PRODUCT STATES OF CERTAIN GROUP-INVARIANT AF-ALGEBRAS B. M. BAKER and R. T. POWERS #### INTRODUCTION In this paper we study the restriction of product states of n^{∞} UHF-algebras $\mathfrak{A} = \bigoplus_{k=1}^{\infty} \mathfrak{B}_k$ (where \mathfrak{B}_k is an $(n \times n)$ -matrix algebra) to group invariant subalgebras \mathfrak{A}^G . The groups G considered are the unitary groups of any *-subalgebra of the $(n \times n)$ -matrices. For example, we could have $G = U(1) \times U(3)$ in the case n = 6, or $G = U(1) \times U(1) \times U(1) \times U(4) \times U(7)$ in the case n = 14, or G = U(n) for arbitrary n. The group action is of the obvious (adjoint) product type (see Section II) and invariant algebras \mathfrak{A}^G are the AF-subalgebras of the fixed points of \mathfrak{A} under the group action. We give computable necessary and sufficient conditions that the restriction of a product state of \mathfrak{A} to \mathfrak{A}^G yield a factor state (Theorem 4.13). We determine when such restrictions are pure (Theorem 4.16) and when such restrictions give type I or type II₁ representations (Theorem 4.17). We find necessary and sufficient conditions that the restrictions of two product states of \mathfrak{A} to \mathfrak{A}^G yield quasi-equivalent representations of \mathfrak{A}^G (Theorem 4.14). In this paper we generalize the results of [4] from the case n=2 to arbitrary positive n. Although this paper is self contained, seeing how our arguments in our earlier paper go for SU(2) and U(1) may make our present analysis of much more general groups appear less mysterious. We consider the two important ideas of this paper to be the following. The first was introduced in our earlier paper and extended here. If π is a representation of $\mathfrak A$ we define $H^G(\pi)=\{g\in G\;;\;\pi\underset{q}{\sim}\pi\circ\alpha_g\}$. In Section III we show that for *-repre- sentations coming from product states of \mathfrak{A} , $\pi(\mathfrak{A}^G)'' = \pi(\mathfrak{A}^H)''$ with $H = H^G(\pi)$. The second idea is the use of a probability result of [1] to determine the factoriality of the restriction of product states for the case when G is an n-torus (see Lemma 4.12). Moreover the proof of Lemma 4.12 relies on techniques developed in the Aldous and Pitman paper. Although most of this paper is concerned with product states many of the techniques have more general applicability. For example, in Theorem 4.18 we give a sufficient condition for the restriction of a factor state of $\mathfrak A$ to $\mathfrak A^G$ to yield a factor state and in Theorem 4.19 we give conditions for the quasi-equivalence of the restrictions of factor states. ## 2. NOTATION AND DEFINITIONS Let \mathfrak{V}_0 be an $(r_{\parallel} \times r)$ -matrix algebra. For each $k=1,2,\ldots$ let γ_k be a *-isomorphism of \mathfrak{V}_0 with \mathfrak{V}_k and let $\mathfrak{V}_n = \bigotimes_{k=1}^n \mathfrak{V}_k$ be the tensor product of the