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MAPPING CONES AND EXACT SEQUENCES
IN KK-THEORY

J. CUNTZ and G. SKANDALIS

INTRODUCTION

Let Aand Bbe C*-algebrasand ¢ : A — B a x-homomorphism. The mapping
cone for ¢ is a C*-algebra C,. As the equivalence relation defining Kasparov’s
KK-functor is homotopy, we get, for all C*-algebras D, a long exact sequence

o
. = KK(D, 40, 1)) —> KK(D, B(0, 1)) - KK(D, C,) —
— KK(D, A) —5 KK(D, B).

Assuming moreover that the algebras 4 and B are separable we also obtain,
using Bott periodicity, an exact sequence

KK(B, D) > KK(A, D) — KK(C,, D)>KK(B(, 1), D)5 KK(A®©, 1), D). . :

These two exact sequences are the mapping cone or Puppe exact sequences.

Of course the Puppe sequences can be obtained from the exact sequences
associated with an ideal established by Kasparov ([12], § 7; cf. [14] for the Z/2
graded case), since we have a short exact sequence 0 — B(0,1) - C, = 4 - 0.

On the other hand the exactness of the Puppe sequences is an immediate
consequence of the definition of the Kasparov groups and can, as we shall show,
in fact be used to give a much simpler proof for the existence of the long exact
sequences associated with an ideal.

For this, let 0 = I — A -qﬁA/[ — 0 be a short exact sequence {(admitting a
completely positive cross-section), and let e: 7 — C, be the natural embedding.
We construct an inverse for [e] € KK(Z, C,), namely the element of KK(G,, Iy
corresponding to the short exact sequence

0 —1(0,1) - 4[0,1) - C, - 0.



164 J. CUNTZ and G. SKANDALIS

Therefore in the Puppe sequences associated with ¢ we can replace C, by I, and
obtain the long exact sequences associated with the ideal J.

The fact that the second Puppe sequence is less obvious than the first one,
is due to the unsymmetry in 4 and B, of the equivalence relation that defines the
functor KK(4, B), namely homotopy.

We introduce here an equivalence relation, that we call cobordism and
which reverses the roles played by 4 and B. We then prove that (for separable
A) cobordism and homotopy coincide.

We illustrate this dual eqﬂivalence relation with a ‘“dual Puppe sequence”,
based on dual mapping cones and dual suspension.

We would like to thank Uffe Haagerup who helped us with a useful remark
(2.5.1).

The second author would like to thank J. Cuntz, F. Goodman, V.F.R.
Jones, P.E.T. Jorgensen, R.V. Kadison, R.T. Powers for their hospitality at the
University of Pennsylvania where this research was initiated.

NOTATIONS

As we deal with Z/2-graded C*-algebras we use the language of Kasparov
bimodules (with the notations of [13]) rather than the quasihomomorphism formalism
of [7], [8].

Our approach, however, can be put very naturally into the framework of
quasihomomorphisms, see Section 5.

If A is a C*-algebra and X a locally compact space, A(X) denotes the C*-al-
gebra of A-valued continuous functions on X vanishing at infinity.

All our results hold in the real as well as in the complex case. They also remain
true in the equivariant case with respect to a compact group action.

1. EXACTNESS OF THE PUPPE SEQUENCES

Let A, B be graded C*-algebrasand ¢ : A - B a grading preserving *-homo-
morphism. The cone C, is the subalgebra {(x,/) | o(x) = f(0)} of 4 @ B0, 1):

Let p: C, — A be given by p(x,f)=x and i:B(0,1) » C, be given by
i(f) = (0,1).

In this section we prove:

1.1. THEOREM. Let A, B, D be graded C*-algebras and ¢ : A — B a grading
preserving =-homomorphism. Then the sequences

ig " . Yy o
KK(D, 4(0, 1)) wﬁ* KK({D, B(0, 1)) —> KK(D, C¢) — KK(D, 4) —> KK(D, B)
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and (if A and B are separable)

KK(B, D) 5 KK(4, D) 2> KK(C,, D) —> KK(B(O, 1), D)~ KK(4(0, 1), D)
are exact.

We begin with some observations:

1.2. REMARKS. 1. The cone C, is isomorphic to the subalgebra {(f,¢) | o(f(O)=
= g(0)} of A[0,1) @ B0, 1).

The map j: B(0, 1) - C, given by j(g) = (0, g) is a homotopy equivalence.
Indeed let y : C, — B(0, 1) be defined by

_ je2e—1) for 12 <t<1
v ® {(p(f(l —21) for 0 <t<1)2.

Obviously ¥ o j is homotopic (in the space of grading preserving *-homomorphisms)
to the identity of B(0, 1) and j o s is homotopic to the identity of C

2. The cone C; is isomorphic to the subalgebra {(fg)l(p(f(t)) —g(O 1)}
of A(0. 1) @ B([0, 1)x[0, 1) \. {0, O}).

The map q: C; — A(0, 1) given by ¢(f, g) = f is a homotopy equivalence.
Indeed let

o : [0, 1) %[0, 1)\{0, 0} — [0, 1]x (0, 1)

be a homeomorphism such that «(0, z) = (0, ¢), (t € (0, 1)) (for instance a(t, s) =

= (—2— Arcian -~ , max(t, 5) )) .
s

n

Using a, C; becomes isomorphic to the subalgebra {(f; ) | o(f()) = g(0, 1)}
of A(0,1) @ B([0,1]x(0,1)). Let w: A(0,1) = C; be defined by w(f) = (f, g)
g(s, 1) = @(f(s)). This is obviously a homotopy inverse of g.

