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DERIVATIONS AND FREE GROUP ACTIONS
ON C*-ALGEBRAS

OLA BRATTELI and AKITAKA KISHIMOTO

1. MAIN RESULTS, AND NOTATION

Let G be a locally compact group which is abelian or compact with dual G

and o an action of G on a C*-algebra & as a group of *-automorphisms. Let
= U{HUK) | K < AG, K compact} denote the dense *-subalgebra of G-finite
elements, where &/ *(K) is the spectral subspace of & corresponding to the compact
set K, [16], [11], [4]. When G is a Lie group, it is an open problem whether or
not all derivations é defined on /%, and mapping % into &%, in short 5 € Der(«/¢
/%), are pregenerators (i.e. & is closable and its closure generates a one-parameter
group of *-automorphisms, see [16]). (Throughout this paper we adopt the conven-
tion that derivations commute with the *-operation). This is false if G is not
Lie, see [12, Example 5.14]. A systematic treatment of positive results in this direc-
tion is given in [4]; we will here only mention the following theorems: If G is com-
pact, abelian, and Lie, o is ergodic, & is simple and 6 € Der(&/, &), then  has
the decomposition § = §, + & where do is the generator of a one-parameter sub-
group of o(G) and §5is inner, so a posteriori 6 is a pregenerator, [7, Theorem 2.1].
If G = T == the circle group, & is separable, and « fixes any (closed, two-sided)
ideal in &/ and é € Der(/%, &), then § is a generator, [25, Theorem 2.1] and [26,
Theorem]. If G is compact (not necessarily abelian), and there exists a faithful,
G-covariant representation of & with (%) n &' = Cl1, where &/* is the fixed
point algebra for «, and & € Der(«#/%, &) with 3(/*) < A%, then J again has the
decomposition 6 = J, -+ 5 with & bounded, and thus ¢ is a pregenerator, [11,
Theorem 2.5]. If G is compact, abelian, Lie and there exists a faithful G-covariant
representation on a Hilbert space # such that the range projections E(y) =[«/*(y)#’]
are allequal to 1, and & € Der(/%, £%), then d is a pregenerator, [11, Theorem 3.4].

Our first main resalt is:

THEOREM 1.1. Let G be a separable locally compact group which is abelian
or compact, & an action of G on a simple, separable, unital C*-algebra of, and
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assume that there exists an automorphism 7 of & such that o, = o, for allg € G
and |llim liz"(x), ylil = O for all x,y € o, where [ , | denotes the commutator. Let 6
nj—oo

be a derivation from A% into o such that 5[%“(1() is bounded for each compact

subset K < G. (This condition is automatically fulfilled if G is abelian and compact
and Xl) < o%.) It follows that 6 has a decomposition

O =08y+ 06
on Ay, where &, is the generator of a one-parameter subgroup of the action «,

and 5 is bounded. In particular § is a pregenerator. If the action o of G is faithful
the decomposition is unique.

Except for the separability assumptions, this theorem generalizes the main
results of [27], [34] and [3], where one in addition assumes that § commute with T,
and reaches the stronger conclusion that 6 = J,. The proof of Theorem 1.1 is based
on the fact that if G, a, o and 1 are as above, then there exists a pure state w

®
on o such that the center of the direct integral representation n :S dg m, 0,
G
consists of exactly the diagonal operators of this representation. Here dg denotes
Haar measure. This is Theorem 2.1 of the present paper and this result is also discus-
sed in relation to results by Baker and Powers, [1], [2]). Theorem 1.1 will be proved

in Section 2.
When G =T, it follows from [25], [26] and [28] that the assumption of the

existence of 7 in Theorem 1.1 can be replaced by the weaker assumption I'(x) # {0},
where I' denotes the Connes spectrum, [29, 8.8.2], and the conclusion 6 = J, -+ 3
where & is bounded can still be reached. However if G = T? this conclusion is
false in general when I'(x) = ’/I‘\2 = Z2 An example is the ergodic actions of T2
on simple C*-algebras, and it follows from the results of [7] that the corresponding
derivations 6 € Der(«/%, &) has a decomposition é = &, + 5, where & is approxi-
mately inner but not neccessarily inner unless 6 € Der(«/%, &¢). We do not know
in general if 6 € Der(/%, &%) has the decomposition § = J, -+ 5 if G is abelian
and I'(a) = G. The following result is true, however.

THEOREM 1.2. Let G be a compact abelian Lie group, and o an action of G
on a C*-algebra o such that I'(x) = G and o is G-prime (1.e. any two nontrivial

G-invariant ideals in &/ has nontrivial intersection). If 6 is a derivation from s£%
into %, then O is a pregenerator. Furthermore of% consists of analytic elements

n

Rl
for 8, and there exists a t > 0 such that Y —~'||6”(x)|| < oo for all x € %.
n=0 H.

This theorem follows from {11, Theorem 3.4] and Theorem 3.1 of the present
paper. The latter theorem implies that there exists a pure state @ on &%, such
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that if = is the cyclic representation on 3 defined by the G-invariant state w o Py

on &/, where P, = Sdg o, , then n(o/*(y))o# is dense in # for all y € G.

b4
Our next theorem contains a somewhat unsatisfactory extra assumption.

We have already mentioned that the theorem is known in the case that all prime
ideals are fixed by the action.

THEOREM 1.3. Let o be on action of the circle group T = RJ/Z on a separ-
able C*-algebra of with the property that there is an € > 0 such that for each prime
ideal P in o1, P is either globally fixed by o or 0 (P) # P for 0 < t < ¢. It follows
that all 6 € Der(%, /%) are pregenerators.

We expect that the condition involving ¢ is unneccessary, and prove that this.
is indeed the case if o/ is abelian, Theorem 4.7. However, the proof in this case
shows that the problems encountered in the & - 0 limit are nontrivial, due to a
loss of uniform analyticity of /% .

Our last theorem concerns invariant derivations ¢, with no other assumptions
on the domain D($) than it is globally invariant under the G-action.

THEOREM 1.4. Let G be a compact abelian group and o an action of G
on a C*-algebra of. Let 6 be a closed derivation of o such that du, = .6 for all
g€ G and o* = D(3), where o* is the fixed point algebra for the action a.

It follows that & is a generator.

In the case that ¢ | &* = 0 (or inner) this theorem was shown independently
in [13, Theorem 5.1], and by Kishimoto, see [22, Appendix]. The present gener-
alization was also announced in a postscript to [30].

This theorem fails if the condition &/* < D(d) is replaced by ¢ | /% is a gener-
ator, see [13, Example 6.1], but see also [14]. The theorem also fails if the compact-
ness assumption on G is removed, see [13, Example 6.5] and [5, Example 2.4].
It is unknown if the theorem holds in general if the condition that G is abelian is.
removed, but it still holds for non-abelian G when & is abelian, [20], or if & is
separable type I and | 2/® = 0, see [21].

This theorem will be proved in Section 6 by combining techniques from [13],
[22] and [11}.

2. ACTIONS COMMUTING WITH AN
ASYMPTOTICALLY ABELIAN AUTOMORPHISM

THEOREM 2.1. Let & be aunital, simple, separable C*-algebra, G a separable
locally compact group which is abelian or compact, and o a faithful action of G
on . Assume that there is an automorphism t of s such that

O(g‘l,' = 10,
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Jor all g e G, and
lim [|t"(x)y — y"(x)l| = 0

n-»00

for all x,ye o.
It follows that there exists a pure state w on & such that the center of the

direct integral representation

®
n=1\ dgm,eoa,

[ [

consists of just the diagonal operators of this direct integral decomposition. In parti-
cular the states w o w, are all disjoint for distinct g € G.

REMARK 2.2. As noted implicitly in [1], [2], the conclusion on the center
of n does not follow from disjointness of the states w - «, alone. In fact if « is the
gauge action of T on the CAR algebra o/, there exists a pure state w on & such

that the states woa,, 7€ T, are all disjoint, but Sdta;o o, is a factor state, see
T
Example 2.3.

Proof of Theorem 2.1. We first prove the theorem when G is abelian, and
thereafter describe the modifications needed when G is compact.

As G is separable, there exists a dense sequence {y,} in é, and a decreasing
sequence {Q,} forming a basis of compact neighbourhoods of 0 e G. If G also
is compact, the sequence {y,} should be chosen such that each y € G occurs an
infinite number of times in the sequence.