first n algebras. Note \mathfrak{V}_n is an $(r^n \times r^n)$ -matrix algebra. We denote by \mathfrak{V} the C^* -algebra obtained from the norm closure of the inductive limit of the \mathfrak{V}_n , i.e., $\mathfrak{V} = \bigcup_{n=1}^\infty \mathfrak{V}_n$. This C^* -algebra is a UHF-algebra of type r^∞ (see [8]). For each unitary $U \in \mathfrak{B}_0$ we define a product automorphism α_U of \mathfrak{A} by requiring $\alpha_U(\gamma_k(A)) = \gamma_k(UAU^{-1})$ for all $A \in \mathfrak{B}_0$ and $k = 1, 2, \ldots$. Note that if $A = \gamma_1(A_1)\gamma_2(A_2)\ldots\gamma_n(A_n)$ then $\alpha_U(A) = \gamma_1(UA_1U^{-1})\gamma_2(UA_2U^{-1})\ldots\gamma_n(UA_nU^{-1})$ so α_U is completely determined on \mathfrak{A}_n . Since the \mathfrak{A}_n are dense in \mathfrak{A}_n , α_U is then uniquely determined on \mathfrak{A}_n . Suppose G is a group of unitary elements $U \in \mathfrak{V}_0$. We denote by \mathfrak{A}^G the C^* -subalgebra of \mathfrak{A} consisting of α_U invariant elements of \mathfrak{A} with $U \in G$, i.e. $$\mathfrak{A}^G = \{ A \in \mathfrak{A} \; ; \; \alpha_U(A) = A \; \text{ for all } \; U \in G \}.$$ Note that if H is a subgroup of G $(H \subset G)$ then $\mathfrak{A}^H \supset \mathfrak{A}^G$. Note that \mathfrak{A}^G is the norm closure of the union of the \mathfrak{A}^G , where $$\mathfrak{A}_n^G = \{ A \in \mathfrak{A}_n ; \alpha_U(A) = A \text{ for all } U \in G \}.$$ Since the \mathfrak{U}_n^G are finite dimensional algebras \mathfrak{U}^G is an AF-algebra (see [5]). In this paper we will study the restriction of product states to \mathfrak{A}^G . The groups G which we will consider are not arbitrary subgroups of the unitary group of \mathfrak{B}_0 but groups which fix a *-subalgebra R_0 of \mathfrak{B}_0 . Suppose R_0 is a *-subalgebra of \mathfrak{B}_0 which contains the unit I of \mathfrak{B}_0 . We will restrict our attention to groups G of the form, $$G=G(R_0)=\{U\in R_0'\;;\;U\;\;\text{is unitary}\},$$ where R_0' denotes the elements of \mathfrak{B}_0 which commute with R_0 . The invariant algebra \mathfrak{A}^G is closely related to the symmetric group or permutation group S_{∞} of all finite permutations of the positive integers, i.e., $\sigma \in S_{\infty}$ if and only if $i \to \sigma(i)$ is a one-to-one mapping so that $i \neq \sigma(i)$ for only finitely many $i=1,2,\ldots$ If $\sigma\in S_{\infty}$ there is a unique unitary element U_{σ} of \mathfrak{A} so that $$U_{\sigma}\gamma_k(A)U_{\sigma}^{-1}=\gamma_{\sigma(k)}(A)$$ for all $A \in \mathfrak{B}_0$, $k = 1, 2, \ldots$ and $\tau(U_{\sigma}) > 0$ where τ is the normalized trace on \mathfrak{A} . For a permutation σ which is a cycle of length n, so $\sigma(i_k) = i_{k+1}$ for $k = 1, 2, \ldots, n-1$ and $\sigma(i_n) = i_1$, Price has calculated (see [15]) that U_{σ} is given by $$U_{\sigma} = \sum_{j_1, j_2, \dots, j_n = 1}^{r} \gamma_{i_1}(e_{j_1 j_2}) \gamma_{i_2}(e_{j_2 j_3}) \dots \gamma_{i_n}(e_{j_n j_1})$$ where the $\{e_{ij}; i, j = 1, ..., r\}$ are any set of matrix units for \mathfrak{B}_0 . It follows from Weyl's classical work on group invariants (see [16] or [15]) that if $G = \{\lambda I\}' = U(r)$ then \mathfrak{A}_n^G is generated by the U_σ with $\sigma \in S_n$ ($\sigma \in S_n$ if $\sigma(i) = i$ for i > n). A similar result we will use many times in this paper is that if $G = G(R_0)$ then \mathfrak{A}_n^G is generated by $\gamma_1(R_0)$ and the U_σ with $\sigma \in S_n$. Here is a proof of this fact. THEOREM 2.1. \mathfrak{A}_n^G is generated by $\gamma_1(R_0)$ and the U_{σ} with $\sigma \in S_n$. Proof. Let \mathfrak{V}_n^G be the algebra generated by $\gamma_1(R_0)$ and the U_σ with $\sigma \in S_n$. Clearly, $\mathfrak{V}_n^G \subset \mathfrak{V}_n^G$. If S is a subset of \mathfrak{V}_n we denote by S^c the set of $A \in \mathfrak{V}_n$ which commute with each element of S (i.e., S^c is the commutant of S in \mathfrak{V}_n and \mathfrak{V}_n is isomorphic to the set of all bounded operators on a Hilbert space of dimension n^r). We will show $(\mathfrak{V}_n^G)^c \subset (\mathfrak{V}_n^G)^c$. Suppose $A \in (\mathfrak{V}_n^G)^c$. Since \mathfrak{V}_n^G contains the permutation unitaries U_σ it follows that A commutes with the U_σ for $\sigma \in S_n$. Then it follows from Weyl's theorem that $$A = \sum_{i=1}^{m} \alpha_i \gamma_1(U_i) \gamma_2(U_i) \ldots \gamma_n(U_i)$$ where the α_i are complex numbers and the U_i are unitary elements of \mathfrak{B}_0 . Since $\gamma_1(U) \in \mathfrak{B}_n^G$ for all unitary $U \in R_0$ we have $A = \gamma_1(U)A\gamma_1(U^{-1})$ for all unitary $U \in R_0$. Averaging over the unitary group of R_0 we find, $$A = \sum_{i=1}^{m} \alpha_i \gamma_1(\varphi(U_i)) \gamma_2(U_i) \ldots \gamma_n(U_i)$$ where $$\varphi(B) = \int UBU^{-1} \mathrm{d}\nu(U)$$ for $B \in \mathfrak{D}_0$ and v is Haar measure on the unitary group of R_0 . Since \mathfrak{D}_n^G contains $U_{\sigma(1,k)}$ for k = 2, ..., n ($\sigma(1,k)$ is the permutation which transposes 1 and k) we have $\gamma_k(B) = U_{\sigma(1,k)} \gamma_1(B) U_{\sigma(1,k)}^{-1} \in \mathfrak{V}_n^G$ for all $B \in R_0$ and k = 2, ..., n. Hence, we have $\gamma_2(U) A \gamma_2(U^{-1}) = A$ for all unitary $U \in R_0$. Then, averaging $\gamma_2(U) A \gamma_2(U^{-1})$ over the unitary group of R_0 we find, $$A = \sum_{i=1}^{m} \alpha_i \gamma_1(\varphi(U_i)) \gamma_2(\varphi(U_i)) \gamma_3(U_i) \ldots \gamma_n(U_i).$$ Continuing this averaging process applied to $\gamma_k(U)A\gamma_k(U^{-1})$ for $k=3,\ldots,n$ we find, $$A_{\mid} = \sum_{i=1}^{m} \alpha_{i} \gamma_{1}(\varphi(U_{i})) \gamma_{2}(\varphi(U_{i})) \ldots \gamma_{n}(\varphi(U_{i})).$$ Let $\Gamma(B) = \gamma_1(B)\gamma_2(B)\ldots\gamma_n(B)$ for $B \in \mathfrak{B}_0$. Then we have (2.1) $$A = \sum_{i=1}^{m} \alpha_{i} \Gamma(\varphi(U_{i})).