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THE NEVANLINNA-PICK PROBLEM FOR
MATRIX-VALUED FUNCTIONS

N. J. YOUNG

1. INTRODUCTION

In recent years some complex interpolation problems with a long history
have come once again to-the fore because of a remarkable diversity of applications
in systems engineering. One version of the Nevanlinna-Pick problem is to minimise
the supremum norm over the set of bounded analytic functions in the open unit
disc U subject to a finite set of interpolation conditions (see [21]). There are appli-
cations of the solution of this problem in optimal circuit design going back over
40 years now (see [9]), but the recent heightening of interest was brought about
by results of V. M. Adamyan, D. Z. Arov and M. G. Krein [I, 2, 3] on a mathe-
matically equivalent problem formulated in terms of infinite Hankel matrices.
Engineers have found uses for these results in the problems of identification and
realization [8] and in model reduction and digital filter design [9,10]. The
Nevanlinna-Pick problem plays an important role in J. W. Helton’s far-reaching
application of non-Euclidean functional analysis to electronics [14, 15]. Evans
and Helton have even encountered the problem in modelling fluid retention in
the lungs [12].

In consequence both of these developments and of progress in operator theory
there have been many papers on Nevanlinna-Pick interpolation recently in both
engineering and mathematics journals. There are now several alternative
mathematical approaches which give a neat and unified treatment of a wide range
of interpolation and approximation problems. A powerful approach is based on
the ideas of commutant lifting [19] and contractive intertwining dilations [5], which
can be traced back to pioneering work of D. Sarason [20]. A very elegant method
[6, 7] is based on the theory of spaces with indefinite inner product, while a more
function-theoretic approach, using Hankel operators, stems from Adamyan et al
[1, 2, 3]. All of these allow the extension of the original interpolation problem to
matrix-valued analytic functions: this is essential for many of the new applications.
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To put all this mathematics to work we require efficient numerical algorithms,
and the present paper forms part of a project to implement such an algorithm for the
Nevanlinna-Pick problem for matrix-valued functions. A. C. Allison and the author
[4] have successfully implemented and tested an algorithm for the scalar problem,
but the extension to matrix functions makes for quite new difficulties, both mathe-
matical and computational. The main one is the question of uniqueness. A problem
which is to be solved numerically should be formulated so as to have a unique
solution. In scalar cases which are of practical interest there is always a unique
interpolating function of minimal norm; in the matrix case there almost never is.
The drift of the theoretical works cited above is to prove existence theorems and
to describe the set of all solutions. The purpose of this paper is to prove that there
is a natural strengthening of the minimisation condition which restores uniqueness
and which enables the unique minimising function to be calculated from an explicit
formula in terms of the singular values and vectors of a succession of operators.
These operators, here called after Sarason, are compressions of multiplication
operators on vector-valued H? spaces.

In order to convert the results of this paper into a practical algorithm one
has to represent these operators by matrices with respect to orthonormal bases,
and it is not obvious that this can be done efficiently. However, F. B. Yeh has shown
in his thesis [22] that it can, at least, subject to certain quite mild assumptions
on the data, and he has programmed a preliminary version of the algorithm given
in Theorem 2 below in the case of 2 X 2 matrices, with promising results. It takes
quite a lot more mathematics to achieve this representation: the details will be
published elsewhere.

To state the problem we introduce the space HZ,, of bounded analytic
functions from the open unit disc U to the space C™*” of complex m X n matrices,
m,n € N. C"*" carries the Hilbert space operator norm (sometimes called the spectral
norm), and H%,, carries the norm

mxn

” F”oo = Elelg”F(Z)”Cm::n-

An element of H,, has a radial limit at almost every point of the unit circle
by Fatou’s theorem (see [16]), and so HZ,, can be identified isometrically and
linearly with a subspace of L3, ,, the space of equivalence classes (modulo equality
almost everywhere) of Lebesgue measurable C™*"-valued functions on U with
essential supremum norm. A function B € HZ,,, is said to be inner if B(z) is unitary
for almost every z € 0U.

In this paper the following will be called the Nevanlinna-Pick problem.
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PROBLEM. Let Fe HY,,, m,ne N, and let B, C be inner functions of
types m X m, h X n respectively. Find a function G € F+ BHS, ,C such that
|Glloo is minimised.

A standard normal families argument shows that the infimum of ||G|l, is
attained. Here is a very simple illustration of the fact that the solution of the
problem is far from being unique in general.

Let m = n = 2, let C = I,, the identity matrix, and let

20

F(z):[o 1], B(z) =zI, for zeU.

The coset F+ BHZ,,C consists of all functions

G — [g() a ]
b &
such that g,(0) = 2, g,(0) == 1 and a(0) = 0 = b(0). Over such G’s the infimum
of | G|l is clearly 2, and the infimum is attained by all functions of the form

i
0 &.

with g,(0) = 1 and ||g,[|,,. < 2, of which there is a profusion.

In the absence of any physical reason for preferring one of the infinitely many
solutions, when calculating a minimising function we can either make an arbitrary
choice or impose stronger, mathematicaly natural requirements to force uniqueness.
S.Y. Kung [17] adopts the first alternative in his implementation of an algorithm
based on the work of Adamyan et al.; so does Yeh [22] in an algorithm which
is closer to Sarason’s approach. However, this arbitrariness has disadvantages
beyond its aesthetic repugnance. It is harder to implement than the “strengthened
minimisation” algorithm given below, and Yeh's numerical experience suggests
that it is also rather unstable. A discussion of numerical aspects and a comparison
of the methods will also be presented later. On the assumption that God is an
engineer as well as a geometer, I am inclinéd to expect that the stronger mini-
misation condition, seeming so mathematically “right”, will have physical signi-
ficance.

