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SAW*-ALGEBRAS AND CORONA C*-ALGEBRAS,
CONTRIBUTIONS TO NON-COMMUTATIVE TOPOLOGY

GERT K. PEDERSEN

INTRODUCTION

One aspect of non-commutative topology is to view a general C*-algebra as
a “non-commutative Cyo(X)”. Each property concerning a locally compact Haus-
dorff space X can (in principle) be formulated in terms of the function algebra Cy(X),
and will then usually make sense (and hopefuily be true) for any non-commutative
C*-algebra. Instead of this transiation one may look directly for the objects, that
in a non-commutative C*-algebra A4 replaces the open and closed sets from the case
A = Cy(X). It is generally agreed (by Chuck Akemann and me) that these objects
are the open and the closed projections in the enveloping von Neumann algebra
A'" of A. The open projections are in a bijective correspondence with the hereditary
C*-subalgebras of 4 (of the form L n L* for some closed left ideal L of A), see[11,
1.5.2, 3.10.7, 3.11.9]. Unfortunately their complements, the closed projections, only
correspond to quotients when they are central in A"’ (so that the complementary
open projection corresponds to a closed ideal of A). In this paper, the results are
framed exclusively in terms of hereditary algebras and ideals.

We shall be much concerned with C*-algebras or C*-subalgebras that are
o-unital, which by definition means that they contain a strictly positive element.
As shown by Aarnes and Kadison, 4 is g-unital if and only if it contains a countable
approximate unit (e,). Indeed, any sequence e, - : f,(h} will do, provided that 4
is strictly positive and the functions f, increase pointwise to 1 on Sp(h), [11, 3.10.5]-
Furthermore, the approximate unit (e,) may be chosen quasi-ceniral with respect
to any fixed countable subset of the multiplier algebra M{A) of A, [11, 3.12.14].
Clearly a C#*-algebra C,(X) is o-unital precisely when X is o-compact. The g-unital
algebras occur quite frequently in C*-algebra theory now, and a proper terminology
is long overdue. .

In this paper we introduce a new class of C*-algebras, the SAW*-algebras.
In the commutative case they have the form Cy(X) for some sub-Stonean space X.
Such spaces were studied in [9], and this work is an attempt to generalize the pro-
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perties of sub-Stonean spaces to SAW*-algebras. We then consider corona C¥-
-algebras, of the form M(A4); A for some g-unital C#-algebra A, and show that they
are SAW*-algebras. Finally we show that in a corona algebra one has a double

annihilator theorem B .- (B*)", for each hereditary, o-unital C*-subalgebra 8.
These last two results are closely related to work of G. G. Kasparov [10, §3] and
D. Voiculescu [12, 1.9].

It is a pleasure to thank L. G. Brown, J. Cuntz, G. Skandalis and G. Zeller-
-Meier for some very helpful comments and suggestions, and some very necessary
corrections.

SAW*-ALGEBRAS

A C*-algebra A is called an SAW “-algebra if for any two orthogonal elements x
and y in A, there is an element e in A4, such that ex = x and ey =: 0. Applying
the condition to the pair e, y we obtain an element  in 4, such that dy = 3 and
de - - 0. In this more symmetric setting we say that e, d is an orthogonal pair of
local units for x and y. It follows from [9, 1.1] that if 4 = Cy(X), then 4 isan SAW*-
-algebra if and only if X is a sub-Stonean space, i.e. any two disjoint, open, a-
-compact subsets of X have disjoint, compact closures.

To clarify the relations between SAW *-algebras, Rickart algebras and AW *-
-algebras we need the notion of (two-sided) annihilators. For every subset B of a
C*-algebra A, set

B' = {xeA|xB= Bx =0}

PROPOSITION 1. Consider the following condition: Given two orthogonal, here-
ditary C*-subalgebras B and C of A, there is an e in A, which is a unit for B and anni-
hilates C. If this condition applies to all pairs B, C, then A is an AW*-algebra.
If it applies when B is c-unital, then A is a Rickart C*-algebra. If it applies
when both B and C are o-unital, then A is an SAW *-algebra.

Proof. Note first that an hereditary C#-subalgebra B of A4 is o-unital if
and only if it has the form B = (xAx)~ for some x in A,, or, equivalently
B - (4y)~ n (y*4)- for some y in A. The existence of a unit for B in C*,
when both B and A are o-unital, is therefore equivalent with the SAW?*-
~condition.

Now let B = (4y)~ n (y*4)~ and note that if R is the right annihilator
of y then Rn R* = B*. Consider the pair B, B*. If there is an e in 4, , which is
a unit for B and belongs to (B)*, then (1 — €) =0, because (1 — €)4(1 —e) < B*.
Thus e is a projection in 4 such that R = A(1 — e); equivalently, e is the support
projection of y. But the fact that right annihilators of single elements are principal
right ideals is the defining property of Rickart C*-algebras (alias By-algebras).
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Finally, if the condition is valid for all pairs (so that 4 is unital, because
of the pair A4, {0}), take any subset E of 4 and consider the hereditary C*-sub-
algebra B = (AE)~ n (E*A)~. Note that if R is the right ideal of right annihi-
lators of E then Rn R* = B*. For the pair B, B* we find an element ¢ in (BH*
which is a unit for B. As above we see that e is a projection and that 1—e is a unit
for B*. Consequently B* = (1 — e)A(l — ¢), whence R = A(l — e). We have
shown that the right annihilator of any subset E is a principal right ideal, and this
is Kaplansky’s original definition of an AW *-algebra.

Despite the formal similarity between AW*-algebras and SAW*-algebras
described in Proposition 1, they are really quite different. One reason is that
the SAW*-condition, forcing the existence of a local unit e, does not require e
to be unique. Applied in Rickart algebras or AW*-algebras to pairs of the form

B, B, the local unit e is unique, and is a projection. By contrast, there are commuta-
tive examples of SAW*-algebras with no non-trivial projections (connected sub-
-Stonean spaces [9, 3.5]).