$$ We will show $\Gamma(\varphi(B)) \in (\mathfrak{A}_n^G)^c$ for any $B \in \mathfrak{B}_0$. Suppose $B \in \mathfrak{B}_0$. Since $\varphi(B) \in R_0'$ we have by the polar decomposition that $\varphi(B) = V_0 T$ with $V_0 \in R_0'$ a partial isometry and $T \in R_0'$ is positive. Since R_0' is finite dimensional V_0 can be extended to a unitary $V \in R_0'$. Then we have $\Gamma(\varphi(B)) = \Gamma(VT) = \Gamma(V)\Gamma(T)$. Since $V \in G$ we have $\Gamma(V) \in (\mathfrak{A}_n^G)^c$. Then to show $\Gamma(\varphi(B)) \in (\mathfrak{A}_n^G)^c$ it suffices to show that $\Gamma(T) \in (\mathfrak{A}_n^G)^c$. We will show this. By the spectral theorem we have $T = \sum_{i=1}^{s} \lambda_i E_i$ where $\lambda_i \ge 0$, $E_i = E_i^* \in R_0'$, $E_i E_j = \delta_{ij} E_i$ and $\sum_{i=1}^{s} E_i = I$. Let $$U(t_1, t_2, \ldots, t_s) = e^{it_1}E_1 + e^{it_2}E_2 + \ldots + e^{it_s}E_s$$ and $$F(t_1, t_2, \dots, t_s) = \sum_{k_1, k_2,
\dots, k_s \ge 0}^{k_1 + k_2 + \dots + k_s = n} \lambda_1^{k_1} e^{-ik_1 t} \lambda_2^{k_2} e^{-ik_2 t} \dots \lambda_s^{k_s} e^{-ik_s t}.$$ Then a straightforward computation shows that $$(2\pi)^{-s}\int_{-\pi}^{\pi}\ldots\int_{-\pi}^{\pi}\mathrm{d}t_{1}\ldots\mathrm{d}t_{s}F(t_{1},\ldots,t_{s})\Gamma(U(t_{1},\ldots,t_{s}))=\Gamma(T).$$ Since $U(t_1, t_2, ..., t_s) \in G$ we have $\Gamma(U(t_1, t_2, ..., t_s)) \in (\mathfrak{A}_n^G)^c$. Hence, $\Gamma(T) \in (\mathfrak{A}_n^G)^c$. Hence, $\Gamma(\varphi(U_i)) \in (\mathfrak{A}_n^G)^c$ and from equation (2.1) it follows that $A \in (\mathfrak{A}_n^G)^c$. Hence, we have shown that $(\mathfrak{B}_n^G)^c \subset (\mathfrak{A}_n^G)^c$. By the double commutant theorem we have $\mathfrak{B}_n^G \supset \mathfrak{A}_n^G$. Hence, $\mathfrak{B}_n^G = \mathfrak{A}_n^G$. It follows immediately that \mathfrak{A}^G is generated by $\gamma_1(R_0)$ and the U_σ with $\sigma \in S_\infty$. In this paper we will be primarily concerned with product states. Given states ω_k of \mathfrak{B}_0 for $k=1,2,\ldots$ the product state $\omega=\bigotimes_{k=1}^\infty \omega_k$ is defined by the requirement that $\omega(\gamma_1(A_1)\gamma_2(A_2)\ldots\gamma_n(A_n))=\omega_1(A_1)\omega_2(A_2)\ldots\omega_n(A_n)$ for $A_i\in\mathfrak{B}_0$ and $i=1,\ldots,n$. This uniquely determines ω on \mathfrak{A}_n and since the \mathfrak{A}_n are dense in \mathfrak{A} this uniquely determines ω on \mathfrak{A} . It is well known that product states are factor states, i.e., they induce cyclic *-representations π so that $\pi(\mathfrak{A})''\cap\pi(\mathfrak{A})'=\{\lambda I\}$. We will need some estimates on the norm differences of two product states of \mathfrak{A} . Suppose $\omega = \underset{k=1}{\overset{\infty}{\otimes}} \omega_k$ and $\omega' = \underset{k=1}{\overset{\infty}{\otimes}} \omega_k'$ are product states of \mathfrak{A} . For each $k=1,2,\ldots$ let Ω_k and Ω_k' be the positive trace one elements in \mathfrak{B}_0 so that $\omega_k(A) = \operatorname{tr}(A\Omega_k)$ and $\omega_k'(A) = \operatorname{tr}(A\Omega_k')$ for all $A \in \mathfrak{B}_0$, where tr is the trace, normalized (as will be our convention throughout this paper) so that $\operatorname{tr}(E) = 1$ for a rank one projection E. It follows from [13] that $$2(1-s) \le \|\omega - \omega'\| \le 2\sqrt{1-s^2}$$ $$s = \prod_{k=1}^{\infty} \operatorname{tr}(\Omega_k^{1/2} \Omega_k'^{1/2}).