The example above illustrates the extra conditions we demand. How can
we single out one of the infinitely many minimising functions diag{2, g,}? It is in
the spirit of the problem to choose [|g;]le t0 be as small as possible. This occurs
uniquely for G = diag{2, 1}. Now

&) = 5:,(G(2)),
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where, as usual, 5,(4)>5,(4)> ... denote the singular values or s-numbers of a
matrix 4 (see [13]). Thus, if we ask for an element G € F + BH$5,C of minimal
norm which is such that

sup 5,{G(z)) = min,
ze U

then the unique solution is G(z) = diag {2, 1}.
It is obvious how to generalize this minimisation condition. For G € H3,,
write
' 57(G) = sups;(G(2))
zel
and
s°(G) = (s32(G), s7°(G), s¥(G), ...)

(this infinite sequence has at most min(m, n) non-zero terms). Of course
s$(G) = ||G|l,. We shall simply ask for the solution of the Nevanlinna-Pick
problem which minimises not only [|G|l,, but also s*(G), with respect to the
lexicographic ordering. We shall find that, as long as B¥FC* is continuous, this does
determine G uniquely, and moreover that G has the striking’ property that each of
the singular values 5;(G(z)) is constant a.e. on the unit circle.

2. OPERATOR-THEORETIC PRELIMINARIES

The unique G € F + BHZ, ,C for which s%(G) is a minimum will be constructed
in terms of the singular value analysis of suitable compressions of multiplication
operators on H? spaces, but whereas in [20] it sufficed to consider a single such ope-
rator, here we require a succession of them. Once again the justification depends
on L'-L* duality and a factorization theorem.

We depart slightly from the notation of [20]. For m € N let L7, be the space of
square summable Lebesgue measurable functions (modulo equality almost every-

where) of C"™-valued functions on U, with pointwise algebraic operations and inner
product

() = -\ (e, y(c)gndd.
2n

w
S

L is a Hilbert space: it will be helpful to think of its elements as column vectors
of scalar L* functions, as we are going to study elements of HZ,, by making them
act by multiplication on L}. For m,n € N and 1<p<co let L%, denote the space

of (equivalence classes of) Lebesgue measurable functions F from dU to C”*” such
that the function

0 — [[FE)i,
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belongs to L? of the circle, where || - ||, is the /, norm on C™**:

= [{ B} o<

j=0

5o(A) if p=oc

L2, is a Banach space with respect to the norm

9

7T

[ p— T
i1, = {{e Y PO} tp <o
esssupl| F(e'%)]) if p= o0
0

and L2, is a Hilbert space with respect to the inner product
2
1
(F,G) = ——S tr{G(e?)*F(e?)}dg.
0

Any F e L3, determines a bounded linear functional {-, F) on L},, by

2

(G, F> = 51- S tr{ F(e®)TG(c))d0,
‘ 4

[}

243

where the superscript T denotes tfansposition. The mapping F — (-, F) is an

isometric isomorphism of L?, , onto (L}, ,.)* (see [20]).

For fin L%, or L2 we define the kth Fourier coefficient of £, for k € Z, to be

flo = f(e'9)e~*0d0;

eL/‘\;‘f

this is an element of C”*" or C™ respectively. Then Hf,, , HE are the subspaces
of L7, LE respectively consisting of those functions whose negative Fourier
coefficients vanish. As in the scalar case H” can be regarded as a space of analytic

functions in U via the correspondence

i w2,

Any F € LY,, induces a multiplication operator My:LE — L% in an obvious way:

(Mpx)(z) = F(2)x(2)
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for xe L}, ze OU. We shall sometimes write Fx in place of Mx. Clearly
IMg|| = ||Fllw. For F e L., we define F € LY, ,, F* e L%,, by

F(e!) = F(eif)",
F:::(eio) — F(ei"_)*

(if 4 € C"", A = [a;;], then 4 € C™" is defined to be la;;D.

We can now give the most straightforward generalization to matrix-valued
functions of the relevant results of Sarason. This can be obtained using little beyond
the ideas of [20], and is known to many people; however, we prove it in full as a
preparation for our main result,

THEOREM 1. Let Fe H,, and let Be HY,,, C € HS,, be inner functions. Let
K be a closed subspace of L%, containing FC*H?2 + BHZ, and let

T:C*H? - K © BH},
be defined by
T = PM, | C*H}
where P is the orthogonal projection operator from L% to K © BHE.
Then
W F+ BH;?XMC”H'OO

[o]
(i "/BI{IN X IIC

= [ITll.

Furthermore, if G is an element of minimal norm in F + BHS, ,C andu € C*H} is a
maximising vector for T then Gu = Tu.

By a maximising vector for T is meant any vector u # 0 such that
| Tull = || T|l [lu|l. This theorem does not require B and C to be rational, but without
some restriction we cannot be sure that 7 will have any maximising vectors, and
in fact the second statement can be vacuous. In the case that a unit maximising
vector u for T does exist, the pair u, w = Tu/|| T|| (when T # 0) is called a Schmidt
pair of T corresponding to the singular value | T||. The pair u, w satisfies

lull =1 =[wll, Tu=|Tiw.

We note that Theorem 1 can be deduced from the commutant lifting theorem
but we wish to set up the machinery for Theorem 2.

Note also that a possible choice for K is (detC)” HZ,.
Proof. If Fe BHY, ,C then

TC*H? < PBHZ,,-H: < PBHZ = {0},
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so that 7" == 0. It follows that, for any FeF + BHR,,C, we have PMy = PMp.
on C*H?, and hence

T = |PMz] < Mzl < [Fllo.

Taking the infimum of the right hand term over all FeF + BHZ,,C yields
Tl < IF+ BHZ.,C|.