The existence of t implies that the spectrum of « is a subgroup of 6’, and
as o is faithful, this subgroup is equal to G (actually I'(e) = é). Thus the spectral
subspace #*(y, + 2,) contains an x, with

|, = 1.
Put y, = x, + x¥. By modifying x, by a phase factor we may assume

[l¥all = sup(Spec(y,)),

and
lyall > 1

(where the last relation gives the optimal general estimate). Define a {continuous

function f, on R by
o,
t

| vall,
and set e, = f,(y,). Then e, > 0 and |le,|| = 1.

fult) = {
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Since o7 is separable, it follows from asymptotic abelianness of z that there

is an increasing sequence {m,} of natural numbers such that {t"k(x,)} is a central
sequence whenever n, > m, for all k. Define

z; = 7T"1(ey),
“and define a sequence n, € N, z, € &, inductively by
= m,

I[z"%(e), 20l < k7Y

1
e = | 22:7%(e) 220 > 1 — %2

and

2z, = p 'z "M e )z
where the next last relation is possible to obtain since the simplicity and unitality
of & together with asymptotic abelianness of 7 implies that lim ||7"(x)y||=||x]| || ¥ ||
n—-o0

for all x,y € &, see [27, Lemma 2.2].
Let & be the set of states w on & such thatlimw(z,) = 1. As0 < z, < 1,

k—o00

the set & is clearly a face in the state space of &/, and & is non-empty by the
ollowing reasoning: '

i~
Since .z < z,—p, if we set i = [ #. (>0), {2 'z} forms a decreasing
' ‘n_:k+1
sequence.

Let w, be a state with w,(z,) = 1, and let @ be a weak*-limit point of {®,}.
Then if n = k, :

Art € A lw,(z).

Since 2, — 1, it follows that w(z,) = 4, and this in turn implies that lim w(z)=1.

k-»00

Thus w € & and & .is non-empty. S

Note next that the inequality .z, < z,—, implies 2.z, < z, whenever n > k,
and hence & consists of the states @ on o/ with the property that w(z,) > /%
for all k. It follows that & is closed in the state space of &7, and hence & is
a compact nonempty face, and contains an extreme point w which is a pure
state of <. :

Since ||[t"*(e,), z}/%1]]] < k= — 0 we obtain

lim w (z}%,[7"%(ey), z}%,]) = 0,

k—co

12 — 1685
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and as w(z,) - 1 = w(1) it follows from Schwarz’s inequality that

lim w((1 — z)1"*(e,)) = 0.

k—-oo
Thus

w (1"(e)) = oz} e )zt — w (2" (e,), zi21)) +

+ ol —z)t"™e) =1 —04+0=1

as k — oo, where we used z}2,t"(e, )z, = 1z, But since w(r k(}"i“l—';"))s 1
Yk

Y+
el

and e, = it follows that w(t"(y,_)) — 0 and thus

liminf 0 (z"%(),)) = ]1m1nf|§y,\||

k—oo

(Here y,, and y,_ are the positive and negative parts of y,.) Hence

liminf Re w(t"s(x,)) >

k-sco

Now, for each y € G there is a subsequence {y,’} of {y,;} such that y,- — 7, and by
going to a subsequence we may assume that

limo (% (x)) = 2
k’'—o0

exists. Then Rel > 1;2, so A # 0. But as t"%(x,/) is a central sequence and
is irreducible, it follows that

Tim (" (5,)) = A1,
where the limit is in the weak operator topology. On the other hand
lim [loy() — <, £l = 0,
see [18, Lemme 2.3.5], and hence

®
lim w(z"%(x,)) = S dg Ay, 8.

k’—o00
G
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®
Since 7"%(x,) is a central sequence, it follows that S dg <y, g> is contained in the

G
center of n for all y e 6‘, and thus the set of diagonal operators 1 ® L®(G) is
contained in the center of n. But as the representations m oo, are all irreducible,
the center is contained in the set of diagonal operators. This ends the proof of
Theorem 2.1 in the case that G is abelian.

Next assume that G is compact, and let Cg(G) be the dense *-su'ba]gebzé of
C(G) spanned by matrix elements of irreducible unitary representations of G
(equivalently Cg(G) are the elements in C(G) which are G-finite under left (or right)
translation). The action 7 is strongly topologically transitive in the sense of [8],
see [27, Proposition 2.1], and it follows from Observation 2 in the proof of Theo-
rem 2.1 in [8] that any f e Cg(G) has the form

n

flg) = Z (Pi(ag(xi))’

i=1

where x; € &%, @; € &% and n is finite (see also [34, Lemma 1.4]).

Now, if ye G and ¢ is a unit vector in the representation Hilbert space
of y, choose a matrix representation of y such that y,,(g) = (&, y(g)¢). By the
above remark, there is an x € &/ such that

xy,ﬁ =N = sdg [{(y):y_;.@“g(x) # 05

where d(y) is the dimension of y, and [y;;(g)] is 2 matrix representative of y(g).
If we put

Xj == Sdg d(‘y)y—jl—(zg—)“g(xl)’
G

for j=1,...,d, then we have

a,(x;) = Z X yx;(8)-

k
By replacing x; by Ax; for a suitable A € C, we may assume that

”le = ]9
and with y = x; + x¥,

fivll = sup(Spec(y)) > 1.

Because of the relation between x;, and x; we then have

1l <dOixdl <d@), j=1,...,d@).
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Now, let (y,,¢&,) be a sequence with y, € é, £, a unit vector in the representation
Hilbert space #(y,) of y,, such that {y, |ne N} = G and {e, ¢,

in the unit sphere of s#(y) for each y e G. For each n € N, construct a x(#n) := x; =
=Xy ¢ as above, and define

is dense

x,(1) — S dg d(3) ()t (X ().
G

Now, repeat the argument, word for word, in the proof for abelian G, with x,
replaced by the present x(n), to construct a pure state w and a sequence {n,} such

that {t"k(x(k))} is a central sequence and

liminf Re o (t"6(x(k))) > —; .
koo

We may construct the sequence {(y, , £,)} such that each (y, &) occuring in the sequence
occurs an infinite number of times, and then use the same x(n) 7:5(8) and x;(n)
each time this particular (y, £) occurs. Doing this, assume that. (y, é) occurs in the
sequence, “and let x(k’") be the subsequence of those x(k) such that ()’k €0 = (9.
‘Going to a subsequence again, still denoted by x(k"), it follows from the estmlate
|| x;(k")|| € d(y) that we may assume that the limits

lim o (™ (x)) = 2,
k00

exist, where we used the notation x; = x;(k’) (where x;(k’) is ind¢ependent of k’).
Then -

1
Re(4)) = 5 .

But as 7% (x;) is a centrai sequence and =, is irreducible, it follows that
lim 7, (z"%(x;)) = 4,1
k'— 00

where the limit is in the weak operator topology. On the other hand

o‘g(rnkl(xj )) = Z T"k'(xm)ymj (g )

for all k', and thus we get

m

k!im n(r"k'(xj)) = Sedg Y FmVmi(8)-

G
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‘ ®
Since "¥(x;) is a central sequence, it follows thatS dg Y A¥mi(g) i contained

m
G

in the center of n. But as =, is irreducible, the center of = must be a G-invariant

®
subalgebra % of the algebra L*(G) of diagonal operatorsinn = S dg n,o00,, and €

G

(g) constructed above, By G-invariance of €, to show

contains the functions ¥ 4,7,
m

that the center is all of L®(G) it suffices to show that these functions separate any
g € G\{e} from e. But the function ¥2,7,.(¢g) has the form (z,, y(g)¢), where

¢=(,0,...,0) and 5y = (A, 4a, ..., Ay(y). But as |ine]| = 1 and Re(y,, &) =
= Re/; 2 1/2 and |5} < VI F @) + Dd(y)? < (d(y))¥2, and the set of &s we
are considering is dense in the unit sphere of #(y), it follows that for any ¢ in
the unit sphere of #(y) there exists an i, € #°(y) such that (., £)#0and (n,, y(-)¢) €
€ ¥. But if g € G, and g is not separated from e by the continuous functions in %,
then

(e, y(©)E) = (, &)

for all & € #(y). Taking ¢ to be an eigenvector for the unitary matrix y(g) with
eigenvalue p we get u(ye, &) = (¢, &) # 0 and hence p = 1. It follows that y(g) = 1.
But as this holds for all y € f?, it follows that g == e, and hence ¢ = L*(G), indeed.

ExAMPLE 2.3. As a complement to Theorem 2.1, Theorem 3.15 in [2] and
Theorem 6.15 in [1], we will construct a pure state @ on the CAR-algebra o7,
[17], such that woua, is disjoint from o for all gauge automorphisms o,, 1€ T,
but nevertheless gdrwooc, is a factor state.