$$ where It follows (see [13] for details) that ω and ω' are quasi-equivalent, denoted $\omega \sim \omega'$ (i.e., they induce quasi-equivalent *-representations) if and only if $$\sum_{k=1}^{\infty} \|\Omega_k^{1/2} - \Omega_k'^{1/2}\|_{\mathrm{HS}}^2 = \sum_{k=1}^{\infty} 2 - 2 \operatorname{tr}(\Omega_k^{1/2} \Omega_k'^{1/2}) < \infty$$ where $||A||_{\mathrm{HS}} = \mathrm{tr}(A^*A)^{1/2}$ is the Hilbert-Schmidt norm of A. We note (as we will need this in the next sections) that if the above sum is finite and $||\Omega_k^{1/2} - \Omega_k'^{1/2}||_{\mathrm{HS}}^2 < 2$ for all k then $||\omega - \omega'|| < 2$. We denote by ω^G the restriction of the state ω of $\mathfrak A$ to the algebra $\mathfrak A^G$. In this paper we will be concerned with determining when ω^G is a factor state and when ω_1^G and ω_2^G are quasi-equivalent (i.e., when they induce cyclic *-representations which are quasi-equivalent) where ω_1 and ω_2 are product states of $\mathfrak A$. We will often make use of the fact (see [7]) that two *-representations π_1 and π_2 are quasi-equivalent if and only if the mapping φ defined by $\varphi(\pi_1(A)) = \pi_2(A)$ for all A in the algebra is σ -strongly bicontinuous (or σ -weakly bicontinuous). The extension of φ to the weak closures is a *-isomorphism of $\pi_1(\mathfrak A)$ " with $\pi_2(\mathfrak A)$ ". For the case of factor states the induced representations are either quasi-equivalent or disjoint. It follows that if ω_1 and ω_2 are factor states and $\|\omega_1 - \omega_2\| < 2$ then $\omega_1 \sim \omega_2$. ### 3. RELATION BETWEEN $\pi(\mathfrak{A}^G)''$ AND $\pi(\mathfrak{A})''$ Let R_0 be a *-subalgebra of \mathfrak{B}_0 and let $G = G(R_0)$ be the group of unitaries in \mathfrak{B}_0 which commute with R_0 . Throughout this section R_0 and G will be related as just described. In this section we will show that if π is a representation of \mathfrak{A} induced by a product state then $\pi(\mathfrak{A}^G)'' = \pi(\mathfrak{A}^H)''$ where H is a subgroup of G which can be calculated from the product state ω . DEFINITION 3.1. Suppose π is a *-representation of \mathfrak{A} . We define $$R^G(\pi) = \{A \in \mathfrak{B}_0 ; \pi(\gamma_1(A)) \in \pi(\mathfrak{A}^G)^{\prime\prime}\}.$$ Note $R^G(\pi)$ is a *-subalgebra of \mathfrak{V}_0 containing R_0 . If ω is a state of \mathfrak{V} we denote by $R^G(\omega)$ the algebra $R^G(\pi)$ where π is the cyclic *-representation induced by ω . DEFINITION 3.2, Suppose π is a *-representation of \mathfrak{A} . We define $$H^G(\pi) = \big\{U \in G \, ; \, \pi \circ \alpha_U \underset{q}{\sim} \pi \big\}.