To prove the opposite inequality, suppose {|F + BHZ,,C|| > 1. It is easy to
see that the annihilator of zH}, ., in L., (which we identify with the dual space
of L., as indicated above) is HZ,, (cf [20]). Using the relation

{f, B*gC*» = {BfC, g>

for all fe L} ,,, g€ L%.,, we infer that the annihilator of zBH}.,C in LZ,, is
BH, ,C. 1t follows that the dual of zBH?,,,C can be identified with LY, ,/BHY, ,C

mxn's-

Our supposition thus implies that there exists f € HL, , of unit norm such that
pp J xn

{zBfC,F) > 1;
that is
2z
(2.1 —1~-S tr{el?F(e®) BfC(e?)}d0 > 1.
2n ) :
We now wish to apply Theorem 4 of [20] to write the H? function f as a pro-

duct of two H? functions; however, this is formulated for functions whose values.
are operators from a Hilbert space to itself. Accordingly we introduce the function

0 0
A=[s o]
/o
of type (n -+ m)x(n+ m). By the cited theorem of Sarason there exist k,,
k2 € H(2n+m)x(n+m) SUCh thatf;. = klkg H ];Zkg = (fl* 1)1/2 and k;kkl = kgfcz . Let

g = [0 Z,Jk, of type mx (n+-m),

go = [0 L]k, of type nx(n-m).
Then

et =10 L1fi [?]=f

n
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and the A% norms of g, , g, are at most 1. Thus, on substituting in (2.1), we have

27 27
1< L tr{e® FTBg,gIC}d0 = L tr{g1 CFe®Bg,}d0 =

2n 2n
0 0
2=

1 I . _
= —\ tr{gfCF*e~"“Bg,}d0 :(FC*g2,ZBg1)L2
2 nx (n+m)

0

The subspace of L7, ) consisting of those functions each of whose columns be-
longs to K can be identified with (and will be denoted by) K®C"*™. Let y be the
orthogonal projection of zBg, on this space. Since FC*g, € K®C"+" we have

(FC%gy, y) = (FC¥*gy, zBg,) > 1.

Now each column of zg, is orthogonal to HZ, and hence each column of ZBg, is
orthogonal to BHZ. As K = BHZ, it follows that the projection onto K of any
column of 7Bg, lies in K © BH? . Thus y € (K © BH.) ® C"*". We have also

¥tz < lzBgullze < 1.

And if we write x = C*g,, then x € C*H; @ C"*™ and || x||,2<1. Thus we have
constructed vectors x € C*H? ® C"*"™, y e (K © BH2) ® C"*™of norm at most
one such that

(Fx, ), > 1.

mx (n--m)

1t follows that
(2.2) IPM{| > 1,

where P is the orthogonal projection from L2, ,4m to (K © BH,) ® C**™ and
M, is the operation of multiplication on the left by F, acting from C*H; @ C**™
t0 Ly (usm - In terms of the notation of Theorem 1 we have

P=PrP ®In+m,MF:MF®In+m9
and hence )

PM, =T Q® I,

1tm .

The relation (2.2) now implies that
N7 > 1.

We therefore have

I TN = IF+ BHR,C].

nmxn
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The second statement follows just as in the scalar case. Suppose that ¥ € C*H?
1s a maximising vector for T and that G is an element of minimal norm in
F+ BHZ, ,C. By the first part of the theorem, ||G|» == || T||. Hence

NIl el = | Tull = 1PMgu]| <||Gul| < {Glesllull < | 71 ]l

Thus || P(Gw)|| = ||Gul[, and so
Gu = P(Gu) = Tu.

If n = 1 then u is a scalar function and we may divide through, as in the scalar
case, to obtain a formula for G

G = Tulu,

so that G is determined uniquely when 7 has a maximising vector. As we have seen
in the example in Section 1, such is not the case when m, n>1. Roughly speaking,
the relation Gu = Tu determines only a rank | part of the function G, and it seems
to be a non-trivial problem to find the rest of G even for a single element of minimal
norm in the coset in question. The path followed by Adamyan et al. is to observe
that if we can find » pointwise independent maximising vectors u,, ..., u, for T
then we shall have

Gluy ... u,) = [Tuy ... Tu,),

from which G may be determined. Our example of non-uniqueness shows that such
independent maximising vectors do not exist in general, so what they do is prove
that there is a function Fe F - BH, ,C such that the T operator corresponding
to the problem F -+ zB wnC has n independent maximising vectors (actually
they work in terms of equivalent statements about block Hankel operators). They
characterize all such functions F : in using this approach for numerical computation
there seems to be no alternative to making a choice of a single F quite arbitrarily.
Furthermore, the calculation of such an F is quite a substantial step numerically,
whether by Kung’s [17] or by Yeh’s [22] method, and Yeh’s experience suggests
that it is none too stable. I believe that the formula which follows in Section 4 not
only gives greater insight but also makes for a simpler and more stable numerical
algorithm.

3. DIAGONALIZATION LEMMAS

In this section we derive some technical results which will be needed for the
proof of the main theorem, in which an algorithm for the solution of the strength-
encd Nevanlinna-Pick problem is presented. The proof for m X n matrices is by
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induction on », which necessitates peeling off a dimension, and this is most perspi-
cuously accomplished by reducing the minimising function to block diagonal form.

Recall that the Nevanlinna class N can be regarded as the space of functions
f, analytic in U, expressible in the form g/h where g, 1 € H® and h # 0 (see [11]).
Each of g, /1 has a factorization of the form BSF where B is a Blaschke product, $
is a singular inner function and F is an outer function. We say that fe N* if fe N
and f can be written in the form g/ where g, 1 € H* and the singular inner factor
of /1 is 1. The importance of N* here is that N* n L*® = H* ([11, Theorem 2.11]).
We denote by (N+)™ the space of column vectors with m components, each belong-
ing to N.

LEMMA 1. Let ¢ be a scalar inner function and let ve H: © oHE, v # 0.
There exist an outer function a and an inner function § such that la(z)| = |je(z); ™t
Jor almost all z€ OU, ya e N* and

Ya=pa ae ondl.

