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OPERATORS WITH SPECTRAL SINGULARITIES

B. NAGY

1. INTRODUCTION

1t is the basic idea in the theory of spectral operators that for a large number
of linear operators (the closed spectral operators in a complex Banach space in
the sense of Dunford and Bade, cf. [5]) there exists a strongly countably additive
spectral measure, defined on the g-algebra of all Borel subsets of the complex
plane, which is closely connected with the given operator. J. T. Schwartz [17] noticed
first that for some operators (even in Hilbert space) the construction of such a
completely satisfying spectral measure is impeded by the fact that the natural candi-
date for the corresponding measure becomes unbounded in the neighborhood of
and cannot be defined for some Borel subset of the spectrum. Similar phenomena
have been pointed out by Ljance [11] in connection with a class of second-order
non-selfadjoint ordinary differential operators, and by several authors (cf. Harvey
[8], Langer [10]) studying definitizable operators in Krein spaces.

Attempting to construct a general theory for such (bounded) operators,
Bacalu [1], [2] and the present author [12] have studied the so called S-spectral
operators, for which the spectral measure is defined only for a smaller o-algebra
of the Borel subsets which avoid or contain a bad exceptional closed subset S of
the spectrum. However, such spectral measures must still be uniformly bounded,
so cannot play the role of the measures mentioned in the preceding paragraph.

The main idea in this paper is that we consider such spectral measures (more
exactly, resolutions of the identity) that are defined and strongly countably additive
only on a Boolean algebra of the Borel subsets of the complex plane (which, in
some specified sense, avoid or contain a “bad™ exceptional closed subset S). Such
measures can already be not uniformly bounded, moreover, it will be shown that
for each closed operator there is a smallest one among these bad closed sets. It
is then natural to call this smallest set the set of the spectral singularities (or the
smallest critical set) of the operator, thereby giving the general definition of a concept,
which has been up to now defined only in some particular cases (see, e.g., the
papers mentioned above). Making use of the notion of a spectral operator of
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scalar type, similar, but stronger concepts will be defined, and the existence of the

smallest exceptional set (in this sense) will te proved (in our notation the set Ky(T)
for the operator T).

In the final section we shall show that the set of the spectral singularities for
differential operators in the class studied by Ljance [11] is equal to the set of the
spectral singularities as defined by Ljance for this particular case.

Acknowledgement. The author acknowledges the benefit of helpful conver-
sations on the subject of this paper with E. Albrecht during his stay as a Humboldt
fellow in Saarbriicken.

2. PRELIMINARIES AND NOTATIONS

Let X be a complex Banach space, let L(X) and C(X) denote the set of all
bounded and closed linear operators in X, respectively, and let C denote the
compactification of the complex plane C. For a set b in C let b° denote C\b,
and let b, b° and i(b) denote the closure, the interior and the boundary of &
in the topology of C (unless we say explicitly otherwise), respectively. For T € C(X)
and a T-invariant closed subspace Y let o(T, Y):o'(T] Y) denote the (extended)
spectrum of the restriction T ,Y (the extended spectrum of 7 is its usual spectrum
s(T) if Te L(X), and is s(T) U {oo} otherwise).

Let A be a Boolean algebra (with respect to the usual set operations) of
Borel sets in C. A homomorphism E of A4 into a Boolean algebra of projections
in L(X)is called an A-spectral measure if E(u) = I (here u and I are the identities
in 4 and L(X), respectively), and E is countably additive on 4 in the strong
operator topology. Such an E is called an A-resolution of the identity for T € C(X)if

E@)T < TE@), o(T,E(@X) ca (acA).

We say that Tis A-spectral,if T has an A-resolution of the identity E. The restric-
tion T]E(a)X will then occasionally be denoted by T,.

Let S be aclosed set in E, and let 4 be one of the following Boolean algebras
of sets:

By = {b Borel set in C:bnS= @ or b > S},
Dy(S) = {b Borel set in C:bn S = @ or b > S).

Then Bg is a g-algebra, and instead of Bg-spectral, etc., we shall equivalently
say S-spectral, etc.
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Let T € C(X), S as above, and let K = Sno(T). If Eis a Bgresolution of
the identity for 7, then (cf. [12]) E extends to the following K-resolution of the
identity F for T: , c

F(b):{E(bUS) EY

(b € By).
E(bn 59 bcK*

Further, if E is a Dy(S)-resolution of the identity for 7, and D(K) = D(K,T) =
= {b Borel subset of a(T) :bn K = @ or b>*> K} (where b denotes the interior

of b in the relative topology of &(7)), then (cf. [15]) with the definition p(T) =
== g(7')° and

E(b) " bnK=0

R :
E@ up(T) br o K (b DD

F(b) = {

F is a D(K)-resolution of the identity for 7. So we can occasionally assume in
both cases that S < 6(7T), and consider rather D(S)-than Dy(S)-resolutions of
the identity.

