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OPTIMIZATION OVER SPACES OF ANALYTIC FUNCTIONS
AND THE CORONA PROBLEM

J. WILLTAM HELTON

1. INTRODUCTION

A classical pursuit in analysis is the problem of finding the distance of a func-
tion g on the circle T to H* and characterizing properties of the optima. The
problem was solved when distance is in the L? sense by Szegd while in the L* case
much is known and there are over a hundred articles beginning with Carathéodory-
-Fejer and Pick in the early 1900’s. In particular when g is continuous there is a
direct characterization of the L* closest point f; to g provided f; is continuous.
Namely,

(i) lg — f4l is constant,

(ii) the winding number of (g — f;) about zero is negative.

The article has two objectives. The first is to generalize this to nonlinear
optimization problems. Indeed we find a strict generalization of this property. It
applies to highly nonlinear optimization problems and gives a practical test to
determine if a particular continuous function f; is or is not an optimum. We believe
the result can be applied to many engineering situations, see for example [10] or [9].

The second objective of the article is to generalize the classical Corona theorem.
Indeed this is forced upon us by our study of optimization.

The optimization problem this paper analyzes concerns a subset £ of @1(C¥),
the continuous C¥-valued functions on the unit circle. We let I'(e, w) be a function
on TxC¥, and study the optimization problem: Find

(OPT) yo = inf sup I'(e”, /() == | I'(-, fo)llo-
SEE (i
Here || |lw denotes the usual supremum norm. This article concerns qualitative

properties of the optimum. Most of our attention focuses on E = U the algebra
of all functions in ¥r(CV) with analytic continuation onto D, the unit disk.

As we shall see two properties characterize solutions f, of (OPT) over E = 9.
The first property is that the function f, flattens I', that is, I'(e®, f,(e'%)) is constant
a.e. in 0. The complete characterization of the optimum for smooth I' is.
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THEOREM 1.1, (N=1). 4 continuous function f, for which (—2]:

never equals O is a strict local optimum for (OPT) over E = U if and only if

(1) fo flattens T.
(2) The function a has positive winding number about 0.

(e"‘,_ﬂ,(e“’)) :A a(eia)

Note we do not guarantee existence of a continuous optimum f;.

We also give conditions (1) and (2) when N > 1. While the main conditions (i}
and (2) of Theorem 1.1 are stable under small changes in f;, the most straightforward
extension of (2) to N > 1 is not stable. Indeed we show that producing a stable
version of (2) for N > 1 amounts to generalizing the Corona Theorem and computing
the ‘Corona constant’ in this more general case.

There are two types of Corona Theorems, the classical one, cf. [7], and a
newer one based on Toeplitz operators. Fortunately the Toeplitz version gives the
exact ‘Corona constant’, is ‘easy’ to prove, and can be implemented on the computer.
In this article we generalize the operator theoretic Corona Theorem. Surely this
corresponds to some extension of the classical Corona Theorem and we hope that
Corona specialists will find this an interesting open question. The section (§ 3) on
the Corona Theorem is reasonably self contained.

To give the flavor of our Corona Theorem we state a weak corollary (of Theo-
rem 4.2°). If a € L* define T, to be the Toeplitz operator H? - H? for which
T,g = P,eag for g€ H?; also H, denotes the Hankel operator H?* -» H?! given

by H,g = P, ag. Let BL>® denote {f:||f o<1} the closed unit ball of i

In fact BV where ¥V is a vector space will always denote the open unit ball of V.

CoroLLARY 1.2, Suppose a; € H® for j =1, ..., N, and define an operator
1:H* > H? by

P

a X # Ny
T —* Z erletlj = T‘HI “‘ i Z H- ]'I'“J .
Jj=1 J

Assume that I — t has closed range. Then there exists a CN-valued function h in

. N

BH>(CN) for which § a;h; is a Blaschke product of order L if and only if © has
i

at most L eigenvalues less than or equal to 1. Furthermore, there is a simple linear

fractional parametrization of all such h in BH®(CY), see Theorem 4.3.