Thanks to these remarks we now just have to prove exactness at KK(D, A4)
and KK(4, D).

Proof of Theorem 1.1. Let (E, F)e &(D, A). The image ¢.(E, F) is the zero
element of KK(D, B) if and only if there exists a homotopy (E, F) ¢ &(D, B[0, 1))
with (Ey, Fo) = ¢,(E, F) and (E,, F,) = (0, 0). Then the pair (£, F), (E, F) defines
an element of &(D, C,). This proves the first assertion.

Define /: C, — B[0, 1) by I(x,f) =f and p,: B[0,1) = B by py(f) = f(0).
We have @ o p = pyol. As the algebra B0, 1) is contractible KK(B[0, 1), D) =0
hence p¥ = 0 and I* = 0. Therefore p* o ¢* = (¢ o p)* = 0.

Let now (£, F)e &(A4, D). Assume that p*(E, F) is the zero element of
KK( , D). Let then (E, F)e &(C,, D[0,1)) be such that (E,, Fy) = p*(E, F).
Let £ be the submodule of E, £ = {£ € E | £(0) = 0}. As #(E) is an ideal in o' (F)
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we get a map £(E) - Z(E). Let F be the image of F under this map and let B(0, 1)
actin E through the composition B(0, 1) —'—9 C, = Y(E) - .,?(E). Aspoi=0,the
action of B(0, 1) in E, = p*(E) is the zero action. We deduce that B(0, 1)-E < Eand
that, for x € B0, 1) and y € #(E), xy € H(E). Hence (E, F) e £(B(0, 1), D(0, 1)).
As B is separable the map 7,1 : KK(B, D) - KK(B(0, 1), D0, 1)) is an
isomorphism. Let @ € KK(B, D) be such that 1¢, 1,(w) is the class of (E, F ).

We want to show that ¢*(w) is the class of (E, F). But as A is also separable it
is enough to show that ¢, 1)(¢*(@)) = tcq, 1 [class of (E, F)). But tcp, 1(¢*(w)) =
= @*(tc, n(®)) is the class of ¢*(E, P

Let E’ be the D(—1, 1) module:

E' = {(¢,m) | &€ E(—1,0],n€E such that £(0) = n(0)}.

Let F'e Z(E’) be given by F'(&, ) = (&', %) with &) = F(E@)), v = F(n).
Write A(—1, 1) = {(f; &)[fe A(=1, 0], geA[0, 1), f(0) = g(0)}. Let
@ : A[0, 1) - C, be given by @(f) = (f(0), ¢ o f). Let A(—1,1) act on E’ by
(fs (& n) = (fE, p(g)y). Then (E’, F')e &(A(—1, 1), D(—1, 1)). Tts restriction to
A(—1,0) is equivalent to tc, 1y(E, F), its restriction to A(0, 1) is equivalent to

o*(E, F). Q.ED.

2. EXCISION

In this section we establish the long exact sequences associated with an ideal
({12], § 7, Theorem 1; [14], Theorem 1.1). This is done using the Puppe exact
sequences (Theorem 1.1) and an excision type result (Theorem 2.1).

Let J be a graded ideal in 4. Let j:J — A be the inclusion and g: 4 - A/J
the quotient map. Let e : J — C_ be defined by e(x) = (j(x), 0).

2.1. THEOREM. Assume that A is separable and that the quotient map q admits
a completely positive (grading preserving-norm decreasing) cross-section.
Then the element e, (1,) = e*(lcq) e KK(J, C)) is invertible.

We will use the following:

2.2. LEMMA. Let Jy and J, be ideals of the separable C*-algebra B. Assume
that the quotient maps p,: B — B|J; admit completely positive (grading preserving-
-norm decreasing) cross-sections. Then the map B> BlJ, n Jy admits a completely
positive (grading preserving-norm decreasing ) cross-section.

Proof. Let s;: B{J; = B be completely positive cross-section of p;. Applying
Theorem 4 of §3 of [12] we get multipliers M, N of J, n J, such that MJ;, =
SN, Nobcinyy M20, N20, M+ N=1 and [M, Bl < J,nJ,. For
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x € B, put:
s(P(x)) = (MY, o py(x)M2 4+ NV2s, o p(x)NV2, p(x)) € M(J, 0 Jp) ® B/J, 0 J,.
As |
S(P(x)) — (x, p(x)) = (MV¥(s; 0 py(x) — X)MV? + N¥¥(s5 0 pyx) — x)NV2, 0)+
+ (MY?¥x, M) + NV2x, N2, 0)e ;N J, ® O

we deduce that s(p(x))e B < M(J;nJ,) ® B/JynJ, and that s is the desired
cross-section. Q.E.D.

