem 2.2 to get the
desired result. 7

REMARK 2.4. Suppose &7 is a reflexive algebra without Property S,, and &
is the algebra constructed in the proof of Theorem2.2. Then ¥ @ Z = (4 R ) ®
® CI is reflexive by Theorem 3.5 in [26]. Thus, if there is a o-weakly closed subspace
without Property S,, then there is a pair of reflexive algebras &/ and # such that
o ® # is reflexive but of @ # # alg(lat & ® lat%).

3. ALGEBRAS OF ANALYTIC OPERATORS WITH PROPERTY S,

In this section, G will denote a locally compact abelian group with dual group
I' and Haar measure m. We will write LP(G) in place of LP(m), 1 < p < c0. We
will often identify the functions in L%(G) with the associated multiplication operators
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on L¥G). For y €T. e, denotes the function in L*(G) defined by e (g) = (g, -).
where g, 7 — (g, ;) is the dual pairing of G and I'. For fin L(G), the Fourier trans-
form ; is defined by

Gy y(gxg, v)dm(g).

G

If .7 is a von Neumann algebra and x: g - x, is a homomorphism of G into %73
group of s-automorphisms of .7 such that all of the maps g — %(A) (A €. by e
g-weakly continuous, the triple (.#, G, a) is said to be a W*-dynamical system. If
E < TI', we denote the spectral subspace of z associated with £ by .#*(E). Spevtral
subspaces have proved io be a powerful tool in the study of W#.dynamical syster:s.
We refer the reader to [1, 27, 31] for the definition and properties of spectral suo-
spaces.

I (.7,G,,2) and (", G,, f) are W*-dynamical systems, the W*-dynamical
system (. @A, G;3G,y, x ® B) is defined by setting (z ® Bis,ep = € By,
(g1 € Gy, g, € G,), where % @ /J’y2 is the unique =-automorphism of .# ® 4 such
that (o(gl ® ﬂgz)(A ®B)= cxgl(A) ® ﬁgz(B) (4 e.id, BeA). Let I';denote the dual

group of G;, i = 1,2. It is shown in [22] that if £ is a subset of ", such that .#*(E)
has Property S_, then

(5) (& BNYOHE ¥ F) = .(E)Q.4(F)

for all F < I',. We will show in this section that certain spectral subspaces
associated with positive semigroups have Property S,. A subset X of I' is a
positive semigroup if it satisfies '

HI+tZez,

@) Zn(—2%) = {0} and

(i) £ = intZ (i.e., 2 is the closure of its interior).
If we define a binary relation on I' by y = 7 if and only if y—/ € X, then
> is a partial order and Z = {y :y 2 0}. If (%, G, a) is a W*-dynamical system,
%(X) is a g-weakly closed unital subalgebra of .#, referred to as the algebra of
analytic operators in ./ (relative to ) [25]. When G == R (so I’ = R) and X = [0, co).
an operator 4 in. / is analytic relative to o if and only if all of the maps 1 - @(2,(A4))
(p €.#,) are in H®(R) [25]. If G, and G, are locally compact abelian groups with
dual groups I'; and I', and if £, < T';, i = 1, 2, are positive semigroups, then Z; X Z»
is a positive semigroup in the dual group I'; X I's of G, X G,. Hence if (., G,, «}
and (A, G,, f) are W*-dynamical systems and.#Z%(Z,) has Property S, , then if fol-
lows from (5) (with £ = ¥, and F = X,) that the tensor product of the algebra
of analytic operators in ./# (relative to o) with the algebra of analytic operators in
A (relative to B) is the algebra of analytic operators in .# @ .4 (relative to a @ ).
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If G is a locally compact abelian group, we can define a unitary represenia-
ticn U of G on LXG) by the formula (U, f)(h) = f(h — g), (f L¥G), g. i = G).
If we let « =adU (e, %,(4) = U, AU} for Ae B(L¥G)) and g < Gj, then
(B(LYG)), G, 2) is a W¥-dynamical system. We refer to « as the translation group
of B(L¥G)). If .# is a von Neumann algebra on L*(G) that is translation-invariant
{ie.. a,(#)=.# for all g in G), then (.&Z, G,2} is a W*-dynamical system,
where the restriction of «, to .7 is again denoted by z,. We will show below (Theo-
rem 3.2) that if .# contains L%(G), then .#/*(X) has Property S, for any positive
semigroup X < I'. When G = R, 2 = [0, c0), and .# = L®(R), .#*(Z) = H®(R)
‘see Example 3.3 below), so Theorem 3.2 implies that H*(R) has Property S_.