An SAW#*-algebra need not be unital. However, every o-unital SAW*-
-algebra is unital, because a local unit for a strictly positive element is in fact a unit.
That SAW*-algebras tend to be rather large is documented by our next result.

COROLLARY 2. If A is a separable SAW *-algebra then it is finite dimen-
sional.

Proof. In a separable C*-algebra, every hereditary C*-subalgebra is separable,
hence o-unital. A separable SAW *-algebra is therefore an AW*-algebra by Propo-
sition 1, and hence finite dimensional.

ProvrositioN 3. (cf. [9, 1.4]). Every quotient of an SAW*-algebra is again an
SAW*-algebra.

Proof. If m: A — B is a morphism (i.e. a =-homomorphism) from the SAW*-
-algebra A4 onto the C*-algebra B, and x, y are orthogonal elements in B, , we can
choose orthogonal counter-images x; , y, in A, by [4, 2.4]. By assumption there are
orthogonal local units d; and e, in 4, for x; and y,, and their images d = ={d,)
and e = n(e,) will then be orthogonal local units for x and y in B.

In general, an hereditary C¥-subalgebra of an SAW*-algebra need not
itself be an SAW *-algebra. In the commutative case the necessary and sufficient
condition for this to happen is that the open set corresponding to the hereditary
C*-subalgebra has a basically isolated complement [9, p. 128]. This result trans-
lates into non-commutative topological language via the notion of annihilators.

ProPOSITION 4. An hereditary C¥*-subalgebra I of an SAW*-algebra A is
itself an SAW*-algebra if and only if each element in I, has a local unitin I, .

2 — 1481
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In pariicular, if I is an ideal, it will be an SAW*-ideal if and only if B> - - I. A for
every hereditary, o-unital C*-subalgebra B < I

Proof. The first condition is clearly necessary for I to be an SAW *-subalgebra.
Now assume the condition and consider an orthogonal pair x,) in 7, . There
is then an element d in 7. , such that d(x -+ ») -= x -+ y, which implies that dx -~ x
and dy == y. Since A is an SAW*-algebra, there is also an element e in A, such that
ex  : x and ey == 0. Take ¢, == ded, so that e, € I, ; and compute ¢gx - : X, ¢py: O,
as desired.

If I'is an SAW*-ideal in A, and B is an hereditary, g-unital C*-subalgcbra
of I, there is a unit ¢ for B in I, . Assuming, as we may, that 0 < ¢ < I, it

follows that (1 — e)A(1 — ¢) = B*, whence
A= --e¢-=-eAl —e-+e)c B* + 1L

Conversely, if we always have B* -- I == A, consider an element x in 7, and
its associated, hereditary C*-subalgebra B - : (xAx)~. Let ¢ be a unit for Bin 4,
and, by assumption, write it in the form ¢ == y -- z with y in [ and z in B*. Then
both y and y* are units for B, hence for x; so that y*y is a unit for x in 7., . It fol-
lows from the first part of the proof that Iis an SAW *-ideal.

REMARK 5. The simplest way to obtain hereditary SAW “-subalgebras of an
SAW*-algebra A is to take I == B*, for some hereditary, o-unital C*-subalgebra B
of A. Indeed, if xe I, ,and /i is a strictly positive element in B, thereis ane in /A,

which is a unit for x and annihilates /. Thus e € B* = I, whence Iis an SAW*-sub-
algebra of A by Proposition 4. Other SAW*-ideals arise from the corona construc-
tion, see Theorem 23.

We now prove the analogue of [9, 1.12].

THEOREM 6. Let 7 be « morphism of an SAW*-algebra A and put I  kerm.
Then Iis an SAW*-ideal if and only if

n(B*) = (n(B)*

Jor every hereditary, c-unital C*-subalgebra B of A.

Proof. If the condition is satisfied, take B < I. Then n(B) == 0, so that z(B 9
- - n(A), i.e. A = B* + I By Proposition 4, I is an SAW*-ideal.

To prove the converse, note that 7(B*) < (z(B))*. Thus it suffices to consider
an element x in 4, such that n(x) € (n(B))*, i.e. xB < I, and then show that thcre

is an element y in B* such that x — 3 e I. Towards this end, let / be a strictly posi-
tive element in B. Since xB < I, the same is true for any continuous function of x,
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in particular x¥48 < I Let D be the hereditary (o-unital) C*-subalgebra of I gene-
rated by x/42xV4. Then D* -~ I = A by Proposition 4, so x¥4 == g + b for some
ain D* and b in I. Put y = x"4a*ax* and note that x — y € I. Furthermore,

yh = xY4a*(ax**h) = 0,

since a(x¥4h) == 0, so that ye B*.

If Bis a subset of a C*-algebra A, let her(B) denote the hereditary C*-subalgebra
of A generated by B. If Bis a C*-algebra, it contains an approximate unit for her(B),
and thus by [3, 1.2], her(B), can be characterized as the set of elements in 4, domi-
nated by elements in B, .

We say that a morphism 7 : 4, — A, between C*-algebras 4, and 4, is a
worphismo if

(=) a(B)" = her(n(B;))

for cvery hereditary C*-subalgebra B, of 4, . We say that n is a g-morphismo if the
condition () holds only for s-unital, hereditary subalgebras B, of 4, .

These concepts, as well as the ensuing discussion of the commutative case, are
due to L. G. Brown. Note that in this language Theorem 6 says that I'is an SAW*-
-ideal if and only if the quotient map is a g-morphismo.