Now we recall some definitions and notations from the theory of decomposable
operators (cf., e.g., [14]). Let T € C(X) and x € X. The open set d,(x) consists of
those ze C, in a neighborhood U of which there is a holomorphic X-valued
function f such that (u — T)f(u) = x (u € U n C). Suchan f is called a T-associated

Junction of x (in U). There is a largest one, N;, among the open sets N < C, in
every open subset of which f = 0 is the unique T-associated function of 0 € X. Let

Sy = N7, 72(x) = 67(x), UT(X) = y(x)U Sy, pg(x) = op(x)"

The set Sy is called the analytic residuum of T. If §; = O, we say that T has the
single-valued extension property. For any e < C let

Xp(e) = {xe X :0px) c e}.

For any closed set 1 in C let Xp y or X(T,f) denote the largest one (if exists)
among the closed T-invariant subspaces Y such that ¢(T, Y) < f. These subspaces
Xy, are called spectral maximal for T.

Let S =S < C. The operator T € C(X) is called strongly S-decomposable
if for each open S-covering of o(T), i.e. for each pair of open sets (G, Gg) such
that G, UGy o26(T)U S, G, n S = O there are T-invariant subspaces X, < D(T)
Xg < X such that o(T, X)) =« G; (i=.1,S5), and for every T-spectral maximal
subspace Y we have

(+) Y=YnX,+ YnX,.
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T is called S-decomposable, if we postulate () only for the case ¥ = X. The smallest
one among the sets § for which 7 is (strongly) S-decomposable is called the

Note that the point oo in the spectrum of an operator 7 in C(X)\L(X)
could be handled in different ways. For example, a closed operator T such that
o(T) = {oo} is O-spectral in the sense given here. However, T is not spectral
in the sense of [5; XVIIL.2.1]. Clearly, T has this latter property if and only if T
has a @-resolution of the identity E satisfying E({oo}) = 0. A similar problem
causes an apparent slight inconsistency in the formulation of Theorem 3 below.

3. CLOSED S-SPECTRAL OPERATORS

Let T e C(X)and let S be a closed subset of o(T). With the aim of application
in the next section we extend here the theory of bounded S-spectral operators ([12])
to this more general case. The development will closely parallel that of [12], therefore
we omit several proofs and refer for them to [12]. However, since an immediate
generalization of the fact ““any spectral maximal subspace of a bounded operator
is hyperinvariant” (cf. Foias [6]) is not available, there must be some changes and
we shall present them.

Lemwma 1. If E is an S-resolution of the identity for T, further ze $S°nC
and (z — T)x = 0, then E({z})x = x.

Lemma 2. If T is S-spectral, then Sy < S.

LEMMA 3. If E is an S-resolution of the identity for T, the set ¢ is closed
in C and disjoint from S, x € E(c)X and op(x)nc =0, then x = 0.

LemMa 4. If E is an S-resolution of the identity for T, and the closed
set e = C contains S, then E(e)X = Xr(e).

COROLLARY. If E is an S-resolution of the idenity for ‘T, then E(o(T)) = L

The proof of the following commutativity theorem makes use of the lemmas
above, but differs from the corresponding proof for the bounded case in [12].

THEOREM 1. If E is an S-resolution of the identity for T, and the operator
A € L(X) satisfies AT < TA, then AE(b) = E(b)A for every b€ Bs.

Proof. By assumption, (z — T)f(z) = x implies (z — T)Af(z) = Ax. Hence
7:(Ax) c y4(x) and o{4x) < o4(x) for any x in X. This and Lemma 4 yield
E(c)AE(c) = AE(c) for any closed set ¢ satisfying S < ¢ < C.

Let the closed set d be a subset of S¢, and let ¢ =dU S. For any closed
T-invariant subspace W of X such that ¢(7|W) < d, Lemmas 2 and 4 imply
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W < E(c)X. Hence o(T,| W) < d. Let D be a Cauchy domain ([18; p. 288]) such

that d = D, D = S, and let A(D) denote its positively oriented boundary. For
every w in W then

w =k S z—T W) twdz+ jw=1k S z—T)1E(dU S)wdz + jw =

D) h(D)

=k S (z— T) rEdwdz 4 jEd)w + k S (z— TY TE(Swdz + jJE(Sw =

Dy o
= E(d)w,
where k = (2mi)~1, j = 1 if co € D and j=0 otherwise. Hence E(d)X is the spectral

maximal subspace X, for 7.

