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CARLESON MEASURES AND OPERATORS
ON STAR-INVARIANT SUBSPACES

WILLIAM S. COHN

INTRODUCTION

Let D = {|z| < 1} be the unit disk and let /" denote the usual classes of
functions analytic on D. A function s in H* is called inner if

Is(e)] =1 a.e. [dO).

In this paper we study operators on the subspace K = H2 © ¢H* where ¢
belongs to a certain class of inner functions. Our main tools in this study are the
results in [6) in which the Carleson measures for K were characterized under the
hypothesis that ¢ satisfy the connected level set condition, that is, there exist r,.
0 < ry < 1, such that {{p(z)| < ro} is connected.

Recall that a measure on the closed disk D which assigns no mass to the
‘singular support of ¢ is called a Carleson measure for K if there is a constant ¢
such that

SWdu < cf18

for all fe K. See [6], p. 347. We will rely on Theorems 3.1 and 3.2 of [6], which
characterize such measures. Although these theorems are difficult to state at this
point we will record the following.

TueoreM 0. Let ¢ satisfy the connected level set condition as above. Then
the following conditions are equivalent :

(i) The measure p is a Carleson measure for K.

(ii) There is a constant ¢ such that

— 2
S'—'—f—‘—du(c) SR A
N —Zzi2 1 — |o(2)]
for all zeD.
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Note that when g is supported on the unit circle T, the integral in (ii) is
the ordinary Poisson integral of p.

As examples of inner functions satisfying the connected level set condition

we give
z+1
¢y(2) = exp( ] )

z —

and

oo Ry .~
oor) =] L= 2

k=1 1 - (] - rk)z

where 0 < r < 1.It is true, of course, that “most” inner functions do not satisfy
the connected level set condition, Thus it becomes an interesting, perhaps difficult,
question as to whether our results extend to all inner functions s.

We now give a somewhat simplified statement of our main results. In all
of our theorems, ¢ denotes an inner function satisfying the connected level set
condition.

The main result of Section 1 is the following theorem.

THEOREM. Let f€ K. Then there is a constant ¢ such that

dx dy < c|lf1l2.

1 — |z]
e — =
Sf A p———
D

A weaker inequality was proven by Axler, Chang, and Sarason in [3] and
used to study the compactness of certain Hankel operators. We discuss this in
greater detail in Section 1.

In Section 2 we give an alternate characterization of Carleson measures for
K in case the measure lives on the circle T. Let P denote orthogonal projection
onto K. The main result is the following.

THEOREM. Let du = ud@ where u > O and u € L2 Then the following conditions
are equivalent :

(1) u is a Carleson measure for K.

(i) u = v -+ Re(ph), where ve L® and h € H?

(it}) The operator T(f) = P(uf) defined on Kn H® extends to a bounded
operator on K. ‘

We relate this result to a theorem of Sarason on generalized interpolation in
[10]. The same problem has also been discussed by Clark in [4].

In Section 3 we consider perturbations of orthonormal bases of K. Such
matters have been discussed by Clark, [5], and Hrusdev, Nikolskii and Pavlov,
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[8]. We use our results to determine a sufficient condition that the inclusion operator
I: K- L¥dp)

be bounded below if u is a Carleson measure for K. This problem was solved by
Volberg, [11), in case p = wdf where w € L*, for all inner functions s. Volberg’s
characterization, however, does not extend in case u is simply a measure, as we will
show.

We also consider the compactness of the inclusion operator I: K — L*dy).
This question was also treated by Volberg in {11} and solved for any inner function
s in the case that g = wd0 where w € L*®. This time Volberg’s theorem does extend
in case u is a measure and ¢ satisfies the connected level set condition, as the follow-
ing theorem shows.

THEOREM. Let p be a Carleson measure for K supported on T. Then the follow-
ing conditions are equivalent :

(i) I: K — L¥(dy) is compact.

(ii) Ililmlﬁ(Z)(l — lo(2))) = 0.

Here, Ji(z) denotes the Poisson integral of .

We conclude the introduction with some remarks regarding the notation.

The constants ¢, ¢, ¢;, etc., which appear in -various theorems and proofs
change their values each time they are used in a different context. The symbol [{f]|,
denotes the HP norm of a function f and the symbol || T'}} denotes the operator norm
of an operator 7. The measures u we consider are always positive, even if we do
not specifically say so. Finally, if F and E are sets, then F\E denotes their set
theoretic difference.