Assume that A; and A4, are commutative C*-algebras, i.e. 4; == Co(X)), X; a
locally compact Hausdorff space, / = 1, 2. In this case we have a morphism = : 4; —
— Ayifand only if there is a proper continuous map p : X, — X; such that n{e,)(f,) =
== ay(p(ty)) for all @, in 4; and 1, in X,. A proper map between locally compact
Hausdorff spaces is necessarily a closed map; in particular, p(X5) is closed in Xj.
Most problems therefore quickly reduce to the case where p is surjective (so that
7 1S injective).

ProrosITION 7. If p: X, — X, is a proper, continuous map between locally
compact Hausdorff spaces, and 7 : Cy(Xy) — Co(X5) denotes the transposed morphism,
then the following conditions are equivalent :

() = is a morphismo (respectively a g-morphismo) ;

(ii) For each open, a-compact subset E, of X, and every open (respectively open,
a-compact) subset Gy of X, disjoint from p(E,), there is an open o-compact subset E,
of Xy, such that p(E,) < E, and E; N Gy =0,

(itt) p is an open map.

Proof. (i) = (ii). There is a bijective correspondence between open, g-compact
subscts of X and co-zero sets for functions in Cy(X). Given E, we can therefore find
fo in Cy(X,) such that E; = {t e X, | f5(r) # 0}. We let B denote the closed ideal
(- -+ hereditary C*-subalgebra) of Cy(X;) corresponding to the given open set G,
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(so that B - Cy(G))), and we note that B is g-unital precisely when G, is o-compact.
The conditions p(Ex) N G, = O and f, e n(B)~ are equivalent, and we conciude
that f, € her(z(B)); so that 'f, < n(f,) for some f; >0 in B*. Taking E, - -
{se X, Ifl(s) # 0} we sce that E; « p~1(E)), which is equivalent to p(E,) ¢: Ey;
and clearly E, n G, =-0.

(i) = (i). The arguments in the proof above can all be reversed.

(ii) = (ii)). If G, is open in X, , choose for each ¢ in G, an open, ¢-compact
neighborhood E, of 7 such that E; = G,. Put G; = X,\p(E,), and apply the assump-
tion to obtain an open (s-compact) subset Fy with p(£,) ¢ E; < p(Es). Thus p(G.)
contains an open neighborhood around each of its points, and is consequently open.

(iii) = (ii). Given E, and G, as in (ii), take E, == p(FE,) which is open (and
g-compact) by assumption, and note that p(£,;) = E; and E; n G, =0.

There seems to be no natural o-analogue of condition (iii) in Proposition 7.
This is irrelevant as long us we are dealing with the separable case; but for the spaces
and algebras under consideration it matters a great deal: Let X; be a compact
sub-Stonean space, and p : X, — X; the injection map of a closed subset X, of X .
Then p is an open map if and only if X, is open in X, . However, p will satisfy the
weaker g-version of condition (i) in Proposition 7 (which states that X, is basi-
cally isclated in X, see [9, p. 128]) if and only if X7\ X, is a sub-Stonean space.

The non-commutative analogue of giuing two spaces together along a con-
tinuous map between closed subsets is easy to formulate in C*-algebraic terms. The
next resuit shows when such a “gluing’” between SAW#-algebras again produces an
SAW*-algebra. It is the analogue of [9, 1.13], in which we unfortunately forgot to
mention that the map should be proper. The present proof is due to L. G. Brown.

TueorEM 8. Lot 7y and 7y be morphisins of SAW ™ -algebras A; and Ay | res-
pectively, such that w,(4;) < ns(A4,). Consider the C*-algebra

A, Xo) € A; @ A l T(xy) == Ty(xs) ]
If both m, and %, are o-morphisinos (in particular their keraels are SAW*-ideals)
then A is an SAW*-algebra.

Proof. Take orthogonal elements x == (x;, ¥o) and ¥ : (3y, 1) in A.. Since
both A, and A, are SAW *-algebras, there are positive elements ¢; and ¢, in A, and
A,, respectively, such that xje; == x; and ye; =0, 7 = 1, 2. Note that

Ttl(.\‘l “§ J'1)(7T1(91) - ”2(@3)) = ”1((—\'1 + e — 772((-\‘2 -+ 3'2)(’2) = () -- 7[2(~Y2) 0.

If therefore i1 = (my{e,) — ma(e0))?, then 7y (x; - 37 == 0. Since 7, is a g-morphismo,
there is an element & > 0 ir. 4,, such that {x; + 3Dk =+ 0 and % < =, (k). By thc
SAW*-condition we find d; > 0 in A4, with (x; + )dy - X, + ¥, and kd; - O.
This means that m,(d)r.(xs + yo) == 0 and that =, (d)r - 0.
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Since A, is an SAW*-algebra and n, is surjective there is an element e in A4,
with 0 < e < 1, such that ¢ is a unit for x, -F 3, and n,(e) is a unit for n,(d,).
Assuming, as we may, that ¢, < 1 we see that

ny(e) — my(dy) € {”z(v"z + J’z)} *

Since m, is a surjective g-morphismo, this implies that m,(e) — n,(d,) == my(2) for
some z in A, with 0 < z < 1, such that z(x, -+ ¥,) = 0. Set d, = |e — z| and note
that do(xs -~ ¥s) == X - Vs, since (e — z)"is a unit for x, 4 y, for every n. Moreover,

ma(dy) - = [mp(e) — (male) — my(d))| == mu(dy).
Now define ¢; =: ¢;d;e; for i = 1,2, and compute
m(ey) = (mle)) — maley) + malea))my(di)(miler) — maley) + maler)) =
= myleg)my(d)mses) = ma(ca),
since hny(d,) == 0. Thus ¢ = (¢;, ¢,) € A. Moreover, for i == 1,2 we have
X, == xedie; = x;, yic; = yedie; = 0,
so that xe ~: x and ye = 0 in 4. Hence A4 is an SAW *-algebra.

