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A DESCRIPTION OF INVARIANT
SUBSPACES OF C,-CONTRACTIONS

L. KERCHY

INTRODUCTION

Sz.-Nagy and Foias have given a description of invariant subspaces of com-
pletely non-unitary (c.n.u.) contractions in terms} of regular factorizations of their
characteristic function (cf. [11, Chapter VII]). Since it is rather difficult to look
over all regular factorizations of a contractive analytic function even in the simplest
cases, Sickler {10] initiated to derive more explicit descriptions of invariant subspaces.
His results concern C,;-contractions with scalar-valued characteristic function,
and have bzen generalized by Wu [15], [16] to C);-contractions with a finite matrix
characteristic function. Their method is the following: construct a simple, cano-
nical quasi-affinity, intertwining the functional model of the contraction with a uni-
tary operator, and after that, using results about regular factorizations, show that
this quasi-affinity implements the isomorphism of the invariant subspace lattices.
The aim of the present work is to extend this method for arbitrary C;,-contractions.

Our paper is organized as follows. In Section I we examine when the isomor-
phism of different invariant subspace lattices of quasi-similar C,,-contractions can
be implemented by intertwining quasi-affinities. It turns out that such an implemen-
tation is possible:

1) for the Cy;-part of the hyperinvariant subspace lattices under quasi-simi-
larity;

2) for the Cy,-part of the biinvariant subspace lattices under weak simila-
rity; and

3) for the invariant subspace lattices under a similarity relation which may
be named analytic similarity.

In Section II first we show that the canonical, intertwining operator between
the contraction and the corresponding unitary operator, introduced by Sickler and
Wu, is a quasi-affinity for every c.n.u. C,,~contraction. Then we examine the iso-
morphism of which invariant subspace lattices can be implemented by this quasi-
-affinity. Applying results of Section I, we find that such an implementation can be
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realized: _

1) between the C,,-parts of hyperinvariant subspace lattices, for every C,;-con-
traction;

2) between the C,;-parts of biinvariant subspace lattices, for contractions
being weakly similar to unitaries; and

3) between the invariant subspace lattices, for C,,-contractions whose cha-
racteristic functions have scalar multiples.

As a consequence we obtain descriptions for the corresponding invariant sub-
space lattices of Cy,-contractions belonging to the narrowing classes mentioned
before.

We shall use the terminology of the monograph [11]. Here we only remind
some basic notations.

If $ and K are (complex, separable) Hilbert spaces, then £(9, K) stands for
the set of all linear, bounded operators mapping from § into &. If § and K coircide
then we shall write briefly £(9) instead of .Z(H, H). For any two operators
T e Z(9)and S e LK), AT, S) denotes the set of operators, intertwining 7 and

S, ie. (T, S) = (X € Z(H, R): XT = SX}. T can be injected into S: T < S, if
F(T, S) contains an injection. T is a quasi-affine transform of S$: T < S, if (T, S)
contains a quasi-affinity, i.e. an injection with dense range. T and S are quasi-similar:
T ~ S, when they are quasi-affine transforms of each other.

For an operator T € #(9), {T}' and {T}" stand for the commutant and bicom-
mutant of T, respectively, ie. {T} = S(T, T) and {T}' =M\{{4}:4€{T}}.
Moreover, Lat T denotes the lattice of invariant subspaces of T, while Lat”’T and
Hyplat 7" are the biinvariant and hyperinvariant subspace latticesof T, i.e. Lat”" 7 =
=\ {LatA: A4 € {T}’} and HyplatT = (M {LatA4 : 4 € {T}'}.

A contraction T € £($), i.e. an operator with norm ||T]] < 1, is of class Cy,
if for every non-zero vector 1€ § we have lim |77 # 0 # lim ||T*"hjl. Tke set

H-5>00 H—300

Lat,7 = {M e LatT: T{M € C;;} of C)-invariant subspaces forms a complete
lattice, whose sublattice is the C;;-part of the hyperinvariant subspace lattice:
Hyplat, T = Hyplat T’ n Lat, . (For details we refer to [7].)