T
Let o/, be the 2 X 2 complex matrix algebra and let a'™> be the action of
T = R/Z on «/, of the form

2nid 1
a$'°:Ad[g " ?]

where A, € Z. Let of = @ &, and o, = @ o™,

n=1 n=1
For p € (0, 1/2], define a pure state on <, by
[ V=1

Tr
Vu=p) 1—u

- and let @, be the state on o/ defined by the infinite tensor product of these states.
Then w, is a pure state.
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OBservATION 2.3.1. Let 1, = 3" 4-¢,, where ¢, =0 and ey,_,==1 for
n=1,2,... . Then w,ca, is disjoint from w, for any non-zero t € T, but

E:Sdlwuca,
b

is a factor state on . (More precisely, if u = 1/2, w, is the unique tracial state,
and if pe€(0,1/2), w, is the Powers type W,,—,, factor state.)

Proof. Note that {4,} is chosen such that
Y 2 < (U= 32 4 (0 + 1))2 < Ay
k=1

Hence the fixed point algebra /¢ under x is the maximal abelian C*-subalgebra
generated by the diagonal matrices [Z 2] €sl,. Also, If P: o - /% is the

canonical projection

P = Sdtoc!
5
then
Plxy) = P(XYP(3) fxed,,vesd,,n#m

because of the special choice of {/,}. Thus

Guzu_)ucp:gdlw“rtx,c}): wuoP
P
0

. . {
becomes the infinite tensor product of the states Tr {(l :
—u

)- } , and this pro-

ves that @, is a factor state of the asserted type, [18].
Note that w, o, is the infinite tensor product of the states

T
Tr
l/m——__ 'u)ez.-rii.nt 1 — 1
with n=1,2,... . Hence to prove @,° %, } @, when t#0 it suffices to show that

At

J == limsup|e2 n— 1] >0,

H— 00
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see e.g. [31, Theorem 2.7}. But if t € 3=*Z/Z, then

oz et — 1] > 0.
Otherwise

N . o_:al
/ > limsuple®i®? — || = 2,

n—o0

The observation follows.

ProrosiTioN 2.3.2. Let a be the action of T on of = & &, withall 1, = 1.
n=1

There exists a pure state @ on o7 such that woa, is disjoint from w for t # 0, but

ﬁzgdtwoat

3
is a factor state on A.

Proof. Let 1, = 3"+ g, be as in Observation 2.3.1, and define

Then there is a two-dimensional projection p, € 4, such thata (p,) = p, forail ¢, and

“.‘,pn‘@npn ~ Ad (e2nm"t 0 .
0 1

Let e, = ppy -.. p, and define a completely positive map
e, e, = e, 10,4,

by multiplying p, ., from both sides. The inductive limit of this system of
C#*-algebras and completely positive maps is naturally isomorphic to

o2}
'@ = ® ])Ilg"p"

n=1
and the completely positive map E : o/ — # defined by
E(X) == ]_l._nl €,xe,

for x € o7, is a surjection. Now, if f is the automorphism group which is called o
in Observation 2.3.1, with 2, = 3" +¢,, one clearly has

ant: ﬁtcE
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for te T. Let w = w, < E, where o, is defined before Observation 2.3.1. We claim
that o satisfies the desired properties.
Let e = limn,(e,) is the cyclic representation of .« defined by w. Then
n

E(x) — en,(x)e defines the cyclic representation of % associated to w, on the Hilbert .
space e, . This remark also applies to @, w, instead of w,w,. Proposition 2.3.2
is now a straightforward consequence of Observation 2.3.1.

After this diversion we now return to

Proof of Theorem 1.1. Adopt the hypotheses of Theorem 1.1 and let

@
m=\ dgm,oa

G

be a direct integral representation of &/ as described in Theorem 2.1. This repre-
sentation acts on

®
H = S dg o, = K, ® LXG)
G

where 7, is the representation Hilbert space of n,. Now, as all the representations
7, o o, are irreducible, and the center of .# = n(&/)"’ consists of just the diagonaj
operators by Theorem 2.1, it follows that

M= L(H,) ® L®(G)

where £ () is the algebra of all bounded operators on #,, . If Risthe right regular
Tepresentation of G on #, @ L¥G), i.e.

R (¢ ® ¢)(g) = Co(gh)

for & € #,, ¢ € LAG), then n(o,(x)) = R,m(x)R] for all x e &, / € G, thus the
representation n is G-covariant, and the action a extends to the action of right
translation on .# = $(#,) ® L=(G). We denote the extended action also by a,
and we have in particular

M= L(H,) ® ).

Since the derivation ¢ is bounded on each of the spectral [subspaces .«/%(X),
where K is compact, it follows from [23] that ¢ [ 27%(K) 1s o-weakly continuocus in
the representation 7, and § extends by continuity to ./Z*(K). The extended operator,
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also denoted by §, on #¢ = | #*(K), is still a derivation. (We remark parenthe-
K

tically that if G is compaét and abelian, and §(%) < &i%,. then it follows from the
techniques of [11] that § automatically is bounded on each &/*(K), see [4, Thec-
rem 2.3.8].) Note that since « is the action by right translation, we have

ME = P(H,) @ LE(G)

where L¥(G) are the functions with compactly supported Fourier transform, and
the tensor product is algebraic if G is compact.

The restriction of & to #* = ZL(#,) ® 1 is implemented by a h =
= —N* e L(H,) ® L=(G), see e.g. {16, Example 3.2.34].
We now discuss the two cases that G-is compact and G is abelian separately.

Assume first that G is compact. Following [10], [11), if y € G and [y:;] is a parti-
cular matrix representative of 7y, then define o/%(y) as the set of finite sequences
X = (X1, ..., X;0)} 1 In 74, where d = d(y) = dim(y), such that

2, (x) = x(I ® y(g))-

Then the linear span of the matrix elements in «£§(y) is the spectral subspace

&/*(y) = range of the projection Sdg d(y) Tr(y(g))w, , where dg is normalized and

G
Tr is un-normalized. Now, the action o and the derivation  on £(#,) ® L®(G)

has obvious extensions & and & to Z(#,) @ L*(G) ® M,, where M, is the algebra
of complex dXd matrices, and we have 1®y € 1Q L®(G) ® M, and » € L(#,)®
® L*(G) ® M, for x € ./%,,(y). But the transformation law of x under « implies
that x(1 ® y*) is contained in the fixed point algebra for the right regular repre-
sentation of G on L(#,) ® L™(G) ® M,, ie.
x(1 @y eL(AH,)®]1 QM,.

Hence

S(x(1 ® ) = [h ® 1, x(1 ® 7*)]
and thus

g(x)(l ® y*) + x5(1 ® P =Mh®1,, xJ(1 ® ).

Multiplying to the right with 1 ® y we obtain

8(x) = [h ® 14, x] — x6(1 ® y*)(1 ® 7).
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But
1 ® 991 ®@ P el ® LG ® M,

by the following reasoning: We have &(Centre.# n D(6))  Centre.#/ since if
x € Centre.Z n D(5) and y € D(3), then

y3(x) = 6(yx) — 8(3)x = 6(xy) — x6(y) = d(x)y.

Thus (1 ® L¥(G)) = | ® L=(G) and hence 5(1 ® 7)el ® L2(G)® M,.

In the expression for d(x) above, all the elements are contained in L(H# ) ®
® [*(G) ® M,, and can therefore be viewed as function from G into L(#,) ® M,.
If we consider an x € 27g,,(y), and evaluate these functions at g € G, we get

ag(8(x)) = [h(g) @ 1,, ap(x)] — a,()(3(1 ® y*)(I ® y*))g)

for almost all g € G, where we have surpressed the n. Since o/ and G are separable
and thus G is countable, there is a g € G such that the expression above is valid
for all x € ofg,)(y) and all y € G. But as §(1 ® )1 ® y)(g) is a scalar matrix
m M,, it follows that

[/Y(g) ® ]d’ ag('x)] € ® Md
for all x € &g.(y) and y € (A7, and hence
li(g), 78] < .

1t follows that ad(/i(g)) = 0’ defines a bounded, and thus inner derivation of the
simple unital C*-algebra &, and hence & = oc_gg’ag is an inner derivation. If we

define 9y = 6 — S, then Jo is a derivation from /% into =/ such that 60|5zi“ = 0,
and, furthermore

So(x) = — x(6(1 + 7)1 ® PNg) = — XR(Y)

for x € .&%,(y), where R(y) is a scalar matrix. To conclude that §, is the generator
of a one-parameter subgroup of a(G), one can now either use the argument in
the last part of the proof of Theorem 2.5 in [11], or one sees immediately from
the above expression for J§, that §, commutes with 7, and hence the conclusion
follows from [34], Theorem 2.1 or [8], Theorem 3.1. This finishes the proof of
Theorem 1.1 in the case that G is compact.