This corollary actually follows quickly from a simple construction and Theo-
rem 4.2 of [4]. Our more general theorem extends this to functions @; which have
finitely many poles in the disk. One might think of this as a Corona theorem for
H{ in the spirit of Takagi’s extension of Pick interpolation from H* to Hj’.
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2. THE TEST FOR A LOCAL OPTIMA

We begin with a general result from which Theorem 1.1 immediately follows.
It treats a set E< @ (CV) and is stated in terms of the rangent cone TfoE to £ at a
point f,. Recall that this is the set of all 1 in @ (C¥) for which there is a sup norm

of,

differentiable curve f, = Efor 1 in [0, 1] with f, = f, and (0) = /1. Let wno @ denote

the winding number of the function a about 0.

THEOREM 2.1. Suppose [(€', w) is continuous in 0 and thrice continuously diffe-
Jerentiable in w. If fy in E is continuous and the tangent cone Ty T'E to I (€, E)at f,
satisfies

YA < Ty Ec o2

Jfor some continuous functions @ and \y which never vanish on T, then fy is a strict
local optimum for (OPT) if

(i) fy fattens I'; (ii) wno ¢ is positive,
and only if

(1) fo flattens I'; (i1) wnoy is positive.

Proof. If f, € E for 120 is (sup norm) differentiable at ¢+ = 0, then Taylor’s
Theorem says

df§

Q2.0 r(e", f(e) = ", f,(e")) + t2Re Z J(e"’) (e"’) O(1?)

jo-1

where f7 is the j'" co-ordinate function of the C¥-valued function £, == (f%, f7,. ..

. fN) and aye?) = b(')lj (€', f(e'?). That is
w;

(2.2) T () = goe') + 12Rer(e") + O
for some v in ”fOI’E. Conversely, the definition of TIOFE insures that for any v in
T I'E there is a f, in £ satisfying (2.2).

The fact that ’.’/-OI"E: Y and the proof of Theorem 3 in [10] imply that if f, is
an optimum it flattens I. However, for the moment assume that f, flattens I', so g,
is a constant. Then (2.1} implies that f; is an optimum if and only if there is no v in
T;TE with Rev<—0 < 0. If every v in Ty I'E has the form ¢l with /1 € 9, then
wno v == wno ¢ -+ wno /# which by hypothesis is greater than zero; thus every v
has wnov > 0. Now wno v > 0 implies Re v has mixed sign, so the wnoop > 0
side of the theorem is proved.

Conversely, suppose wnoy <0. Recall
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THEOREM 2.3. [11] (or for another proof see [6)). If wnof=0 and ¢ > 0,
then there is polynomial p which is never 0 on T for which

largp — argf| < e.

Apply this to obtain a p with argp as close as we like to n — argy. By hypo-
thesis argyyp is very close to #. Thus Reyp < 0. This concludes the proof.

We sketch another proof (for gy > 0) since different proofs will ultimately
generalize in different ways. This is a direct reduction to the linear case. Let » denote

d . . L
% of (2.1). A basic lemma (cf. Wulbert [14]) in approximation theory says that
t

fo is a strict local optimum if and only if
180 + 2Reahfl o > ||goll, 0

for small enough 250 in TIOE- If g, is not identically zerc and if for each 0, Q(e®, w)
is a positive definite quadratic form in w € C, then (since go=0) for small enough /
we have

) o >11g0 — 2Reahl) oo > |00
Here u(h) = gy + 2 Reah +- Q( , h). Thus inf [Ju(h)|| e occurs at h = 0.
heTy E

We now choose Q to make i a well understood quadratic form, For example,

. ) ,
choose Q(e¥, w) = Jal? Iw]?® to obtain u(h) = Vgo + a <j|‘~’. Then we have f,
&o ]/go |

is a strict local optimum for (OPT) if and only if 0 is the strict local optimum for

- a t
l/g0+ =
8o

(2.3) inf

hedy £
[

LOO

Note that to this point we have not used that g, or @ are continuous. Now we aply the
qualitative theory for this standard problem to conclude properties of g, and a.
We get the conclusion of Theorem 2.1. In addition we obtain strong motivation for

CONJECTURE. For generic I' the problem (OPT) over  with continuous strict

7] . .
local optimum f, yields wno o (e, f4(e'%)) = +1.
w

The rationale is that (2.3) converts to saying

2.4) inf |lkg — I, occursath =20
hed
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for a function k, with wno ky = —wnoa. Now most non-vanishing continuous k&,
for which (2.4) occurs have wnok, = —1. This can be seen from the dual extremal
method, since the dual extremal measure 2,d0 satisfies ei% A, = llkoll ;o0 . NoOW 24,

can be chosen the be an extreme point of BH!. Extreme points are outer functions
and for generic &, they do not vanish. Thus generally wnok, = —1.