Let X{(d) denote the range of the spectral projection P(d) associated with the
part in d of o(T,). Then o(T|X(d)) == o(T, | X(d)) =d implies X(d) < E(d)X. On
the other hand, x == E(d)x implies

Pdix=k\(z—T) *xdz+ jx=k \ (z—Tp)-txdz + jx = x.
Dy h{D)
Hence X(d) = E(d)X.

Let xe E(c)Xn D(T). Since AT < TA, and AE(c) = E(c)AE(c), we have
ATx = T Ax, hence A(z — T)~' = (z — T.)~'A4 for every z in p(T,) n C. Thus
for any y in X(d)

Ay =k \ Az — T) tydz 4 j Ay = P(d)Ay.

(D)

Therefore AE(d) = E(d)AE(d). Take an increasing sequence of closed sets ¢, > S,
converging to 4, and let x € X. Then

E(d)AE(d®)x = lim E(d)AE(e,)x = lim E(d)E(e,)A E(e,)x == .

Hence E(d)A = E(d)A(E(d) + E(d) = AE(d) for any closed set 4 in S The
countable additivity of £ implies E(b)A = AE(b) for every Borel set b in S° Taking
complements of b’s we end the proof.

CoroLLARY 1. If T is S-spectral, then its S-resolution of the identity is
uniquely determined on By.
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COROLLARY 2. If T is Syspectral with Siresolutions of the identity E; with
domains B; and if b;€ B, (i = 1,2), then E\(b)) and E,(by) commute,

THEOREM 2. If T is Si-spectral (i = 1,2), then T is S, n Sy-spectral.

The result of Foias [6], cited at the beginning of this section and extended
by Vasilescu [19; 1V. 4. 6], can be generalized as follows.

LeMMA 5. Let Te C(X) and A€ L(X) satisfy (z— AT < T(z— A)~*
for every z in p(AYNC. If Y is a spectral maximal subspace for T, ther
(z— A)YYcY (zep(A)nC), hence f(A)Y < Y for every f which is locally
holomorphic on o(A).

The proof will be omitted.

THEOREM 3. Let T be S-spectral. If T € 1(X), then T is strongly S-decow:-
posable. If T € C(X)N\L(X), then T is strongly S U {oo}-decomposable.

Proof. Let E denote the S-resolution of the identity of 7" and let Y be a
spectral maximal subspace for 7. For any projection E(b) (b € By) and for any
z € C\{0, 1} we have (z — E(b)) *=z"'+4z"Yz—1)"1E(b). Thus for z € p(E(b)) n C
we have (z — E(b))~'T < T(z — E(b))~*. By Lemma 5, E(b)Y < Y.

Let (G}, G) be an open S-covering (resp., S U {co}-covering) of o(T). The
set U = G, U G contains ¢(T), therefore E(U) = I. Hence for evcry y in Y

y=EU)y = E(Cl)}-’ -t E(GS\Gl)y-

By the preceding paragraph, the terms on the right hand side are in Y. By the proof
of Theorem 1 and by Lemma 4, they are in the spectral maximal subspaces X =
T

and X;(Gg), respectively, and Xz < D(T). Thus
M §
Y=YaX.: + ¥YnXyGy),
’ 1

which was to be proved.

LeEmMMA 6. Let T e C(X), and let
S(T) = {S =S < C:T is S-spectral}, Sy(T) =(M\{S:Se ST}

Then each closed neighborhood of Sy(T) belongs to the class S(T). In particular,
if ST) = @, then T is D-spectral.

Proof. We may assume that Sg(7) # C. Let N # C be an open neighborhood
of So(T). Then

M {S:SeS(M}nN=0.
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Since C is compact, there are sets Sy,. .., S, € S(7) such that
N{S,:n=1,..,k}nN=@.

By Theorem 2, the set Sy =({S,:n = 1,...,k} belongs to S(T). Since N > S,,
we have N e S(T).

ReMARK. Example 1in [12; p. 44] shows that it can happen that S(T) ¢ S(7),
i.e. there is no smallest set in S(7).

From Theorem 3 it is seen that for the spectral residues $*(T) and S*¥(T)
we have :

SHT) = S*(T) < Sy(T) u {0},

and the last set can be omitted if 7 € L(X).

4. A(K)-SPECTRAL OPERATORS

Let T be a closed operator in X with spectrum o(7T) and let K be a closed
subset of o(7T). Unless explicitly stated otherwise, all the occurring topological
concepts in this section for subsets of ¢(7") will be understood in the induced topology

of o(T) (as a subset of C). Thus b and 4° will denote the closure and the interior
of b in the induced topology of o(T), b° is 6(T)\b and h(b) = b n b°. Let

A(K) = {b Borel subset of C:h(bno(T)n K= 0},
B(K) = {b Borel subset of o(T):h(b) n K = @},
C(K)={be B(K):bnK = O},

D(K) = {be B(K):bnK =0 or else ® > K}.