Next, assume that G is locally compact and abelian. As for compact groups,
we deduce

o(x) = [h, x] — x6(y)y
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when x € .#%(y), and y € G. The map G — L2(G):y - — 8(y)y = ®(y, -) is an
additive map, i.e. ®(y, + ps, ) = B(yy, ) + D(ys, -) in L®(G), as a consequence
of the derivation property of 8. Furthermore, & maps into purely imaginary
functions as § is a *-map. Also, as [‘///“(K) is o-weakly continuous when K < G
is compact, the map y — @(y, -) is continuous when L®(G) is equipped with the
weak * topology from LY(G), and as &(y, -) = — 6(¥)y, @ is uniformly bounded
on compacts in G.

For each pair y,, y, € GA', we have that

D(p1 + V2, 8) = P(y1,8) + P(y2,8)

for almost all g € G. Thus, if I' is a countable, dense subgroup of G we have that
the relation above holds for all y,, y, € I' and all g in a subset W of G of full
Haar measure. Since & is essentially bounded on compacts in CA? and 6’- is o-compact,

we may also choose W such that y — @(y, g) is bounded on compacts for g e W.
But then

yeIl > ®(y,g)eiR

is continuous for g € W by the following reasoning: If y, €I’ and y, — 0, but
D(y,, 8) + 0, then, as ®(-, g) is bounded on compacts we may assume that @(y,, g) —
— ¢ % 0. Since y, —» 0, there is a sequence k, of integers such that &, — oo, but
{k,y.} is contained in a compact subset of G. Then D(k,y,,8) = k,2(y,,g) > 00,
and this contradicts that @(., g) is bounded on compacts. Thusye I' =& (7,g) € iR
is continuous for g€ W. Now, for ge W, let ¥(y, g) be the function obtained
from &(-. g) | I' by extending the latter function to G by continuity. We argue that
ifye 6‘, then ¥(y, g) = &(y, g) almost everywhere in G. Let y, be a sequence in I'
such that y, —» y. Then ¥(y,,g) — ¥(y,g) for g€ W. Thus ¥(y,, -) = ¥(y, -)
weakly in L*®(G). Butsince ¥(y,, -) = ®(y,, -) = D(y, -) weakly, we have ¥(y, -)=
= @(y, -) in L=2(G), and hence we may replace ¢ by ¥, i.e. we may assume that

P(y; -+ 72, 8) = P(y1,8) + P(y5, 8)

pointwise for all ge W, y,, v, € 6’, and hence for all g € G.
Then, for each g€ G, r€ R, the map

A~

yeG—

1D(p,¢
e [684]

is a continuous character, and by Pontryagin’s duality theorem there is an element
li(g, t) € G such that

{y, h(g, 1)) = e,
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Then ¢ — (g, t) is a continuous one-parameter subgroup of G. Let §, be the generator
of the corresponding one-parameter group of automorphisms of ./ by right trans-
lations by /i(g, t) and define

Og(x) == 6(x) — [h, x], xe€ L(H#,) ® LP(G)

Si(x)g) = (O,x)(g), Y€ L(H,) ® L¥(G), g €G.

We will argue that 0, = J. Firstly, as J, is the generator of the group 1 ® Ry o om
M = L(H,) ® L™(G), it follows that 5, [Z(#,) = 0, and thus § lf(%w):: 0=
= 8, |L(H#,). Secondly, if x €.7%y) for y € G, then x has the form x = IRy,
where y € Z(s,), and we have

Fo(x) = — x(y)y = D(y, - )x

by the definition of &, i.e.

So(x)(g) = (v, g)x(g) = (v, g)yy¥(g) =

” yy(gh(g, 1)) == d,(y ® 7)(g) = ds(x)(g)

t=0

where we used

!
P(y,8) = 4 PO = <y, (g, 1)).
d dt 0

t=0 1=

Thus
3o | A7) = i) ()

for all ye G. But as O ]J/’(K) is g-weakly centinuous for each compact subset

Kc é, and any function in L®(G) with a-spectrum in K can be approximated in
the weak*-topology by linear combinations of characters y e K’ where K' is a

compact subset of G containing K in its interior, the formula
So |-#7(K) == 85 |. /7(K)

follows once we can show that d; is a well defined derivation such that d; ,,///“(K)

is o-weakly continuous for each compact K < G. For well-definedness, we have
to verify that

g - (9,x)(g)
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isin L(H#,) ® L®(G) for all x € £ (#,,) ® LE(G). It suffices to do this for x € 1 ®
® L¥(G) i.e. we must prove that the ¢’ defined on L¥(G) by

(0'f)(g) = (B Ng)

has the asserted properties.
A A
Fix a compact set K in G and another compact set K’ in G with K and 0

v

in its interior. We may view @ as a mapping from G into G = the space of
continuous additive characters from G into iR. Equip G with the topology defined
by the seminorms

lloll = sup|o(y)i.
yeK’

Then G is a Banach space. (Actually all these norms are equivalent since K’ contains
a neighbourhood of 0.)

v

As mentioned above, any ¢ € 2} defines a derivation d, on L2(G), where 9,
is the generator of the one-parameter subgroup of right translations by A(g, 1),
where (¢, t) is defined by the requirement

{y, (e, 1)) = elo

forall ye G. We now have that the map

(/)Eé——»éq,

AHK)
is bounded in the sense that
16, | L& < Cllgl]
for a constant C. To see this, note first that
Spec(8, | Lz(K)) = {o(y) | y € K}

(as y € L,(K) when y € K, and 6,(y) = @(y)y, one obviously has 2, but as L,(K)

is contained in the o-weakly closed linear hull of y € K 4 Q for any neighborhood

Q of 0 in G, one has Spec(8, LK) = M {o() |y e K+ @} = {o(») | y€ K}.)
o]

But as K < K’, we have

sup{lo(! |y € K} < ol
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and [28, Lemma 2.4] implies that
10, |- #5(K)|| < Cll ol

for all p € 6‘, and some constant C > 0.
Next consider the map

$:G -G < CK).

This map is weakly measurable in the sense that if y is any measure on K’, then

g- Sdﬂ(*f)d)(v, g)

K’

is measurable by separability of K’, and as C(K') is separable it follows from
Pettis’s theorem, [36, Section V.4], that the map is strongly measurable in the sense

that there exists a sequence @,: G — G of measurable functions such that ¢,(-, G)

is a finite subset of G for each n, i.e. for each n

P,(,8) =¥ 1u(8)0.(?)

m

where y,, is a projection in L*(G), ¢,, € (Ai, the'sum isfinite and || @,(-, 2)—®(-, g)' =0
for almost all g. But if J; is the derivation of L*®(G) corresponding to @,, then

(G, NE) = Y. 1m()O, f)8)

m

and this function of g is obviously in L*(G). But

B0 5y — doc.a) [LG K| < ClIP,(-8) — 2(-8)l| = O

so if /e L%(K), then
(b0 (-0 f — Sgf)h) » 0

for almost all g, Il € G. But since these functions are equicontinuous as functions of 4,
we deduce that

(3/)(g) = lim (3,1)(g)

n—-00

for almost all g € G, and hence g — (5,1)(g) € L*(G). Thus J¢ is well defined, and
then 5[,|L§O(K) is o-weakly continuous, either by [23] or by limit arguments. it

@



DERIVATIONS AND FREE GROUP ACTIONS 395

follows that J, == dg, and we have proved that § has the decomposition

6(x)(g) = (3;x)(g) -+ [h(g), x(g)]

for x € .#% and almost all g € G. Now it follows from separability of o7, that there
is a g € G such that the above relation is true for all x € &%, i.e.

2 (5(x)) = §,(x,x) + [h(g), ,(x)].

It follows that ad(i(g))(/E) € &/, and thus o = ad(i(g)) defines a bounded,
and thus inner derivation of the simple C*-algebra of. Applying a, -1 to the relation

above, and setting &y = J,, 5 = a_gg’ag, we obtain the desired decomposition
=3, + 0.

Finally, we note that the decomposition is unique both when & is compact
and abelian since the existence of the representation n in Theorem 2.1 prevents
all the nonzero generators §, of one-parameter subgroups of o(G) from being inner.

REmaRk 2.4. In a certain sense, the representation # of Theorem 2.1 is
not a good one to prove Theorem 1.1; it would be more convenient to use a
G-covariant representation 7 such that n(2/%)' n n(f)”’ = C 1. If such a represen-
tation = exists, Theorem 1.1 is an immediate corollary of Theorem 2.5 in [11}
in the case that G is compact, at least if (/%) < o/¢. However, when G is not
compact, examples of quasifree ergodic actions show that one may have (/%) n o #
# C 1, so a representation n of the above type does not exist. If ¢ is compact’
a simple argument using Z¥(y)L{(y)* <  (see [10, Theorem 3.2]) shows that
(%' n & = C 1, but nevertheless it may be hard to find representations m such
that n(#%)’ n n(f)” = C 1. An example illustrating the problems in G = T acting
as gauge automorphisms on the Cuntz algebra @, , and 1 a quasi-free automorphism

of @, induces by a unitary operator U with absolutely continuous spectrum.
N

Then, by [24, Proposition 5.3], we have lim 2N + 1)-* Y, 7%(x) = w(x)1, where

N-oco n=—N
the convergence is in norm, and  is the Fock state. But a(/%)’ n a(s¢)’ ~ L®(N)
if = is the Fock representation.