In order to prove Theorem 3.2 we need the following lemma, which is also
used in the proof of Theorem 3.6.

- LemMA 3.1. Let (.77, G, 2) be a W¥*-dyaamical system, and let T be a o-weakly
closed subspace of a von Neumann algebra A". Let X = ./ ® 7, and for g in G, let
8. be the restriction 10 X of 2, ® 1, where 1 is the identity automorphism of A
For E < I', let X3(E) denote the spectral subspace of B associated with E. Then for
any open subset V of I' we have

{6} XW)=.17(V)® T.
If . it has Property S, , then for any closed subset E of I we have

(N X3(E) = F(#*(E), T).

Proof. Let ®# = 4l @ N ,and let X, = R/ X", where X* = {p € Ry : 0(X) =
-- f0}}. Then X can be identified with the dual space of X, in a natural way, and
the a(X, X,.) topology on X coincides with the relative g-weak topology on X. Hence,
if we view X, as the space of (X, X, )-continuous linear functionals on X, then the
pair (X, X ) satisfies condition (1.1) in [27]. Moreover, g—f, is a 6(X, X, )-continuous
representation of G on X by o(X, X, )-continuous isometries. Thus we can define
the spectral subspace X8(E) for any subset E of I' (27, Definition 2.1.1]. By definition
these spectral subspaces are o(X, X,.)-closed. If ¥ is an open subset of I', then by
Proposition 2.3.3 (ii) in [27] we have that .#*(V) is the o-weakly closed linear span
of {a(f)A): A e M, fe LXG), and suppfA < V} and XB(V) is the o(X, X,)-closed
linear span of {f(f)(B):B € X, fe LYG), and supp f < V}. Moreover, it is easily
verified that B(f YA @ T) = a(f) A ® T whenever 4 € 4, Te J and fe LYG).
It is immediate from these facts that XA(V)=.4%(V)Q® 7.

Next suppose that ./ has Property S, and E is a closed subset of I'. Since .4
has Property S,, F(#,9) =4 ® J = X. Furthermore, it is shown in the proof
of Theorem 2.6 in [22] that if we set §, = a, ® 1 on £, then R#(E) = F(M*(E), V).
Hence X8(E) = R(E)N X = F(AYE), /)0 F(M,T) = F(ME),T). ‘
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THEOREM 3.2. Let .# be a von Neumann algebra on L*(G), and let x be the trais-
lation group of B(L*G)). If .# is translation-invariant and contairs L=(G). ifien
A*(Z) has Property S, for any positive semigroup X in I

Proof. Let X be a positive semigroup in I', and let  be a o-weakly closed sub-
space of a von Neumann algebra 4", It suffices to show that F(#*(Z)..7)=
= # () ® T. Let Z=.# ®.4", and for g in G, let B, == x, ® 1, where | is the
identity automorphism of 4. Let X = .#Z & 7, and let B, also denote the restriction
of B, to X. For y € I', set E, == e, ® I, where [ is the identity operator in.4". Since
a is the translation group, B (E.) == 2,(e,) ® I = (g, P)e, ® I = (g, y)E, for all g
inG and yin I'. Hence E, € #%(y) = #%({7}) forall yin I' [27, Lemma 2.3.8 (iv)].
Thus if 4 € XA(Z) = R8(Z) n X, then AE, € RF(X)R(y) = #F(Z + 7) [27, Lemma
3.2.1]. But AE. € X (since e, €./), so AE, € X?(Z <+ y) for all y in I'. Let &(;} - -
= AE,. Then it is easily checked that @ is continuous with respect to the o-weak
topology on #, and so with respect to the a(X, X ) topology on X. Since $(0) -= A
and 0 € int X, A is in the o (X, X,)-closure of {@(y) : y € int Z}. But y € int £ implies
S+ycintX, so A€ X¥intX). Hence X#(L) = XA(int X). The reverse inciusion
is trivially true, so XA(Z) = Xf(intX). A similar argument shows that .#*(Z) -
=.#/*(int X). Moreover, since./# contains L®(G), .#' is abelian, and so .# is type I,
and thus . # has Property S,. Hence we can apply Lemma 3.1 to conclude that