§1

We begin this section by establishing some notation and results which we will
use throughout the rest of the paper.

Suppose ¢ is an inner function. As in [6], p. 349 we extend ¢ to be analytic
on C\K*, where K* js the reflection of the singular support of ¢. For t > 0 we
define

D, = {z: ¢ is analytic at z and |@(z)| < t}.
For 0 < #; < t, we define

Ary, = {z: ¢ is analytic at z and £, < |@(2)| < t,}.



184 WILLIAM 5. COHN

Suppose ¢ satisfies the connected level set condition for ry, where 0 < ry < 1,
i.e. D,0 is a connected set. By [6], Corollary 3.1, if r, < r < 1 and 0 == r-?, then
D; is simply connected. Let 0 : D — D; be a Riemann map of the disk onto D,
and let y be its inverse.

For the remainder of the paper, ¢ will denote a fixed inner function satisfying
the connected level set condition for r,, as above. The symbols ¢ and i will be reserv-
ed for the univalent functions defined above. We come now to our first result.

Lemma 1. With ¢, r and \y as above, if zisin A, ,_, then

2

: . 1 W@l

@ S ar
and

(i) ) < 2 lp'(2).

L — (@ 1 —r

Proof. To prove (i) define f: D — D by f(w) = rp(6(w)). The Schwarz-Pick
" theorem yields

= )

I — Jw?

FECYIES

The chain rule now gives (i).
To prove (ii)let zbein 4, , |
e
centered at e of radius | — r. It follows from [6], Theorem 1.1, that there is a single
valued branch of ¢~ defined on N for which ¢~ ¢(z)) = z. Define f: N - D by
SIw) = Y(o~(w)). Applying the Schwarz-Pick theorem again and observing that

lp(z) — €9 < 1 — r[2 yields

and suppose ¢(z)=|p(z)ie!’. Let N be the disk

L= WO e
Lo r WGy
2 o) ’

which proves (ii).

LeMMA 2. Let @ and r be as above. Let z be in A, . Then there is @ constant
‘__r_|1

¢ = ¢(r), independent of z for which

1= 10@F e
I — jz?
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Proof. Let ¢(z) = |@(2)le® and { = re'. Let L be a line tangent to the circle
{z : |z| = r} passing through { and let Q be the simply connected region bounded by
L and the unit circle containing ¢(z). Let f: Q - D be a conformal map of Q

. ) 1 . . .
-onto the disk which takes ——g—L e'? to 0. It is not difficult to see that

() € M < o0

for a constant M independent of z.

Let ¢~ be defined on Q such that ¢~(¢(z)) = z and let g be the inverse of f.
Define 1 : D — D by i(w) = ¢~'(g(w)). Applying the Schwarz-Pick theorem we
-obtain

lg"(w)l < 1 — |z]?
@] 1 — ()

Since |g'(w)] = 1/M, the lemma is proved.

We will need the next lemma, which is an easy consequence of [6], Theorem 3.1.
For the remainder of the paper we let K = H? © (¢H?), where ¢ is our fixed inner
function. We will also use the symbol dA(z) to denote area measure on the unit disk.

Lemma 3. Let ¢ andr be as above and suppose p is the measure on A, defined
by dp = |@'| dA. Then u is a Carleson measure for K.

Proof. For each e construct Q = Q,asin Lemma 2. Since ¢ is a covering map

o0
on A-}i‘_’ ; it follows that ¢~1(Q,) = HF-,,,,, where I', ,is a connected open set and
2 " =
@iy~

is a homeomorphism. Thus

S @' |du == S l¢'|2dA4 = area of Q, < 2m.

rn 6 n,0

Theorem 3.2 of [6] implies that u is a Carleson measure for K. See also the remarks
prior to Corollary 5 in Section 3.

We are ready to prove the main result of this section.
THEOREM 1. Let f be a function in K. Then

S IOk

_1—1d

———dA(2) € g
oy 4@ < el

Jor a constant ¢ independent of f.
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Proof. Since f'e H? it is enough to show that (see [7], p. 237)

— |zl

—_— < z
oz )| clfiliz

S e -

pXD,

for some r, 0 < ry < r < 1. By the Schwarz-Pick theorem this will be true if

S SO0 @44 < c| I

D\ D,

for all fin K.
Let g(w) = fla(w))a’(w)V2. It is shown in [6], p. 358, that since fe K, g H?
and [|gll; < ¢ ]Ifll3- It follows that

- S 12912 (1 — Iw]) dAG) < el F1E:
D

Now ca!culate that
g"(w) = f"(a(w))o'(W)*'* + flo(w)). ~;—o"(w)-l/za”(w).