REMARK 9. As a special case of Theorem 8 one may take SAW*-algebras
A, and 4, with SAW*-ideals I, and I, respectively, such that A4;/I, = A,/f,. The
resulting SAW*-algebra A corresponds to an honest gluing with a local homeo-
morphism. At the other extreme one may take 4, == C and A, a unital SAW=-
-algebra with an SAW*-ideal J,. The morphism =, is the embedding of C into A,(I,,
and the resulting SAW*-algebra is

A={(x)eCP A,

)u*“xelz} :;:C_}—IZ'

This is the non-commutative analogue of pinching the space corresponding
to A, (collapsing A4,/1, to C). Note that 4 has an S AW *-ideal (viz. L,) of co-dimension
one, corresponding to the commutative construction in [9, 1.14] of sub-Stonean
spaces with a basically isolated point.

Recall that for a C*-algebra A4, the multiplier algebra M(A) is defined as the
idealizer of A in its enveloping von- Neumann algebra 4”. Identifying M(A) with
the set of double centralizers of 4, it is easy to show that M(4) is (isomorphic to)
the idealizer of A in any von Neumann algebra containing A4 as a strongly dense sub-
-algebra [11, 3.12]. If A = Cy(X), then M{(4) = C(B(X)), where B(X) denotes the
Stone-Cech compactification of the locally compact Hausdorff space X
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The next result does not really belong to the theory of SAW™-algebras, but
certainly to that of non-commutative topology. Its proof is an easy modification of
the argument for the separable case, [5, 4.2] or [11, 3.12.10], and, as pointed out
by J. Cuntz, there is another short argument which reduces the theorem to the sepa-
rable case. Nevertheless we present here the proof in fuil detail. After all, it con-
stitutes in the commutative case a proof of Tietze’s extension theorem for localiy
compact, o-compact Hausdorff spaces, in particular a proof that such spaces are
normal.

THEOREM 10. Let ©m: A — B be a surjective moiphism between o-unital C*-
~algebras A and B. Then w extends to u surjective morphism between M(A) and M(B).

Proof. By [11, 3.7.7] there is a unique normal extension =’ : A" - B, und
clearly n"/(M(A4)) = M(B). Take now an element z in M(B), . By [11, 3.12.9] there
arc nets (x;) and (3;) in By, such that x; » z and y; Ny z strongly in B”. If /1 is a
strictly positive element in A, then k = =(h) is strictly positive in B; and we
see that the net with elements k(y; — x;)k decreases strongly to zero in B. Regard-
ing By, as continuous (affine) functions on the quasi-state space of B (see [11, 3.10.3}),
it follows from Dini’s lemma that the net converges uniformly to zero. We can there-
fore find sequences (x,) = (x;} and (»,) = () such that (x,) is increasing, (r,}is
decreasing, x, < z < », and {|k(y, — x,)k| < n~* for every n.

We claim that there are sequences (X,) and (¥,) in A, such that (X,) is increas-
ing, (¥,) is decreasing, ¥, < ¥, for all n, m, n(X,) == x,, a(¥,) -= », and

Gh(p, — X¥h| < n™3,

for every in. To prove this, let (#;) be an approximate unit for kerw, and assume
that we have found clemenis %, and ¥, satisfying the conditions for all & < n. Thus

N(X‘,,_l) =Ny KX, S Y S V1 = 77:(.ijn—l)’

and by [11, 1.5.10] there are elements ¥, and ¥, in A5, such that =n(%,) = x,,
ﬂ(j})l) I .}’ﬁ and
n—1 < Xp < Va < j"n—l'

i
Applying {11, 1.5.4] we see that
WA, — X — w)(Fn — X201 N (K — X))
Replacing if necessary X, by
X+ (Fu — )5y — X)

for a suitably large 4, we may therefore assume that ||i(y, — X,)h|| < n~%, and the
claim is established by induction.
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The sequences (X,) and (¥,) converge strongly in A4, to elements x and y
with x < v. However, the norm is strongly lower semi-continuous, so #(y — x)k = 0,
whence (¥ — x)h = 0. Since £ is strictly positive in A4, its support projection in A"
is 1, and it follows that x = y. Consequently,

X € (Asa)m n (ASﬂ)m = M(A)Sa

by [t1, 3.12.9], and since n"’ is normal we see that n'’(x) == z, so that n”/(M(4)) -
= M(B).

THECREM 11. (cf. [9, 1.10)). Ler I be a closed, o-unital ideal in an SAW *-algebra
A. Then
M) = AT

Proof. Since I is isomorphically embedded in A/I*, we may assume that I* = 0,
so that I is essential in 4. There is then a natural embedding I =« A = M(I) by
11, 3.12.8]. If A # M(I) there is a self-adjoint functional in M(I)*, of norm one,
that annihilates A; so its Jordan decomposition produces two orthogonal states ¢
and ¥ of M(I), such that ¢ — ¢ annihilates A4, [11, 3.2.5]. By [11, 3.2.3] we may
choose, for any ¢ > 0, a z in M(I) with 0 <€ z < 1, such that (1 — z) < & and
Y(z) < ¢ Let f and g be continuous piecewise linear functions on Sp(z) with
0<f<land0 < g < I,suchthatf(l)=1butf(r)=0fort <! —¢,andg0)=1
but g(f) = 0 for ¢ > &. Put x = f(z) and y = g(z) and note that xy = 0. Moreover,
1 —x< el —2z)and 1 —y < e~z. Consequently (1l — x) <eand (1l —y) <z,
so that o(x) > 1 — ¢ and Y(y) > 1 — &

Let /1 be a strictly positive element in I. Since x/i2x and yh2y are orthogonal
elements in the SAW*-algebra A, there are orthogonal local units  and e in 4,
for xh%x and yh?y. Thus (1 — d)xh*x(1 — d) = 0, whence (1 — d)x/i = 0. Since A
is strictly positive in I, its support projection in I’ is 1; and we conclude that
(1 — d)x = 0. In particular, d > x. Similarly we show that ¢ > y, and it follows
from the above that

@+ &) = old) + Yle) = o(x) + ¥() > 20 — o).
Having chosen ¢ < 1/2 we reach a contradiction, since ||d + e|| = max{||d|, e[} = 1.