FQA(Z), T) = XHE) - XP(intZ) = #(nt D) ® T = M) D T.
,
ExampLE 3.3. Let.# = L*®(G), and let x be the translation group of B(L*G)).

Then 2 (A)h) = A(h + g) (4 € .4, g, h € G). Hence if fe LY(G) and A € .4, then
for each / in G we have

@®) [a(f)) = Sf(g)dg(A)(/t) dm(g) = Sf (g)A(h -+ g)dm(g).
G G

Moreover, if F is a closed subset of I', then
)] AHF) = {4 € M :a(f)(A) = 0 for all f'e I,(F)},

where I(F) denotes the closure in LY(G) of {f e LY(G): ]A’ vanishes on a neighbor-
hood of F} [27, Lemma 2.3.6]. Since I,(F) is translation-invariant, it follows from

(8) and (9) that Z/*(F) ={A € //l:SA(g)f(g)dm(g) = 0 for all fe I,(F)} = I(F)*.
4]

Let I(F)= {f € LY(G) :fA vanishes on F}. Then the hull {ye T:f(y) =0 for all
f € I(F)} of I(F) equals F, and I(F) is the largest closed ideal in LY(G) with this
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property. The smallest closed ideal in L}(G) with hull equal to F'is [,(F) [29, 7.2.5}. If
I(F) = I(F), then F is said to be an S-set (or set of spectral synthesis). (For a dis-
cussion of the relation of S-sets to spectral synthesis in L>(G) see Section 7.8 of {29].)
Let W(F) denote the o-weakly closed (= w%-closed) linear span in .# of {e, : ;€ F}.
Then W(L) =I(F)L. Hence .#*(F) = W(F) if and only if Fis an S-set. Now let 2 be
a positive semigroup in I'. Then I is an S-set [29, 7.5.6], and so it follows from
Theorem 3.2 that W(Z) = .#*(2) has Property S,. In particular, taking G = R and
I —= [0, oo), we conclude that H<(R) has Property S, . If we let G be the circle group
T={AeC:izj=1} (so '=2) and let Z = {0,1,2, ...}, we get that .#*(Z) =
= H*(T) has Property S,. (This also follows from Theorem 2.2 in [22]; We
will use this fact several times in the next section.

A natural question is whether we can replace X with an arbitrary S-set in the
statement of Theorem 3.2. In particular, does W(F) have Property S, for every
S-set F? This last question is related to an unsolved problem in harmonic analysis.
The problem is: if G, and G, are locally compact abelian groups with dual groups
I'yand Iy and if £, = I, and F, = [, are S-sets, is F, X F, an S-set? The answer
is known to be yes if either A(F,) or A(F,) has the approximation property. (See
[18] and Theorem 1.5.1 in [34].) However, it is net known whether A(F) has the
approximation property for every S-set F, so the general problem remains open.
The next proposition gives the relation between this problem and Property S,.

PROPOSITION 3.4. Let G, and G, be locally compact abelian groups with dual
groups I'y and Ty . Suppose F, < I'y and F, < TI'y are S-sets, and suppose W(F,) has
Property S,. Then F, X F, is an S-set.