Let
lo”(w)?

I,
|o"(w)!

| fa(w))i?

w(D\D,)

(1 — [w)dA(w).

Since ¢ is univalent it follows from {9], p. 689, that
IG"(W)I ¢
lo’(w)l 1 — Iwl

and therefore

L<e If(a(w ))I2

v(D\D,)

lo’(w)] dA(w).
— wl;

Changing variables yields

) |
I, < |f(2)|? dA(z) <
cDS st e 44

r

<o S 12)RI0'(2) dA(2),
D\D

r
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where we have used Lemma 1. An application of Lemma 3 shows that

I, < | flls
Now define
b= SIWWWWWWWO—MNMM

w(D\D,)
Since I, < 2(15| + |I1) it follows that

I < olf13.
Changing variables yields
I — y(2)l

dA =
e e

h=8|f@ﬁ
DD,

>cSIf@WW@FWMd

XD,

where we have again used Lemma 1, This proves the theorem.

As a consequence of Theorem 1 we see that there is a constant ¢ such that

' @FQ — lz)dA<c =] f i3

{lo|>r}

for r > ry, provided fe K. In [3], Lemma 5, page 292, Axler, Chang and Sarason
prove a weaker inequality, which is valid for all inner functions s, that is

L@ — Jz}dA<ce(l — )| f1E

fis|>ryn{lz]>1/2

provided fe (sH%)L,
Here, y is a constant which is less than 1.
It is not difficult to show that this means that for f e (sH?)L

1 — |z

——dA4 H
T <!

yfmw

for a constant p between 0 and 1. We have not, however, beéen able to prove this
with p = 1 for the case of an arbitrary inner function s.
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Theorem 1 has a corollary which we pursue next. Let e H2 Call h a mul-
tiplier for K if flr e H? for all fe K. The closed graph theorem shows that / is a
multiplier if and only if

I/A1E < 20113

for a constant ¢ independent of f. Let # = {h|? be defined on the unit circle. Clearly,
& is a multiplier for K if and only if

4

< — "
o

for some constant ¢, since ¢ satisfies the connected level set condition.

It is well known that if /i is analytic on D, then Aif € H? for all fe H? if and
only if i1 € H*. Furthermore, if 1 € H* then according to [7], Theorem 3.4, p. 240,
dp = |7'(2)|%(1 — |z])dxdy is a Carleson measure for H®. Theorem 1 allows us to
prove the following analogue of the above result.

COROLLARY 1. Suppose h is a multiplier for K. Then |I'(2)|*(1 — |z])dxdy is
a Carleson measure for K.

Proof. Since 1 is a multiplier for X it follows that

4

n(z)12 < ) € —————.
I < @) < 00

Let 7, and J, be the integrals

I = Slh’f + 01 — |z]) dA(z)
D
and

L= Slf’(Z)h(z)P(l — 2D dA).
D

Using the preceding inequality combined with Theorem 1, and the fact that ||fA]jZ <
< c||f]l3 we see that

for j = 1,2.
Since

glf(Z)h’(Z)l""(l 12D dA() < 24, + 2,
D

the theorem is proved.
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§2

In this section we prove a result related to a theorem of Sarason. We also pro-
vide an alternative characterization of when a positive function u € L2 defines a Car-
leson measure for (@ H?)L if ¢ satisfies the connected level set condition.

Suppose s is an arbitrary inner function. Let P: L2 — (sH*)! be orthogonal
projection. In [10], Theorem 1, p. 179, Sarason obtained the following result.

THEOREM A. Let ge H? and define
T, ()= P(gf)

where fe H® n (sH*)*. The T, extends to a bounded operator on (sH*)* if and only
if g = b + sh, where b e H®. Furthermore, b may be chosen so

[1bllec = (I Tell-

RemarK. Theorem A follows from Sarason’s theorem as stated in [10] since
T, is in the commutant of S = T.