Since U, a(T) € B(K), h(bu b") = h(b) U h(b’) and h(b®) = h(b), B(K) is a Boolean
‘algebra of subsets of ¢(T), containing the subalgebra D(K) and the Boolean subring

C(K). Similarly, A(K) is a Boolean algebra of subsets of C, containing the
«class B(K).

REMARK. Considering that particular case of an A4-spectral measure (Sec-
tion 2) when the Boolean algebra A is an algebra D(K) (for an operator T), it
is seen from [5; IV. 10.2] that each D(K)-spectral measure E is uniformly bounded
on each subclass an D(K) if @n K = @, a € D(K). However, E is not necessarily
uniformly bounded on all of D(K). '
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Lemma 7. Let Te C(X), and let K be a closed subset of o(T). T is
D(K)-spectral if and only if T is S-spectral for every S = Sco(T) such that
S0 > K.

Proof. Let E be a D(K)-resolution of the identity for T, let S be as above,
and let

Eyb) = Ebno(T)) (be By).

Then Eg is clearly the S-resolution of the identity for 7.

Conversely, let S be as above, and let Eg be the S-resolution of the identity
for T. We have

D(K) = (U{Bs : S = S < o(T), $° > K} no(T).
So for every b € D(K) we have b € B for some S as above, and we can define

E(b) = E{b) (be Bsnoa(T)).
By Corollary | to Theorem [ and by Theorem 2, £ is well-defined on all of D(K),
and it is easily seen that E is a D(K)-resolution of the identity for T.

COROLLARY. An operator T € C(X) has at most one D(K)-resolution of the
identity. '

The main statement of the following theorem is the extendability of the
D(K)-resolution of the identity to the B(K)-resolution of the identity for T (in the
case when the set K is not connected).

THEOREM 4. Let Te C(X), and let K be a closed subset of o(T). The
following statements are equivalent :

1° T is A(K)-spectral,

2° T is B(K)-spectral,

3° T is D(K)-spectral.
If this is the case, the corresponding resolutions of the identity for T are uniquely
‘determined, hence they are restrictions (extensions) of each other.

Proof. Let E be an A(K)-resolution of the identity for T, and let S = o(T).
Then E| By is the S-resolution of the identity for 7. By the Corollary to Lemma 4,
E(@(T)) = I. The restriction E | B(K) is a B(K)-resolution of the identity for T.
For every a € A(K) we have a no(T) € B(K), and

E(a) = E(@)E(o(T)) = E(a n o(T)).
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It follows that the A(K)-resolution of the identity for T is unique, if so is the
B(K)-resolution of the identity.
if F is a B(K)-resolution of the identity for T, then

E@) = Flano(T)) (ae AK))

isan A(K)-resolution of the identity for 7. Hence 1° and 2°are equivalent. Further,
F | D(K) is the D(K)-resolution of the identity for 7. Hence 2° implies 3°, and all
B(K)-resolutions of the identity for T coincide on the algebra D(K).

" Now let F be the (unique) D(K)-resolution of the identity for 7. We shall
show that F extends to a B(K)-resolution of the identity in a unique way. This
will prove the equivalence of 2° and 3° and the uniqueness statements.

If the set K is connected, then the class B(K)\D(K) is void, and there is
nothing to be proved. If not, let b € B(K)\D(K). There exist closed sets ¢, f < a(T)
such that

0 bnKcc® ccb, BCnKcfo, fc (k).
Indeed, by assumption, & n b°n K = @. Hence
O=£bnKcb, O # 50K < (b9)°.

So there exist closed neighborhoods ¢ and f of 5n K and b°n K, respectively,
satisfying (1). Then (¢ U f)° = ¢®U f9 > K, hence F(c U f) is defined and

o(T\F(cu )X) < cu f.

Let P(c, f) denote the spectral projection in F(c U f)X, associated with the part in ¢
of the spectrum above, and let

Q(c,f) = P(c,/)F(c U f) € L(X).
Q(c, f) is a projection in X. We show that for fixed ¢ it is independent of the choice
of f. Let f, < f; be closed sets satisfying the conditions (1) above, and x € X. Then,

with obvious notations (where, e.g., a(c) = 1if co liesinside the contour surrounding
the set ¢ and = 0 otherwise),

P(c, fL)E(c Y fi)x =

= o{c)F(c v f)x -+ (27ti)‘14f)(z —T|F(cu f)X)"F(cU fxdz =

= P(c, f1)F(c U fOx.
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Further, F(c U f3) = F(c U fi} + F(f2\f1), and

Ple, fLF(fa\fi)x =

= a(O)F(fo\f)x + 2mi)~-1 § (z — TIF(f\N)X) ' F(f5\f)x dz = 0.