I. IMPLEMENTATION OF LATTICE ISOMORPHISMS BY
INTERTWINING OPERATORS

1. HYPERINVARIANT SUBSPACES

Let T, and T, be quasi-similar C,,-contractions. It is known that their Cyi-hy-
perinvariant subspace lattices are isomorphic

Hyplat, 7, = Hyplat, 7,.
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Moreover, there is only one isomorphism

qu, T, :Hyplat, T, — Hyplat, T,

such that 7|9 is quasi-similar to Tylq,. .. (3N), for every M € Hyplat, T;. (Cf. [11],
1’72

135, [71)
It is known also (cf. e.g.[7]) that if Hyplat, Ty = {(ran B) : Be {T,}"'}, then
4, 5 can be implemented in the following way: for every quasi-affinity
1* 72

Xe £(Ty, Ty), qu’ T, coincides with the mapping

gx: Hyplat, T, - Hyplat; Ty, qy: 9 — (X)),

In the general case we can prove the following

ProPOSITION 1. If Ty and T, are quasi-similar Cy,-contractions, then there exists
a quasi-affinity X € F(Ty, Ty) which implements the isomorphism q, ., i.e.
Ar,, T,

4, p = qx for the mappings defined before.
-1

Proof. Let U, € #{K,) be the minimal isometric dilation of the contraction
Ts € Z(9H), and let us consider the unitary part R = U, |Rof U, in the Wold de-
composition. It is known that 7, and T, are quasi-similar to R (cf. [11, Propositions
11.3.4 and 1L.3.5]).

Let X, € #(T;, R) be an arbitrary quasi-affinity. Since R being unitary,
Hyplat; R = HyplatR = {(ran B)~: B e {R}"'} we infer that Ir,r = 9x;

On the other hand, let X, € #(R, T;) be the operator defined by X, = Pg{%
(== (Py:|9H)*), where Pg denotes the orthogonal projection onto $ in the space &, .
On account of [11, Proposition II.3.5] X, is a quasi-affinity. Moreover, an applica-
tion of the Lifting theorem (cf. [11, Theorem I1.2.3] and [12]) gives that for every
operator B e {T,}' we can find an operator C € {R}’ such that BX, = X,C. This

relation shows that for any subspace 9t € Hyplat, R the subspace an(“JJ’i) = (X, 30~
belongs to Hyplat, 7. Since g, OR) = V{(AX M) : AT, = T;A}, for every
9% € Hyplat, R (cf. e.g. [7, Theorer;1 5D, (Xo,9M)~ € Hyplat, T, implies g T_)(&Dl) =
= (X,M)". Hence, we infer that g, = ¢, T )
Consequently, for the quasi-aﬁ‘iznity X - XX, € #(T,, Ts) we have

= , © — o ==
9 =9x, 9%, = 9r1,°9,,r 797 1,

and the proof is finished.
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In the sequel we shall examine how the subspace 9 € Hyplat, 7, can be reco-

vered from the subspace (X91)~ € Hyplat; T,. We shall need a lemma which expres-
ses the maximality of C;;-hyperinvariant subspaces in a more explicit way than [11,
Theorem VI1I.5.2].

Lemma 2. Let T be a Cyy-contraction and I € Hyplat, T, e Lat,T. If
T8 can be injected into T | M, or (T|8)* can be injected into (T | MY*, then L is
contained in M.

Proof. We may assume that T is a completely non-unitary contraction (cf.
[6, Lemmas 1 and 2]). On account of [5, Corollary 1] and [3, Lemma 4.1] the rela-

tion T! L < Ti9M implies that
mnkATsﬁ(e“) < rankAT:im(e“)

a.e. (with respect to the Lebesgue measure) on the unit circle C of the complex
plane C. (Fora c.n.u. contraction S, 4g is defined by 4(e') = [/ — O4(e"")* O (e")]'/3,
where Oy is the characteristic function of S.) This inequality shows that OTIQ(ei’) is
isometric whenever @rgu(e") is so. Therefore, on account of [I1, Theorem VII.5.2}
we obtain that £ < .

The case (T| 8)* < (T | M)* follows from the previous one, taking into ac-
count that

rank Ag(e’) = rank 4 .(e™")

holds a.e., for every c.n.u. C;,-contraction S. The last equality is a consequence of
the relation Og(e")*4 :(e™'") = ds(e'') Og(e™) (we remind that @ .(e") = Oge™)¥)
and the fact that, for the C\;-contraction S, ©¢ is outer from both sides, and so
O4(e") is a quasi-affinity a.e. (cf. [I1, Propositions VI.3.5 and V.2.4]).

ProrosITION 3. Let Ty and T, be C,,-contractions, and Ilct us assume that
Xe F(Ty, Ty) is an injective operator. Then for every subspace MM € Hyplat, T, we have

M = (XXM 7).

(We recall that for any C),-contraction 7, and for any invariant subspace
8 e LatT, 8 denotes the C,,-part of £, i.e. the largest invariant subspace £~
included in £, such that 7| ' € C,;; cf. [7].)