Now let v € L? be a positive function. We may define 7, on H*°n K to be

T.(f) = P(f),

where P denotes orthogonal projection onto K. We wish to determine when T, extends
to a bounded operator on X. Let B be the unit ball in K. Since for fe H* n B,

gEB gEeB

Sufgdo

< sup [S Iflzud(?]m [S gl do ]’
gEeB

TN > (Tufif> = S |12 46,

and since

it is clear that T, extends to a bounded operator on K if and only if ud0 is a Carleson
measure for K.

We now prove our main result.

THEOREM 2. If u is a positive function in L* then the following conditions are
equivalent : .

(i) T, extends to a bounded operator on K.

(i) The measure ud0 is a Carleson measure for K.

(iii) There are functions v e L™ and h € H® such that u = Re(v + @h).
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Proof. We must show the equivalence of (i) and (iii). One direction is simple,
If fe H® n K then if u = Re(v -+ ¢h)

\171ed0 = 1712 Re(0)40 < o1l 1

v

and thus (iii) implies (ii).

Now assume condition (ii) holds. Since ¢ satisfies the connected level set
condition we may apply [6], Theorem 3.1 to deduce that v = u(a(w))|dw| defined
on Y(T) is a Carleson measure for D. Furthermore, it follows that if B is the ball
in H2, then there is a constant ¢ such that

.
supSIglzdv < T

Z€EB

since ||T, || is essentially the “Carleson constant for X’ norm of ud6.
Let fe K. If F = f(6)d’, then Fe H* and ||F|j, < ¢||f]|; this may be shown
using the arguments of [6], page 358. It follows from factorization and changing

variables that

@.1) SlfludO — S Fldv < e|TlIEl < celTulllflh

T w(T)

Thus if X denotes the closure in H* of K, then A,(f) = S fu d0 defines a bounded

linear functional on X. By the Hahn-Banach theorem there is a function v, € L*
such that

AL = val do.
It follows that u — v, € L? © K. Since 1.2 © K = Hg @ ¢H?, we have

u— v = ge’+ og,.
Observe that

0 _
g’ =u— vy — 9g;

and thus
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Therefore T ., extends to a bounded operator on XK. Using Theorem A above we
g,¢

see that
€% = b + ogs,

where b € H® and g, € H2
Thus

uzvl—l—b—i—q)g3+@
and since u is real, the proof is complete.
As a corollary of the proof we can relate || T, || and || v|l, .

COROLLARY 2. Suppose u is a positive function in L* for which T, extends to a
bounded operator on K. Then there is a function v € L* such that :
() T,=T, and

G 1T < vl < ¢||T,l| where ¢ is an absolute constant.
Proof. We choose the v, of the proof of Theorem 2 so that |jv]l, = ||4,}
" and the b of the proof so that ||bll,, = |T, — T,—,1 I. Then

[olleo = Moy + blleo < Nloalleo + 1lloo =
= Al + 1Ty — T5 || < 4l + T I + IIT5 | =
= 2[4l + Tl < clIT, |,

where for the last inequality we have used equation (2.1). This completes the proof.

3. PERTURBATION OF ORTHONORMAL BASES

Let s be an arbitrary inner function, f e (sH?)+ and suppose that for a complex
number { the mapping

ALf) =D

defines a bounded linear functional on (sH?){. This happens, of course, if |{} < 1,
in which case

1= O

1) = -\ 2O

T
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and

YT 1 =50
K& O "V T BOF T—(z

is the normalization of the reproducing kernel for { in (sH?)*.

It can happen that A, is a bounded linear functional on (s#*)* even if |{| > 1.
For the case |{| = 1, see [2] for details. We will use the notation K(z, {) to denote the
normalized reproducing kernel in (sH?)+ for {. In particular, if [{| = | we have

[, S—(.C_)s(z).

Kz 0 = )
R T —

Leta € Tandlet E, = s-(«). Then £, is a set of Lebesgue measure 0 and the measure

v, defined by the equation '
—_— 2 — 2

L —[s(z) 1 S 1 — |z| dv. ()

ln — z[?

le — s(2)f2 2n
T

lives on E,. We can now state the following theorem due to Clark, [5], pp. 176—178. .

THEOREM B. Let s be inner and « € T. Then the following conditions are equi-
valent :

(1) The measure v, is purely atomic.

(i) The set {K(z, () : { € E,} is an orthonormal basis for (sH*)*.