3. FREE ACTIONS
THEOREM 3.1. Let G be a compact, abelian, separable group and « an

action of G on a C*-algebra o/ such that I'(®) = G and o7 is G-prime. It follows
that
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L. There exists a pure state ¢ on the fixed point algebra s7* such that

o] L2 ... ()L ()* ... A()*]| = |

A

Jor all finite sequences y,, ..., 7, in G.

2. If @ ‘is a pure state on A satisfying property | for all finite sequences
Vis - o5 Ve € GWith n<2, and (H, n, Q) is the cyclic representation of s associated

to the G-invariant state @ = @o Py, where Py = Sdg o, , then

G
(LA = H
Jor all ye G.

Proof. The conditions on « imply that &/¢ is prime, [29, Theorem 8.10.4].
It follows by induction on #n that all the ideals oZ*(y;) ... &%(y,)2%(,)* ... & *(y)*
in o/ are non-zero. (If %(p,) ... H%(y,)* # 0, then (L*(y)* L (p))L*(ys) .- -
oo () (& (p ) (1)) # 0 by primeness of «£%) Since G is countable these
ideals can be enumerated. Let .#, be the intersection of the n first ideals in this
enumeration. By primeness of &%, .#, # 0 and #, is a decreasing sequence of essen-
tial ideals. We will inductively construct a decreasing sequence of positive elements
e, € 4, such that

leall = 1

G,=f{acsd|eae, =a} #0
€1 €Dy NI pir.

First let e, be any positive element in #, such that 2, # 0 (possible by spectral
theory): When ¢, has been constructed, note that 9, is a hereditary C*-subalgebra
of &, and thus @, n 5, ,., % 0 since £, ., is an essential ideal. Thus 2,NS, 41
‘contains a positive element e,,, of norm 1, and replacing e, by ¢€,.+1 = flel.1)
where

2t, 0<t<—1
2

i) =
1

2

we have ¢, ., € 2,nS,,, and 9,,, # lO,
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For each n, let @, be a state of «&/* such that ¢,(e,) = 1, and let ¢ be a
weak*-limit of ¢, as n = co0. As ¢,(e,) = 1 for m > n, it follows that ¢(e¢,) = 1
for all n. Thus {¢ € E . | ¢(e,) =1, ¥Yn} is a nonempty compact face in the
state space E_, of «/*. If ¢ is an extremal point in this face, ¢ has the proper-
ties in 1. .

We now prove 2.. J carries a representation of G defined by

U(gn(x)Q = n(e,(x)R, xe s,
and if #°Y(y) is the spectral subspace of # corresponding to y € é, then
#HY(y) = Ay)Q (suppressing 7).

Then (njef®)! #Y(0) is the cyclic representation of o/* corresponding to ¢, and
this representation is irreducible by purity of ¢.

The spaces #Y(y) are also invariant under /%, and we next argue that o7¢
acts irreducible on each #V(y). We denote the extension of @ = Ad(U) to the o-weak
closure .#/ of o also by a, and let .#*(y) denote the corresponding spectral sub-
spaces in /. Then .7%*(y) is the o-weak closure of <7%(y) for each y ¢ G. We will
show that if &, &, € A*(y)#Y(0) and ||&,]] = || &,]l, there then is a x € .#% such that
[|x]} =1 and &, = x¢&,. It is then clear that any vector in #U(y) is cyclic for ./Z/?,
thus /% acts irreducibly.

Consider first the case that &, = x,1,, &o== Xa1s, Xy, Xo € A NY), 11, 15 € HV(0).
Using polar decomposition of x,, x, it suffices to assume that x,, x, are partial
isometries in .#*(y) with n, = x¥x;n; for i == 1,2, see e.g. Lemma 4.1. But by Kadi-
son’s transitivity theorem there is a unitary u € . such that uip; = #,, [35, Theo-
rem 1.21.16]. If x = xpux§ then x € 4%, |x|l < 1, and x&; = xuxf, = xun =
= Xplfy = &y.

Consider next the general case that & = ¥ x;;, o == 5, yill;, X, ¥; € A(y)

i=1 =1
i, € #9(0).
These relations may be written
él Xy oo Xy M
0y 0 ...0 Yo
6 ‘ O ... 0 /.

with a similar relation for &,. Thus, using the argument in the previous paragraph
on ./ ® M,, o« ® 1, where M, is the algebra of n X n matrices, we find an

13- 1685
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x = [x;;] € .#4* ® M, such that ||x]| < I and

Co X1t - - - X1y S
O > Xou 0
0 X1 v« - Nnn 0

But then xj; €. .#Z%, ||xy|| €1 and & = x3&;.

We have established that s#V(y) is a minimal invariant subspace for .7°,
thus the projection P(y):# — #V(y) is a minimal projection in the commutant
(.#7%)'. But if E(y) is the range projection of the ideal .#*(y).#*(y)* in ./*, then
E(y) € .40 0 (/%Y. But P(E)E(y) # O for all £,y € G since o2%(y)*s£%() Q # 0 by
property 1.. As P(&) is minimal in (.Z*®)’ it follows that P({) < E(y) for all ¢ € 6,
and hence E(y) = 1. But

E(y) = [#°(y)#],
so this establishes 2..

Proof of Theorem 1.2. Theorem 1.2 is a corollary of Theorem 3.1 and [I1,
Theorem 3.4]. 1t is essential here that G is a Lie Jgroup, i.e. G = T4 X F where
T is the torus, d e {0,1,2, ...} and F is a finite abelian group.

4. THE CIRCLE GROUP

In this section we will prove Theorem 1.3. To that end we first need the follow-
ing general lemma.

LemMA 4.1. Let o be an action of a compact abelian group G on a C*-alge-
bra . If xe %) for some ye G, then x has the form x = ay where

ae AWML and y € ).
Proof. Assume that o7 is faithfully and covariantly represented on a Hilbert

space A (such a representation exists since Py = Sdg u, is faithful), let .# = o7

G
be the weak closure of 7, and let « also denote the extension of o to .Z.
If x = (xx*)Y2y is the polar decomposition of x € &Z*(y), then (xx*)}/* e /> and
u € ./%(y), see [11, Observation 3 in the proof of Theorem 2.5]. Put a = (xx*)'/*,

ye (xx¥) y Then x = ay, a€ uo!“(y),;f“()})*\' ', ye.Z*(y) and if f, is the real
positive function defined by
1
-1 for t 2~
I
Sul0) =

1
it for 0 €1 <~
m
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and a,= f,(xx*), then a,, € &%, thus a,x € o*%(y), but||a,x—y||=|f,(xx*)(xxF)2—
— (PR /m)Y4 - 0 as m — oo, thus y € &Z%(y).

LemMma 4.2, Let o be .an action of a compact abelian group G on a
C*-algebra of. Let F be an a-invariant (closed two-sided) ideal in <, and let
0: A% > sf be a derivation. Then ¥ A% = F% is dense in F and 6(Sg) € F,
thus d induces *-derivations of J and SZ|F in a natural fashion.

Proof. This result is related to Lemma 1 in [21]. Since trivially £ = .4 n &%,
the latter *-algebra is dense in .#. But by Lemma 4.1, #%¥% = S, thus SE St =S¢
and it follows from the derivation property of § and the ideal property of # that
0IE) < O(FR)FE + FEO(SFE) < S

LemmaA 4.3. Adopt the same hypotheses on o, G, of and § as in Lemma 4.2,
and let <% be a-invariant ideals in . Assume that the derivations induced
by 6 on |5 and on F| ¢ are pregenerators. It follows that the derivation induced
by 6 on ¥ is a pregenerator.

Proof. This result is similar to Lemma 2 in [21]. Itis clearly enough to assume
F = 0. Let 54, resp. 0% be the derivations induced by § on .#, resp. &7/ and let
p: o > ]S be the quotient map. We first show that (6 4 1)(=/E) is dense in &.
Let x € of and let e > 0, As 0 is a pregenerator and p(fE) = (/S ), there are
a ye o and an a € &% such that ||p(x — »)|| < ¢/2 and y = (6 -+ 1)(a). But then
there is a z € # such that [|x — y — z|| < ¢/2 and as , is a pregenerator there are
a ves and a be S such that |z — v|| < ¢/2 and v = (J 4+ 1)(5). But then
Yy v=(6-+ 1)a-+b)and ||x — (y + v)|| < & Thus (6 + 1)(%) is dense in .
Similarly (6 — 1)(«#%) is dense in 7.