Proof. It is clear that the subspace M’ = { X -1((XIM) ")} e Lat, T, contains M.
On the other hand, both T, | M and T, | M’ being the quasi-affine transforms of

T, [ (XM~ € C,y, it follows that T, | M is quasi-similar to 7, | M’. (We remind
that if a Cy;-contraction S, is a quasi-affine transform of a Cy;-contraction S, then
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they are quasi-similar; cf. [l1, Propositions 11.3.4, 11.3.5].) Since M belongs to
Hyplat, T, Lemma 2 yields that 9 includes M. Therefore M = M’, and the proof
is completed.

REMARK 4. We note that the operation of taking Cy;-part can not be omitted
in the preceding proposition. In fact, there exists a cyclic C,;-contraction T, quasi-
-similar to a reductive unitary operator U, such that (M*2)* 2 M, for a subspace
9 e Lat, T (cf. [2, Remark 3.6]). (Here M*1 is defined by M1 = (MHD.) Now,
on account of [6, Proposition 7] we get (X((M*1)*)™ = (XM)~, for any operator
X e #(T, U), while in virtue of [8, Theorem 15] we have Lat, T = Hyplat, T.
Therefore M #= X—H(XM)~ for the previous subspace P € Hyplat; T.

2. BIINVARIANT SUBSPACES

In this point we examine the behaviour of Lat; T under quasi-similarity, for
Cyy-contractions. First of all we note that for any T € C;; we have

Lat, T:={MeLatT: TN € Cyy)} = (M e Lat" T:T| M € Cpy}.

(Cf. [6, Lemma 5].)

Let T, € Z($W) and T, € L(S®) be weakly similar Cy;-contractions. Weak
similarity, which is an equivalence relation in C,,, stronger than quasi-similarity,
has been introduced in [8] and [9], and means that there are basic systems {HP},
and {H?}, in 9O and H@, respectively, such that $HP e Hyplat, T,, H® e
€ Hyplat, Tyand 7|9V is similar to T, 9, for every n. (We recall that {9, ]}, is a basic

system in 9, if H$ =9, + (V 9,) for every n, and M ( V ;) = {0}; cf. [1].}
. ksn nz0 kzn
Itis easy to see that, for i = 1,2, Lat; T, can be decomposed into the direct sum,

Lat, T; = | Lat, (Tiigf,i)),

i.e. every subspace M € Lat, T; can be uniquely written in the form M =V N, ,

where M, € Lat,(T; | HL?), for every n.
Now, let us define the quasi-affinity X € (T, T,) as follows:

Xh = Z O!"A,,P"/l (/7 € '—6(1))’

where A4, € F(T1|HY, To/HP) is an affinity, P, denotes the projection onto H

n o

with respect to the decomposition §@ == HM L (V H{), for every n, and the se-
k+n

quence {a,}, of positive numbers satisfies the inequality

Y 4 1P < oo
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It is immediate that the mapping
oy Lat, Ty —» Lat; T, @, : P~ (XM)",

corresponding to X, will be an isomorphism. Therefore, we obtain

ProposiTiON 5. If Ty and T, are weakly similar Cn-contractions; then there
is a quasi-affinity X € F(T,, T) such that the mapping ¢, defined before is an iso-
morphism, moreover, T\ | M is weakly similar to Ty | @ (M), for every Me Lat, T, .

Proof. We have only to verify the last statement. Let us consider the decompo-
sition M =-- M, of M e Lat, T,, where M, < H, and M, € Lat, (T, M), for

nor

every n. It is evident that {9}, forms a basic system in M. We shall show that
M, € Hyplat (T, | M), for every n. We may assume that 7 is c.n.u. (cf. {6, Lemmas 1
and 2}). Then the relation H n (V H) = {0} implies that

k+n

rank 4 [(1)(6") rankA v S(l)(e”)~0 a.e.

1 " k#n

{cf. [7]), and so in virtue of I, Theorem VIL1.1 and Proposition VIL.3.3.d] it
follows that

iry. ity —
rankATlFﬁJt,,(e ) rankATl! v Smk(e )=0 ae..
k£n

Now, by [5, Corollary 1] and [3, Lemma 4.1} we infer that #(7,IM,, 1| V M) =
. k#n

== {0}, hence M, € Hyplat (7, | M).
An analogous argument yields that {(X9%,) "}, forms a basic system in (X3)",
consisting of C,;-hyperinvariant subspaces of T, | (X9M)~. Since 7, | M, is similar

to Ty | (XM,)~ for every n, it follows that 7, |9M and T, | (XM)~ are weakly
similar, and the proof is completed.

We note that ¢, is not uniquely determined. For example, let 7; and T,
be the identity operator. Then, for every invertible operator X, ¢, will be an iso-
morphism. However, as the following proposition shows, the restriction of ¢, to
C\;-hyperinvariant subspaces is unique.