Hence QO(c, f3) = QO(c, f,). Now if f,, f, are (possibly not comparable) closed sets
satisfying the conditions above, then so is f; n f, < f;. Thus Q(c, f) is independent
of f, and may be denoted by Q(c).

Since, by (1), b\cn K = @, so b\c € D(K), we may define
E(b, ¢) = O(c) + F(b\c).

We show that it is independent of ¢. If ¢; © ¢, and fsatisfy (1), then the additivity
of F en D(K) implies

Qlcy) = P(cy, f)F(ca U f) =
= P(¢,,/)F(c; U f) + P(cy, f)F(cy\c;) = Qcy) + Flea\¢y).

Hence E(b, ¢;) = E(b, ¢;). The case of not comparable ¢;'s can be settled as above.
E(b) = E(b, ¢) is a projection in X. Indeed, the equalities

Q(O)F(b\c) = P(c,[)F(c U f)F(b\c) = 0,
F(b\c)0(c) = F(b\2)F(cu HP(c, )F(cu f) =0

are evident in view of (1). For every b e B(K)N\D(K) we have E(b)T < TE().
Indeed, with ¢ and f as above

0(c,/)T = P(c, )F(c U /)T < P(c, fITIF(c u NX)F(c U f) = TQ(c, [),
by [5; VIL 9.8]. Further,
o(T | EG)X)=0(T | (QEOX®F(b\c)X)) < cUb = b.

For b € D(K) let E(b) = F(b). We show that the mapping E of B(K) into
L(X) is a B(K)-spectral measure. We shall prove first that E is an algebra homo-
morphism. Let b € B(K)\D(K), then b°€ B(K)\D(K). For b pick ¢ and f as
.above, then

E(b) + E(°) = Q(c,f) + Fb\o) + O(f, o) + Fb°\f) =
= (P(c,f) + P(fL)F(cu f) + F((cu f)) =L
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Now we shail prove multiplicativity, and occasionally write b,b, rather than
b, n by . Note that the formula

E(b) = P(e,NF(cu f) + F(b\)

is valid for & € D(K), too. Indeed, b € C(K) implies that we may pick ¢ = @,
hence E(b) = F(b). If b € D(K)\C(K), so b® = K, we have ¢® > K, therefore we
may take /= . Hence E(b) = F(c) + F(b\c) = F(b).
Let b,, b, € B(K), and define
Ko = Kbb,, K, == Kbb§, K,= Kbib,, K, = Kb5b5.

These sets are pairwise disjoint with union K. By the definition of the algebra B(K),
we can choose closed sets ks, ky, ku», kg in o(T) such that (cf. the consideration
after (1))
Ky © K, ks < (b1by),
and similarly for the other ones. Let now
a=ksUky, ca=kpUky, fi=koUks, fr=koUky;
e=aUfh=cU/f.

Then the sets b;, c;, f; satisfy the relations (1) with the subscripts i added (i = 1, 2).
Indeed, for example, we have

kgckzc(bibz)o, kg < ko = (b35)°.
Therefore kg U k) = b5 < S, thus b, < k¥k). Hence
by N KckFkyK < Ky U Ky < kR UK < o,
Further,

e, = ki Uky < (b165)° U (6,065)° < by,
and we can verify the relations (1) similarly for the other cases, too. Therefore,

E(b,)E(by) = (P(cy, f)F(e) + F(bl\cl))(P(Cz,fz)F(") + F(bz\cz))

Since (b, \¢))e == b;c§(c; Uf;) < b,cih; = O, we obtain F(b;\¢)F(e) =0 (i = 1,2)\.
Further,

P(cy, [)P(co, f)Fe) = Plkyo, e\ky1o)F(e).

8- 1685
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Since b, \c; € D(K), we have
F(by\c1)F(by\¢3) = F(bby\(c; U ¢2)byby) = F(bby\kyo).
Hence we obtain
E(b)E(by) = P(k,y, eNJkyo)F(€) + F{bby\ky5) = E(b, n by).

So E'is an algebra homomorphism of B(K) into a Boolean algebra of projections
in L(X). We shall show now that E on B(K) is countably additive in the strong
operator topology of L(X).

Let the sequence {b,} < B(K) be such that the sets b, are pairwise disjoint,
and their union b belongs to B(K). Let !