COROLLARY 12. If I is a closed, o-unital ideal in an SAW™*-algebra, then M(I)
is an SAW*-algebra.

CORONA C*ALGEBRAS

Let A be a non-unital, g-unital C*-algebra. The corona of A is defined as
the quotient C(4) = M(A)/A (where the C conveniently enough also may indicate
Calkin). The commutative origin is the corona sets y(X) = B(X)\X, where B(X)
" is the Stone-Cech compactification of the non-compact, a-compact space X, see [9].
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THEOREM 13. (cf. [9, 3.2]). For each o-unital C*-algebra A, its corona C{A)
is an SAW*-algebra.

Proof. Let n : M(A) — C(A) denote the quotient map and consider a pair x, v
of orthogonal elements in C(4), . By [4, 2.4] there are orthogonal elements a, b
in M(A).. withn(a) -+ x and 7(b) = y. Let D be the C*-algebra generated by @, b and
A, so that 4 ¢ D c M(A). If now ze M(D), ce A and (u;) is an approximate
unit for A4, then zc € D (since 4 < D), whence czu, € A (since D ¢ M(A)); more-
over cu; — ¢, so that z¢ € A. Similarly cz € A, and we conclude that there is a
natural embedding D < M(D) <« M(A).

If p: D - DJ/A is the quotient map, and p’’ denotes its natural extension
p'': M(D) —» M(D]A), then it is easily verified that

kerp"” - {ze M(D)| zD = A}.

(We return to this set-up in Theorem 23.) In our case, D/A4 is a commutative C*-
-algebra of the form Co(X) @ Cy(Y), where X < Sp(a)\{0} and Y < Sp(b) - |0},
so that M(D]A) = C,(X) @ C,(Y). Since p’’ is surjective by Theorem 9, there are
by [4, 2.4] orthogonal elements d, and ¢, in M(D), with p”(d,) = 15 and p"(¢,) : =
<2 1y. Thus dya - a € ker p”’. On the other hand dya — a € D, and since kerp”’ n D =
- A we conclude that dya — ae 4. Similarly eb — b € A. Consequently, with

e -~ m(ey) and d = n(d,) we have found a pair of orthogonal local units for x and
y in C(A).

REMARK 14. The proof given above is due to J. Cuntz, and replaces a much
more complicated argument.

As pointed out by G. Skandalis the result is similar to the two ‘‘technical
Jemmas’, Theorems 3 and 4 in [10, § 3). Indeed, one may derive Theorem 12 from
Kasparov's Theorem 3 assuming (in his terminology) that B = D, and then con-
struct orthogonal local units for B, and B, (modulo D) as f(1 — M) and f(1 — ¥),
where f(1) = 1 and f(¢) -= 0 for # < 1/2. Conversely, one may obtain a weak form
of Kasparov’s Theorem (the case B = D and ignoring the maps F,) by defining
M:=bla+b)-* and N ==a(a -+ b)~', where a=1—4d, b =1 — ¢ and d, e are
orthogonal local units for B; and B, modulo D. In fact, the proof of Theorem 12,
that we have borrowed from Cuntz, originated in an attempt to simplify
Kasparov's work.

This raises the question whether the ultra-technical part of KK-theory could
use the terminology of SAW #-algebras and corona algebras as structural signposts.
Certainly the educated public (including the present author) would welcome any
attempt to map out this rather terrifying territory.

THECREM 15. Let A be a o-unital C*-algebra with corona algebra C(A). Then
B (BY)* for each hereditary, o-unital C*-subalgebra B of C(A).
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Proof. Since obviously B < (B*)*, it suffices to show that for each x, notin B,
with 0 < x, < 1, thereis a yyin B* such that x,y,#0. Towards thisend let 7 : M(A4) —
— C(A) denote the quotient map, and choose a positive element k in M(A) such
that n(k) is strictly positive for B. Now let /2 be a strictly positive element for 4,
and let D be the hereditary C*-subalgebra of M(A4) generatedby i + k. Thus D > 4
(as h < h 4 k), and n(D) = B by [I1,1.5.11]. Choose x in M(4) with 0 < x < 1
such that n(x)=1x,, and let L denote the closed left ideal of M(A) such that D=L n L*,
[11, 1.5.2]. Since x ¢ D it follows that x ¢ L, so that we can find « > 0 with
o < dist(x, L).

Let (e,) and (d,) be countable approximate units for 4 and D, respectively,
such that e, ¢, : : ¢, and d,,,d, = d, for every n. If for some n and m we had

”'x(ei _ en)(ari - dm)” <o

for infinitely many i and j, then, since ¢; 7 I and d; 7 1 strongly in A", it would
follow that

”x(l - (’,,)(1 - dm)” == HX - x(e,, _}_ dm - C’,,d,")” <o

However, x(e, + d,, — e,d,,) € L in contradiction with dist(x, L) > o. Consequently
we always have

lx(e; — e)e; — e,)|l > =

for / and j sufficiently large. Passing if necessary to a sequence in conv(e,) we may
assume from the outset that (e,) is quasi-central with respect to the set {d;}, [11,
3.12.14). Thus for a given mand ¢ > 0 we may choose n such that ||e,d,, — d,e.|l < &.
Since (d;) is an approximate unit for D > A, we know that ||dje, — e,d;|| < & for j
sufficiently large. Finally we may choose i so large that {|e(d; — d,,) — (d; — d,.)e;ll <e.
Working by induction and passing if necessary to subsequences of (e,) and (d,)
we may therefore assume the conditions
() ens10, == €y, dypad, = d,;

(i) ||xa,| > @, where a, = (ey41 — e, )dys1 — d);

(iii) |, — a¥ll < 277
for all .