Observe that if {K(z, {): { € E,} is an orthonormal basis for (sH*)* then it
follows that the map S: (sH?)1 —/? defined by

Sf = {ALIs" (L2}

is one-to-one and onto; here we have written £, = {{,}22,. In this case Parseval’s
equality becomes

3= 3 RIS E
k=1

These observations are also due to Clark.

We now assume that s = ¢. Since ¢ satisfies the connected level set con-
dition, the covering map nature of @ makes it clear that for « € T E, is countable
and v, is purely atomic. If E, = {{,}&2; then {K(z, {J:k = 1,2,...} is an ortho-
gonal basis for K. Suppose {; is a small perturbation of {,. 1t is natural to inquire
when {K(z, {;)} is an unconditional basis for K, that is when every fe€ K has the
unique representation

f=Y akK@ O
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and when there are constants ¢, and ¢; such that

cll Ml < Y Hal® < alf13.

This problem has been considered in [5] and [8] where it is mentioned that if {j is
close enough to {, to satisfy

)k: 1K) — KGEE < 1

then {K(z, {;)} is an unconditional basis. With the assumption that ¢ satisfies the
connected level set condition we will show that there is an &, > 0 such that if

o) — o)) <& forallk

and that {, and {, belong to the same component of @~ ({w: |w — &} < &}) then
{K(z, )} is an unconditional basis for K. (We actually state this condition some-
what differently.) We first prove the following result.

THEOREM 3. Let E, = {{;}2.1. There is an &y > O such that if for each k there
is a path (¢, () connecting {, and ; for which

S lp'(2)] 1dz] < &
(o S0
for all k, then for absolute constants ¢y and ¢y,

Wlf <Y %%T </l
for all fe K. *

Proof. Lete : D — Dsand § : D; — D be as in Section 1. Recall that if
g(w) = fa ()’ (w)'®

for fe K, then g € H? and

A lghz < cfl I3
for some constant c.
Let w, = Y({,). Changing variables in Parseval’s equality yields

lg(wi)l?

VI = X e enT o o)

and using Lemma 1 we get constants m and M such that

milfls < Yig(w)iX(l — Iw,]) < MifIz-
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Since the map s = 6-'¢(0) is inner and satisfies the connected level set condi-
tion, it follows from [6], Lemma 2.1, that {w,} is uniformly separated. Moreover,
since S : K — /2 is one-to-one and onto, it follows that the map T : K — £ defined by

T(f) = {gwV T — Tw,l}

is also one-to-one and onto.
Since {w,} is uniformly separated, it is not difficult to show that, given ¢ > 0
there is a 7 so small that if for each k

1
ow, — wy <t

then
Yilg(wo) — g(wl(1 — |wyl) < ellgl3
for all g ¢ H2
It follows that if T’ : X —£2 is defined to be

T'f= {g(Wk)Vl |Wk|1
then
[T"—TIE<c ¢

and by taking & sufficiently small it follows that 7" is also one-to-one and onto.

. W, — Wy .
Since | —t———%_ | < 1, it follows that
I —wowg
1 —|w .
0<y < ——I—"‘—I <7, <
-~ Wil

for constants y, and y, independent of k. Therefore, T'' : K —¢* defined by

T"f = {gwl 1 — [wil}

is also one-to-one and onto. Now let {; = o(w{). Changing variables we see that

T {f(C,Z)(l — WD }
V(G

Thus, another use of Lemma ‘1 shows that the operator S’: K —¢2 defined by

o { Ji(8) }
o (e
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is one-to-one and onto. The open mapping theorem now gives constants ¢, and ¢,

such that
| £ (C1?

lp" (Lol

To complete the proof we note that the condition

< allfl-

collflE < ¥

’
Wy — W
kT Tkl < g

1 — wewy
is equivalent to

—lcﬁ‘—— < tanh-%(t)
1 — |w ‘
("k . w,:)

for some path connecting w, and w;. Changing variables yields the equivalent

condition

< tanh-(z).

S ¥’ (2)] 1dz]
1 — y(2)l

(o 8
A final application of Lemma 1 finishes the argument.
As a corollary of the proof we have the following result.

COROLLARY 3. Let {{i} satisfy

lo’l1dz| < &
@pr 8

where {{,} = E, and &, is as in Theorem 3. Then S'f = {f({)\@’ (LY} is an iso
morphism of K onto {2

COROLLARY 4. Let {{;} be as in the above corollary. Then {K(z, ()}, is an
unconditional basis for K.