H={b,:b,nK # O).

If the class H contains infinitely many sets, then we choose one element k, € b, n K
from each set b, € H. Since K is compact, the sequence {k,} has an accumulation
point k in K. Since b € B(K), so h(b) n K = @, we have k € b. Hence ifor some
positive integer r, k € b, € H. Since b, € B(K), we see that k € b%. This contradicts
the construction of the sequence {k,} and of the point k.

So H contains a finite number of sets, say p. Let

b = U{bn :bn € H}y b = b\b".

Then b” € B(K), so b’ € B(K). By the definition of H, we obtain that 5’ n K = 0.

Hence b' € D(K), and {b, : b, ¢ H} < D(K). Making use of the countable additivity
of E on D(K), we have for any x in X, in the norm topology of X,

B(B)x = E(b?)x -+ E®)x = 3, E(b)x,
n=1

where the convergence of the series is unconditional. So the D(K)-resolution of
the identity F extends to a B(K)-resolution of the identity E for 7, thus 2° and 3°
are equivalent.

Now let G be an arbitrary B(K)-resolution of the identity for 7. Since
the D(K)-resolution of the identity is unicue,

) G(b) = F(b) (b e D(K)).
Let b € B(K)\.D(K), and let ¢, f be as in (1). By (2) and from ¢ U f'€ D(K)

3) (T, G(c)F(c U X) = o(T, G{c)X) < c.
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By {4; 1.3.10, p. 26](which is valid for a closed operator, too), the spectral maximal
space of the restriction T'| F(c U f)X, determined by the set ¢, exists, and equals

(4) X(T|F(c U f)X, ¢) = P(c,/)F(c U f)X.

From (3) and (4)

(5) G()X = G(c)F(c U f)X < P(ce,f)F(c U f)X.

By symmetry,

(©) | G(f)X = P(f, F(c Uf)X.

Since G(¢) + G(f) = G(c J f), from (2) we obtain

G(c) + G(f) = F(c U f) = (P(c,[) + P(f, DF(c u f).

Multiplying by P(c,f)F(cu f) from the left, by (5) and (6) we have
G(c) = P(c,/)F(c U f).

Since b\ € D(K),

G(b) =: G(c) + G(b\¢) = P(c,f)F(c U f) + F(b\c) = E(b).

So the B(K)-resolution of the identity for T is unique, if exists, and the proof is
complete.

DeriNiTiON 1. Let T e C(X) and et
Ki(T) = {K=K < o(T) : T is A(K)-spectral}.

This class will be called t/ie class of the critical sets for T, and the smallest element
in it (if exists) the set of the spectral singularities (or the smallest critical set) for T.

THEOREM 5. For each T € C(X) the set Sy(T") (defined in Lemma 6) is the
set of the spectral singularities for T.

Proof. Let K € Kr(T). Since the induced topology of ¢(T") (as asubset of C)
is normal, K is the intersection of its closed neighborhoods S (in the induced
topology). By Theorem 4 and Lemma 7, T is S-spectral for every such S. With
the notation of Lemma 6, S,(7) « K. Further, Lemmas 6, 7 and Theorem 4
together yield that So(7) e Kr(7).

DEeriNITION 2. Let T e C(X) and Ke Kr(T). T is called A(K)-scalar (or,
equivalently, B(K)- or D(K)-scalar) if for every b in C(K) n C the operator T|E(h)X
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&
(here E denotes the A(K)-resolution of the identity for T) is a spectral operator
of scalar type in the sense of Bade (cf. [5; XVIIL 2.12]).

Note that the resolution of the identity for 7| E(h)X is then (the evident extension
of) E|E(b)X.

THEOREM 6. Let T € C(X) and let
Kr(T) == {K < o(T) : K is closed, T is A(K)-scalar}.

There is a smallest set (which will be denoted by Ky(T)) in the family Kry(T).

Proof. 6(T) € Kry(T), thus the family Kr,(T) is nonvoid. Let {K, :a € A} be a
totally ordered (with respect to <) subfamily of Kry(7T) and let K’ =(\{K, :a € 4}.
By Theorem 5, K’ € Kr(T). Let E denote the A(K')-resolution of the identity for 7.
Let be C(K)nC. By the compactness of C, there is a,€ A such that
bn I(,,O = (), i.e. b belongs to C(I'\’,,o) n C. Hence T|E(b)X is scalar, so K' € Kry(T).
Applying Zorn’s lemma, it is sufficient to prove that K, K, € Kry(T) implies K =
= K, n Ky € Kro{(T). By Theorem 5, K € Kr(7).