Define y= Y, a3,a,, and z= Y, a,,a3,, and note that the sums converge strongly
in A", since the summands are bounded and pairwise orthogonal by (i). Since
{(@,) = A it follows from (iii) that y — ze 4. We claim that z e M(A), whence
also y e M(A). To see this, note that for each j

€;2 = Z ej(e2n+l — ) dani1 — o) (€241 — €24) € A,
2n<j

since the sum is finite by (i). As (¢;) is an approximate unit for 4 it follows that
Az = A, whence z € M(4). We further claim that Dy = 4. To prove this, note
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that for each j,
dj." C Z _‘-/j(dznn — dy N€3y41 — €3,)(doy 41 — day) € A

g
since the sum is finite by (i) and A is an ideal in M(A4). As (d;) is an approximate
unit for D it follows that Dy <= A, as desired. Finally we claim that xz ¢ A4,
whence also xv ¢ A. Indeed, if vz e 4 we would have |jxz(1 — ¢;),; < «' for some
large j. But for 2n > j we have

Y'\Z(l - ej)“ z '\Z(l o ej)azlla‘?ﬂj: E ;:.\'2(12,,(22;'”” ==z
s i]x(a‘lnag‘n)zil = {!A‘(a:_,,,a:jj,)‘-’,\~ . - i!'\‘a2lra§:11!}2 >
= T'\‘aﬂna;::ux ig == {f.\‘a‘_,”!':_* = g((l

by (i), a contradiction.
Define y, = n(y) = : 7{z} in C(4). Since Dy < A and n(D) == B we see that
o € B*. On the other hand x,y, # 0 since xz ¢ 4, and the proof is complete.

REMARK 16. The preceding result is the non-commutative genecralization
of [9, 3.3], namely that in a corona set y(X) = B(X)\X, every open, g-compact
subset is the interior of its closure. The theorem has an uncanny resemblance to
the bi-commutant theorem of Voiculescu, [12, 1.9], that says that B:: B” for
every separable C*-subalgebra B of the Calkin algebra. However, the two theorems
seem to be independent, although their proofs (especially in the version given in
{6]) borrow from the same techniques. Both results testify to the fact that the Calkin
algebra and other corona algsbras belong to a radically different species than the
C#-algebras one encounters in daily lifc.

Instead of working in thie rather intractable realms of corona algebras, one
may of course reformulate the results in terms of elements in M(A4) and perturbations
by elements in 4. Let us agree on the terminology that y is contained in x,
where x and y are positive elements in a C*-algebra M, if y belongs to the hereditary
C*-subalgebra of M generated by x. This condition may be reformulated in the
following different ways:

(i) For each ¢ > 0 there is an « > 0 such that y < ax + €l.

(if) Lim Sup||y(l + nx)~1}j == 0.

(iii) There is a positive function f in Cy(Sp(x)\{0}) such that y < f(x).

To obtain condition (iii) from the others, apply [3, 1.2] to the C*-algebra A,
generated by x, and the hereditary C*-subalgebra 4 of M generated by x. The other
implications are straightforward. Now Theorem 15 applies to give a result in single
operator theory which appears to be new.

COROLLARY 17. Let H be a separable Hilbert space and denote by K the algebra
of compact operators in B(H). If x, y are positive operators and x is non-singular, then
there is an element z in B(H), such that xz € K but yz ¢ K, unless y is contained in x.
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Proof. Let B denote the hereditary C*-subalgebra of B(H) generated by x.
Since xis non-singular, K < B.If yisnot containedin x, then y ¢ B;since M(K) =
= B(H) the result is now immediate from Theorem 15.

Proposition 18. (cf. [9,3.4]). No corona C*-algebra is monotone sequentially
complete.

Proof. If C(A) was monotone sequentially complete for some o-unital C*-
-algebra A, then for a given positive element /2 in C(4) with 4 < 1 there would be a
smallest projection p in C(4) majorizing /1, viz. the least upper bound of the sequence
(h""). Let B denote the hereditary, o-unital C*-subalgebra of C(4) generated by 4.

We see that B* = (I — p)C(4)(1 — p) and it follows from Theorem 14 that
B = pC(A)p. In particular, p € B, so that ||p — /"] - 0. Since C(A4) is infinite
dimensional (in fact non-separable), it contains self-adjoint elements with infinite
spectrum, so we may choose /1 such that 0 is an accumulation point in Sp(/). Con-
sequently (#'*) is not a Cauchy sequence and we have reached a contradiction.

Recall from [8, § 6] that a projection p in A’ is regular in Tomita’s sense if
lxpll = Inf{jlx — y|| | y € 4, yp = 0}

for every x in A. As shown by Akemann [2, IT.12], this condition is equivalent with
having || xp|| = [|xp]| for every x in A, where p denotes the smallest closed projection
in A" majorizing p. We offer the following order-theoretic characterization of
regularity.

PROPOSITION 19. If A is unital C*-algebra and p is projection in A”', the following
conditions are equivalent :
() p is regular;
(i) If xe A, and p < x, then p < x;
(i) If xc A, and p<x, there is for each ¢ >0 a y in A with 0<y<1,
such that yp =0 and x 4y =21 —e¢.

Proof. (i) = (D). If p < x, set a = (x + 6)~Y2 for 6 > 0. Then p < a~2,
whence apa<1, cf. [11, 1.3.5], so |lap|* = ||apa| < 1. By assumption this implies
that ||apall = ||lap|* < 1, so that apa < 1. Again by [11, 1.3.5] this means that
P < a? = x 4 4. Since J is arbitrary, p < x, as desired.