Proof. Let _
| I Doz
o) = 1= o@e(2)

be the unnormalized reproducing kernel for {; in K. Then

e = 116
@, =1
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Using the restriction on the location of {{;}, if |i| < 1, we see

1 — Jo(l)

lo’(Cl <
g

< o(r) le"(Ll

where we have used the Schwarz-Pick theorem, and Lemma 2. It is a simple matter

to use the equation ¢(z)@(1/z)= 1 to show that the above inequality remains valid
if |33 > 1.

Since K(z, {;) = J,/|I/,]l it follows from Theorem 3 and the above observations
that the linear operator W: K — /2 defined by

Wf = f, K( 550}
is an isomorphism of K onto £2. Let
€, = {‘5kn 1

where J,, is the Kronecker delta. Since W is an isomorphism there are functions
E,(z) in K such that WE, = e¢,. Thus

<En’ K( :Cé)) = (Skn’

that is, {E,} and {K( :{{)} are biorthogonal systems. Since {e,} is an orthogonal
basis for £2 and W is an isomorphism, it follows that {£,} is an unconditional basis
for K. Since {E,} and {K( ;{i)} are biorthogonal, the proof is complete, see [12]
pages 28 — 29 for exact details.

REMARK. In [1], Ahern and Clark construct an isometry V: L¥(do)—(sH?)+
which maps L%do) onto (sH?)*; here do depends on the inner function s. In the
z +1

case that s(z) = exp ( ) the atomic inner function, do is the Lebesgue mea-

sure on [0, 1]. Furthermore if x is a complex number such that
+1 .

— = X

L (B X Y]

then
V(e™) = cK(z, {)

where ¢ is a constant depending on (.
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Observe that exp (Z +1

) satisfies the connected level set condition. Thus
z — 1

we have a correspondence between orthonormal bases:

{e-intle o~ {K(z,0,): ¢, € By}

G+ 1

theorem about the other basis. Theorem 3 shows therefore that if L is sufficiently
small and

where = — 2min. Any perturbation theorem about one basis yields a

2nn — x,| < L

for all n, then {e } is an unconditional basis for L0, 1]. This was originally proved

by Paley and Wiener. See [12], Chapter 1, pages 42 —44 for more details and histori-
cal comments.

For other ¢’s, Theorem 3 combined with the isometry of Ahern and Clark
will yield perturbation of basis theorems for particular L*(da) spaces.

We now use Theorem 3 to give a sufficient condition that the inclusion oper-
ator If = f which maps K into L% du) be bounded below if p is a Carleson measure:
for K. Suppose E, = {{,}., and let ¢, be as in Theorem 3. For edch k let N, denote:

the component of ¢-*({z: |z — «| < &}) containing {,. We observe that the N,
are pairwise disjoint.

=]
Since u is a measure which lives on |_J N, it follows from [6], Theorem 3.2
k=1

that u is a Carleson measure for K'if and only if

S!q)’l du<e

Ny

for a constant ¢ independent of k. The sufficiency of this condition may be seen
directly from Theorem 3, for if f € K,

k

Sm?du - S|f|2d[,t——‘ |

Ny

AEDP S D
EASLZ N WP TIPSR SR AL
PZAD R Yy

Ny
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‘where &, € N,,. The condition that £, € N, is just the hypothesis of Theorem 3, thatis

lp’l [dz] < &
(et
"Thus

sz du < ¢ - cllfIB

.and p is a Carleson measure for K.
As corollary of this argument we have the following result.

-COROLLARY 5. Let u be a positive measure which is a Carleson measure for K.
Suppose there is a constant ¢ > 0 such that

Slrp'l dp > ¢
Jor all k. Then I : K — L¥dy) is bounded below.
Proof. Let fe K. Then
Sm%du >y szdu -

%
N

|f(¢k>|2g , e
_ o'l >
e Rk o

Ny

‘where &, is a point in N,. An application of Theorem 3 shows that
Wi = S_!f_l‘du > cllf18

:and the proof is complete.
In [11] Volberg proved the following theorem.

THEOREM C. Let s be inner and w 2 0 be in L. Then the following conditions
.are equivalent :
() I: H® © sH® > LYwd0) is bounded below.
(i) inf [w(z) + Ik} > 0.
zE
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We give an example which shows that this result does not hold if we replace
w by u, a Carleson measure for K with support on T.
Foranyae Tlet u, = v,,i.e.