Proof. Let # = L=(G,), &/ = L¥(G,) and & = L*(G, X G,). Denote the
translation groups of B(L*G,)), B(L¥(G,)) and B(L*G, x G,)) by a, B, and é respec-
tively. Then W(£,) = .#*(F,), W(Fy) = A P(F,), and, since W(F,) has Property S,,
MHE) BN B(Fy) = (M QN)OH(F,x Fy). Let V:LYG)) ® LYGy) — LAG, X Gy)
be the unitary map which is defined on elementary tensors by

V(i ® )81, 8) = filg)folgs) (fi€ LG, g:€ G, i=1,2).

Then
RUE, X Fy) = V(M BN\ F, X F)V* =
= V(W(F,) ® W(F))V* = W(F, X F,).
Hence FyX F, is an S-set.

REMARK 3.5, It follows from Proposition 3.4 and Theorems 2.1 and 2.2 that
if there is a pair of S-sets whose product is not an S-set, then there is a pair of sub-
space lattices £, and &, for which the tensor product formula (2) fails to hold.



300 JON KRALUS

Froelich has obtained a better, more direct resuit in {14). To each closed subset F of
I Froelich associates, in a natural way, a commutative subspace lattice, which we will
denote by Z(F). He proves [14, Theorem 6.9} that if G is separable and if F; and
F, are S-sets in I', then Fy> F, is an S-set if and only if formula (2) holds when
&= P(F), i =1,2. Hence if there is a pair of S-sets in I whose product is
not an S-set, then there is a pair of commutative subspace lattices for which (2) fails
to hold. (If &7 is reflexive, then lat.eZ is commutative if and only if &/ contains a
m.a.s.a. . Hence the reflexive algebras constructed in the proof of Theorem 2.1
never have commutative subspace lattices.)

The next result generalizes Theorem 3.5 in [23}. It also implies (in combina-
tion with Theorem 4.2.3 in [25]) Theorem 3.1 in [23].

THEOREM 3.6. Let ((#, R, a) be a W*-dynamical system and suppose .4 and
-#/*(0) have Property S, . Then .#*([0, oo)) has Property S, .

Proof. Let 7 be a o-weakly closed subspace of a von Neumann algebra A4".
1t suffices to show that F(.Z*([0, 00)), 7 ) = .#*([0, 0)) ® . Let X and B be as
in the statement of Lemma 3.1 (with G = R). Let # = .# ® A", and let X, — #../X ",
as in the proof of Lemma 3.1. Then f — f, is a o(X, X, )-continuous representation
of R on X by o(X, X,)-continuous isometries. Moreover, for each 4 € X the orbit
{B(4): te R} is bounded, and so is relatively o(X, X,)-compact by Alaoglu’s
Theorem. Hence it follows from Lemma 3.6 and 3.8 in [35] that X?([0, c0))=X#({0} u
U (0, 00)) is the o(X, Xy )-closure of XP(0) + X?((0, c0)). Since .# has Property S, ,
X?([0, 00)) = F(#*([0, o0)), 7) and XB(0)= F(4*(0),7) by Lemma 3.1. Since
./*(0) has Property S,, F(/Z*(0), ) =4*0) ® J. Furthermore, X?((0, o)) =
#*((0, 00)) ® I by Lemma 3.1. Hence X3(0) + XB((0, 00)) =.#%([0, 00)) ® 7, and
80 F(*({0, 00)), T )< 4*([0, o)) ® 7 . But the reverse inclusion is always valid, so
F(%([0, 00)), T) = 4*([0, ) ® 7. %

REMARK 3.7. Let (7, R, o) be a W*-dynamical system and suppose .# has
Property S, . If there is a normal conditional expectation from .# onto .#2(0), then
#*(0) also has Property S, [22, Proposition 1.19]. Such an expectation exists, in
particular, if o is the modular automorphism group of .4 associated with some faith-
ful, normal, strictly semifinite weight on.# [31, 10.9], or if .# is a finite von Neumann
algebra and « is arbitrary [31, 10.6]. Thus if .# has the CCAP, then in either of
these cases .#*([0, oo0)) has Property S, .