Proof. Since v | oHE, v L o(l2©zH}) and so ¢v e zH:. Thus if
v=[vY, ..., v"%,

@)@ = Y vi(2Dev'(2),

H

and the latter is clearly an H* function. It therefore has a factorization [11,
Theorem 2.8}

ollo(-)|2 = yg

where y is inner and g is outer, g € A*. Outer functions, being cxponentials, have
square roots which are again outer. Let g be the reciprocal of an outer square root
of g. Then a is outer (for the class &, in the terminology of [11]), and

ol e(-)|* = a2
Taking moduli we obtain ||v(-){{~! == |a| a.e. on dU, as required. Moreover

aa = |v(-)[|"% = pa*ly,
so that
Ya - pae NT.

For x, y € L2, we shall say that x is pointwise orthogonal to y if x(z) 1 y(z}

for almost every z € dU.

LeEmMA 2. Let ¢ be a scalar inner function and let ve H: © oHE, v # 0.
Let a € N be outer and satisfy a(z)] = ||v(2)||~"a.e.. There exist vy, ...,v,_1€ H
such that a(z)v(z), vi(2), ..., v,_1(z) constitutes an orthcnormal Easis of C” for
almost all z € 0U.
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Proof. Asin Lemma 1 we have ¢v € zH? and hence apv* € Hf,. By Lemma
2.1 of [18] there exists 0 € HX,_y, which is “left inner” (i.e. isometric a.e. on 0U)
such that
KerM . =0H2_,.

apv

Thus v*0 = 0, so that v is pointwise orthogonal to the columns of 8, and the same
is therefore true of av. As 0 is isometric a.e., the columns of 6 constitute n — 1
orthonormal vectors in C" for almost all z € 9U, and hence we may take vy, ..., v;_;
to be the columns of 0.

We now prove the main diagonalization lemma. This states, roughly, that in
Theorem 1 we can take both # and Gu to have all components except the first ident-
ically equal to zero, and that G will then have block diagonal form.

LEMMA 3. Let F, B, C, K and T be as in Theorem 1, and let m, n > 1. Let
4o = |\T|| and let vye C*H:, wy€ K © BHZ be a Schmidt pair for t, (so that v,,
w, are unit vectors and Tvy = tgw,). Let G be an element of minimal H® norm
in the coset F + BHZ, ,C. Then

() lve(2)]] == |wo(2)|} for almost all z € OU;
(i) ||G(2)|| = tp a.e. on OU;
(iii) there exist V € LY, W € LR, . such that CVand W¥ are inner functions,

3. Vig, =[f0...0T
and ’
{3.2) Wiy =[x 0 ...0]F

Jor some '€ L? and scalar inner y, and such that

WGV, W*FV e H?, .

W*GVﬁ[g° 0]
0 &

Moreover,

for some g, € H® of constant (a.e.) modulus t, on 0U, and some g, € H 1), 1)
such that gl < t.

Proof. (i) Certainly ||G(2)vy(2)|| < t]lve(2) || a.¢. since, by Theorem 1, {|Gileo = 1.
If strict inequality holds on a set of positive measure then, for some ¢ < 1 and all
z in a set of positive measure,

1G@)vo(2)]F < cH5llvy(2) |12
On integrating both sides round U we obtain

1Geoll%y < illvll . = 73
m —-n
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However, Gv, = tyw, and so ||Guy|| = ¢#,. Thus equality holds a.e., and so
(3.3) tollwo(2) | = 1G(2)ve(2) | = 1ollve(D)Il

. This proves (i), as the result holds trivially if 7, = 0.

(ii) From (3.3), ||G(2)|| = ¢, a.e.. From Theorem !, ||Gjiw = #,, and hence
G € 1 ace..

(iii) Let f = det B, y = detC, so that B8, y are scalar inner functions. We
can suppose t, # 0. We wish to apply Lemma 2 with v = yu,. As v, is a singular
value of T corresponding to the non-zero singular value #,, vy L KerT. If x € BH?
then er BHZ = B(adjB)H? < BH?, so that the projection Tx of Fx on
L% © BH? is zero. This shows that BH? < KerT, and hence v, € L2 © BH].
Furthermore v, € C*H? < yH?, and hence yv, € H: © fyHE. By Lemma 1 we
may choose an outer function a,€ N such that jo] = |lve(-)]}~%, and by
Lemma 2 there exist v, ..., v,_;1 € HY such that a,(z)vy(z), v1(2), ..., 5_1(z)
is an orthonormal basis of C” for almost all z.

By Theorem 1 Gu, = tyw, and hence

yw, == 19 Gy, € HE,.

As also wy € (BHE)L < (BHE)L, we have yw, € H,,, @ ByHZ,. Applying Lemma 2
again we deduce that there exist wy, ..., w,_; € H such that ay(z)w,(z),
wi(z), ..., w;,_1(2) is an orthonormal basis of C" for almost all z. Now if @ is any
m x m inner function, the relation

z(det ®)d* = zadj®

shows that every column of @ belongs to Hy, © z(det ®)HZ,. Taking @ to be the inner
function

[agywo w1 - - - Wi—1]
we infer that, for a suitable scalar inner function ¢, wie H3, Q¢Hy, 1 < j<m—1.
This implies that W} € H},. We have observed that Wo L BHE , so that Bw, € HZ,,
and, by Lemma 1, ya, € N* for a suitable scalar inner function y. It follows that
Wa, Bwy € (N*Y". As yya,fw, hasnorm 1 a.e. on U we have ya,pw, € Hs. Write
7 = Py then y is a scalar inner function. Let

V = [agvy V1 ... Uy_1],
W = [xagwe oW1 ... ¢Wp_a)-

Both these matrix-valued functions are unitary a.e. on dU. As yaywg, w* € Hy
we have W* € HZ,,,, and so W* is inner. As v, € C*H},
V ={ayCuy Cuv; ... Cu;_4]

is in H}., and so is also inner.
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We next show that‘ W*GV € HY,,. The (j -+ 1th column of this function,
0 <j<n—1,is W*Gv], which clearly belongs to H;?. We have also

m

WILO ... 01" = ayxw,,
whence
3.4 WHagwy, = x[10 ... 0]%.