Let 5 € C(K) n C. There is a closed neighborhood S < o(T) of K such that
b < S° Further, there are closed neighborhoods S; = o(T) of K; such that
S;nSy; < S. Then b = bS®==bS5UbS,SS, hSS e C(K,), bS,S§ e C(Ky).

Let E denote now the A(K)-resolution of the identity for 7. We shall show
that T'| E(b)X is a scalar operator. Let

e =z = {IF W=

@1 > n,

B(fy; ) — Sf;,(Z)E(dZ) (h & C(K)),

I

E(f; )x = limE(f,; )x

with
D(E(f; b)) == {x € E(h)X : lim E(f,; h)x exists}.

If x = E()x e D(T), then E(BS)x, EBSSHx e D(T), for T is A(K)-speciral.
Since K, K, € Kry(T), we have

TEGbS)x = E(f; bSS)x == lim E(SOE(f,; b)x,

TE®bS,S)x = lim E(S, SHE(f,: b)x.
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Hence we obtain that E(f, b)x is defined, and

TE(b)x = lim (E(S3) + E(SiSE)E(fy; b)x = E(f; h)x.

On the other hand, if E(f; b)x exists, and x = E(b)x, then, by assumption,
E(SHE(f: b)x = E(f; bSH)x = TE(bSH)x,
E(S1SHE(f; b)x = E(f; bS,S5)x == TE(bS, SH)x.

Hence E(f; b)x=TE(b)x and, by [5; XVIII. 2.12], T | E(b)X is a spectral operator
of scalar type. Thus K e Kry(7).

5. AN APPLICATION

The following ordinary differential operator, having at most a finite number
of spectral singularities, has been considered, among others, by Naimark [16],

Ljance [L1] and Folland [7]. Let p be a Lebesgue measurable complex-valued
function on R* = [0, o) which satisfies

S e p(x)] dx < oo,

R+
where ¢ is a positive number. Let § € C, and let
T = — (d/dx)* + p(x), Bf = f'(0) — 0f(0).

Define the closed operator T'in H = L*(R*) by Tf = tf on the domain D(T) =
== {fe H:f" exists and is locally absolutely continuous on R*, tfe H, and
Bf = 0}. For preliminary results (from our point of view) on this operator, we
refer to [7], [11] or [16]. We shall quote the most relevant results and show that
the smallest critical set Sy(7") in our terminology in the set S of all spectral
singularities of T in the sense of Ljance [11; p. 528].

The spectrum of T, 6(T) n C, consists of the continuous spectrum R* plus
a finite number of eigenvalues z,,. .., z,. Here z;, = si, Ims, > 0 and A(s,) =0,
where the function 4 is holomorphic in the half-plane ims > — &/2, has exactly
the roots s, in Ims >0, and exactly the roots g,,. :., g, in R\{0}. The positive
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numbers v, == g are called the spectral singularities of the operator T, so we have
for their set S

S={vy=q¢ k=1,..., nh.

Note that the numbers v, are distinct elements of the continuous spectrum of T.

For z € C let w(-, z) denote the solution of the differential equation f = zf

satisfying w(0, z) = 1, wi(0, z) = 0. If the order a,, of s, is greater than 1, then
we define the principal functions

O w

i

é (x,z,) (O<j<a,—1.

W(j)(xa ZI") =

Note that wW)(-, z,) € H. The T-Fourier transform of f€ H is the “function wf
on the spectrum of T’ defined by

(wf)(z) = l.im. Sf(,\‘)w(x, z)dx (ze€ RY)

(Mf)(j)(zm) = Sf(x)w(j)()‘" Zm)d.\' (0 < .] < am - ]’ 1 < m < r)’
0

ie. a function measurable on R+* and having an ordered a,-tuple of complex
numbers as its value at each point z,, .

With the help of the 7-Fourier transforms two functional calculi have been
defined and studied for the operator T, which will be of interest for us. One by
Ljance in [I1; Theorem 5.4], the other by Folland in [7; Theorem 3]. Though
their domains of definition are different, we shall make use of the fact that on a
wide class of functions they are identical. Let r, denote the order of the root g,
of the function 4 (k =1,...,n).

LemMA 8. Let F be a complex-valued function, bounded and wmeasurable on
R, r, times continuously differentiable in some R*-neighborhood of each v, € S
{k =1,...,n), and locally holomorphic on the set Z = {z,, . ..,z,} of all eigenvalues.
Let the operator corresponding to F be denoted by F\(T) in the Ljance and by Fy(T)
in the Folland calculus. Then

F(T) = F(T) e L(H).

(The opérator Fi(T) will be denoted in what follows by F(T).)
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Proof. Clearly, F belongs to both domains. By [7; Theorem 3], F(T') is a bound-
ed linear operator in H, and for every finadenseset X < H (see[7; pp. 222—223])

w(ELT)f) = F -wf.