4. SINGLY GENERATED ALGEBRAS WITH PROPERTY S,

If T € B(#), let #'(T) denote the weakly closed subalgebra of B(#) generated
by T and I Then #°(T) is the closure in the weak operator topology of «/(T), which
is in turn the closure in the o-weak topology of the set of polynomials in 7. An
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operator T is said to be reflexive if #7(T) is reflexive. Olin and Thomson showed in
[28] that if S € B(s#) is a subnormal operator (i.e., the restriction of a normal oper-
ator to an invariant subspace}, then S is reflexive and #Z(S) = #7(S). Thus Z(S) is
a reflexive algebra. In the first part of this section we prove the following result
about &7(S).

THeorREM 4.1. Let S € B(#) be a subnormal operator. Then 27 (S) has Property S,.

In proving Theorem 4.1 we will repeatedly use two results concerning complete-
ly bounded maps. If o7 and # are C®-algebra, if & is a subspace of 7, and if
¢:% — Ais a bounded linear map, we denote the map P ® 1,: ¥ ® M,(C) —»
-~ # @ M,(C) by @, and say that & is completely bounded if sup, &,". is finite. The

n

first result we will use is that if 4 is abelian, then every bounded linear map from
& to 4 is completely bounded [24, Lemma 1]. The second result we will use is the
following proposition.

PROPOSITION 4.2. Let &, © B(#1) and &> = B(H#'5) be a-weakly closed sub-
spaces. Suppose that &, has Property S, and that there is a linear isomorphism @ from
&, onto &, such that both ® and =1 are o-weakly continuous and completely bounded.
Then &5 has Property S, . )

Proof. Let T be a g-weakly closed subspace of a von Neumann algebra 4",
and let A be an operator in &, ® A" such that R, (4) e I for all ¢ € B(Ky), . It
suffices to show that 4 € &, @ . Let ¥ = &-*. Then since ¢ and ¥ are o-weakly
continuous completely bounded maps, it follows from a straightforward modifi-
cation of the proof of Lemma 1.5 in [12] that there are (unique) o-weakly conti-
nuous linear maps P 1: S, N > L. @A and YR 1: S, QN - L, BN
such that

PRNCERD=dC)QD Ce,,Der,

and
PNCD)=PC)D Ce%P, Ded.

Let B= (¥ ® 1)(4). Then Be ¥, & A and R,(B)= R,.w(d)e T for all
© € B(#)), . But &, has Property S,, so Be ¥, ® J. Hence A = (? ® 1)(B)
isin (P INF B T)=S,&8 7, and so &, has Property S, . %

Now suppose that S € B(#) is a subnormal operator, and let N be its mini-
mal normal extension, defined on a Hilbert space 4 containing 3#. (We refer the
reader to [10] for the general theory of subnormal operators.) Let W*(N) denote
the von Neumann algebra generated by N. For A € &/(N), let $(A) be the restriction
of A to # . Then by Theorem 2.1 in [11], @ is a o-weakly bicontinuous isometric
isomorphism of #/(N) onto /(S). Moreover, & is obviously completely bounded,
and -1 is completely bounded since the range of -1 is contained in the abelian
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C=-algebra W#(N). Hence it follows from Proposition 4.2 that to prove Theorem 4.1
it suffices to show that 2/(N) has Property S, whenever N is a normal operator. If
N is normal, then by the spectral theorem there is a measure u on the spectrum
of N and a =-isomorphism @ of L*(u) onto W#(N) such that P(z) = Nand &(1) = I
(In this section, the word measure will always denote a finite, positive, regular
Borel measure on C. If u is a measure, we will view the elements of I>(u) as
multiplication operators on L%(u), so that the o-weak topology on L®(y) is just the
w?-topology. If fe L=(u), /f!, will denote the essential supremum norm of /) The
map @ is g-weakly bicontinuous and both & and ®-! are completely bounded since
W*(N) and L*(y) are both abelian C*-algebras. Let P>(u) denote the o-weak closure
of the polynomials in L®(x). Then & maps P®(y) onto £/ (N). Hence it follows from
Proposition 4.2 that to prove Theorem 4.1 it suffices to prove the following result.