To show that J is a pregenerator, it now suffices to show that

1A+ ) = | xi]

forall 2 e R, x € &, [16, Theorem 3.1.10]. Let n,, resp n¥ be a faithful represen-
tation of ., resp. 7/.#, such that the automorphism group generated by § on .#,
resp. &7/F, is covariant. m, has a canonical extension to o, [19, Proposition 2.11.2].
Then S, and 57 extend to generators 64, 07 respectively of o-weakly continuous
one-parameter groups of automorphisms of 7,(#)"’ and n/(/.#)". Let n=n,®n*
and £==1@ 0. Then E|is the central projection in n(&/)"’ corresponding to the
ideal #, thus £ € D(3,) and 6,4(E) = 0. If x € /%, then

n(x) = t(x)E + n(x)(1 — E) = n(x)E + n/(p(x))(J — E).

Now, if e, is an approximate identity for .#%, then e, is an approximate identity
for .#,[9, Lemma 4.1]. But (Slf“ is bounded, [32], and since 5[%”‘ is a restriction of d,
which is o-weakly closed, it follows from compactness of the unit sphere of 7 ,(.%)"’
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that lim (e,) = d,(E) = 0 in the o-weak topology, since lim ny(e,) == E in this
topology. Now, if x € &/, then xe, € S¢ and

(1 4 20)(xe,) = (1 - 28)(xX)e, -+ ixd(e,)

by the derivation property of 4. Taking the o-weak limit 7> co. it follows that
n(x)E € D(6,) and

(1 + 20, )(m(x)E) = n((1 + 75)(X)E.
It follows from the generator property of 5, that
In((l + 2NE] = [[(1 + 28 )T()E)]| = [n(x)El.
On the other hand, as §¢ extends to a generator we have
ot + 20)NI > { p()]

and as £ is the range projection of the kernel .# of p we have| p())} = ()1 — E)||
for all y € &/, and hence

[ 7((1 4 2)N( — E)i| = [jm(x)(] — E)ji.
But as E is a central projection in n(s#)", it follows that
7l = l=(MET v [[7(HU — £)]!
for all y € o, and hence
(1 + 20} = [|=((1 =+ 28)(x))| =
= | 2((t + 2OCNE v In((} + DN — BN =
2 [m)E| v [[n(x)(I — E) = {in(x)i] = [[¥]i.

This finishes the proof that J is a pregenerator.
Next, in order to prove Theorem 3.1, define

F=MN{ZePim)|3teT: o(?) + £},
where Prim(s7) is the space of primitive ideals in <, and

B =y
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Note that if o7 is abelian with spectrum Q, # is the ideal corresponding
to the interior of the set of z-fixed points in Q.

LeMMma 4.4, 7 is o-invariant and any ideal of §# is a-invariant.

Proof. Define Prim*() = {2 € Prim(«£)|x,(#) = 2 for all t < T}. Then
Prim*(s7) is a-invariant, hence Prim(sZ)\ Prim*(.s¢) is a-invariant, and then

F =M {# € Prim(«Z)\Prim*(«/)}

is a-invariant.
If # is an ideal in #, then # is an ideal in & and

F=M{ZnF|?ePrim), ¥ 25, F\2 # 0}

see [19, Proposition 2.11.5]. Thus if .# is not a-invariant, there is a & € Prim(s7)
which is not e-invariant such that #\2 # 0. But this contradicts the definition of ¢.

LemMMA 4.5, The derivation defined by 6 on £ is a pregenerator.

Proof. By [25, Theorem 2.1], there exists an a-invariant pure state on ¢
(at this point the separability of # is used), and also, for any nonzero ideal s in #
we can find an a-invariant pure state on #. Thus, by Zorn’s lemma, there exists
a faithful family of a-covariant irreducible representations of #. But by [11],
Lemma 2.3 and 3.1, the restriction of 6 to each spectral subspace &Z%(y), y € G,
is bounded. (The extra assumption £(y)d,(x) = dy(x) for x € «=(y) used in Lemma 3.1
of [11]is unnecessary; this follows from our Lemma 4.1 and the other assumptions
of Lemma 3.1 in {11].) It now follows from the main theorem in [26] that 6 on ¢
is a pregenerator.

LemMA 4.6. The derivation defined by 6 on # = /| ¢ is a pregenerator.

Proof. By definition of # we have that (M {# € Prim(%)|a(P) # # for
some t € T} == {0}. Also, by the general assumptions of Theorem 1.3, there exists
an & > 0 such that if 2 € Prim(#), and a(%) # 2 for some ¢, then o(P) = @
for 0 < <& Thus if p(#) is the period of 2 under «, then (2) > ¢, ie.

|

WP)e {1, AL . - where N is the largest integer with —-l?-~> e
2 3 N N

For each non-invariant 2 € Prim(4), pick a pure state w on & with ker(n_ )= 2,
‘where 7, is the irreducible representation of # defined by w. The representation

o
dt w00

T

-y

of & on J, ® L3(T) is then a-covariant. As n,, is irreducible, the center of this
representation is clearly contained in 1 @ L®(T), and it is invariant under translation
by T, i.e. it is either equal to L=(T) or Cl or the set'.#", of periodic functions in
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L=(T) of period p = —Lfor some n=2,3,... . Put 4", == L=(T) and N, = Cl.
n

We now argue that the assumption that a(#) # & for 0 < t < ¢ if £ € Prim(%)
is non-invariant implies that the center is 4", for some p > &. Assume ad absurdum
that this was not the case, i.e. that the center was A7, with p < & Then, if p > 0,
the representations

& pE

® ®

S drm, 2, and S drm, ~x,

4] P

would be quasi-equivalent for all &’ > 0. But then the kernel of the two represen-
tations are equal, i.e.
M 2 (P) = %_r- (P).
0gr<e’ 0t e
But
{’/ == (L_J(, ()O , "Z—l(y))-9 1_’,(.'?) == ( H 0 m , a—-t—p('g/)))_

Lt<e

by the argument in the first part of the proof of Lemma 8.11.7 in [29]. It follows
that x_ (#) = 2, which contradicts the g-assumption. If p == 0, the above argument
works with p replaced by any positive number.

®
Now, assume that the center of the representation n, = S dt myen,is 1 @47,

D
L
where p > & by the above reasoning. The function # +> e ™" then defines a unitary

operator U in .47, and thus in 1 ® .47,, contained in the spectral subspace .#/* (])
- p
for the extension of « to.# = nz(f)"”’. Thus the spectral subspace .#* ('m

p
the unitary operator U™ form € Z. It follows thatif N is the least common multiple

) contains

1 . .
of all natural numbers i such that - - > ¢, then .#%(N) contains a unitary operator
n

for all 22 € Prim(#) such that %, (%) # & for some . Thus, if n is the direct sum
of m, for all non-invariant & € Prim(#), then (n(&/)")*(N) contains a unitary
operator U(N). But then, using the technique in the proof of Proposition 3.7 in
[11], one verifies that /% consists of analytic elements for §, with a uniform radius
of convergence for the series Z ' ’|5”(v)[| and d is a pregenerator Note that the
n20 !

assumnption E(n)d(x) = 3(x) for x € &%(n) in [I1, Proposntlon 3.7] is automatically
fulfilled because of our Lemma 4.1. :
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Proof of Theorem 1.3. The theorem is an immediate consequence of Lemmas 4.3,
4.5 and 4.6.

Presently we do not know how to remove the maximum frequency condition
of the primitive ideals from Theorem 1.3. One possible method is to use the ideals
£, in # defined as

fn=ﬂ{9’ € Prim(#) |2(?) # # for 0 <1 < 1}
il

Then the derivation induced by § on %/.#, is a generator by the argument in Lemma
4.6, and thus & defines a one-parameter group of automorphisms of the projective
limit

Bl — B|Iy— B|IFg— ... .

Since (M} F, = 0, # is contained as a subalgebra of this projective limit. But it

is not immediately clear that the group of automorphisms defined by 0 leaves &
invariant, or that this group is strongly continuous. An example showing the kind
of problems which may occur is the C*-algebra &/ of continuous functions on
the annulus in the plane given by 1 < r < 2 in polar coordinates. Let T be the

map given by T(r, ¢p) = (", ¢+ "
,

)for 1 < r<2 and let £, be the ideal of

. . 1
functions f which are zero for 1 4+ - . < r < 2. Then T clearly defines an auto-
n

morphism of the projective limit, but not of the C*-algebra o/ itself since the circle

r = 1 is rotated by an infinite angle. Nevertheless, Theorem 1.3 is true for abelian
C*-algebras without the g-assumption:

ProrosiTiON 4.7. Let o be an action of the circle group T on an abelian
C*-algebra of. It follows that all 6 € Der(f%, A%) are pregenerators.