The first column of W*GV is thus
W Gagvy =W*agtywy, = tgW*agwy = tx[1 0 ... 0] .

Hence W*GV e H;,,. Furthermore, since W*FV differs from W*GV by an
element of W*BH, ,CV, which is a subspace of H3,,,, W*FV also lies in H, ,,.

Equation (3.4) and a similar calculation for ¥ show ‘that (3.1) and (3.2) hold
with f = 1/a,.

Lastly, the relation
W GV (V*vg) = t,W*w,

yields
f toxf
0 0
W*GvV . =
0 0

whence W*GV has the form

WHGY = [’“z * ]
0 &3

for some g, € H,_1),(n-1y. By (ii) the Euclidean norm of the first row is at most
1 for almost all z, and hence the first row must be [£,x 0 ... 0].
For spaces of functions E, F on 0U we make the definition

[ﬂ:{[;]:xea yeF}.

A A
LeMMA 4. Let m, n > 1 and let Be HZ,,,, Ce HZ, be inner Junctions.
There exist inner functions B and C, (m — 1)-square and (n — 1)-square respec-
tively, such that

3.5) [~° ]z 0 ]néTH,?
CTH; H;_,

0 .
(3.6) [ N ] [ % 1nsm.
BH12)1—1 flli—l '



252 N. I. YOUNG

The following relations hold.
(i)éH,z:;,,én[g 0 ]:[0 0 )

He vyxn—y 0 BHE 1xu-1C i

0 0 N
(ii N is the orthogonal projection on -l of C¥HZ;
)| g HE gonal proj . | o

n—1.4

0 . o 0
(1ii) [ is the orthogonal projectionon

m 1 @ B - 1 2
(iv) Suppose further that

] of L% © BHE,.

‘tm—1

&:[go ]EH?;?xny
&1

with g9, 81 of types L x 1, (m — 1)yx(n — 1) respectively, and that K is a closed sub-
space of L2, containing éé"‘Hf - l?H,?, Then the closure K of the orthogonal pro-

. 0 A 2 . ~ ~ e
Jjection on [ . ] of K is a closed subspace of L;,_; containing g.CH,_ + BH3 1.

L m—-1
Proof. The space E = {fe HE ;: [(;] € éTH;i} is closed and z-invariant in

=1, and hence, by the Lax-Beurling theorem [16] is of the form ®H? for some
k<n—1and some ® € H5_,,., which is isometric a.e. on 0U. By considering
columns 2 to » in the relation

CTadj €Ty = (det O,

we perceive that £ contains non-zero elements fy, ..., f,_, which are pointwise
mutually orthcgonal. Hence we must have k = n — 1, so that @ is in fact inner.
Take C to be &T.

To prove (i), consider any /1 € HY,,, such that

BhC = [0 0]
0 g

for some g € Hi _1yxn—-1) - Since B is inner the first column of /1(, is zero, and we
have hC = [0 k] for some k € H, (,—1y. Thus

A 0
THT
émh “[kr]’

-and on applying (3.5) to each column of the right hand side in turn, we infer that
KT = CTf7T for somefT € Hf_1yym- Since kT is bounded and CT is inner /T is also
bounded. Thus k = fC where f€ H, (,—1y. Thus

[0 0] = Bhé = Blo 01 = [0 BFC).
0 g
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Hernce

ie- [}

L 0
o= [gé*J'

On applying (3.6) to each column of this equation in turn we deduce that gE‘* = Bop
for some ¢ € H{,_1yx(m-1)- As above, since g is bounded and Band Careinner, ¢@ must
be bounded, so that g e BHE”,;,~1),<(,,_1)C. This proves one inclusion in (i).

To prove the opposite inclusion, consider any ¢ € H, ), (m-1y. By (3.6) applied

so that

0 .
to the columns of[ - ] , there exists '€ H,3% ;-1 such that

Bo |
8= [ lgqo] "

Likewise there exists h¥ € HZ,,, such that
éT/lT = [éng] .

Bhé =[0 BfC) = [O 9 ~:|.
0 BeC

Then 4C = [0 fﬁ’] and so

This concludes the proof of (i).
(ii) Taking bars in (3.5) and multiplying by z we have

r A —
[_,0_ ]:,__o ]nEC*HE.
zC*H,_, I_Z H;_y

‘Taking orthogonal complements in L2 we get

2 2 A 2 A
B =5 |+ =[]+ ¢em,
C*Hji_, Hi 4 0
2 2

. A o . 0
since C*HE = HE. Projecting on [LZ
n—1

(iii) On taking orthognnal complements in L2 in (3.6) we obtain

] gives us statement (ii).

e = | | e+ @
[L?"l—l @ EHﬁI_l O m mn *

4 — 1685
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Since HZ 2 BHE ,(H2)* < (BHZ)L and hence

2 2
1 L ~ ]: [L ] "l— (L%n e BHI?I .
I_len—l e B 171—1 0

Projecting on [L';) ] gives us (ii1).

m—1

. . A Ale . L. A 0 .
(iv) Since K 2 BH} , K contains the projection of BH?, on |: . ], which
-1
certainly contains the intersection of these two spaces, which is BH3_,,

by (3.6). Thus K = BH2_, (we are identifying x € L2,_, with [0

, where it is
x

safe to do so).
We wish to show that g;C*H:_, < K. Consider y € C*H?_,. By statement

(ii) there exists x € L2 such that [“\] e C*H?. Since]%Q@'CA‘*HE , we have [go x] ek.
y &Yy
Projecting gives g,y € K, as desired.
We need the following elementary observation.