ProrosSITION 6. Let T, and T, be quasi-similar Cy,-contractions, and let us
assume that

¢y :Lat, T, > Lat; Ty, @, M= (XM)"~
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is an isomorphism, for a quasi-affinity X € S(T,,T,). Then for every subspace
M e Hyplat, T, ¢,(M) belongs to Hyplat, T, , and the equation

(PX I Hyp]atl Tl = qu, T,

is ftrue.

Proof. Let M € Hyplat, T, be an arbitrary subspace. Taking into account that

Toi @) ~ Ty | M ~ Ty (M),

qT1' 7,

we infer by Lemma 2 that ¢, () < g, . (M). Since ¢, is an isomorphism, it fol-
1’72

lows that 9 = (p,;l(qT - (M) o M. On the other hand, the relations
1’2

M) ~ T, | M

| qr,.r,

T, M ~ T,

imply again by Lemma 2 that 9’ < IN. Therefore, we obtain that 9’ = M, and
$0 @ (M) =q, . (M).
1* %2
Now we shall show that weak similarity can not be replaced by quasi-simi-
larity in Proposition 5. This will immediately follow from the following two propo-
sitions. The first one can be contrasted with [8, Lemma 7).

PROPOSITION 7. There exist a Cyy-contraction T and subspaces I, , My € Lat, T
such that

3}
My (Y My = {0 # My 0 My,
and
My = {heMy:TheMy n M, for some n = 0},

1)
(Here M, (M M, is the greatest common lower bound of M, and M, in the

lattice Lat, T'; cf. [7].)
Proof. Let U e Z£(R) be a bilateral shift of infinite multiplicity, and 9 a
wandering subspace such that R = @ U"M. Let Q € Z () be a non-invertible

n=—oo

C,,-contraction. By [2, Lemma 3.2] there exists a vector f € 9t such that the operator

[0 O] eZICOM
f e

is an injective contraction; in the matrix, f denotes the operator /2 C — N defined
by f: 2+ Af.
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Let De #(R) be the operator which has the diagonal form D= @ 0O,

n.. —o0

in the decomposition & = @ U™, with Q, = U"QU~"|U"Mt € L(U"IN), and

let us consider the operator W = UD € £ (R). W is obviously a C,;-contraction.

Let Se Z(],) be a unilateral shift of multiplicity one, and let
e € ran(l — SS*) be a unit vector. Moreover, let f ® e € L(K,, K) denote the
operator of rank one, which transfers the vector e into f, i.e. (f®e)k = {k, e)f,
for every k € &, . Now we define the operator T on the space = K, @ & by

the matrix
e[ 0]
f®e W

Let x € § be an arbitrary non-zero vector and, for every integer n, let
P, € Z(9) denote the orthogonal projection onto the subspace U"It. Then we

o] .
can find a positive integer n, such that ( y P,,) T"0 x# 0, hence there is an integer
n=1
n-~n

n > | suchthat y = P, T"x # 0. Since, forevery n > n,, the vectors 7" "y and

T" "o(T"x — y) are orthogonal, it follows that [|T"x|[ = ||T" "7 0x i

=
> || T" "oy}, if n > n,. Taking into account Q € C,., we infer that lim {|7T"x|| >

n—-00

> lim |77p| = lim ||Q"™U ™ "y{| > 0. So we have obtained that T e C,.. The

01— 00 -0

relation T € C., can be proved similarly, therefore T is a Cy,-contraction. More-

over, the subspaces M, = V T"R], and M, = K clearly possess the required
nz0

properties.

ProposiTioN 8. Let T, be a C,y-contraction with properties in Proposition 7
and T, be a Cyy-contraction, quasi-similar to T, such that Lat, T, is a sublattice of
Lat T, (e.g. Ty may be a unitary operator quasi-similar to T, ). Then for every operator
X e #(Ty, T,) the mapping

o, Lag Ty » Lat, Ty, @, M — (XM) ™

is not a lattice-isomorphism.

Proof. First of all we note that (YD)~ € Lat, T,, for every M € Lat, T, (cf.
[6, Lemma 5]). Let M, , M, € Lat; T; be subspaces with properties described in Pro-
position 7, and let us assume that ¢, is an isomorphism foran operator X € (77, 7.).