Theorem 1.1 is an immediate consequence of Theorem 2.1 since the hypothesis.
of Theorem 1.1 implies that ¢ = == a. Also Theorem 2.1 yields an elegant theo-
retical solution for N> 1:

. . or . . L
THEOREM 2.4. If fy is continuous, each ae") :-a— (€, fo(e™) is rational
z.
J
and not all a; vanish at the same 0, then f, is a strict local eptimum for (OPT)
over £ = the CN-valued functions continuous and analyvtic on the disk if and only if

(1) fy flattens T.

(2) Write a; = Pi with p; and q; coprime polynomials. The integer i defined by
49;

i(fo) = number of zeroes which the greatest common divisor of
Pis ... P has inside the unit disk minus the number of zeroes
of the least common multiple of q,, ..., qy inside the disk

is strictly greater than 0.

Roughly speaking / is the number of common zeroes minus the total numbes
of poles (inside the disk) of the a;.

Proof. Equation (2.1) implies that

N
Tfol" = {}: ah;ih; e QI} .

j=1
One can write
N 0
(2.5) Y, aih; =~ (piy + ...+ pyhy)
j=1 H

where ¢ is the greatest common divisor of p, , p,, ..., py and yu is the least common
multiple of the g’s. Also the polynomials p; have no common factor and as a conse-
quence it is possible to select x,’s in % for which Y] p;»; = 1. Since we may select

. 5
h; = x;h for any h in 2, we see that T, r = 9L Thus the key to f; being optimum:
I

. 0 L
is wno — > 0, which is what (2) of Theorem 2.4 says.
I
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3. STABILITY OF THE TEST

The integer i(f) can change wildly with small changes in f] since functions g;
can have many common zeroes but most small perturbations of the a; will have no
common divisor. Thus the test for N dimensional optimality in Theorem 2.4 is not
practical (while the test for one dimensional optimality in Theorem 2.1 is extremely
practical). The rest of the article is devoted to developing a numerically plausible
test and proving properties of it.

To obtain a version of test (2) in Theorem 2.4 which depends continuously
on f, we introduce a ‘condition number” for test (2). Intuitively the reason test (2)
is unstable is that it makes no attempt to measure the size of the perturbation /
of f, required to make a modest improvement in [|I'(-, f + h)||, . Whether it takes
a modest, or a very large /1 to produce a modest improvement in I' completely escapes
our test. The (crude) measure of this phenomenon appropriate to test (2) is x(A)
defined for each N-tuple A4 of functions 4 = {a,, ..., ay} by

¥ a (e (e)

j=1

3.1) #(A) = sup{inf
8

.. N
he B, wno ¥, ah; < 1}
jo1

or by x(4) = 0 if any ¥, a;h; which never vanishes has wno>1.

The number x(A4) depends continuously on 4 and can be regarded as a
measure of how close the winding number critical to test (2) is to changing from
being <0 to being > 0. To wit if %(A4) is large (resp. small) clearly no (resp. some)
small change in A produces an A’ for which test (2) holds. Thus a sensible numeri-
cally stable generalization of Theorem 1.1 to N>1 is

(1) f, nearly flattens I.

(2) x%(A) is small for 4 = {:f (e“‘,ﬁ,(ei“))}.
M’j

Henceforth, our major objective will be to compute x(A4). Section 4 is devoted to this.

Note that while %(A4) is a ‘condition number’ appropriate for test (2) of Theo-
rem 2.3 it may not be a reasonable ‘condition number’ for (OPT). Section 5 dis-
cusses this and gives estimates to quantify the term x(A) is small.