We will present the inverse of the element e.(1,) = e*(lcq) in the form of an
exact sequence. "

Recall that in the graded case the equality Ext(A4, B)~! = KK(4, B) does
not hold ([12], p. 569). :

However, to an extension 0 - B—> D —> A — 0 in which the maps i and p
preserve the grading and p admits a completely positive (grading preserving, norm
decreasing) cross-section, there corresponds an element 5, of KK(4, B ® ;) (cf.
[14], § 1) where &, is the first Clifford algebra.

Consider the exact sequence

0 - J(0, 1) » 4[0, 1) = C, - 0.
As J(0,1) = J[0, 1) n A(0, 1), the map p admits a completely positive (grading
preserving, norm decreasing) cross-section (Lemma 2.2).

Let «eKK(%,(0,1),C) be the Bott inverse element (cf. [12], §5). Set
U = —6P ®Z’](0‘1) xc KK(Cq, J)

2.3. LEMMA. We have e*(u) = 1,.

Proof. Consider the diagram:

0 = J(0, 1) —» A[0,1) —— C, - 0

149

0-J0,1) - J[0,1) ~—J > 0.
Py
By [14]; Lemma 1.5, we get e¥d, = 5,,“. Consider the exact sequence:

0 = C(0, 1) - C[0, 1) —5C - 0.

By construction of 6 we have 6, = 7,(J,,).
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BUt §,, = —B where B € KK(C, %,(0, 1)) is the Bott element (cf. [12], § 7).
Moreover f®q 0,1y & = Ic ([12], § 5). Q.ED.

End of the proof of Theorem 2.1. Consider the exact sequence

0 - C, » C,[0, 1) =5 4/J[0,1) > 0

where ¢ = m o p, where p, : C,[0, 1) — C, is evaluation at 0 and n: C, —» A/J[0, 1}
is defined by n(x,f) =f. As both n and Po admit completely positive (gradmo
preserving, norm decreasing) cross-sections so does ¢.

From Lemma 2.3 (applied to ¢ instead of ¢) we derive that for any separable
graded C#-algebra B the map KK(B, C,) » KK(B, C,) is injective.

Now, by Theorem 1.1, KK(B, C,) = 0. Hence KK(B, C,) = 0.

Applying again Theorem 1.1, and Bott periodicity we deduce that the map
e, : KK(B,J) - KK(B, C,)isanisomorphism. The map ® v: KK(B, C,)»KK(B,J),
being a left inverse of e, , is an inverse.

Applying this fact to B = C, we get e®(u) = ]C,,~ Q.E.D.

Combining now Theorems 1.1 and 2.1 we get:

2.4. COROLLARY. ([12}, § 7, Theorem 1 ; cf. [14], Theorem 1.1). Let 0 — J—L>

j .
—)AL>A/J — 0 be a short exact sequence of graded algebras such that q
admits a completely positive (grading preserving and norm decreasing) cross-section.
Then there are long exact sequences

L5 KK(D, AR+1) =5 KK(D, AW(R™) ~=5 KK(D, JRD) <>

2t KK(D, A(R"))=.. . .
(D separable)

5 KK(A(R?), D) 25 KK(J(R"), D) —> KK(A/J(R"+Y), D) =5

5 KK(A(R™Y), D) L5 . ..

(A, B separable) where & is multiplication by 0, e KKi(A/J, J).

Note -that under the identification of KK(A4/J, J) with KK(A/J(R),J), g
corresponds to the element of KK(A/J(R), J) given by the natural inclusion A/J(R) —
- C,~J.

2.5. REMARKS. 1. (We are indebted to U. Haagerup for this remark):
Let s: A/J — A be a completely positive cross-section (not necessarily norm
decreasing). Let u, be an approximate unit in A4// with 0 < », < 1. The maps
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¢, : AlJ — AJJ defined by @u(1) = 1, @, (x) = u}/®xu}® (x € 4/J) admit the comple-
tely positive lifting , : A/J — A given by V(1) = 1 and ¥, (x) = v; Y25 2xul)v, 12
(x € A}J), where v, = sup(1,s(u,)) € A (¢, and ¥, are completely posmve by [4],
Lemma 3.9).

If A/J is separable, the set of maps admitting a unital lifting being (norm
pointwise) closed ([1], Theorem 6), the identity of /~1/J admits a unital lifting. Hence
ithere exists a completely positive, norm decreasing cross-section s' : A/J — A.

2. In the situation of Theorem 2.1, let e': C; - 4/J(0,1) be defined by
e'(x, /)(t) = q(f(¢)). Another excision result, equivalent to Theorem 2.1, is that the
element e;(lcj) = e’*(lA/.J(o,l)) of KK(C;, A/J(0, 1)) is invertible.

Its inverse is given by the exact sequence 0 —» C; — A[0, 1) % AJJ - 0 where
2'(f) = q(f(0)).

That these excision results are equivalent comes from the isomorphism of
C, and C, : By Theorem 1.1 e, (and e*) is an isomorphism if and only if C, is
K-contractible ([8], Proposition 5.4).

3. The condition on the completely positive cross-section is natural (cf. e.g.
[9]). However it is not necessary as for any short exact sequence 0 - I — A4 — A/ - 0
the sequence

. > KK(D, I10, 1)) » KK(D, A[0, 1)) - KK(D, 4/I[0, 1)) - ...

is exact!