@ )
Then the relation 9, (M}M, = {0} implies that (XIM,)~ (M) (XV,)” == {0}.
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Since Lat, T, is a sublattice of LatT,, it follows that X(M, n M,) < (XM,)~ n

1
NXM,) ™~ = (XM,)~ H(X”JJI;,)_ = {0}. Now, on account of the relation M, =
= {heM,: TThe M, n My, n > 0}, and taking into consideration that T}, is
an injective operator, the intertwining relation X77 = T4X (n > 0) vyields that
(XM~ = {0}. However M, € Lat, T, is a non-zero subspace, since M; > P, n
n M, # {0}, hence @y 1s not an isomorphism, which is a contradiction.

3. INVARIANT SUBSPACES

Finally, for the sake of easy reference we mention the following fact, frequently
used by Wu in connection with contractions of finite defect indices (cf. e.g. [17]).

Proposition 9. Let Ty and T, be quasi-similar Cyy-contractions with absolutely
continuous unitary parts. Let us assume that there are quasi-affinities X € #(Ty, Ty)
and Y € S(Ty, Ty) such that YX = 6,(T}) and XY = 6,(T,) for some outer func-
tions 6,, 8, € H®. Then the mapping

Yoo LatTy —» LatTy, g, : 9> (XM)~

will be an isomorphism such that T, |9 is quasi-similar to T,|y (M), for every
PMelatT,.

Proof. We have only to note that for any contraction 7 with absolutely con-
tinuous unitary part, and for any outer function é € H®, §(T) is a quasi-affinity (cf.
[11, Proposition 111. 3.1]). This fact immediately implies that , and . are inverses

of each other.

1I. CHARACTERIZATION OF INVARIANT SUBSPACES

1. CANONICAL INTERTWINING QUASI-AFFINITIES

In this section, applying the results of Section I, we give descriptions of inva-
riant subspaces of C;;-contractions by the aid of canonical quasi-affinities inter-
twining them with unitaries.

In virtue of [6, Lemmas 1 and 2] without loss of generality we may assume
that 7€ Cy, is a c.n.u. contraction, and so that 7 = S(@) is a model-operator
(cf. [11, Chapter VI]). More precisely, let {@(%), €, €} te a purcly contractive, ana-
Iytic function, outer from toth sides (defined on the open unit disc D of C, and
with values in Z(€)), and let T = S(©) be defined in the following way. H*(),
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L*€) denote the usual Hilbert spaces of vector-valued functions, A(e") =
[I — O("*)*@(e")]V/2 is the defect function associated with @. Then

K, = H¥E) @ (4LXE))",

and U, € Z(K,) stands for the isometry of multiplication by e”. The subspace
N = (AL*(€®))~ reduces U, to a unitary operator R = U, | N. Let us consider the
isometry V: H¥(€) - K, Vu = Ou @ Au(u € H*E)). Then

H = K, O VHIE)

will be a semi-invariant subspace of U ., and T = S§(O) is defined as the compres-
sion

T=PuU,|$.

T is a c.n.u. Cpy-contraction, and U, is its minimal isometric dilation.
It is known (cf. [11, Proposition I[.3.5]) that T is quasi-similar to the unitary
operator R, called the residual part of 7, and that

0 Y = P 9Ne F(R,T)

is an intertwining quasi-affinity.

Our aim is to provide another quasi-affinity, intertwining 7" with unitary,
which has the advantage of being an operator of multiplication by an operator-va-
lued function. Let us consider the function 4,(e") = [/ — O(e)O(e"")*]V2, and
the space M, = (4,L2(€))". The unitary operator R, of multiplication by e’ on
N, is called the =-residual part of 7. Our result is the following

THEOREM 10. If T = S(@) is the Cyi-contraction introduced before, then the
mapping

2) X:9-NR, Xu®v)=—-4,u+0r uUdDveDd)

is a (well-defined) quasi-affinity, belonging to #(T,Ry). Moreover, its product
Z = XY e F#(R, R,) with the operator Y defined in (1) acts as a multiplication by
@, ie.

(Zv)(c") = O")v(e™)

holds a.e. on C, for every v e N.

The operator X occurring in this theorem was introduced by Sickler [10] in
the case when @ is scalar-valued (i.e. dim € = 1), and was studied by Wu [15], [16],
when T has finite defect indices (i.e. dim € < o0).
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To prove Theorem 10 we need a lemma, which is a slight modification of
[14, Proposition 2]. (Contrast also with [11, Propqsition IIL.1.1.)

LEMMA 11]. If{@(ﬂ), €, €. }is a contractive, analytic, -outer Sfunction, then
OL¥(E) n H¥(E,)== OH*(E).

Proof. Let us introduce the unitary operators V € £(L*€)) and
V,e L(LYE,)) by the definitions:

V") =e~"fle"")  (feLX€)),
and

V.0)e") =e"ge~") geLlEL)).
Since @ is s-outer, it follows that @7 (1) == O(1)* is outer, i.e.