PROPOSITION 4.3. Let it be a compactly supported measure on C. Then P>()
has Property S, .

In [30] Sarason gave a characterization of P®(y). In the proof of Proposition
4.3 we will use a refinement of this characterization, due to Conway and Olin [11,.
Theorem 4.11]. For the convenience of the reader, we will recall some definitions
and facts from [11], and then state Conway and Olin’s result. Let Q be a bounded,
simply connected region in C, and let K = & be the closure of Q. Suppose that R(K)
(the closure in C(K) of the set of rational functions with poles off K) is a Dirichlet
algebra. Then the Dirichlet problem can be solved for Q, and so for each fe C@OK)
there is a unique function jA in C(K) such thatf'is harmonic in Q and flaK = f.
For each z € Q, let m, be the unique probability measure on 9K such that

fz) = S fdm,, feC(K).

JdK

The measures m, dre pairwise mutually absolutely continuous. Hence if we pick a
fixed z in Q and set m = m,, then L®(0K) = L®(m) is independent of the choice
of z. (The measure m is called harmonic measure for K.) Let H®(0K) denote the
o-weak closure of R(K)in L*(0K), and let H*(Q) denote the algebra of bounded

analytic functions on Q. Then the map f —»ﬁ H®(@K) - H®(Q) defined by

fA'(z):Sfdmz, zeEQ,

K

Is an isometric isomorphism onto H®(Q). For g € H®(Q), let f be the unique

function in H®(0K) such that jl'\z g- Then we can define a function g: K - C
by setting ¢ = gon Q and g = fon K. Now let i be a measure supported in K
and such that u|dK < m. Then every function in L*°(@K) can be identified with
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a function in L®(u|0K). Hence g —» & maps H™(Q) into L®(x). The image of
H*(Q) under this map is denoted by H®(Q, ).

Conway and Olin’s result [11, Theorem 4.11} is: if u is a compactly supported
measure on C then there are mutually singular measures yq, gy, ft, . .. such that
H=gg~ fy *+ pp =~ ..., and there are bounded simply connected regions
@,,9,, ..., such that '

(a) R(&,) is a Dirichlet algebra;

(b) support 4, = @, and p,|0R, < harmonic measure for {,;

(©) filu, = sup{if(2).: z € Q,} for every f in H™(Q,);

(@) P(u) = L™(uo) @ HX(Qy, ) ® -

Proof of Proposition 4.3. Let P®(u) = L™(11y) ® H®(Q,, 1,) ® . . . be the decom-
position of P%(u) obtained in [11, Theorem 4.11]. To prove that P®(u) has Property
S, is suffices to show that each of the summands in the decomposition of P®(u)
has Property S, [22, Proposition 1.11]. Since L®(u,) is a type I von Neumann algebra,
it has Property'S,, and so it suffices to show that H(Q,, i) has Property S, for
n=1,2.... Fixn, and set Q@ = Q, and v = pu,. Since Q is bounded and simply
connected, there is a bijection 7 of the open unit disc D onto Q. Define @: H(Q) —
- H®(D) by ®(f) = fet. Then @ is an isometrie¢ map onto H*(D). Define a map
¥: H2(Q, x) — H*(T) as follows: if /e H®(Q) andf is the image offm H>(Q, v),
then ¥(f i) is the element of H(T) obtained from &(f) by takmg radial limits. Then
¥ maps H*(Q, v} onto H(T), since ® maps H®(Q) onto H*(D), and ¥ is isometric
by [11, Lemma 4.2 and Theorem 4.11]. Since H*(®, v) and H(T) are both subspaces
of abelian C*-algebras, ¥ and ¥ -1 are completely bounded. We will next show
that ¥ is o-weakly bicontinuous. Since ¥ is an isometry and the predual of H®(Q, v)
(with respect to the g-weak topology) is a separable Banach space, it suffices to
show that ¥ is a-weakly sequentially continuous (see, e.g., [9, Theorems 2.3 and