LEMMA 5. Let x, y be column vectors in C" such that y # 0 and

xy =c¢, el =|xllyl,
where || - || is the Euclidean norm. Then
c
xT — ‘ y*
(b4l

Proof. We have |(»,%)! = ||y|l|ix], and hence X = Ay, for some /e C.
Then
c=,x)= (=7
and so

4. SOLUTION OF THE STRENGTHENED NEVANLINNA-PICK PROBLEM

In Section 1 we saw that minimising the H,, norm over a coset F -+ BH X ,C
will hardly ever determine a unique function in the non-scalar case, and that a plau-
sible attempt to restore uniqueness is to impose the stronger requirement that the
infinite sequence

52(G) = (s3°(G), s7°(6), s2(G), ...)
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be a minimum with respect to the lexicographic ordering of RN. We are now ready
for the main result of the paper, which states that for a wide class of F, B and C
(including the rational case) there is indeed a unique element which minimises s>
and that furthermore this extremal element can be written down explicitly in terms
of singular values and vectors of a succession of Sarason-type operators.

We denote by %,,.. the space of continuous C™*"-valued functions on dU.
In the algorithm and proof which follow the reader is recommended to take K
and all the spaces K to be L2, to begin with. Using the more general X causes com-
plications, but is necessary for the practical implementation of the algorithm.

For any sets E, F < L2 the pointwise orthogonal complement of E in F is
defined to be

{fe F: f(z) L e(z) in C" for all e € E and almost all ze dU}.

THEOREM 2. Let Fe H®,, and let B € HY,,,, C € H, be inner functions such
that B*FC* € H® ,, -+ €,uvn. The minimum of s*(G) over all G in the coset
F 4+ BHR.,C, with respect to the lexicographic ordering, is attained for a unique
element G in the coset. This function G can be obtained by the following algorithm.

Algorithm

Let K be a closed subspace of LZ, such that K 2 FC*H, + BH,,.

Define an integer r > 0, subspaces V; of L} and K;, E;, W ; of L}, operators
TV, - W,;,0< Jj <y, positive numbers t; and vectors v; € Vj,wl eW;, 0<j<
<r—1 /nductzvely as follows.

Let Vo= C*H?, Ky= K, Ey= BHE and W,= K, © E,. Let

Ty= PoMy:Vy— W,

where MV, — L}, is the operation of multiplication by F and Py:L% — W, is
the orthogonal projection operator.

If Ty =0 then r = 0 and the desired function G is identically zero. Otherwise,
let t4=||Tyll > 0 and let vy € V4, wy € Wy be unit vectors such that Tovy = few,.

Now suppose that V;, K;, E;, W, v;, w, and t; have been defined for 0 < i <
< j— 1. Let V; be the orthogonal projection of V;_, onto the pointwise orthgonal
complement of v;_, in Lj. Let K; be the closure of the orthogonal projection of K;_
onto the pointwise orthogonal complement of w;_, in I% . Let E : be the pointwise
orthogonal complement of w;_, in E;_,, and let W; = K; © E;. Let

T;=PM:V, > W,

where M:V; — L3, is a multiplication operator and Pj:L,z,, — W, is the orthogonal

projection.
If T; =0 let r=j (in which case the construction stops). Otherwise let

t;=|T;|l and let v; € V;, w; € W, be unit vectors such that T,v; = t;w;.
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The construction terminates, with r < min{m, n}. The minimising function G

is given by
I,
4.1 G(z) = Y‘ —

W, (4 (:3{
N TYEO

Jor almost all z € dU. Moreover, s(G(z)) is constant a.e. and equal to t; on AU, so
that

co(G) (IO: ’] > t2, ] tr—ls 01 Oa . )

Proof of existence. From the fact that any element of ¥,,,, can be uniformly
approximated by trigonometric polynomials it is easily shown that PyM : C*H2—W,
i1s compact (this is a standard argument: see [20, § 6]). So therefore is its com-
pression 7} , and the unit maximising vector v; does exist.

Let us show that the minimum of s*(G) is attained. There is a sequence (/,)
in HZ,, such that

|F + BAC|| - ||F + BHZ,,C |

as i — oo. The sequence (/1;) is bounded in H$,,, and so, by Montel’s theorem,
it has a subsequence which converges to an element 1 € HP., uniformly on com-
pact subsets of U. It is clear that

|F + BhC||, = ||F + BHZ,,C].

Now let 4, denote the set of all 1 € HZ,,, for which this equality holds. There is
a sequence (#;) in ¥, such that

sP(F + Bhy,C) — inf s(F + BhC)
ke g,

as [ — co. A second application of Montel’s theorem shows that s%(F + BhC)
does attain its infimum as / varies over ¢,. Continuing inductively we obtain the
desired conclusion after min{m, n} steps.

The proof of the formula for the extremal function in {the general case is
quite complicated, and I believe it will be a help to exhibit the idea of the proof in
a special case. Take m -=n = 2, C = I, so that we may choose K = H§ in the
theorem. Suppose further that the Schmidt vectors v, , w, of T, corresponding to the
largest singular value 7, have the form

o<[s) o[

for some @, b € H2 If G is an element of minimal norm in F + BH$2, then, by The-
orem 1, ||G|| = ||T| = t, and

Gy = Tv, = towy.
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G — tobla = ‘
0 *
By Lemma 3(i), |a(z)| = |b(z)! a.e., and so the (1, 2) entry of G must be identically
zero. Write

Hence

o[

where Y, is inner, g € H* and |g||, < t,. We now know the first column of G it
remains to find the second column. Write F =[F, F,]with F; € H3;q ; then

ro .
(4.2) , [ ] € F, + BHS, .
. g
Since 57°(G) == |igl|e , the second column of the desired G is precisely the element

of smallest norm in

-
[ Hw] 0 (F, + BHEY.