(O HY(E,))™ = HXE).
An easy computation shows that @* = VO V1 Hence we infer that
(3) (O*(L(O4) O H¥(E,)))~ = L(€) © H*(E).
Let us assume now that
(4) OKc H¥(E,),
for a subspace & < L%€). Then (3) and (4) yeld that
L¥(€®) © HY(€) = (O*(LXE,) © HX(E,)))" = L*(E) © K.
Hence & = H¥(E), and the lemma is proved.
Proof of Theorem 10. For an arbitrary vector u @ v e R, we define

(5) Xu@®v)=—d.u+ O,
On account of the commuting relation

(6) 04 = 4,0,

it follows that )A((u @ v) € N,. Therefore, equation (5) defines an operator
Xe Z (8,4, R,). Being a multiplication operator by an operator-valued function,
X clearly intetwines U, and R, .On the other hand, for every we HE) we
have in virtue of (6) that

)?(@w @ 4w) = — 4,.0w + Q4w = 0.
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This immediately implies that the operator X = )?l H e L(H, N,) intertwines
T and R, :
X e #(T,R,).
For every vector v € L} E) we have
Z(4v) = XY(0 @ 4v) = X[(0 ® 4v) — (Ow @ 4w)] =
= X(—Ow @ (dv — 4w)) = 4,0w + O4v — Odw = OAv,

where w e H%(€) is an appropriate vector, and we have used (6). Therefore,
Z € £(R, N,) acts as multiplication by the operator-valued function ©.
Now we prove that X has dense range. Since

ranX o ranZ o ZAL3}€) = 04L%(€) = 4,,0L%E),
it is enough to show that
@) (OL€))” = LX(©).

Let U denote the operator of muitiplication by e¥ on the space L¥&). Taking into
account that @ is outer, we infer that for every integer n

(OLYE))™ = (OU"'LYE))” = U"(OLXE)~ > UNOHXE))™ = U'HAE).

Hence (OLX€))- o o\; U"H*€) = L), which proves {7). Therefore, X has

n.=—oo
dense range.
Finally, we show that X is injective. Let us assume that

) Xu®v)y=—du+60v=0,
for a vector v @ v € H. Multiplying equation (8) by 4,,, and applying (6), we obtain

= —A%u + 4,00 = —u -+ OO*u + Odv,
ie.
C)) H2€) s u = O(O%y + Av).

Since O is =-outer, an application of Lemma 11 results that
(10) O%y + Av € H¥E).

On the other hand, ¥ @ v being in & is orthogonal to VH*(E), i. e. for every vector
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w € H*E) we have

0=<u®v, OWD Aw>‘“>+ = {(@%y + Av, w}Lz(@).
This yields that
(11 O*u 4+ Av e LA€) © H*(E).
Comparing relations (10) and (11) we conclude that
(12) O*u -+ Av = 0.

Now, we obtain by (12), (9) and (8) that ¥ = ©@v = 0, and since, © being x-outer,
O(e") is injective a. e. on C, this implies that v = 0. Consequently v ® v = 0, and
the proof is completed.

2. HYPERINVARIANT SUBSPACES

As an application first we give a description of Ci;-hyperinvariant subspaces.

Let T = S(@) be a C;-contraction, and let #(C) denote the c-algebra of
Borel subsets of the unit circle. We call two sets a, § € Z(C) to be T-equivalent,
if rank 4(e"*) = 0 a. e. on their symmetric difference. The inclusion relation in
A(C) induces a partial ordering in the set #,(C) of equivalence classes a (2 € Z(C)),
making it a countable distributive, complete lattice.

THeEOREM 12. If T = S(O) is a C,y-contraction, then the mapping
q:#(C) - Hyplat, T,
g:a>9, ={u@®veH:(—Au+0OnE")=0 ace on C\a}®
is a (well-defined) lattice-isomorphism such that
rank 475 (e) = y,(e'Drank A(e') a; €.,

Jor every a € B(C), where y, stands for the characteristic function of o.
Proof. Let us consider the quasi-affinity X € #(7, R,,) constructed in Theorem
10. Since R, is unitary, the mapping

qy: Hyplat, T — Hyplat, R,, = HyplatR,,, ¢, (D) = (XM)~

(M € Hyplat, T) will be an isomorphism such that T |9 is quasi-similar to

R, | (XIM)~, for every M e Hyplat, T. In virtue of Proposition 3 every M e
€ Hyplat, T can be recovered from ¢,(9) by the formula M = {X~1g (P)}V.
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On the other hand, the hyperinvariant subspaces of R, have the form
14 L¥€)) ™, where o« € #(C). Since O(e") is a quasi-affinity a.e. and @©4=4,0,
it follows that o

rank 4,(e") = rank 4(e'") a.e.,

hence y, (4. L* (€)™ == x4(4,L*€))" if and only if « and § are T-equivalent.