4. A CORONA THEOREM

This section concerns a set A == {a;})’ of continuous functions and computa-
tion of x(A) defined (recall (3.1)) by

N .-
Y ajhj%:h e BY, wno(Zajlzj)<0}

i=1

(4.0) #(A) = sup {inf
2]

and
#(A) =0 if{ } is empty.
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We begin with an example.

ExAMPLE. Assume each g; is in H*®. The classical Corona Theorem gives
conditions on 4 so that there is a number C(A) called a ‘Corona constant’ with

N
the property that there is an 4’ € H®(CV) for which ¥ a4 = 1 and || °|| < C(4).
1 ' '

Let x,(A4) denote the value obtained in (4.0) the definition of » by maximizing over

h € BH>(CV) rather than BA(CY). Then xo(4)>1/||#°||>1/C(4). Conversely, if

%o(A) > 1/C, then 34 such that Y a;4% = g and inflg(e"®)|/||4]] > 1/C. Thus
0

h' = h%[q solves the ‘Corona equation’ ¥, a;h} = 1 and || 1*]|<||A°||/inf |g(e')] < C.
0

Therefore the ‘best’ Corona constant equals 1[x.(A4).
One classical estimate at the moment for the Corona constant goes like this:
If

N
(4.1) Y 14@)PP=0

3/2
o0~ *is a Corona constant, (see [12]). We shall ulti-

- 2
Z ]aji
j L®

mately see that for rational a; we have x,,(4) = x(4).

then C(4) = 65

The example makes it clear that finding a formula such as (4.1) for estimating
(A4) amounts to generalizing the Corona theorem in a certain way. This leads us
o the operator theoretic Corona theorem mentioned in the introduction. The
operator theoretic theorem has the advantage that it produces the best Corona
constant — not just an approximate one. We now introduce the necessary ter-
minology. ‘ '

Let Py, denote the orthogonal projection of L% onto the trig polynomials
i a;e'’ ; here m can be negative to include —oo. If 4 = (ay, ... ., ay) is an N-tuple

Jj:.m

of L* functions define an operator (H:H%* 4 ... + H? -» (H*)! by

N
(Hy by, .y = Y H b
j=1

g, by 0, = Ha1(H,,1)*h1 + ...+ H,,N(HHN)*IIN, and * by

4.3) *4 = dimRg H = dimRgo,.

Let H;® denote the functions in L* which are boundary values of functions bounded

and analytic in D except for possibly / poles inside D. If each g; is in H”, then
* A is finite. _
Our first observation is

R}

11 — 1685
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LemMaA 4.1. If A = {a;} are rational functions with no poles on the unit disk,
then * A equals the number of zeroes in the unit disk of the least common multiple p
of the denominators q; of a;. Roughly ¥ A is the total number of poles of a; discount-
ing overlaps.

Proof. The key is (2.5). It and the nearby discussion implies that

0
Rg 4H = P{_co,-1) — H?
u

where J is a trig polynomial in A whose zeroes never intersect the zeroes of pu.
It is easy to check that the range of such a Hankel matrix equals the span of
the functions

1 1 1

2 b
z—z (z—z) (z—2z)i

where z; is a zero of u and r; is its multiplicity. Since these functions are linearly
independent and there are ¥ 4 of them the formula in the lemma is proved.

Our main result on %(A) is

THEOREM 4.2. Suppose A = {a; Nis a set of HZZ functions for some L,. Let ¥
denote the space Rg ;\H ® H? and define an operator Tt on %" by

a X —
18 =Y, Pya;Preag.
Jj=1

Assume that »*I,, — t has closed range for all x slightly less than x(A). If each a;
is rational, then

4.4) 2(A)? =(F 4 + 1) smallest eigenvalue of 1.
Here we count any continuous spectrum as an infinite number of eigenvalues.

We now take a brief aside and present a generalization of the Corona theorem.
In this generalization we are given a number % > 0 and an integer L. For given g;
in HZ‘; we must satisfy

N
4.5) S ajh; = np
=1

for h = (hy, ks, ..., hy) € BH®(CV) with ¢ an L® function whose modulus is > 1
on T a.e. and whose winding number about 0 is < L. Here we take wnoy = oo
if y is not continuous. If a solution to (4.5) exists then a solution % to

4.5) Add to (4.5) the restriction that |y (e®)|=1 a.c.
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exists, since we can multiply equation (4.5) by the Wiener-Hopf factorization g of

ll#l“z. We find that as » gets larger we must take a larger L in order for a solution
to exist.