2.7D. _So suppose { j,,} is a sequence in H(2, v) that converges o-weakly to a func-
tion f in H™(Q, v). Then sup[] full, < oo, and so it follows from condition ©) of

{11, Theorem 4.11] that { f,,} is a uniformly bounded sequence in H*(Q). Moreover,
for each z in Q the functional on H*(Q, v) of evaluation at z is o-weakly continuous
[30, Remark 2, p. 11], and so f,(z) — f(2) for all z in Q. Hence the sequence {®(f,)}
is uniformly bounded in H*(D) and converges pointwise on D to &(f). It follows
from this and definition of ¥ that ¥(f,) — ?I’(f) g-weakly (see, e.g., [11, Lemma
4.4]). Hence ¥ is o-weakly sequentially continuous, and so it is o-weakly biconti-
nuous. Since H°(T) has Property S, (Example 3.3), we can apply Proposition 4.2
to conclude that H(Q,v) = H®(,,n,) has Property S,. Hence P%(u) has
Property S, .

REMARK 4.4. Consider the following question: if & and # are maximal abe-
lian subalgebras of B(#°) and B(X") respectively, is & ® # a maximal abelian sub-
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algebra of B(s# @ #')? If &/ and 4 are also self-adjoint, then it is well known (and
follows from Tomita's theorem) that the answer is yes. The general question is
open and is related to the question of whether every o-weakly closed subspace has
Property S, . For if &/ is a maximal abelian subalgebra of B(:#) with Property S, ,
and 4 is any maximal abelian subalgebra of B(X), then (& @ B) = F(H'. &) ==
= F(d, B)=o4 @B, so & ®A is maximal abelian. Hence, since abelian von
Neumann algebras have Property S,, the tensor product of a m.a.s.a. with any
maximal abelian algebra is maximal abelian. As another example, Iet S denote the
unilateral shift, acting as multiplication by = on # = H*(T). Then 3‘2’(8) (which
equals the algebra of analytic Toeplitz operators) is maximal abelian in B(J) (see,
e.g., {10, Corollary Ii1.6.13}). Since S is subnormal, #/(S) has Property S,,
$0 Z(S) ® # is maximal abelian in B(# ® ') whenever # is maximal abelian
in B(xX).

If Te B(s#), let L(T), denote the set {L € €, (#): Tr{AL) == 0 for all
A € #(T)} (where ¢,(5#) denotes the Banach space of trace-class operators ot #
with the trace norm) and let Q(7) denote the quotient space € (#)/«/(T), . Then
&(T) is the dual space of Q(7T) under the pairing

(A, (L] = Tr(4AL), Ae (T), [L]e QT),

where [L] is the image in Q(T) of the operator L in € (#) (see, e.g., [9, Corollary
2.2). If x and y are in J#, let x ® » denote the rank-one operator u — (u, y)x.
Brown showed in [8] that if T belongs to a certain class of subnormal operators,
then for every [L] in Q(T) there exist vectors x and y in J such that

(10) L=®y

He used this fact to show that every subnormal operator on 2# has a nontrivial
invariant subspace. In [28] Olin and Thomson showed that every subnormal ope-
rator S on S has the property that the equation (10) can be solved for any [L] in
0(S), and used this result in proving that § is reflexive and #(S) = #°(S).
Brown’s result was extended in another direction in [9], where it was shown
that if T'is a (BCP)-operator on 4, then the equation (10) can be solved for any [L}
in Q(T), from which it follows that T has a nontrivial invariant subspace. (An ope-
rator T on J# is said to be a (BCP)-operator if it is a completely nonunitary con-
traction (i.e., |7}l < 1 and T has no nontrivial reducing subspace on which it acts
as a unitary operator) and almost every point of T is a non-tangential limit point
of the intersection of the essential spectrum of T with the open unit disc [4].) In
[4] it was shown that (BCP)-operators are reflexive. This result was extended to a
larger class of operators in [3]. A contraction is said to be absolutely continuous if
its unitary part is absolutely continuous or acts on the space (0). The class A(s#)
[5] consists of all those absolutely continuous contractions T in B(’) for which the
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Sz.-Nagy —Foias functional calculus ®@,: H*(T) — &/(T) is an isometry. The class
A ,,O(J(f) [5] consists of all operators T in A(s#) such that every system of simulta-
neous equations