So we have obtained that the mapping ¢ defined in the theorem is a lattice-
-isomorphism. Finally, taking into account that T| 9, is quasi-similar to
Ry | 2(44,L¥€))™ we infer by [5, Corollary 1] that

rankdrs (¢") = y.leDrank Ae') a.e. .

REMARK 13. On account of {7, Theorem 3] and [5, Corollary 1] there is only
one mapping ¢ : #7(C) — Hyplat, T such that rank 4, ~(e") = z,(e") rank 4(e")
a.e. . Therefore, the isomorphism ¢ occurring in Theorem 12 coincides with the
mapping (from #,(C) into Hyplat, T) constructed by Sz.-Nagy and Foias via the
regular factorization of @. (Cf. [11, Theorem VI1.5.2], [13] and [7].) Actually, Theo-
rem 12 provides a more explicit representation of this mapping. (This was the reason
why Sickler has introduced it.)

3. BIINVARIANT SUBSPACES

Now we turn to the representation of Lat, 7, for T = §(@) € C,,. First of
all we note that for the unitary operator R, we have

Lat, R, = Lat”’ R, == {P(4,L¥&))” : P {R,), P*= P, P* == P),

where P is an operator of multiplication by a projection-valued function P(e¥)
(e L(€)), with range in (4,L*€))" (cf. [Il, proof of Lemma V.3.1]); let #,
denote the set of such functions.

THEOREM 14, Let T = S(O) be a C,y-contraction, weakly similar to unitary.
Then the Cyy-invariant subspaces 9t € Lat, T of T are exactly those of the form

M= {udve H:(—4d.u -+ Ov) (") € ran P(e") a.e W,

where P belongs to &1. Moreover, two subspaces M and N € Laty T, corresponding
to P and Q € P, respectively, coincide if and only if P(e) = Q(e'") a.e..

Proof. Let us consider the quasi-affinity X € #(T, R,) defined in (2). Tt is suffi-
cient to show that the mapping ¢,.: Lat; 7' — Lat, Ry, ¢, : 9 > (X))~ establishes
an isomorphism. Then the relation MM = {X ~'(XM) "N, for every M € Lat, T,
will immediately follow.
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Since T is weakly similar to unitary, it follows by [8, Theorem 4] that ©(e'") is
(boundedly) invertible a. . . For every natural number 5, let «, be the measurable
set a, = {e:n < [|@()~1|| < n + 1}. Then the hyperinvariant subspaces 9%,==
= y, N € Hyplat R give an orthogonal decomposition of M: @ R, := N.

n==1
"Let us consider the quasi-affinities ¥ € (R, T) and X € J(T, R,) defined in
(1) and (2). Taking into account the proof of Proposition ! and the fact that
Hyplat, Ry, == {(ran A)~: 4 € {R,}"’} we can see that

g, :HyplatR — Hyplat, T', ¢,(M) == (YM)~ (M € HyplatR),

and
g,:Hyplat, T — HyplatR,., ¢,(N) = (X))~ (N e Hypla, T)
. - g (1) -
are isomorphisms. Hence 9, M ( V $,) = {0} and $, V ( V 9,) == 9 for every
k+£n k#n

M
nand(M (V 9,) = {0}, for the subspaces §, = ¢,(R,). An application of [8,

n>0 k>n

Lemma 7] gives that 9,n(V 9) =10} meN) and M(V 9,) = {0}
k+#n

nz0 kzn
Moreover, T|$, being quasi-similar to R, we infer that §, = ¢(2,), where ¢ is
the mapping occurring in Theorem 12. On account of Remark 13 we get that the
characteristic function OT.‘S,,’ outer from both sides, satisfies the relation

[ I a.e. on O\

‘n

Oris, (") Orig, (") == loE" o™ ae. onx

This implies that [[0”5”(6")‘1}| < n-+1 ae., and an argumentation applied in

the proof of [8, Theorem 4] yields that 9, - (V $,) = 9. Therefore, {9,}, =
k#n

< Hyplat, T forms a basic system in §.

On the other hand, since g, is also a lattice-isomorphism, we obtain that
the subspaces R, , == q,(9,) € Hyplat R, give an orthogonal decomposition
of R.: ® R, , =R,

n

Taking into account that Z = XY acts as the multiplication by © (see Theo-
rem 10), and so Z| RN, = ('X] .\5,,)(Y[ R,) is bounded from below, we conclude that
s0 is X | §, too, hence X | 9, € £(T| 9,, R,. | N, ) is an affinity.