By [I1; Theorem 5.4], this implies f'e D(F(T)), and w(F(T)f) = w(Fy(T)f). By
[11; Corollary 3.4], it follows that F,(T)f = Fo(T)f for all fin X. Since F(T) is a
closed operator ([11; Theorem 5.4]), F\(T) = Fo(T) € L(H).

Ljance has proved in [I1; Theorem 5.7] that the operator T is generalized
spectral in the following sense: let

D =. {b Borel subset of o(T) :bn S = O} = C(S).

There is a map P: D — L(H), which is multiplicative and strongly coutably addi-
tive on D, satisfying P(b)T < TP(b) (b€ D), P({co}) =0. and o(T|P(b)H)< b
(b € D). We shall prove the stronger

THEOREM 7. Sy(T) = S.

Proof. First we prove that T is D(S)-spectral, which, by Theorem 4, will
imply that So(T) < S. If b e D(S)\NC(S), then »°* = Cna(T)\b € C(S). Defic-
ing P(b) == I — P(b°), the extended map P is clearly a D(S)-spectral measure
commuting with T

We have still to show that

o(T, PB)H) = b (b € D(S)\C(S)).

Each b as above is the disjoint union of some b, € C(S) and some b, € D(S)\C(S),
where b, is contained in some bounded R+-neighborhood of S. If we prove that

o(T, P(b)H) < by (b, as above),

then we shall have proved, by our preceding remark, that

o(T, P(b)H) = o(T, P(b))H) U o(T, P(b)H) < b, U by = b.

So in what follows we may and will assume that each considered b € D(S)\C(S)
is contained in some bounded R*-neighborhood of S.

Let k(b) = k(b, -) denote the characteristic function of the set b. Assume that
b e D(S)NC(S) and that z€ C, z ¢ b. Let F(u) = (u — z)~%(b, u). Then F satic-
fies the conditions of Lemma 8, hence the operator F(T) belongs to L(H).

By [11; Theorem 4.3], for every f in H we have

wP(b)f = k(bMmf.
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Hence wP(b)f = k(b)wf and, by [11; Theorem 5.4], P(b) = k(b, T). Assume now
that fe D(T)nPMB)H and uea(T)nC. Then wf= k(bwf and, by [11;
Lemma 2.18], wTf(u) = uwf(u). Hence wf(v) = (u — z)~1k(b, u)(u — )wf(u) =
= Fuw(T — 2)f(u). By [11; Theorem 5.4], wF(TXT — z)f = wy, thus

F(TYTIP(OH — 2)f = f.

Now let fe P(B)H and we o(T)n C. If g = F(T)f, then wg = Fw/. Indeed,
the domain of F(T) is all of H. On the other hand, formula (5.12) in [11; p. 558]
shows that for every fin this domain wF(T)f = Fwf. So

wg(u) = wF(T)f(w) = Fuwf(u) (e o(T)n C).

Therefore
(u — z)wg(ﬁ) = (u — 2)Fuwf(u) = kb, umf(u) = wfu).

By [11; Theorem 5.4}, then g € D(T — z) = D(T), and

w(T — 2)F(T)f (1) = (v — 2)wg(u) = wf(u). .
’ Further,
k(b, wwg(u) = kb, )Fywf(u) = weg(u)

implies that g € P(b)H. Hence
(TIPB)H — 2)F(T)f = {,

~ so we have shown that o(T|P(b)H) < b U {co}.
We have assumed that the set & € D(S)\C(S) is bounded. So the function

G(u) = uk(b, u) satisfies the conditions of Lemma 8, hence the operator G(7T) is
in L(H). Let fe D(T) and u € 6(T) n C. Then P(b)f € D(T), and

wTP(B)f (1) = uwP(b)f(u) = ukib, uwf(1) = G)wf(u).

By [11; Theorem 5.4), TP(b)f = G(T)f. Since the operator T is closed, TP(b) =
= G(T) e L(H). So T is D(S)-spectral with the D(S)-resolution of the identity P.

On the other hand, if s € S\Sy(7T) then, by Theorem 4 and Lemma 7, the
A(Sy(T))-resolution on the identity E for T is uniformly bounded in some neigh-
borhood of s. Further, for b € C(S) we have E(b) = P(b), by Theorem 4 and the
" first part of this proof. Ljance [11, Theorem 4.3] has proved that lim|P(b)! = oo as
the distance of & to S tends to 0. Therefore S,(7) = S.

These results were obtained while the author was holding a grant from the Alexander von Humboldt
Foundation in the Federal Republic of Germany.
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