Let us give another example:

Let G be a K-amenable discrete group ([6], Definition 2.2). Let « be an action
of G on the C*-algebra 4. We have a short exact sequence:

057 > AX,G—> AXpreaG— 0 (Where J = Ker 2).

Let now 0 —» J —» D> D/J — 0 be any short exact sequence and let (E, F) e
€ &(B,, B,). Define JB’, = Ker(p (:9 idBi). One may then define 1,(E, F)e @“’(J,gl, ng)
n the following way:

Let E, be the Hilbert D ® B, submodule of D ® E given by E; = Ker(p ® idj)
(thus E,={¢(eDQ®E| Eels)) Note that for all Te (D ® E) and
EekE,, TEcE,. Hence E; is a (JB L Jg ) bimodule. Let F;, be the restriction of

D®F to E,.

Note also that for all xe JB1 and ¢éeD®E, x¢{cE,. Therefore
Jp, (D ® E)= H(E,). Hence (E;, F)) € €(Jp,, Jp))- We put (E;, F))=1,(E, F)

The homomorphism A% : AX, G-CH*G) ® AX, G of [6], 1.3, induces a homo-

morphism 4" :J — JC¢(G) Therefore we get a map

¥ or

KO(CH(G)) —2 KK(J, J).
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Let ¢ be the class of the trivial representation in K%C%(G)). Obviously
4% o 1,(t) =1, € KK(J, J). Alsoif x e A (KYC,ea(G))) then 4'* o 1,(x) = 0. There-
fore, when G is K-amenable, J is K-contractible. Using [6], Theorem 2.1, we get
then that the sequences

- KK(B, J) —» KK(B, A x, G) =25 KK(B, A Xgreq G) = ..

and
.= KK(A X, 05 G, B) — KK(A x, G, B) » KK(J, B) —. ..

are exact.
However 4 does not always admit a completely positive cross-section (take for
instance G = F, and 4 = C, cf. [5]).

3. COBORDISM

In this section we introduce a new equivalence relation in &(A4, B) where 4
and B are graded algebras. When A4 is separable we show that this equivalence rela-
tion (called cobordism) coincides with homotopy.

This result is illustrated in Section 4. It admits an interesting interpretation
(3.8).

Let (E, F) be a Kasparov (4, B)-bimodule and p € #(E) a projection of
degree O such that [a, p] = 0 and a[p, F]e A'(E) for all ain A. Then the action of 4
restricts to the submodule pE of E, and (pE, pFp) is a Kasparov (A4, B)-bimodule
noted (E, F),.

3.1. DEerINITION. The Kasparov (4, B)-bimodules (E,, F,) and (£;, F}) are said
to be cobordant if there exists a triple (E, F, v) such that:

a) (E, F) is a Kasparov (4, B)-bimodule.

b) v e Z(E) is a partial isometry of degree 0.

¢) Forall ain 4, [a, v] = 0 and a[v, F] € A'(E).

d) (£, F)1-w» and (E,, F,) are unitarily equivalent.

e) (E, Fh_.+, and (E,, F}) are unitarily equivalent.

3.2. REMARK. The word cobordism is used here for the following reason:
One may call a triple (E, F, v), satisfying conditions a), b) and c) of Definition 3.1,
a Kasparov (4, B) bimodule with boundary. Its boundary is the formal difference
(E, F)l—vv* —_ (E, F)l_vtv.

3.3. LemMA. Cobordism is an equivalence relation compatible with direct sums.
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Proof. The only thing which is not completely obvious is transitivity. Let
(E', F',v), (E”, F",v"") be two triples as above. Assume that (E’, F'),_+, and
(E”, F'*),_ = are unitarily equivalent. Let u € L((1 — v'*v")E’, (1 — v"'v"'*)E")
be a unitary realizing this equivalence.

Letve P(E'@® E"),v= (v @ V') + u Then the triple (E' ® E”, F' @ F", v}
realizes a cobordism between (E’, F");_ -+ and (E", F"');_+s,. Q.E.D.

3.4. REMARKS. 1. If (E, F) is degenerate (i.e. belongs to 2(A, B)) then it is
cobordant to (0, 0).

Indeed, let v be an isometry of index —1 in the separable Hilbert space H,
Then the triple (F ® H, F ® 1,1 ® v) defines the desired cobordism.

2. Let (E, F)ye (A4, B) and let F'e %(E') of degree one be such that
A(F — F) € A(E). Let ve L(E @ E) be given by the matrix v = [(1) g]

The triple (E @ E, F @ F’, v) defines a cobordism between (E, F) and (E, F').
We now compare homotopy and cobordism:

3.5. LEMMA. Any two cobordant Kasparov bimodules are homotopic.

Proof. Let (E, F, v) satisfy conditions a), b) and ¢) of Definition 3.1. Then
E, F),,» and (E, F),, are unitarily equivalent. Moreover (E, F) is (operator)
" homotopic to (E, F),» @ (E, F),_,+ and to (E, F),+, ® (E, F);—,»,. As KK(4, B)
is a group, (E, F),_,+ and (E, F),_ , are homotopic. Q.E.D.

In fact two cobordant Kasparov bimodules define the same element in the
group noted KK(A4, B) in {13], Definition 2.8.
We now prove the converse of Proposition 3.5 assuming that A4 is separable.