$$ Note $H^G(\pi)$ is a subgroup of G. Again if ω is a state of $\mathfrak A$ we denote by $H^G(\omega)$ the group $H^G(\pi)$ where π is the *-representation induced by ω . LEMMA 3.3. $R^G(\pi)$ and $H^G(\pi)$ only depend on the quasi-equivalence class of π , i.e., if $\pi_1 \sim \pi_2$ then $R^G(\pi_1) = R^G(\pi_2)$ and $H^G(\pi_1) = H^G(\pi_2)$. *Proof.* Suppose π_1 and π_2 are quasi-equivalent *-representations of $\mathfrak A$. Then there is a σ -strongly | bicontinuous *-isomorphism φ of $\pi_1(\mathfrak A)''$ onto $\pi_2(\mathfrak A)''$ so that $\varphi(\pi_1(A)) = \pi_2(A)$ for all $A \in \mathfrak A$. Clearly, we have $\varphi(\pi_1(\mathfrak A^G)'') = \pi_2(\mathfrak A^G)''$ so $R^G(\pi_1) = R^G(\pi_2)$. Since $\pi_1 \underset{q}{\sim} \pi_2$ and $\pi_1 \circ \alpha_U \underset{q}{\sim} \pi_2 \circ \alpha_U$ for any unitary $U \in \mathfrak B_0$ we have $\pi_1 \circ \alpha_U \underset{q}{\sim} \pi_1$ if and only if $\pi_2 \circ \alpha_U \underset{q}{\sim} \pi_2$. Hence, $H^G(\pi_1) = H^G(\pi_2)$. Lemma 3.4. Suppose ω is a factor state of $\mathfrak A$ and $\Omega_k \in \mathfrak B_0$ is the unique positive trace one element so that $\operatorname{tr}(A\Omega_k) = \omega(\gamma_k(A))$ for all $A \in \mathfrak B_0$ and $k = 1, 2, \ldots$. Suppose Ω is a limit point of the sequence $\{\Omega_k\}$. Then $\Omega \in R^G(\omega)$. *Proof.* Suppose the hypothesis and notation of the lemma are satisfied. Since Ω is a limit point there is a subsequence $k \to q(k)$ so that $\Omega_{q(k)} \to \Omega$ as $k \to \infty$. Let $U_k = U_\sigma$ where σ is the permutation which transposes 1 and q(k). We have $$U_k = \sum_{i,j=1}^r \gamma_1(e_{ij}) \gamma_{q(k)}(e_{ji})$$ where $\{e_{ij}: i, j=1,\ldots,r\}$ are a set of matrix units for \mathfrak{D}_0 . Let (π, \mathcal{H}, f_0) be a cyclic *-representation induced by ω . We show that $\pi(U_k)$ converges weakly to $\pi(\gamma_1(\Omega))$ as $k \to \infty$. Suppose $A, B \in \mathfrak{A}_n$. Then for k sufficiently large so q(k) > n we have $$(\pi(A)f_0, \pi(U_k) \pi(B)f_0) = \omega(A^*U_kB) =$$ $$= \sum_{i,j=1}^{r} \omega(A^*\gamma_1(e_{ij})\gamma_{q(k)}(e_{ji})B) =$$ $$= \sum_{i,j=1}^{r} \omega(A^*\gamma_1(e_{ij})B\gamma_{q(k)}(e_{ji})).$$ Since ω is a factor state it follows from Theorem 2.5 of [12] that ω has the cluster property so that $\omega(C\gamma_k(A)) - \omega(C)\omega(\gamma_k(A)) \to 0$ as $k \to \infty$. Hence, we have $$(\pi(A)f_0, \pi(U_k) \pi(B)f_0) \to \sum_{i,j=1}^r \omega(A^*\gamma_1(e_{ij})B)\omega(\gamma_{q(k)}(e_{ji})) =$$ $$= \omega(A^*\gamma_1(\Omega_{q(k)})B) \to \omega(A^*\gamma_1(\Omega)B) = (\pi(A)f_0, \pi(\gamma_1(\Omega))\pi(B)f_0)$$ as $k \to \infty$. Since the $\pi(U_k)$ are uniformly bounded and the vectors $\pi(A)f_0$ and $\pi(B)f_0$ with $A, B \in \mathfrak{A}_n$ for $n < \infty$ are dense in \mathscr{H} we have $\pi(U_k)$ converges weakly to $\pi(\gamma_1(\Omega))$. Hence, $\pi(\gamma_1(\Omega)) \in \pi(\mathfrak{A}^G)''$ (since $U_k \in \mathfrak{A}^G$) and $\Omega \in R^G(\omega)$. Lemma 3.5. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ is a product state of $\mathfrak A$ and ρ is a limit point of the sequence ω_k . Then if $\rho(A) = \operatorname{tr}(A\Omega)$ for $A \in \mathfrak B_0$ we have $\Omega \in R^G(\omega)$. The proof follows immediately from the previous lemma. LEMMA 3.6. Suppose π is a *-representation of \mathfrak{A} . Then $H^G(\pi) \subset G \cap R^G(\pi)'$. Proof. Suppose $U \in H^G(\pi)$ and $A \in R^G(\pi)$. Then there is a sequence $A_n \in \mathfrak{A}^G(\pi)$ so that $\pi(A_n) \to \pi(\gamma_1(A))$ σ -strongly as $n \to \infty$. Since $\pi \underset{q}{\sim} \pi \circ \alpha_U$ the mapping $\varphi(\pi(B)) = \pi(\alpha_U(B))$ for $B \in \mathfrak{A}$ is σ -strongly bicontinuous. Hence, $\pi(\alpha_U(A_n)) \to \pi(\gamma_1(UAU^{-1}))$ σ -strongly as $n \to \infty$. But $\alpha_U(A_n) = A_n$ and π is faithful so $UAU^{-1} = A$. Since $A \in R^G(\pi)$ is arbitrary we have $U \in R^G(\pi)'$. LEMMA 3.7. Suppose π is a *-representation of $\mathfrak A$ and $H = G \cap R^G(\pi)'$. Then $\pi(\mathfrak A^G)'' = \pi(\mathfrak A^H)''$. *Proof.* Since $\mathfrak{A}^H \supset \mathfrak{A}^G$ we have $\pi(\mathfrak{A}^H)'' \supset \pi(\mathfrak{A}^G)''$. By the definition of $R^G(\pi)$ we have $\pi(\gamma_1(R^G(\pi))) \subset \pi(\mathfrak{A}^G)''$. As was pointed out in the last section, $\gamma_1(R^G(\pi))$ and \mathfrak{A}^G generate \mathfrak{A}^H . Hence, $\pi(\mathfrak{A}^G)'' \subset \pi(\mathfrak{A}^H)''$. THEOREM 3.8. Suppose $$\omega =
\bigotimes_{k=1}^{\infty} \omega_k$$ is a product state of \mathfrak{A} . Then $H^G(\omega) = G \cap R^G(\omega)'$. Furthermore, let Φ be the conditional expectation of \mathfrak{V}_0 onto $R^G(\omega)$ which preserves the trace. Let $\overline{\omega}_k(A) = \omega_k(\Phi(A))$ for $A \in \mathfrak{V}_0$ and let $\overline{\omega} = \bigotimes_{k=1}^{\infty} \overline{\omega}_k$. Then $\omega \sim \overline{\omega}_k$. *Proof.* Suppose ω , Φ and $\overline{\omega}$ are as given in the statement of the theorem. We will begin by proving $\omega \sim \overline{\omega}$. Suppose ω and $\overline{\omega}$ are not quasi-equivalent. Let $\omega_k(A)=\operatorname{tr}(A\Omega_k)$ for $A\in\mathfrak{V}_0$ and $k=1,2,\ldots$. Then $\overline{\omega}_k(A)=\operatorname{tr}(\Phi(A)\Omega_k)=\operatorname{tr}(A\Phi(\Omega_k))$. Since ω and $\overline{\omega}$ are not quasi-equivalent we have $$\sum_{k=1}^{\infty} \|\Omega_k^{1/2} - \Phi(\Omega_k)^{1/2}\|_{\mathsf{HS}}^2 = \infty.$$ Let $S_k = \Omega_k^{1/2} - \Phi(\Omega_k)^{1/2}$, $S_k = ||S_k||_{HS}$ and $T_k = \Omega_k^{1/2} + \Phi(\Omega_k)^{1/2}$. Let $$A_k = \int_{-\infty}^{0} \exp\left(\frac{1}{2}tT_k\right) S_k \exp\left(\frac{\xi_1}{2}tT_k\right) dt.