> 1

kél lo" (Ll

= 6Ck’

where E, = {{;}&,. It is easy to see that if i, is the Poisson integral of y, ,

A 1 - 2
(@) + 1) =~ 12EC Ly
oo — @(2)[2
and
inf [fi,(2) + le(2)l] > 0.
zeD
Tetpu=p, — 1 -9, . Since g, lives on D, and since
lp'(CDl ™

1 — |p(2)? 2

@) = e — @ 1 —lg2)

i is a Carleson measure for K, by Theorem 0 of the introduction. Thus wis also a
Carleson measure for K. It is simple to verify that the condition

inf [u(2) + [p(2)[] > 0
zeD
still holds. However, if

f2) =Kz, )
then fe K, ||f|Z =1, but

S f12du = 0.

Thus condition (ii) in Volberg’s theorem is no longer sufficient to imply condition
(i), in case w is replaced by a measure.

We remark that condition (ii) is always a necessary consequence of condition
(i), even if w is replaced by a Carleson measure for (sH2)+.

Suppose: p is a Carleson measure for' K. We next consider the question of
when the inclusion operator I: K — L%dy) is compact.

In case-p = wd@ for a positive function w € L*® this problem has been solved
by Volberg, [11] for arbitrary inner functions s. His result is the following.
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THEOREM D. The following conditions are equivalent :
(1) I:(sHH)L — L¥wd0) is compact.
(i) lim w(z)(1 — |s(z)]) = 0.

Jz}-1

Here, w(z) is the harmonic extension of w to D given by the Poisson integral.

We will be able to extend Volberg’s theorem to arbitrary Carleson measures
for K supported on T. Of course we are also using the additional assumption
that ¢ satisfies the connected level set condition. Our first result is in terms of the
behavior of u on ‘*preimages’” of the circle T.

Let ¢ -{T)=\ I, where each [, is a connected half-open arc and. ¢ : J,—»T

n=1

1s a homeomorphism.

THEOREM 4. Let p be a Carleson measure for K supported on the circle T.
Then the following conditions are equivalent :

() I:K — L%dy) is compact.

(ii) lim S](p’] dp = 0.

- 00

n

Proof. We first show that (ii) implies (i). It is enough to do this under the
assumption that p lives on a union of arcs {_J({;, ¢;) where {, € E,, ¢, € E; and

lp'| df < g,
AN
since any y has a decomposition as the sum of finitely many such measures.
Let py be the restriction of u to ,Q(Ck’ £.). Observe that the support of

is contained in D; and that functions in K belong to E*(D;); see [6], Lemma 3.1 for
details. It is therefore easy to see that the inclusion operator I, : K — L% (duy)

is compact.
Furthermore,
; ' (z) ‘
Slfl2(du—~dun)= 5 S frap <y e S o' ds,
k>N k5w l9'(2)]
(G &) )

where z, is some point in (Ck; &,). Using Theorem 3 we see

M — Iyl* < ¢« sup o'l du
k>N

@&



CARLESON MEASURES 201

and thus [is the uniform limit of compact operators. This establishes that (ii) implies
(i).

We now show that (i) implies (ii). Restrict zto be on the level set {lp(z)| = r}
where r is as in Section 1. If 1 : K'— L?(du) is compact, it follows that

]iim1|}I(K( ;2)i = 0.

| 2]

Condition (ii) now follows from Lemma 3.2 of {6].

Now let fi(z) denote the Poisson integral of 4.

COROLLARY 6. The following conditions are equivalent :
() 7: K > L¥(dy) is compact.

i) ,[ilmlﬁ(z)(l' — lp(2))) = 0.

Proof. We must show condition (ii) of the corollary is equivalent to condition
(ii) of the theorem.

First observe that condition (ii) above is an easy necessary condition for com-
pactness as shown by Volkergin{11], page 475, even in the case where [i is the Poisson
integral of a measure.

We need conly show then that condition (ii) above implies condition (ii) of
Theorem 4. For this, again restrict z to the level set {|{op(z)| = r}. Then it follows
that

lim fi(z) = 0.
[z[—~1
Condition (ii) of Theorem 4 now follows exactly as in the proof of Theorem 3.2 of
[6] that (ii) implies (iii) b, on page 362.
This completes the argument.

Research partially supported by NSF.
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