Now, by the proof of Proposition 5 it follows that

oy:Lat, T - Lat; R, , @, (M) == (XM) (M€ Lat, T)

is an isomorphism, and the proof is finished.
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4. INVARIANT SUBSPACES

Finally we give a description of all invariant subspaces under a more restrictive
assumption on the C;,-contraction 7.

PropPoSITION 15. Let T = S(O) be a C,y-contraction and X € #(T,R,) the
quasi-affinity defined in (2). If @ has a scalar multiple, then there exists a quasi-
-affinity Y € #(R,,, T) such that

XY = 6(R,) and YX = 6&T)
with an outer function § € H®.

Proof. By the assumption there are a contractive analytic function {Q(2), €, €}
and a scalar-valued outer function § € H* such that OQ = QO = oI (cf. [11, Theca
rem V.6.2]). Let We F(R,,R) denote the quasi-affinity of multiplication by Q
and let Y be the product

Y:=YWe S(R,,T),

where Y € (R, T) is the operator defined in (1). Then Y is also a quasi-affinity.
For any vector v € R, , we have on account of Theorem 10 that

(XY= XYWov = ZWp =0Quv = dv = 3(R,)v,

and so XY = o(R,.).
On the other hand, for any vector v € SR we can write

(YX)(Yv) = YWXYp = YWZv = YQOu = Ysv = YS(R)v = &(T)Yr.

Since ran Y is dense in §, we conclude that YX = &(T).
In virtue of Propositions 15 and 9 we get
THEOREM 16. Let T = S(O) be a C,y-contraction and X € #(T, R,.) the quasi-
~affinity defined in (2). If © has a scalar multiple, then the mapping
YyiLatT - LatR,, , M= (XM~
will be a lattice-isomorphism such that T is quasi-similar to R |y (M), for every
W e Lat7.

SOME REMARKS. It is clear that the restriction ¢, = | Lat, T: Lat, T —

— Lat, R, will be also an isomorphism. 7 = S(@) is in particular weakly similar
to unitary under the assumption of @ having a scalar multiple (cf. [8, Remark 5]).
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Since the invariant subspaces of the unitary operator R, are well-known
(cf. e.g. [4]), a description of Lat T, analogous to Theorems 12 and 14 can be obtained.
The rather complicated details are left to the reader.

Concluding our paper we prove that under the assumption of the last theorem
the C|,-invariant subspace lattices coincide with the biinvariant subspace lattices
This shows that our results are direct generalizations of the ones of Sickler and Wu
(cf. [10], [15], [16]).

ProrosiTiON 17. If T = S(O) is a Cy,-contraction such that © has a scalar

multiple, then
Lat, 7= Lat”"T and Hyplat; 7 = HyplatT.

Proof. It is enough to prove that every biinvariant subspace is Cy;-invariant.
Let us consider the quasi-affinity X € #(T, R,,) defined in (2). In virtue of Theo-
rem 16 we know that the mapping

Yy :LatT - LatR,, ¢, M (XM~

is 2n isomorphism, such that T|9 is quasi-similar to R, |y (), for every Me Lat T.
Since R, is unitary, we infer that Lat’’ R, == Lat; R,.. Hence, it is sufficient to verify
the inclusion

Y (Lat” T) < Lat”R,.

So let M e Lat” 7 be an arbitrary subspace and B € {R,}" an arbitrary oper-
ator. We have to check whether the relation

B(XM)™ < (XM)~
holds.
On account of Proposition 15 there exists a quasi-affinity ¥ € # (R, , T) such
that

XY = 3(R,) and YX = &(T),

where § € H* is an outer function. Let 4 € {T'}’ be arbitrary. Since XAY € {R,}’,
B commutes with XAY : BXAY = XAY B. Multiplying this equality by ¥ and X
from the left and from the right, respectively, and taking into consideration that
YX = 6(T)e {T}" is a quasi-affinity, we get

HTH(YBX)A] == YBXAS(T) = Y(BXAY)X == Y(XAYB)X =
= T A(YBX)],

and so B
(YBX)A = A(YBX).
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Therefore YBX belongs to {7}, hence YBXM < 9. Applying this relation
and the fact that, d being outer, the restriction of d(R,) = XY to any invariant
subspace is a quasi-affinity, we conclude that

B(XXIM)™ < (BXM)™ = (5(R,) BXYM)™ = (XYBXIM)™ < (XM)".

Hence (X91)™ is invariant for B, and so the proof is finished.
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