The following theorem tells exactly what the tradeoff is.

THEOREM 4.2." Suppose x*L, — 1 has closed range. If x? is between the v and
v -+ )™ smallest eingevalue of t, then (4.5) has a solution h for any Lz —%4 + v

and for no L < — * A + v. Here any continuous spectrum of T counts as an infinite
number of eigenvalues.

Further detail is possible, namely, we can parameterize all functions satis-
fying (4.5). This is done in terms of a linear fractional map

G(s) = (as + P (ys + p)~*

with matrix function coefficients & = (a ﬁ) acting on s in BH*(CV). Here
n 7

o € L2(My,n-1),B € L®(Mn,a),n € L=(My,n-1) and y € L*®(M,1) with M,,,, denot-

ing the mx n matrices. Let [u, v].v.1 denote the signed sesquilinear form

— UUq ... — UyUN + UNFIDN+1

an CN*1 and let [, I 2N+ denote the one it naturally induces on L2CN+1),
Frequently we abbreviate this to [,]. A My, 1,x valued function Z is called a phase
function provided that [E(e)u, E(e)v].n+1 = [u, v]ox. Under the hypothesis of
theorem 4.2’ we have

THEOREM 4.3. Assume that A and » satisfy the hypothesis of Theorem 4.2'. If
%% is the v\ smallest eigenvalue of t, then a solution to (4.5) with L = — ¥4 + v
isunique. If x? is between the v'* and (v-+1)™ eigenvalue thereisa[ , 1y to [ , In+1
phase function Z in H®(My+1,5) S0 that the set G=(BH>(CN-Y)) equals all hy—* for

which h is a solution to (4.5) with L = — *A + v. If the a; are all rational, then &
is rational; also a unique solution will be rational.

A similar parameterization for the solutions L of the traditional Corona theo-
rem (¥4 =0, y = 1, v= 0) was discovered by C. Foias and mentioned in his
Toeplitz lectures. While a description of his parameterization has not been publish-
ed the basic method is presented in [1].

Proof of Theorems 4.2, 4.2', and 4.3. Note that Theorem 4.2 is an immediate
consequénce of Theorem 4.2’. So we turn to 4.2’ and 4.3, The first step is a trivia?
reduction. Given g; and x > 0 set a; = a;/x, then the relationship between %2 and
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the spectrum of t is exactly the same as the relationship between 1 and the spectrum
of the operator 7’ built from the ;. Thus without loss of generality we hen-
ceforth take » = 1.

The proof of the theorem requires the generalized commutant lifting theorem
in [4, Theorem 4.2]. In fact the theorem fits very naturally into the [4] setting and
so this is the approach we take. Familiarity with the basic [4] construction
is very helpful, but not absolutely essential to understanding the forthcoming proof.

Define a subspace .# <= L2(CV*1) by

4.6) /Z:{(fl,fz,...,f,v, ﬁajfj)T:fjeH2}.
Let & < L¥CN*1) be the subspace
4.7 S ={(Wf, ..., hnf, )T :f e YH?}

wherey isa rational function of modulus one on T. Then & is clearly invariant under
the operator y on L3(CN*Y) which multiplies each function by €. Moreover h =
= (hy,...,hy)T1s in BL*(C)" ifand only if & is a positive subspace with respect to
[, ], that is, [v, v]>0 for all v € &. Conversely, if ¥ <.# is ¥ invariant and maxi
mal positive in .# (or of finite codimension in a maximal positive subspace of .%),

then we shall soon see that & has the form (4.7).
The key observation is that & of the form (4.7) is contained in .# means

N T
Unf, o oshufs 0 = (frs o s B a,f,.) ,

\, Jj=1
N
that is, #;f = f; € H® and f = Z a;f; . Consequently & < .4 if and only if 1) € H*®
s
and
4.8) ah = 1.