(i) = (ii). If p < x then p < x, or 1 < 1 — p + x by assumption. Since
1 — 7 is an open projection, cf. [11, 3.11.9], there is an increasing net (y,) in 4,
converging strongly to 1 — p in A’’. This means that the net (y, + x), regarded as
a net of continuous affine functions on the state space S of 4, increases pointwise
to a function dominating 1. Since S is compact, it follows that for each ¢ > 0 we
have y, + x > 1 — ¢, eventually. Take y =y, and checkthat 0 < y < 1 — p
< 1 — p, as we wished.

(iii) = (i). Since |lap|| = || |alp ||, it suffices to check the regularity condition
for each element a in 4, . Set « = ||ap|| and note that ||(a 4 &)p|| < o <+ ¢, so that
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{a-- opla - &) < (2 -+ )% With x == (¢ + &)~ 3(a + ¢)? this implies that p i x.
By assumption there is an element p in 4 with 0 < y < 1 ~- p such that x — » >
zl—eg 1e. l—y<xie Since p<t—y this implies that p < x-i- &
Consequently

(@ +e)pla+¢) < (a- e)x +e)a+e) = (x -} e+ ela -+ 5)3,

so that i(a -~ &)pi? € (x |- £)° -+~ £(jjaj] + &) Since ¢ is arbitrary, lap)| < «. as
desired.

REMARK 20. The closure p of a projection p in A’ is the largest projection in
A", dominated by every element x in A, such p < x < 1. We see from Proposition
19, that regularity of p means that p is actually the largest projection in A",
dominated by every element in 4, such that p < x. In the absense of regularity,
the majorants for p in 4, will not have a minimum in 4"

In a von Neumann algebra every open projection in its double dual is regular
[2, L. 14]. Presumably the same is true for open, o-unital projections in the second
dual of an SAW*-algebra, but for the moment we can only establish this result {or
corona algebras.

THEOREM 21. Let A be u o-unital C*-algebra with corona algebra C(A). Then
every open, g-unital projection in C(A)' is regular.

Proof. If p is an open, g-unital projection in C(A4)"’, there is by definition an
increasing sequence (x,) in C(4), , such that x, / p. Multiplying the sequence with
suitable scalars we may assume that ijx,jl < 1 — n~! for every n. Suppose that
x € C(A4), with p < x, and choose y in M(4), with =(y) == x, where n: M(4)—
— C(A) as usual denotes the quotient map. Let /i be a strictly positive element i A.
We claim that there is an increasing sequence (y,) in M(4), , such that foreveryn > 1,

() n(ya) = x,3
(i) », < ¥;

(i) (s — Ya-Dh| < 27" (with y, = 0);

(v) il S 1= (@)~
To prove this by induction, assume that we have found y,, ..., ),_, satisfying
(i) — (iv). By [11, 1.5.10] there is an element a in M(4), , with y,_, < @ < y, such
that n(a) == x, . Let (v,) be an approximate unit for 4 and put

a; == Yu_y T (@ — Y )21 — u)(@ — y,_ V2.
Then y,_; € a, € a and n{g,) == x,,, so that each a, satisfies (i) and (ii). Now

(@, = Yol = @ — pa )21 — w;)(@ — yp-)V2hls
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which tends to zero because (¢ — y,_,)"2h € A and (u;) is an approximate unit for 4.
Thus [[(@; — y,_)h|] < 2" for / sufficiently large. To prove that also condition
(iv) is satisfied for 1 large, note that the family of sets F, consisting of states ¢ of
M(4) such that ¢(a,) = 1 — (2n)~, form a decreasing net of closed compact sets.
If o€ n F,, let g denote the open, central projection in M(A4)"’, corresponding to
the ideal A4, and note that (a;) converges strongly to y,_19 -+ a(l — g) in M(A)".
Since ¢ is a normal state of M(4)", this means that

O(Vy-19 +a(l —q)) = 1—(2n)~L

However, [|y,_1qll < 1 — (2(n — 1))~ by hypothesis, and ||a(l — ¢)| == ||x{a)]] =
vl € I —n~1 Since the operators y,.,4 and a(l — ¢) are orthogonal, the
norm of their sum cannot exceed the maximum of 1 -—(2(7n — 1))~ and 1 —n~?,
which is strictly smaller than 1 — (2n)~!; and we have reached a contradiction.
Consequently, n F, ==, which means that F, = for 2 sufficiently large; and
thus (a;) < 1 — (2n)~* for all states ¢ of M(A), ie. ||a;]| <1 —(2n)~L. We can
therefore take y, -+ a; for 4 large, and obtain a sequence (y,) in M(A), satisfying
@) - (iv).
Since (y,) is increasing and bounded there is a b in A’ such that y, # b, and
we see from (ii) and (iv) that b < y and b < 1. It follows from (iii) that bh e A,
being the limit of the norm converging sequence (/7). But this means that b € M(4),
since 124 is dense in A. Take z =1 — =n(b) in C(4), and note that x -z > 1,
since n(b) < x. Furthermore zp = 0, because (i) implies that =(b) > n(y,) == x,
for all n, so that 1 —— z = p. Since x was an arbitrary majorant for p in C(4), it
foliows from condition (iii) in Proposition 19 that p is regular.

LeEMMA 22. Let I be a closed ideal in a o-unital C*-algebra A and define in
M(A) the closed ideal

M(A,I) = {x e M(A) | xA < I}.

Furthermore, for each hereditary, a-unital C*-subalgebra B of M(A, I) define the here-
ditary C*-subalgebra
(B*,I) = {xe M(A) |xB+ Bx < I}.

Then M(A) == (B, 1) + M(A,I).