3.6. LEMMA. Let A be separable and let (E, F) € §(A, B) be operator homotopic
to a degenerate element. Then (E, F) is cobordant to (0, 0).

Proof. Let ve L(H) be an isometry of index —1 in the separable Hilbert
space H. Let 7 <= Z(H) be the C*-algebra generated by v (the Toeplitz algebra).

Let o = 7 be the ideal generated by the rank one projection P = 1 — vv*
(o is equal to #°(H)). Assume that (E, F) is operator homotopic to the degenerate
(E, F'). Consider the Kasparov (4 ® 7, B)-bimodule (E® H,F' ®1). Its
restriction to (4 ® -, B) is operator homotopic to (E ® H, F ® 1). By Lemma
2.4 of [14] there exists G € L(E ® H) such that (E® H,G)e &(A ® 7, B) and
(G—FR DxeA(E® H)forallxin A ® X.

Restrict the (4®Z, B) bimodule (EQH,G) to A = A®l, € A®Z . The
triple (E ® H, G, 1 ® v) defines a cobordism between (E ® PH, (1 ® P)G(1 ® P))
and (0,0). But by Remark 3.4.2 (E, F) and (E ® PH, (1 ® P)G(I ® P)) are
cobordant. : - QE.D.
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3.7. THEOREM. If A is separable then two Kasparov (A, B)-bimodules are cobor-
dant if and only if they are homotopic.

Proof. Let (E;, Fy) and (E,, F;) be homotopic Kasparov (4, B)-bimodules.
By Theorem 1, § 6 of [12], see also [13], one can find a Kasparov (4, B)-bimodule
(E, F) such that both (E,, F,) ® (E, F) and (E,, F,) ® (E, F) are operator homo-
topic to degenerate elements. Using Lemma 3.6 we then get that both (E,, F)
and (E,, F,) are cobordant to (£, F)) @ (E,, F,) @ (E, F). Q.E.D.

3.8. REMARK. Theorem 3.7 may be interpreted in the following way:

Let &(A, B) be the semi-group of classes of Kasparov (4, B)-bimodules, where
(E, F)and (E', F') are identified if there exists a unitary u € Z(E, E’) of degree zero,
intertwining the action of 4, and such that uFu* — F'e A (E').

Let then lﬁ((A, B) be the cancellation semi-group associated with &(A, B).
Obviously IZ]—((A, B) is the semi-group of cobordism classes of elements of &(A4, B).
In that sense cobordism is the strongest “reasonable’ equivalence relation in (A4, B).

Theorem 3.7 which states that the natural homomorphism IZK(A, B) »
— KK(A4, B) is an isomorphism, means that all “reasonable’’ equivalence relations .
on &(A, B) coincide. .

Theorem 3.7 can therefore be considered as a generalization of Lemma 2,
§ 7 of [12]. 1t also strengthens this result of Kasparov since, in the relation defining
Z”(A., B) above, the action of A4 is not allowed to change as in the homology of
Definition 3, § 7 in [12] (cf. also [3], Corollary 7.8). ’

Here is another interpretation of cobordism:

Let I = CJ[0, i] and let my, m, : [ — C be the evaluations at 0 and 1. Note
that two Kasparov (4, B)-bimodules (E,, F,) and (E,, F,) define the same element
of KK(4, B) (i.e. are homotopic) if and only if there exists a Kasparov (4, B®/)
bimodule (E, F) with n(E, F) unitarily equivalent to (E;, F;) (i =0, 1).

Thus homotopy assigns to A and B unsymmetric roles. Cobordism provides
an equivalence relation which reverses the roles played by A and B:

Let 7 be the Toeplitz algebra, i.€. the universal C*-algebra generated by a
non-unital isometry w. Let ' be the C*-subalgebra of 7 @  generated by w =
= v @ v*. Let I denote the kernel of the quotientmap A : ' — Cgiven by A(w) = 1.
Let j,,j,:C — 1 be the inclusions given by jo() = (1 — vv*) @0 =1 — ww*
and (1) =0® (1 — vv*) =1 — ww. (IA can also be viewed as the C*-algebra
of the “ax 4 b group G, the maps j, and j, corresponding to minimal projections
associated with the two square integrable representations of G.)

3.9. DEFINITION. a) The Kasparov (4, B)-bimodules (E,, F,) and (E,, F,) are
“said to be equivalent if there exist Hilbert B-modules E;, E; and a unitary
ue ¥(E, @ Eg, E, @ Ej) of degree zero such that, for all @ in 4, u(a @ 0) =
= (2 @ O)u and (@ @ O)u(F, ® O)u* — (F, ® 0)) € A(E, ® E}).
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b) The Kasparov (4, B)-bimodules (E,, F;) and (El; F)) are said to be coho-
motopic if there exists a Kasparov (4 ® I, B)-bimodule (E, F) such that j*(E, F)
is equivalent to (£;, F), i =0, 1.

In order to show that homotopy and cohomotopy coincide, we will use the
following rather obvious lemma.