Thus to study equation (4.8) with /; € Y ~*BH*(CN) or equivalently to study (4.5")
we study invariant (nearly) maximal positive subspaces of .#Z. As we shall see the

main theorem of [4] parameterizes all of these spaces.
The next item is to represent positive invariant subspaces of .7 as (4.7). Define

HY(CY) 0
a new space Z by # = .4 + ( ) . Note that® equals H*(CN*+1) 4 ( 0 .
0 Rg \H

Let B be the reciprocal of a Blaschke product which represents Rg ,H @ H*(CYN)
as pH?.

If & is a positive subspace of Z extend it to a maximal positive subspace &, of
# and define the positive cosignature of & (in4%) to be the co-dimension of & in &, .
The definition is independent of how we extend & to &, see [4, § 1]. A trivial lemma

(1.1 of [4]) says that:
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The positive cosignature of any maximal positive subspace of 4 equals the dimen-
sion of the largest positive subspace of # — M , called the positive signature of # — A .

Also Lemma 1.1 of [4] implies that if & =4 is positive with cosignature 1 in £,
then & has the form (4.7) with 2 = dim[fH? — Yy H?] =%*4 — num. poles ¥ inside
the disk <+~ num. zeroes ¥ inside the disk =*4 1+ wno Y. Combine these formulas
to get

LEMMA 4.4. Every positive y invariant subspace & of 4, has a representation
(4.7) which satisfies

wnoy = — *A4 -+ the positive cosignature of & in M +
- the positive signature of B — M.

Concentrate on invariant maximal positive subspaces of .#. We have shown
that each such space corresponds to a solution to (4.8) with a  having winding
number which we shall soon compute directly from the definition of .# and Rg ,H.
The main theorem in [4] says that if .# is ‘regular’ and contains no isotropic vector
(one which is [, ] orthogonal to all of .#), then there exists an integer K > 0 and
a (N + 1) x K matrix valued L* function Z which is [, ].x to [, Jov+1 phase and
which represents .# as

M = BH*(CK).

That .# is regular is guaranteed by hypothesis that I, — t has closed range. Now
Z maps the invariant maximal positive subspaces of H%CX) onto the invariant
maximal positive subspaces of .#. This gives the parameterization in the second part
of Theorem 4.3 once we rule out isotropic vectors and compute K. Since at fixed z
inside the disk, the vector space {F(z): F € .#} has dimension N, we see that K = N.
If ./ containsa positive spacethen|[ , ]k has positive signature > 1. Since HA(CN+Y) o
o/ the positive signature of [ , J.x is <1.

It is so easy to see that the representation .# = ZH?*(CY) gives the G; para-
meterization that we sketch this here. An invariant maximal positive &, in H*(CV)

has the form {(h,x, x)T:x € HY(CY)} with hy€ BH®(My_1,). Thus ESL (=&

is gotten by
(oz ﬂ) (hox) _ ([azh0 -+ /)’]x) iy (ax) _ (hy)
n v\ x [nhe + 71X bx y

where i = ab~and y = bx. Note that b(z) isa 1 x 1 matrix so b(z)~* is well defined
at almost all points of the disk.

Isotropic vectors and all issues of signature are determined by the following
lemma:

LemMA 4.5. The positive signature of R — M equals the number of nonnega-

tive eigenvalues of
I, — .
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Also 4 contains an isotropic vector if and only if this operator has a null vector.
Proof. A vectorx in 2 is [ , ] orthogonal to .# if and only if (x,, f;) + ...
y
oo Cxy, fy) — (xN+1, Y ajfj) =0 for all f;e H%. So (x; —a;xy ;. ;) =0,

j+1
from which we conclude X; = Pyea;x, . Thus
N —
[x, X]= — Z ”PHEaij.,.lnz -+ ”xN+1“2 ==
Jm1

N
== X 1Pgea;BelP + gl = — ﬁ | Pyea;Bell® + || Bell?

for a g in H2 Consequently the positive signature of # — .4 equals the number of
nonnegative eigenvalues of 7, — . We interpret this to be oo if I, — tJhas positive
continuous spectrum. Also x is isotropic in 2 — .# if and only if g is a null vector
of this operator. Now .# has an isotropic vector if and only ifits[ , ] orthogonal
complement does. Q.E.D.