Proof. The ideal # is now the ideal corresponding to the interior of the set
of a-fixed points in Q = Spectrum(/), and hence F < &* = D(J). As # is abelian,
it follows that | FZ = 0, and Lemma 4.5 follows trivially without assuming that &/
is separable. Again putting & = /¢, let Q4 = Spectrum(#). For each ne N,
let #, consist of the functions f e Cy(R2,) such that f'is constant on orbits of frequency

. 1 . . .
larger than n,i.e. of period less than - -- Then 4, is a closed, «-invariant subalgebra
n
of 4, and as the orbits in the spectrum of 2, are either fixed points, or orbits
1 . .
of period longer than or equal to- - it follows from Lemma 4.6 (where separability
n
was not used) that § | (#,)% is a pregenerator on 4, . For this we just have to check
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that 6((4,)r) = 4, . But since o [%"(K) is bounded for each compact X, [4, Theo-
rem 2.3.8], it follows from the argument in the beginning of the proof of Theorem 5.1
in [6] that the T orbits in Q4 are restriction sets, i.e. if € #% and f is constant
on some orbit, then df == 0 on the same orbit. Thus §((#,)%) < (£,)%. Buti_ &,

is dense in #, [6, Lemma 2.7], and it follows that § on & is a pregenerator.
By Lemma 4.3, § on & is a pregenerator.

If in the context of Proposition 4.7, d, is the generator of «, it follows from
the analysis in [6] and [28} that 6 = /,, where / is a continuous function on
ON\Q, (Qqis thefixed points of Q) which is bounded on sets of bounded frequency,
so in particular ¢ is dominated by a constant multiple of d, on each %, (or o7,,
defined analogously). The function / may blow up as the frequency tends to co,
however, and this illustrates the problem of removing the condition involving &
in Theorem 3.1. Proposition 4.7 can be extended to cases with weaker assumptions
on the range of 4, e.g. & maps into Lipschitz continuous elements, [33].

5. INVARTANT DERIVATIONS

In this section we will prove Theorem 1.4, so adopt the notation and assump-
tions of that theorem.

The algebra «# may be faithfully and covariantly represented on a Hilbert
space . Let .#/ == &/”’, and let « also denote the extension of « to .#. We first
prove that 0 is o-weakly closable in this representation, and its o-weak closure o
generates a o-weakly continuous one-parameter group of automorphisms of .#.

As 0 commutes with %, we have (%)< &%, and it follows from Sakai-
=Kadison’s derivation theorem that there exists a 1 = — /i* € #* = (&/%)" such that
8(x) = hx — xh for all x € s#*. Define derivations 5, 0o : D(6) » 4 by

So}) = hx — xh, o(x) = 8(x) — 5(x)

for x € D(J). As h € .#%, it follows that 6 and 8, commutes with . As 60]&%‘ =0,
it follows from the proof of Theorem 5.1 in [13] (see also [4, Lemma 2.7.11]), that

foreach y € G there exists a (possibly unbounded) closed, skewadjoint operator L(y)
affiliated with the abelian von Neumann algebra (%% n (.#7*))E(y), where E(y) is the
projection onto [ #°(y)5#], such that

d(x) = L(y)x

for each x € D(0) n #%(y). Then €27 is a unitary operator in (.#*n (#*))E(y)
for each r € R,and hence

T,(%) = ey,  x €.4%(y)
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defines a g-weakly continuous group of isometries of .#Z%(y) for each y = G. Define
a one-parameter group 1, of /% by

(¥ x) = ¥, erton,
v

?

for x, e.*(y).

By [15, Lemma 1.5] there exists a unique *isomorphism f, from
(#* n (A% )E(— p) into (#* n (/4*))E(y) such that B.(a)x = xa for all x € .4/*(y),
a € (#* n (/*))E(— y). The isomorphism f, extends uniguely to unbounded closed
operators affiliated to (.#%n (#Z%))E(-— y). It then follows from the derivation
property of & that L satisfies the partial cocycle relation

Ly, + p)E(y1, 72) =

= LOEQ, v2) + By (E(— y)L(y)E(y1, 72)
where
E(y,, 72) = E()ﬁ)ﬂyl(E(— VJ)E(}’z))a

see [11, Lemma 3.1] or [4, Lemma 2.7.5). But all operators in this expression are
affiliated to the abelian von Neumann algebra .#*n (.#%)’, hence after exponen-
tiation we get

eENITIE(y, y,) = VB, (B(— 1) TEM, 1),
where we have extended the operators L(y) to # by defining L(y)(1 — E(y)) = 0.
Thus

L o
PREZES wz)xlxz _ etL(yl)ﬂyl(E(__ 71) etL(yz)) XXy = erL('yl)xletL(yz)x2
for x; € #%(y,), i = 1,2. This means that

T(X1%) = 1,(x)7,(x,)
for x, € /%, and 7 is a group of automorphisms of .#%. Analogously, as J is.
a *-map, we get
L(— ) = B-(L(»)™)
and then
7 (r) = (9"

for xe #%. Thus t is a one-parameter group of *-automorphisms of % .
It now follows from {15, Lemma 1.8] that t is a group of isometries.
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The projection Py = S dga, from .# onto .#* is faithful and normal, and
G

if w is a normal state on .#*, woP, defines a normal state on .#. As L(0) == 0
the latter state is t-invariant, and hence 7 is unitarily implemented in the corres-
ponding representation. Since the direct sum of all these representations forms a
faithful normal representation of .#, and .#¢ is g-weakly dense in .#, it follows
that 7 extends by o¢-weak continuity to a o-weakly continuous one-parameter
group of *-automorphisms of .#. Denote the o-weak generator ([16, Definition 3.1.5])
of this group by J.. We next argue that J, is the o-weak closure of J;.

We first show that J, extends d,. But as J, commutes with a, D(6) n o/¢ is
a core for d,, [4, Lemma 2.5.8). Hence it suffices to show that D(d) n &/*(y) = D(J,)
and d (x) == L(y)x for x € D(0) n 7*(y). But this follows from the formula

t
Tr(x) — x =My — x = Sds e L(y)x
0

To show that &, = d,, first note that a simple spectral theoretic argument
shows that the set of x € D(d) n &/*(y) such that there exists an y € D(d) n «/*(y)
with x == yy*x is a norm dense subset of o/%(y). But this subset consists of entire
analytic elements for 3, by the following reasoning: As y*x € /%, we have

50(-\’) = 50()'_}’*3() = 50(}')}’*:(‘.

But 8,(3)* € A4(y).#%(y)* < 4%, and the module property d&y(ax) == ad,(x) for
ae o x € o%y) implies that #*(/*(y) n D()) € D(J,) and the module property
extends by closure to a € .4%. Thus d,(y)y*x € D(3,) and

Bo(So(1)y¥x) = 3p(y)¥*3o(x) = (So(¥)y*)x.
Proceeding by induction, we deduce that x € D(5;) and
S5(x) = (So(y)y*)"x

for n = 1,2,... . This shows that x is entire analytic for J,.

Since D(3,) contains a dense set of entire analytic elements, D(J,) is a core
for §_ [16, Proposition 3.2.58]. Thus &, = J,. But this establishes that 5 = J, +- 5=
= 8, + ad(h) is o-weakly closable with closure & = §, + 5, D(3) = D(3,), and
this closure is a generator of a g-weakly continuous group of *-automorphisms of .#
for any faithful G-covariant representation of /.

Theorem 1.4 now follows from the next lemma.,

LEMMA 5.1. Let G be a locally compact abelian group and o an action
of G on a C*-algebra /. Let 6 be a closed derivation ¢n o/ commuting with o.
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If the o-weak closure & of & exists and is a generator of a o-weakly continuous
one-parameter group of “-automorphisms of of'" in each G-covariant representation,
then & is a generator.

Proof. By the Hille-Yosida theorem, {16, Theorem 3.1.10], we have to show
that

(1 4 40)() = [Ixfi
for all x € D(d) and all real 4, and

(I + 20)DE)' =

for all real 2. But the first estimate follows immediately from the generator property
of § in a faithful representation of o/, and hence we concentrate on the density
of the range of 1 + 24.

Assume ad absurdum that the range of 1 4+ 4d is not dense. Then there exists
a non-zero functional # € &/* such that

n((1 + 28)(x)) == 0
for all x € D(9). But as § commutes with a; it follows that

(1 + 28)(x)) = 0

for all x € D($), and all fe LYG), where

ur =Sdgf(g)'1°°tg.