Lil=x®3] 0<ij<o

(where the [L;;] are arbitrary elements in Q(T)) can be solved with vectors {X;}; ¢i <o
and {);}1<j<o from H#. It was shown in [6] that every (BCP)-operator on 4 is in
A, ()£}, and it was shown in [3] thatif T e AsQ(J’f), then T is reflexive and </(T) ==
= W (T). This last result js of particular interest because, as demonstrated in [2], the
class Ago(%’) is surprisingly large. (in particular, if 7 is either a unilateral or bila-
teral weighted shift in B(3#) that belongs to Cy, and whose spectral radius and norm
are both equal to 1, then T € AND(%) [2, Theorem 3.6].) We refer the reader to [7)

for a detailed survey (with proofs) of the results in {2, 3, 4, 5, 6, 9] and related papers.
We next show that the class of operators 7" in B(5#) for which &#(T’) has Pro-
perty S, includes A(J#) (and hence ANO(%)).

THEOREM 4.5. Let T € B(#), T # 0, and suppose that T|||T|| € A(S#). Then
(T has Property S, . :

Proof. Since H(T) = L(T[j{T}), we can assume that T € A(#). Let @ = &,
be the Sz.-Nagy —Foais functional calculus map for T. Since @ is an isometry, it
follows from [9, Theorem 3.2] that ¢ is a a-weakly bicontinuous map from H*(T)
onto s#(T). Moreover, ¢~ is completely bounded, since H*(T) is contained in
the abelian C*-algebra L*(T). Hence, since H*(T) has Property S, , to complete the
proof it suffices to show that & is completely bounded. Let U/ be the minimal uni-
tary dilation of T [32, Theorem 1.4.2], acting on a Hilbert space . Since T is an
absolutely continuous contraction, jt follows from [32, Theorem 11.6.4] that U
is absolutely continuous, and hence there is a Sz.-Nagy — Foias functional calculus
Py H(T) - L(U). Let P denote the projection from % onto s#. Then it follows
from [32, Theorem 111.2.1] that &(f) = PP ()| forevery f in H(T). Since & (U)
is a subspace of the abelian C*-algebra W*(U), &, is completely bounded, and it is
obvious that the map 4 — PA[,%" from B{A") to B(#’) is completely bounded, so
@ is completely bounded. Hence «/(T) has Property S, .

COROLLARY 4.6. Let T € A}‘.O(.%f’), and let &y = Iat(T_), Then for any subspace
lattice ¥ we have

alg ¥, ®alg ¥, = alg(Z, ® L)

Proof. Since T € A(#), #(T) has Property S, . Since T € Aso(J{’), Tis reflexive

and #'(T) = &(T), so alg#; = &(T). The result now follows from Equation (3.3)
on p. 372 of [22]. a

13 ~ 1303
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Remark 4.7. If S is a subnormal operator on #, then alglat(S) = #(S)

has Property-S, by Theorem 4.1. Hence (2) is also valid when %, = lat(S) and 2,
is any subspace lattice. Thus the class of subspace lattices £, for which (2) is valid
for £, and any subspace lattice %, is greatly added to as a result of Theorem 4.1
and Corollary 4.6. It should be noted that the subspace lattices lat(T) (where 7 is
subnormal or in An (5£)) can be quite complicated. For example, if 7€ A, (}L”)

then lat(T’) contains a lattice that is isomorphic to the lattice of all subspaces of H

[7,

Proposition 9. 1] For further information about lat(T) for T'in A, (JJ’) we refer

the reader to {7, Chapters IX and X].
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