Proof. Let h be a strictly positive element in 4 and k a strictly positive ele-
ment in B, and denote by D the separable C*-subalgebra of M(A4) generated by A
and k. Put J; = In D and J, = Ji- n D, so that the ideal J = J; -+ J, is essential
in D. We then have a natural embedding J =« D < M(J), [11, 3.12.8].

Since k € M(A, I) we see that hk e J; < J. By Theorem 13 (applied to the
separable algebra J), there are orthogonal elements d, e in M(J), such that (1 --d)he J
and (I — e)k eJ. Note now that for each x in (J,), we have ikx = 0, since
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JiJs = {0}. Since £ is strictly positive in A, its annihilator in 4"’ is zero, whence
kx::0. ThusJ, « B*. The direct sum J == J; -*- J, means that we have a direct sum
M(J) = M) - M(Jy), so we may write d=:d; +d, and e: e, — ¢;. Now
considering M{J) as a subset of 4"’ we have

eshee(dh ~J + Jp) =eJ; = Jy L

It follows that e,i4 < I, and since /1 is strictly positive in A4 this implies that e;4 = I,
i.e. e; € M(A, I). On the other hand J,k = 0 so

(I ek == (1 — (e, - ex))k €,
whence (1 — e)k* e J; < I Since A?is strictly positive in B this implies that I - - ¢, ¢

€ (B*, I), and the proof is complete.

THEOREM 23. (cf. {9, 3.11). Each morphism p : A — B between o-unital C*-
-algebras A and B, such that p(A) contains an approximate unit for B, induces via its
canonical extension p'' : M(A) — M(B) a morphism p : C(A) = C(B), and ker p is
an SAW*-ideal in C(A) isomorphic with M(A, ker p)/ker p, where

M(A, kerp) == {x e M(4) | x4 < kerp}.

Proof. Consider the diagram

¢ P

kerp A B
|
: . \l’ n’’
kerp” > M(A) M(B)
kerp ——> C{A) —— C(B)

Here the maps denoted by 1 are the obvious embeddings, and the maps denoted by =
arc the canonical quotient maps. The map p'’ is the restriction to M(A4) of the unigue
normal morphism of 4’ into B’ ihat extends p, see [11, 3.7.7]. Since p(4) conicins
an approximate unit for B it follows from [11, 3.12.12] that p”"(M(4)) < M({B).
Clearly

kerp” = {x e M(A) | xA < kerp} — M(A, kerp);

in particular, the upper half of the diagram is commutative. The map p is deflucd,
by setting p(n(x)) : « n(p’'(x)} for each x in M(A). Since n(x) =: 0 implies that x .. A4,
so that 0 = n(p(x)) := =(p’'(x)), this is an admissible definition. Now

n=1(ker p) = (x € M(A) | p"'(x) € B}.

But if p''(x) € B, let (e,) be an approximate unit for 4. Then (p(e,)) is an approxi-
mate unit for B so that p”’((1 — ¢,)x) — 0. Thus x € 4 + kerp’’, whence

n~(kerp) == A + M (A, ker p).
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We can therefore define the map o to be 1='oz<1, so that the whole diagram is:
commutative. Furthermore,

kerp = n(A + M(A, kerp)) =
= M(A, ker p)/M(A, kerp) n A == M(A, ker p)/ker p.
To show that ker p is an SAW*-ideal in C(A) we consider an hereditary,
o-unital C*-subalgebra D of ker p. Choose an hereditary, o-unital C*-subalgebra E
of ker p” such that ¢(E) = D, and apply Lemma 22 (with kerp and E in placec of

I and B) to show that M(A4) == (E*, kerp) + kerp”’. Consequently C(4) = D* +
-+- ker p, whence ker p is an SAW*-ideal of C(4) by Proposition 4.

REMARK 24. Every closed ideal J of a corona algebra C(A) inherits the double.
annihilator property. Indeed, if B is an hereditary, g-unital C*-subalgebra of I and
x e I\ B, then xy # 0 for some y > 0 in B* (computed in C(4)) by Theorem 15.
If (u,) is an approximate upit for I, then yu,y € B* n I for all /, and since xyu,yx —
— x)2x we see that xyu;y # 0 for some 2.

This observation applies in particular to the SAW*-ideal kerp in Theorem 23.

ExaMPLE 25. Let H be a separable, infinite-dimensional Hilbert space, and
denote by K the algebra of compact operators in B(H). Let 4 be a non-unital,
o-unital C*-subalgebra of B(#) containing K and denote by B its image in the
Calkin algebra C(H). Take

M(A4,X) = {x e B(H) | xA - Ax < K}.

By Theorem 23 and Remark 24 the image of M(A4, K) in C(H) is an SAW*-algebra
with the double annihilator property, and we have a short exact sequence

M(A4, K)/K —~ C(4) —» C(B).

To exemplify the above construction, let B be the C*-algebra generated by a
sequence (p,) of pairwise orthogonal, infinite-dimensional projections with sum 1,
and set 4 === B ++ K. Thus x € M(A, K) precisely when xp, and p,x are compact
for every n. Writing the Hilbert space H in the form /%2 ® £2, we have B = ¢y ® 1,
sothat A = ¢, ® 1 + K ® K (C*-tensor products). Even so, the algebras M(4)
and M (A, K) are not easy to describe. The latter will obviously contain the C*-tensor
product B(£2) ® K, but the inclusion is strict. Note the commutative diagram:

K A : £

M(A, K) M(A) e

M(A, K)/K C(4) » C(BN N)
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An even more interesting example arises by taking A == LYR), with B = : C,(R)
regarded as multiplication operators, and again 4 = B 4- K. Here the bottom
line of the diagram shows that C(A4) is an extension of the form

M(4,K)K — C(A) - C(BR/R).
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