Pick any element [0 f]T of the latter set: we know from (4.2) there is at least one
such. We have '

0

[; ] (Fl{rBHm) = [0] + [H‘”

o Lf

N [(f)”] i [ﬁ(;l”] N [f+(;§H°°]

for some scalar inner function E’, by Lemma 4. We have therefore reduced the deter-
mination of the second column of G to a scalar Nevanlinna-Pick problem. We
could of course treat this as an independent problem and solve it by known method,
but it is clearly preferable to express its solution in terms of the operator T, con-
structed in the first stage of the solution.

We are looking for the element g, of smallest norm in f-- BH®>. By Theorem 1,

]nsyg;l:

4.3) S0y =T

where v, , W, is a Schmidt pair corresponding to the largest singular value 7, of
the operator

7:1 =P

toiu2M g H2 — H® © BH? .
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‘We must relate fl to the operator T described in Theorem 2. Here

e

For any s € H? we have, in a self-explanatory notation,

[O 7, ]m - {Pﬂsegzs(f/:>] ZP[ ][f(iz] N

T,=T,

a

H @BH"

][?h] -

P

H oBH BH

0
sl g,

=P .
Hie (Bugn[ .

H 0

Thus
T, =T,

It follows that ¢, = 7, and that

0 0
vy w,

constitutes a Schmidt pair corresponding to the singular value 1, of T;. By (4.3),
£V, = I, and so, for the extremal G € F + BH3,,

4.4) Glo, v] = [towy ;9]
As vy(z), v,(2) are orthogonal vectors in C2 for allmost all z,

s [l 0o(2)*
() (] [ I'lvl(Z)H‘z][vl(Z)*]’

and hence (4.4) yields
= ¥, @
Sl

G(z)

for almost every z € AU.
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The diagonalization lemmas of Section 3 enable us to convert the general
problem to a form in which the above idea, together with an induction argument,
gives the desired result,

Proof of the general case. By Theorem 1, we may assume t, # 0.

Step 1. The theorem holds when n = 1.

In this case v, is a non-zero scalar function in H* so that the relation
Guy = tow, , which we know from Theorem 1, can be solved to give G == #ywov5t.
To see that this agrees with the prescription in Theorem 2 observe that ¥; = {0} and
hence r = 1, so that (4.1) gives

G(z) =

- wo(z) v
[ vo(Z)II2 @

a.e.on 0U. Since vy(2)*/|| vy(2)]|2 = vy(z)~* the two formulae for G(z) agree.

Step 2. The theorem holds when m = 1.
As before, Gv, = tyw,. By Lemma 3(i) and (ii) we have, for almost all
z€dU,
NG = 1y, w2} = |[wo(2)]l.

When m == 1 G(2) is a Tow vector, so we may apply Lemma 5 with xT = G(z),
¥ = p(z) to obtain

G 0 0
® = no()n2 R

This does agree with (4.1) since clearly W, = {0} and hencer = 1.
Now consider a fixed m > 1 and proceed by induction on n.

Step 3. Diagonalization.

Suppose n > 1 and let G be any element of F + BH}?, ,C for which |G|
is a minimum (and hence equal to ¢,).

According to Lemma 3 (iii) we can choose W € LY, ., V € LY, such that W*
and CV are inner, W*GV € HY,, and

WGV = [gﬂ 0 ]
0 &

where gy € H, g, € HE_ 1) (1204 [Igolleo == || Glleo = 1. Let us write G = W*GV,
B=W*B, C = CV, and consider the strengthened Nevanlinna-Pick problem
G + §H,°,?X"é Since W* and V are unitary a.e., s°(h) = s®(W*hV) forany he HS, .
Furthermore the mappmg h " W*hV is a one- one correspondence between the
cosets F 4+ BHY,,C and G + BH,,,>< ,,C so that if / is an clement of the latter coset
for .which s is minimised, the WAV* is a solution of the original strengthened
Nevanlinna-Pick problem, and converéely.
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Now suppose that G € F + BHZ,,C is a solution of the strengthened Nevan-
linna-Pick problem, so that s®(G) is a minimum for the lexicographic ordering.
Then

A~ g 0
G = [ N :I, g € Hoo’ & € H(osl—l)x(n—l)
0 g

and s°°(&) = (ty,5°(gy)) is a minimum over G + BHS ,,,x,,é Introduce the set .4
of all functlons of the form dlag{go, h} with /1 € HZ, _1yxu_1), Which belong to
G + BH,,,X,,C Since ./ = G + BH ,,,x,,C the mlmmum of s® over .# is greater
than or equal to its minimum over G —o—BH,,,X,,C on the other hand, since
the minimum over the latter coset is actually attained at G, which belongs to ./, it
follows that the two minima coincide. Thus, to find g;, we need to find
h € H, _1yxm-1y such that

(4.5) [g" O]e[g" }+BH;:;,,C WAEY + BHE,C
0 A 0 g

and s°(/1) is minimised.

Step 4. The induction step.
Suppose the theorem holds for all F of type kx(n — 1), any k€ N. State-
ment (4.5) is equivalent to

@.6) [0 0 }eBch
0 gl_h

and, by Lemma 4, there exist inner functions 1§, C of types (m — 1) x(m — 1)
and (n — 1) x(n — 1) respectively, such that (4.6) is equivalent to heg, +
-+ EH{’,?,_J)X(,,_I)& By the inductive hypothesis the minimum of s over the latter
coset is attained at a unique function. By the principle of induction we infer the
uniqueness assertion in Theorem 2.

We now turn to the description of the extremal function. By the inductive
hypothesis g is obtained as follows.