3.10. LEMMA. -Let H, and H, be Hilbert spaces and v;e L(H), (i=1,2)
isometries. Let ue ¥ (H,y, Hy) be a partial isometry with uvy=viu=20. Then there
exists a x-representation

Jk
R T - P(H, ® Hy) with n(w) = (”1 0 )
U vy
Proof. Let Hj be the subspace of H, generated by {viué|¢e Hy, n > 0}
and let Hy be the orthogonal complement of H; in H,. Then, both H, ® H, and
0 ® HY are stable under n(w); the restriction of n(w) to 0 @ H is an isometry ;
its restriction to H,; @ H, is a coisometry. Q.E.D.

3.11. PRCPOSITION, If A is separable, two Kasparov (A, B)-bimodules are coho-
motopic if and only if they are homotopic.

Proof. Let (E,, F,) and (£,, F,) be homotopic Kasparov (4, B)-bimodules.
Using Theorem 3.7 we get a cobordism (E, F, v)(resp. (E’, F', v")) between
(—(Ey, Fo)) @ (Ey, Fy)(resp. (—(Ey, F)) @ (E,, Fy)) and (0,0). Let ue L(E, E')
be the identification between the two copies of the bimodule —E,. Let then 7'
act on £ @ £’ by the action 7 given by

3 .
n(w) = (U _0 ) (Lemma 3.10).
u I

v

Then (E @ E', F @ F') defines a Kasparov (4 ® 7 ', B)-bimodule whose restric-
tion to (A ® I, B) is a cohomotopy between (E, , F,) and (E, , F).
In order to prove the converse it is enough to show that j¥(1;) and jf(14) are

equal in KK(C, ?). But jF(15) = jisll] € Ko(?); moreover jo(1) and j,(1) are stably

equivalent projections in 7' = [. Q.E.D.

2\
In particular cohomotopy is an equivalence relation in (4, B). Let KK(4, B)
denote the quotient by this equivalence relation. We have proved:
X A
3.12. THECREM. If A is separable, then KK(A4, B) = KK(A4, B).

3.13. REMARK. When A is not separable, cohomotopy is not an equivalence
relation. It is however still symmetric and transitive (cf. proof of Lemma 3.3).
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Let a‘?(A, B) be the set of Kasparov (A4, B)-bimodules (£, F) such that (£, F) @
@® (—E, —F) is cobordant to (0, 0). Cohomotopy restricted to &(4, B) is an equi-

AN
valence relation (cf. proof of Lemma 3.10 b)). Let KK(A4, B) be the set of cohomo-
A N\
topy classes of elements of &(4, B). Then KK(A4, B) is a group and the inclusion

A A\
&(A, B) — &(A, B) induces a homomorphism KK(A4, B) - KK(4, B), which is an
isomorphism when A is separable.

4. THE DUAL PUPPE SEQUENCE

Let ¢ : A — B be a (grading-preserving) s-homomorphism. In this section
we construct a dual cone Cq, associated with ¢ and establish a “dual Puppe exact
sequence” (Theorem 4.2).

Let 7 be the Toeplitz algebra = C*(v) where vis a non unitary isometry.

Let 1: 9 — C be the *-homomorphism given by A(v) = 1. Put C = Ker .

Let o be the elementary algebra of the compacts contained in ¢ as the ideal
generated by 1 — vv*. The quotient S = C/%‘ is isomorphic to the group C “-al-
gebra C*(R) (i.e. to €y(R) in the complex case and to the algebra noted @5 (iR)
in [8], § 4).

Recall ([8] proof of Theorem 4.4 and Proposition 5 4) that C is K—contractl-
ble, i.e. KK(C C) = (. This also means that KK(4 ® ¢ B)=0= KK(A B® C)
for all algebras A and B (A separable).

Letg,: C - S be the quotient map and set P =1 — vo*e C

4.1. DeFNiTION. Let ¢ : 4 — B be a grading preserving x-homomorphism.
The dual cone C(,, is the C*-subalgebra of (4 ® §) @B C) consisting of all
pairs (x, y) such that ¢ ® idg(x) = idp ® ¢o(»).

Letj: B — C be given by j(b) = (0 b® P) and q: Cq, —A® S the restriction

to C of the natural projection (4 ® S) ® (B ® C) - A4® S.
Our result.in the “dual Puppe sequence’” is:

4.2. THEOREM. Let A, B be separable graded C*-algebras and let ¢ : A - B
be a grading preserving s-homomorphism. Then the following sequence is exact:

5 KK(B ® §, D)5 KK(4 ®. 5, D)5 KK(C,, D) L5 KK(B, D)5KK(4, D)

where D is any graded C*-algébra.

Proof Let us prove exactness at KK(B D). o .
~ Let C’ be the subalgebra of (A®S) @® (B® C) generated by (0,b®P), be B
(P =1-—vv*e C) and (a@qo(x), pl@®x),ucd, xe C. As C is the subalgebra
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of (A® 3’) @ (.B®C) generated by (0,b®k), beB, keX < C and (a® qq(x),
e(@)®x),ac A, x¢ C, C(:,.is a full hereditary subalgebra of C\q,. Hence, by [2] and
[12], § 4, Theorem 7, the inclusion map from C,,’, to CQ,, induces an isomorphism in
KK-theory. It is therefore enough to prove exactness of the sequence

KK(C), D) 2> KK(B, D)~=> KK(4, D).