G

But as % 0, n, # 0 for at least one '€ L'(G) such thatf has compact support.
‘We will prove in a moment, Lemma 5.2, that this # is a o-weakly continuous
functional in some faithful G-covariant representation of «. But then

(1 -+ 20)(D(8))) == 0

where § denotes the o-weak closure of & in this representation. But since & is

a generator, (1 + 26)(D(0)) = o¢”, and hence n, = 0. This contradiction establishes
Lemma 5.1 as soon as we have proved:

Lemma 5.2, Let G be a locally compact abelian group, and « an action
of G on a C*algebra of. Let n € o* be a functional such that the spectrum of 4
with respect to the action induced by o on of* is compact. It follows that there
exists a G-covariant representation of & such that n is o-weakly continuous in this
representation.
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Proof. Let |y be the absolute value of the functional #, [35, Theorem 1.14.4],
let m,,; be the associated cyclic representation on the Hilbert space 5, and let =
be the induced covariant representation of &7 on L), , G) defined by m,, ie.

(m(x)ENg) = My (o (X))E(g)
(Uid)g) = (g + )

for xes/, (e lXHyy, CG), g, e G. The polar decomposition theorem, [35,
Theorem 1.14.4], implies that 5 is a vector functional in n,, ie.

i](X) = ('//1 s Ty (-Y)lllg)

for suitable vectors yry, ¥, € #°),. Let now ¢ € L'(G) be a function such that the
Fourier transform ¢ = 1 on the a-spectrum of #, and pick functions @, @, € L%G)
such that the pointwise product ¢, ¢, = ¢. Put

E =, @Y, € LAG) @ o, = LAy, G).
Then

(G, 7)) = gdg (&) W, Ty, (Os) =

G

= gdg @(g) (o (x)) = n(x).
G

Aclknowledgements. We are indebted to S. Sakai for an illuminating discussion
leading to the lemmas of Section 5. One of us (0.B.) wishes to thank Y. Misonou
and H. Takemoto for a very enjoyable stay in Sendai in May—June 1985, during
which this paper was written.

REFERENCES

1. BAKER, B. M., A central decomposition, J. Functional Analysis, 35(1980), 1--25.

2. BAKER, B. M.; Powers, R.T., Product states and C*-dynamical systems of product type,
J. Functional Analysis, 50(1983), 229--266.

3. BarTY. C.J. K.; KisHimMoTO, A., Derivations and one-parameter subgroups of C*-dynamical
systems, J. London Math. Soc., 31(1985), 526--536.

4. BRATTELL, O., Derivations, dissipations and group actions on C* algebras, Lecture Notes in
Math., Springer Verlag, in preparation.

5, BRaTTELI, O.; DiGErRNES, T.; RoBINsON, D. W, Relative locality of derivations, J. Functional
Analysis, 59(1984), 12—40.

6. BRATTELI, O.; DiGerNES, T.; GoopmaN, F.; RosinsoN, D. W., Integration in abelian C*-
-dynamical systems, Publ. Res. Inst. Math. Sci., 21(1985), 1001--1030.



DERIVATIONS AND FREE GROUP ACTIONS 40%

7.

18.

19
20.

BraTTELI, O.; E1LIOoTT, G. A.: JORGINSEN, P. E. T., Decomposition of unbounded derivations
into invariant and approximately inner parts, J. Reine Angew. Math., 346(1984)
166 —193.

. Bratrivr, O.; ELntort, G. A.; RosinsoN, D. W., Strong topological transitivity and C*-

~-dynamical sy:tems, J. Marh. Soc. Japan, 37(1985), 115—133.

. BratTEL1, O.; Evans, D. E., Dynamical semigroups ccmmuting with compact abelian actions,

Ergodic Theory Dynamical Sysiems, 3(1983), 187---217.

. BratTELI, O.; Evans, B. E., Derivations tangential to ccmpact groups: The nonabelian case,

J. London Math. Soc., to appear.

. BratTELI, O.; GOODMAN, F., Derivaticns tangential to compact grcup actions: Spectral

conditions in the weak closure, Canad. J. Math., 37(1985), 160—192.

. BRATTELY, O.; GOODMAN, F ; JCrGENsEN, P. E. T., Unbounded derivations tangential to

compact groups of automorphisms. I, J. Functional Analysis, 61(1985), 247—289.

. BratTELL, O.; JorcinsiN, P.E. T., Unbounded derivations tangential to compact groups

of automorphisms, J. Functional Analysis, 48(1982), 107-—133.

. BRATTELI, O.; JORGENSEN, P. E. T., Derivaticns commuting with abelian gauge actions on

lattice systems, Conuit. Math. Phys., 87(1982), 353—364.

. BraTTELI, O.; JORGENSEN, P. E.T.: KisHimMOTO, A.: RoBINsON, D. W., A C*-algebraic

Schoenberg theorem, Ann. lust. Fourier (Grenobie), 33(1984), 155—187.

. BRATTELI, O.; RoBinson, D. W., Cperctor algebras and quantum statistical mechanics. 1,

Springer-Verlag, New York -- Heidelberg - - Perlin, 1979.

. BraTrELy, O.; ROBINSON, D. W., Operator algebras and quantum statistical mechanics. 11,

Springer-Verlag, New York — Heidelberg - Berlin, 1981.

ConnEs, A., Une classification des facteurs de type LI, Ann. Sci. Ecole Norm. Sup., 6(1973),
133 --252.

DixMIER, [., Les C*-algébres ct leurs représentations, Gauthier-Villars, Paris, 1969.

GoobmMmaN, F.; JUrGenseN, P. E. T., Unbounded derivations commuting with compact group
actions, Comm. Math. Phys., 82(1981), 399- 405.

. Goobman, F.; WassirRMANN, A., Unbounded derivations commuting with compact group

actions. II, J. Functional Analysis, 55(1984), 389--397.

. IkunisHr, AL, Derivations in C*-algebras commuting with compact actions, Publ. Res. Inst.

Math. Sci., 19(1983), 99—106.

3. IkuNisHI, A., Derivations in covariant representations of a C*#-algebra, preprint, 1985.
. KisHimoTo, A., Simple crossed products of C*-algebras by locally compact abelian grcups,

Yokohama Math. J., 28(1980), 69—85.

25. KisHiMoTo, A., Automorphisms and covariant irreducible representations, Yokohama Math. J.,

31(1983), 159 —168.

. KisHimoto, A.,Derivations with a domain condition, Yokohama Math. J.,32(1984), 215223,

27. KisHimoTo, A.:RoBiNsON, D. W., Dissipations, derivations, dynamical systems, and asymptotic

abeliannes, J. Operator Theory, 13(1985), 237-—253.

. KisHimoro, A.; RosinsoNn, D. W., Derivaticns, dynamical systcms, and spectral restrictions,

Math, Scand., to appear.

. PepERSEN, G. K., C*-algebras and their automorphism groups, Academic Press, London —

--New York — San Francisco, 1979.

. PeLiGraDp, C., Derivations of C*-algebras which arc invariant under an automorphism group.

1, in Invariant subspaces and other topics, Birkhiiuser, Bascl-Boston, 1932, pp. 181- 194,

. Powers, R.T., Representations of uniformly hyperfinite algebras and their associated von

Neumann rings, Ann. of Math., 86(1967), 138- -171.

. RiNGrosg, J. R., Automatic continuity of derivations of operator algebras, /. London Math.

Soc., 5(1972), 432--438.



410 OLA BRATTELI and AKITAKA KISHIMOTO

33. RominsoN, D. W., Smooth derivations on abelian C*-dynamical systems, Canberra preprint,
1985.

34. RosinsON, D. W.; STORMER, E.; TAKESAKI, M., Derivations of simple C*-algebras tangential
to compact automorphism groups, J. Operator Theory, 13(1985), 189- 200.

35. SAKAL, S., C*-algebras and W*-algebras, Springer-Verlag, Berlin -- Heidelberg - - New York,
1971.

36. Yosipa, K., Functional analysis, Springer-Verlag, Berlin — Heidelberg — New York, 1968.

OLA BRATTELI AKITAKA KISHIMOTO
Research Institute of Mathematical Sciences, Department of Mathematics.
Kyoto University, Kyoto 606, College of General Education,
Japan. Tohoku University,
Sendai 980,

Permanent address: Japan

Institute of Mathematics,
University of Trondheim,
N-7034, Trondheim -- NTH,
Norway.

Received July 22, 1985.

Note added in proofs. One of the conditions in the hypotescs of Theorem 1.1
is that 5[%“(K) is bounded for each compact subset K<G. After this paper was
completed, it has been established that this condition is automatically fulfilled if G
is compact, and the condition follows from the seemingly weaker condition that & /%(K),
is bounded for some compact neighbourhood K of 0 in G when G is non-compact, [371.

37. BratreLl, O; KisnimoTo, A, Automatic continuity of derivaticns on eigenspaces,
in Contemporary Mathematics, A.M.S., Eds. P.E.T. Jorgensen and P. Muhly,
to appear.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [445.039 677.480]
>> setpagedevice