LetK be a closed subspace of L} _; containing g C*H?_, -+ BHZ_,, let
V = C*H2_,, letW —K@BH,,, 1 and let

To :PoMg,:ﬁo "’Wo,

where Mg1 is the multiplication operator and Pyl | — ﬁ’o is the orthogonal
projection, If ‘]‘0 =0 then 7 = 0 and g; = 0. Otherwise we follow the prescription
given in Theorem 2, with the obvious modifications, to construct an integer 7 = 1,
subspaces V of C*H?_,, K E; and W of LZ%_ 1, operators T VJ - Vf/j,
0 <j < r, positive’ numbers 1 and unit vectors v, € V w € W 0<j<r—1.
such that
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= HT || and T v; = 7;Ww;. We have then

~

4.7 (2 :\_
@7 al@)=3% o ()||2

wi(2),(2)*

a.e.. Moreover, 5;,(g,(z)) is constant and equal to 7;a.e.,and r <min{m — 1, n — 1}.
From a knowledge of g, we can obtain the desired minimising function G, for

G=WGV: =W [g" 0] Ve,
0 &

We wish to express the right hand side in terms of the original data (F, B-and C),
and we have to do this through the intermediary of the ‘“diagonalised data” (37 B
and é) Accordingly let V W T etc. be the analoguesof V;, W, T etc. conslructed
by the inductive procedure in Theorem 2 w1th F,B,C rep]aced by G b’ c in the
construction take K — W* *K, so that K 2G6C¢+ *HE -+ BH,?, By constructlon of V'
and W (see Lemma 3), we can choose the Schmidt pair ,, w, of I to be

80: V*Uo — [f 0... O]T’
(4.8)
Wo = Wewy = [xf 0 ... 0]

for some unit vector f€ L? and some scalar inner function y. From the relations
o] . N A . . A A

G =diag{g,, g1}, Gyvy= ?Oﬁ)o we infer that g,/ = r,xf, and hence g, = 7,y. Thus
for almost all z€ 0U,

4.9 &) 0} Lo_ 3 (2)50(2)*
@) [V o T e

Take K to be the closure of the orthogonal projection of K on l 20 ];by Lemma
m—1

4(iv) this does contain g,C*HZ?_, -+ BHZ2_,, and so can be used in the foregoing
construction. We claim that

(4.10) 1?1:[0], p‘V1=[°]
v, W,
and '
R 0 01!~
4.11) f, = 27
( ' [o To] '

Indeed, it is clear from (4.8) that the pointwise orthogonal complements of Do Wo

~

are {L? ], lLO ] respectively. IAfl js thus the orthogonal projection of
nr—1 :
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I;‘, = CA'*H,, onto [ ?

cn-1

A i ... [0 .
of the projection of K onto [L:) ] , which is [I? ] , by choice. And
m—1 0

A A ol o 0 O 0
Bi—bn| 0 :BH,;,_ln[,, ]:[ ]: ]
m-1 Ly, BH} _, E,

N A N 0 O'I
W: E: ~ == ~
1=hOh [Xero] [WJ

Al [J’(] [1~JC].
0
Ihus, for any he fo,

[g 3][2] [Po((;lh)] A [g?h]:

A A 0 L) 0
( [h]) ‘[h]
- This proves (4.11).

The relation (4.11) shows that we can take the Schmidt pair 74, W, of 10
corresponding to the largest singular value 7, = 7, to be such that

A 0 A 0
w=[5) = le)
Vo Wo
V;:[?].
Vi

A
Furthermore, K, is the closure of the projection onto the pointwise orthogonal

complement of W, (: l:~0 :l) of kl (= [lg ]) , hence is []g ] . Likewise Ez
Wo 0 1

is the pointwise orthogonal complement of W, in ﬁl (: [ g ]), hence is [EO ] .
0 1

], and this is [ ?} ], by Lemma 4(ii). 131 is the closure

adt

Thus

It follows at once that

It follows that

~ A A O
W,= K, © g:[~ ..]2[9]
K, © E, W,
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[g ;Jm N [ﬁl(;h)] =P [g?h] -

For any h e 171,

Thus T, = [0 0 ] V,.
0 7,
Proceeding in this way by induction we infer that 7 =7 — 1 and, for

relevant j =1,

0 0O A A ~
‘(4[2) l: i, ]2 'j“/j) tj = tj"ls
j—1

] ol
! LE‘,‘—1 Y ﬁ)j—l

‘We have then, for 1 < j<r

0 0 ES
[0 ﬁ}j’l(z)aj—l(z)*] = Wj(z)l)j(z) ,

‘which, in conjunction with (4.7) yields

A

0o 07 %2
L )
[0 gl(z)] P nv,( ST

e.. Together with (4.9) this implies

W (2)D ().

(4.13) é@z) = [go(z) 0 'l_"—l

0 £.(2) j=0 HU_]( )Hz

The final stage is to remove the hats. The relationship between the hatted and
unhatted data is best expressed in a diagram

M, P,
VD—C1H3——-—>L,‘;,———>K@BH,’,’ W,

Mv*l le" le*

V,= é*H"—ET’ Lt ——> KO BH,=W,.
G

Py
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Recalling that G = W*GV, B = W+*B, ¢ — CV and K = W*K, we can
check that the diagram commutes. It follows that

T, = MWTOM )
and hence we may choose the Schmidt pair 5,, W, for f‘o as
Do = Vivg, W= W¥w,.

Since V(z), W(z) are unitary for almost all z, M. maps the pointwise orthogonat
complement of v, onto the pomtw1se orthogonal complement of vy, so thdt
MV, = V Likewise M »,KI_Kl, M »EI_E and so MW, = Wl
Moreover leM,,,TlMV:;a. Continuing inductively we conclude that 7 =r,
If,- = t; and 'z}j = V*u;, 13] = W*w;. Hence, from (4.13) we have

G(z) = WGV*(z) = S — ()“2 Wih(2)o*V*(z) =

—Z |u<)||2 Y

We have also

r=r=r+1<min{m — 1,n— 1} + 1 = min{m, n}.

Finally, 5,(G(z)) = ¢, a.e., by Theorem 1, while, for | <j <r — 1, we have

5(6() = s,6() = ([go“ gl‘(’z)]) _

a.e. o A
=s5;@@) =11 =1;=1;.

Thus 5;(G(z)) is constant a.e. and equal to ¢;, 0 < j < r — 1. This completes the
inductive step and so proves Theorem 2.
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