Let i:4 = A®C be given by i(a) = a®P and l//:A@é—-)CA,:, defined by
Y(a® x) == (@@ qy(x), (/)(a)®x) We have jo @ = ¥ o i. But as Cis K-contractible,
we get (Y o i)* = 0, hence ¢* o j* = 0.

Let (E, F)ye &(B, D). If ¢*(E, F) defines the zero element of KK(A, D)
then by Theorem 3.7 it is cobordant to (0, 0). Let then (E’, F’, w) be a triple defining
this cobordism

Let ny: F - ZL(E’) be given by n(v) = w. Let , : B > Z(E’) be the action
of Bin(l — w w*)E’ transported from the original action in E by the unitary equi-
valence of @*(E, F) with (1 — ww*)E’, (1 — ww®)F(1 — ww"‘))

Then there exists a unique x-homomorphism 7 : C - F(E) satlsfymg
700, b P) = m,(h) and n(@a® go(x), p(@)®x) = a - ny(x), be B,ac A, x € C) The
pair (E’, F') defines then an element of é”(C;, , D) whose restriction to Bis cobordant
to (E, F).

To prove exactness at the other pomts one may, as in § I, construct homo-
morphisms { : C . A®S and w: B® S - C which induce isomorphisms in
KK-theory. A Q.E.D.

4.3. REM’ARKS. 1. This theorem could be used in giving another proof of the
six term exact sequence theorem. Let 0 —» 1 545 A/l - 0 be a short exact
sequence of graded C#*-algebras such that p admlts a completely posmve Cross-
-section. Let then C be the subalgebra of 4 ®C generated by b@x and a® P, a € 4,
belLxe C. Let q: C — A/I be the map given by ¢(a® P) = p(a) and ¢(b®x) = 0.
One then shows that ¢ induces isomorphism in KX-theory. (lts inverse is given by’
the exact sequence

' A A P®4q, A
0-5C, > ARC—— A/I®S -0

C} sitting in C as a full hereditary subalgebra.)

2. Theorem 4.2 can be deduced from the six term exact sequence theorem as
q: C - A®S is'an epnmorphlsm (admitting a completely posmve cross—sectlon)
and j(B)is a full heredltary subalgebra of Ker (¢). In that way we also get an exact.
sequence -

KK(D, A) 3"i> KK(D, B) 2> KK(D, C,) —> KK(D, 4® §) —> KK(D; B®5) .
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The cone C, is isomorphic to the subalgebra C;, of 4 @ B[—oo, +00),
Co = {(x,1)| ¢(x) = f(—o0)}. Let R act trivially in A4 and by translations in
B[—o0, +00). Then C, is invariant under this action. Call « the induced action
of RinC,.

Consider the exact sequences 0 —» 4~ — ¢->8->0and 0 - C(—00, +0)X,
X, R 5 C[—o0, +00)X, R = C*(R) » 0. They define the same element of
Ext(C*(R)) = Z. We thus get a commuting diagram

A A

C S

C[—00, +0)X, R ————— > C*(R)

in which the vertical arrows are isomorphisms (cf. also P. Green, Pacific J. Math.,
72(1977), 71—97).

We deduce that C, %, R = (',\’«,. Thus Theorem 4.2 is equivalent to Theorem
1.1 (by [10] or [12}).

5. APPENDIX

In Section 2 we have taken the shortest route to the long exact sequence
theorem using the full formalism and most of the basic results of Kasparov. It
is however possible to give a proof of the equivalence C, ~ Kerqg (9: 4 - B a
surjective homomorphism with completely positive cross-section) which is elementary
in the sense that it uses only the definition of KK, the product and a weak form
of Bott periodicity, but avoids KK,, Ext, graded algebras, the Stinespring
theorem etc. ..

The result C, ~ Ker g may, in this approach, be considered as a “fundamental
theorem’ of KK-theory since it easily implies not only the exact sequences associated
with ¢, in both variables, but also the homotopy invariance of Ext, full Bott perio-
dicity and can be used to obtain, from ¢, an element of KK(B, SKerq) or of
KK(SB, Ker g). This means that all basic properties of KK-theory follow from the
existence of the product, entirely on the level of KK, using rather straightforward
homotopy theory and the fact that a certain operator has index 1. In particular,
all these properties can be developed naturally on the basis of the approach in [7],
thus giving a consistent and complete treatment of KK-theory using quasihomo-
morphisms.

We outline here how one has to proceed. For the C*-algebras connected with
a point, open interval, half-open interval,closed interval and their duals Wwe use
the following notatlon P = C, S=%,(R), C=%,([0, 1)), I = C([0, 1]), P= A,
§=cC* (R), € and 1 as in Sections 4 and 3 (in the real case one uses, of course, the
real C*-algebras). To the exact sequences 0 + S>C—->P->0and 0 - C -1
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— P — 0 correspond the dual sequences 0>P>C—>S—0and 0Pl
— C — 0. Moreover, we write SA4, PAetc ... for S®A, PRA etc ...

1. We say that a short exact sequence p: 0 =»J =4 > A/J -0 of C*-alge-
bras is semi-split, if there exists a “complementary’ exact sequence 0 — P> A~ >
— A/J - 0 such that, for the C*-algebras of (formal) 2 X 2-matrices

=( A JB)) J:( J  KPD
(P A—) " e ﬁJ)

(we use here the natural embedding J — ﬁJ) and for n: E — ElJ, = A]J @ AlJ,
there exists a homomorphism ¢ : A/J — E such that ne(x) = (x, x) for x e 4/J.