It remains to show that if 1 equals the v'" eigenvalue of 7, then (4.5) has a unique

solution with wno equal to —* 4 + v. From Lemma 4.5 we see that .# contains

an isotropic subspace N,. If S is a positive subspace of ., then & + .4, is positive

since Ay is [, ] orthogonal to &. Thus a maximal positive & contains ¢. Define 4" to

be the norm closure of Vet ; since [e¥° A"y, ¢™A"]=0 for mj. Then we have
J

that any invariant maximal positive subspace & of .# contains 4. Now we must
invoke some substantial machinery from [4] and the correction, which implies that
A" ismaximal positive in .#. Since we have seen that each invariant maximal positive
& in .Z contains A", each such & equals .#". That is (4.5) has a unique solution.

We remark that the assumption that the a; are rational is likely much too
strong. Probably a; once differentiable would do. The main point is to show that
continuous solutions / to (4.8) exist. To prove this one would need to go through the
proof of Theorem 4.2 in [4] and establish that a; smooth implies £ is continuous.

(Added in proof. Joe Ball checked this and said it is true. Also D. Marshall
said the result is known classically.)

REMARKS. (1) We present a way to find the number of positive eigenvalues of

%*] — 7 on a computer. It would be accurate provided the functions a; have Fourier

coefficients which go quickly to zero and Y, dimRg Haj is ‘numerically’ small. The
7

method is based on operator identities which convert the non-compact operator ©
to an operator whose complicated part is compact. For motivation recall the old
identity T,T% = Tiaj2— H*H ;; the Hankel term is, of course, compact. We begin
by deriving this for 7. Suppose P is an orthogonal projection on L2 and that a is
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an L* function. Then
(4.9) PyaPaP, = PyaalP, — Py,aP+aP,.
Now suppose that ¢ is invertible outer and that P == P,.. Since #  is invariant

under multiplication by a,

for b in L®. Consequently P aP, is invertible on %" and its inverse is Py a~1P,.
To compute the number of positive eigenvalues of %2 — t note that this equals
the number of positive eigenvalues of

4.10) PyBPylx® — T)PyBP,, .

N -1 A

Take f to be the outer Wiener-Hopf factor of[ ) |aj|2——x] = [p—x?]_;. Then
1

4.10) is

Py BP, {

J=1

Py aiPta;P, — Pﬂ’p_IP#’}P#’ﬁPW =
“.11)
N 5 —_—
j=1
acting on ¥,
In summary we read off the following from our computations:

PROPOSITION 4.6. If W is finite dimensional and if the a; are continuous, then
the continuous spectrum of 1 equals the interval [inf p(e'®), sup p(ei®)]. Moreover for
) 6

x? beneath this interval x? — t and (4.11) have the same number of positive eingenvalues.

Computing the number of positive eigenvalues for (4.11) 1s a reliable and
fairly routine procedure.
A

— = (6). Certain choices
-— Zje

of z; yield a dense set. We restrict to the case where the a; € H® since the

following computation has already been done there. Sarason [{14] showed that
o0

([%2 — 1] Y, %ens Y, ,,erx,,) = (A, ®%,&) where o == (0, &t5, ...) and
1

1

(2) One natural basis to use in studying 7 is

N - (<]
@ — ¥ a(2)2E l
A = T

1 —2z,z

m

m, p=1

More general classes of canonical functions than e, are found in [3], {13], and [8].
Possibly one of these would efficate computer use.
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Since a positive definite matrix has positive diagonal, 4, <0 for all z,, implies

N
Z laj(z,,)|?=%? all z,,. The classical Corona theorem implies that for some zx this

Jmphes A, < 0. However a simple direct proof of this fact is not known.

(3) A question of possible interest to Corona theorists is what is the classical
analog of Corollary 1.2. What is the generalization of the classical condition

mf Z la;(z)|* > & which guarantees that Y, a;1; = x¢@ has a solution /1 € BH®
w1th wn0(p = L <0 with é and max| g;|l» controlling the size of x?
j

Obvious possibilities are for fixed L>0.
(a) A, has its (L + 1)* eigenvalue uniformly bigger than ¢ for all choices of

Z1s Zg5 +ve5 Zp41-

(b) \
sup inf Y] 4(2) >d>0.
hdne © 710G

This problem has not yet received attention.