REMARK. From the definition of E one sees that there are KK-equivalences
(invertible elements) E ~ A ® A/J and E ~ A- @ A/J. Combining these, one
obtains an invertible element in KK (4, 47).

Note that, by Kasparov’s generalized Stinespring theorem, p is semi-split
iff the quotient map 4 — A/J admits a completely positive, cross-section. One can
easily prove an analogue of Lemma 2.2 above, showing that 0 -» J;nJ, - B -
- B/JynJ, -0 is semi-split whenever 0 —J, —» B — B/J, >0 are so for
i=1,2. With asemi-splitp:0 »J—-4 > 4/J - 0 we can, usmg the cross-section
(p, associate a quasxhomomorphxsm p = (p,@): AlJ — SPy writing @(x)(¢) =

o(x), P(x)(1) = Fp(x)F7* where x e 4}J,1€[0, 1] and

Ft':(l 0. )
0 eth

(the real algebra § is viewed here as thei_ilgebra of continuous complex-valued
functions f on (0, 1) such that f(1 — t) = f(¢)). Of course, p’ could depend on the
choice of 4~ and ¢. We will see later that, up to homotopy, this is not the case.

2. One proves, as in Section 1 above, that the Puppe sequence induces an exact
sequence in the second variable of KK.

. The C*-algebra S§ can, in the complex case, be described as the algebra
of complex -valued continuous functions on C that vanish at oo, or, in the real case,
as the subalgebra of functions f such that /(z) = /(z), ze C. Let LZ(SS) denote
the correspondmg Hilbert space of L2-functions on C, so that SS acts by multl-
plication on L2(SS) The Bott element f: P — SS and its inverse u: SS — PP
are quasihomomorphisms that can be described as follows:

To define f = (¢, @), it suffices to give the pair of projections p = (1),
P =o(l).

12~ 1481
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We take, for p, p, the 2 X 2-matrix-valued functions

Nl oy — I 0y,
p(‘)_(o 0) p(z)—W(O O)W

. 1 z 1 a
with W = — — _\), z € C which act by multiplication on L3*(SS) @
]/1 +zz \—1 z,

® L(SS).

REMARK. It is an immediate consequence of the definitions, that § is exactly
the quasihomomorphism obtained as o' for the semi-split extension ¢:0 —» S —
- C>P-0. .

We deﬁne the qua51homomorphlsm oSS — PP as the pair (g, i) of homo-
morphisms SS - $(L2(SS) @ L2(SS))

wn =" 0) wn =i (M i

with W——~—l—(a 1)whelefeSS i‘)ﬁi—Ji 8::-d~+i—d— and
Vl — 00 0 dx dy dx dy

Ho(f) is multiplication by f, cf. [12], p. 547.

To show that the composition P —>SS —s PP is equal to idpin KK(P, P),
it suffices to show that the operator

___}_(z 0)+ 1 _(0 a)
Vi+z\o z)] Vi+zz/1—a6 \a o

on Lz(S§) ® L2(S.§), has index 1 (which follows from the fact that this operator
is “half”’ of the Euler characteristic operator on the 2-sphere S?, cf. [11], 2.6).

This is the weak form of Bott periodicity alluded to above (while its full
form says that the other composition sS —%f’P——g sS gives the identity of

S, too).

4. Let0 o J - A — AlJ — 0 be semi-split. We want to show that the inclu-
sion e:J - C, is a KK-equivalence.

a) We deﬁne the element u : C, —» J as in Section 2 above: from the exten-
siong:0 - SJ - C4 - C, — 0, one obtains ¢’ : C, — SSJ and one sets u = ¢’a.

The remark under 3. shows that the composition J T)Cq—-a.l gives id; (the
restriction of u to J < C, is equal to the composition P —SS — P tensored with id,).

b) One uses a) to show, exactly as in Section 2 above, that C, ~ 0, and
in order to deduce that Se:SJ — SC, is a KK-equivalence. But then also
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S‘Se :A§SJ — .S"\SC,, is a KK-equivalence. Since, by 3., the KK-grouPs of 3‘5]
and SSC, contain those of J and C, as direct summands and since SSe respects
this direct sum decomposition, one sees that e is invertible (with inverse u).

5. a) Combining 2. and 4., one obtains the long exact sequence in the second
variable of KK.

b) Applying a) to the exact sequence 0 — PosCo S0 and using the
fact that € ~ 0 [8], one obtains full Bott periodicity.

¢) Using Bott periodicity, one obtains, as in Section 1, exactness of the Puppe
sequence in the first variable of KK, and,as a consequence, also the long exact
sequence in the first variable.

d) The canonical inclusion map SA/J - C, gives, for a semi-splitp : 0 - J —

— A—2>A/J >0 an element p” of KK(SA/J, C,) = KK(SA/J,J). Under the
Bott isomorphism

KK(SA/J, J) = KK(SSA/J, S7) = KK(A4/J, SJ),

this element corresponds to the element p’ defined in 2. .

The first author was partially supported by NSF.
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