5. A CONDITION NUMBER FOR OPT

We have devoted much attention to x(A4) our condition number for test (2).
There also is a condition number S(A4) appropriate to OPT. Had we been able to
compute much about S(A) it would have been the main subject of this paper rather
than x(A4) or possibly even test (2). What little we have derived about S(A4) is present-
ed in this section,

The key equation (2.1) prompts us to define

S(A4) = max { he EQI(CN)}

sup the negative part of Re 2 a;h; (e“’)
)

Jj=1

for A = {a;}Y. For fe A(CN) define S, to be S(A) for a;(e) —“6 (e, f(e").

Clearly S; is connected with the first order term of (2.1). The zero™ order term is
judged by its non-constancy, the simplest measure of which is

8% = sup | 7(e”, AWl — T, fE)].

Clearly if f is a solution of OPT, then S, and S%equal zero ; conversely if the a;’s do
not all vanish at the same 0, then S, and S%= 0 imply that f is a local optimum.
Indeed a (non-computable) alternative to Theorem 1.1 is
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THEOREM 5.1. Suppose f, satisfies the hypothesis of Theorem 1.1. For h in
U define y(h) = |[€”, fo+ M0 — IT€" f€¥)|,c0 and suppose that it is
negative. Then
y)< S+ SpllAll -+ O AP
and
sup  [y(h)| = Sy p + Ou?).

[lA]l=p
y(fi)negative

Since y(h) measures how much improvement fy + h makes over f,, this implies that
locally for S}; small, Sy, determines local approximate optimality.

Proof. Define
G(h)(e") = the negative part of I'%(c%, f(e") + h(e')) — ||T'(®, f(€?))]| c0-

Note that if y(h) < 0, then sup |G(M)(e'%)| = y(h). Define 4,(h) = ReY; a;h;. Equa-
8
tion (2.2) implies
G(h) =(L(, ) —{IT(; N)ll,e0) + neg. part 4,(h) +

+ pos. part 4,(h) + O(|| #]*).

Drop the positive part of 4 to get the first inequality on G. The second inequality
comes from dropping the (negative) term in parenthesis and noting that when / is.
producing sup we have pos. part 4,(h) = 0.

ht

There is an obvious relationship between » and S given by
LEMMA 5.2.
#(A) = S(A).
Consequently if %, is small for f,, then I'(€", fy(e')) is hard to improve by a small per-
[}
turbation of f,.

Proof. Given e > 0O there is an & € BA(CN) such that Y, a;i; equals a function.
g with S(4) — ¢ < inf|Reg(ei®)]. Thus
f

S(4) — & < inflg(e”)] < sup (inf] Y] a;h;]) = x(A).
0 heBA 6

Now that we have an upper bound on S(4) we compute a lower bound on
S(A4) when A is just a single function a. If a has negative winding number p we may
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Reah,
fl 71,
rality assume @ and /# have winding number 0. Thus arga and argh 2 b are

continuous. Write

choose h = z=?h; to convert to with a; = az-*. Without loss of gene-

Reah . \al e’;Re eilarga+b)
Il 7l || el

= Ialexp[b~ — sup 5] cos(arga + b)
8

where 4 is the harmonic conjugate of b. Set arga = a. Thus

inf Reah > (inf |a])exp(infb — supB)cosHa =+ b|.
o | h| 6 0 6

A standard estimate (see Theorem 1.3 of [7]) on the size of b implies

S—l w (b)d?
!

0

w0 <

N

2

‘where @(f) is the modulus of continuity
A (i i
o(f)= sup [f(e)— f(e¥)l.
0—w|<t

‘Combine the preceding to get

.1 ﬂ@?ﬁkaw—28;%w—®mkwwl
0

where u is any continuous function. In particular 4 = 0 gives a simple estimate on
S(A) in terms of a and the derivative of arga.

Intuitively, the freedom in u can be used to remove rapid small oscillations in x
For example, an o like

|
| : |
0 B 2w

would have a large modulus of continuity, but a g with ||u|| small could be chosen
which would make « — u equal

T T~

I |
] o
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which has a very small modulus of continuity. Thus small oscillations in arga do
not force S(A4) to increase much.

to

10.

il.

13.
14.
5.
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