$$ The hermitian element $A_k \in \mathfrak{B}_0$ is the unique solution to the equation $(1/2)(A_kT_k+T_kA_k)=S_k$ subject to the requirement that the null space of A_k contain the null space of T_k (see [11] for a general discussion of this equation). One property of the A_k that we shall need is that $||A_k|| \le 1$. To see this suppose λ is an eigenvalue for A_k and f is an associated eigenvector. Then $(f, S_k f) = (1/2)(f, (A_k T_k + T_k A_k)f) = \lambda(f, T_k f)$. Since $T_k \ge S_k$ and $T_k \ge -S_k$ we have $|\lambda| \le 1$. Hence, $||A_k|| \le 1$. Since the operators, $s_k^{-1}S_k$, A_k and Ω_k are uniformly bounded in a finite dimensional space, there is by a routine compactness argument (see the proof of Lemma 3.5 of [4] for details) a subsequence $k \to q(k)$ so that $q(1) \ge 2$, $$\sum_{k=1}^{\infty} \left\| S_{q(k)} \right\|_{\mathrm{HS}}^2 = \sum_{k=1}^{\infty} s_{q(k)}^2 = \infty,$$ $$s_{q(k)}^{-1} S_{q(k)} \to X, \quad \Omega_{q(k)} \to \Omega \quad \text{and} \quad A_{q(k)} \to Y$$ as $k \to \infty$. Let Q(n) be the first n numbers of the subsequence $k \to q(k)$, i.e., $Q(n) = \{q(1), q(2), \ldots, q(n)\}$. Let Q be the union of the Q(n) for $n = 1, 2, \ldots$. To avoid the cumbersome subscript q(k) we will write $A_k \to Y$ as $k \to \infty$ in Q. With this notation we have (3.0) $$\sum_{k \in \mathcal{O}} s_k^2 = \infty, \quad s_k^{-1} S_k \to X, \quad \Omega_k \to \Omega \quad \text{and} \quad A_k \to Y$$ as $k \to \infty$ in Q. Let $H = G \cap R^G(\omega)'$ and let Γ be the conditional expectations of $\mathfrak A$ onto $\mathfrak A^H$ given by $$\Gamma(A) = \int_{H} \alpha_{U}(A) d\nu(U)$$ where ν is Haar measure on H. Let $W = W^* \in \mathfrak{B}_0$. We will specify W more precisely later on. Let $$C_n = Z_n^{-1} \sum_{k \in Q(n)} \Gamma(\gamma_1(W)(\gamma_k(A_k) - \overline{\omega}_k(A_k)))$$ with $$Z_n = \sum_{k \in \mathcal{Q}(n)} s_k^2$$ set $$B = \int_{H} U W U^{-1} f(U) d\nu(U)$$ with $$f(U) = \operatorname{tr}((X - (1/2)XY - (1/2)YX + YU^{-1}XU)U^{-1}XU).$$ Note $|f(U)| \le 3$. We will show that $$\pi(U_n(t)) = \pi(\exp(itC_n)) \to \pi(\exp(it\gamma_1(B))) = \pi(V(t))$$ strongly as $n \to \infty$, where (π, \mathcal{H}, f_0) is a cyclic *-representation of \mathfrak{A} induced by ω and $U_n(t)$, and V(t) are defined as implied above. Consider vectors $f \in \mathcal{H}$ of the form $f = \pi(\gamma_1(X_1)\gamma_2(X_2)\dots\gamma_m(X_m))f_0$ with ||f|| = 1 with $X_i \in \mathfrak{B}_0$. Since the linear span of such vectors is dense in \mathcal{H} and the $U_n(t)$ and V(t) are uniformly bounded, it is sufficient to show that $||\pi(U_n(t) - V(t))f||^2 = \omega_f((U_n(t) - V(t))^*(U_n(t) - V(t))) \to 0$ as $n \to \infty$, where $\omega_f(A) = (f, \pi(A)f)$. Note that $\omega_f = \bigotimes_{k=1}^{\infty} \omega_k'$ is a product state with $\omega_k' = \omega_k$ for k sufficiently large (k > m). Now we have $$\|\pi(U_n(t) - V(t))f\|^2 = 2 - 2\operatorname{Re}(\omega_f(U_n(t)^*V(t))).$$ Differentiating $U_n(t)^*V(t)$ and integrating the resulting differential equation we find $$U_n(t)^*V(t) = I - i \int_0^t U_n(s)^*(C_n - \gamma_1(B))V(s) ds.$$ Inserting this in the above expression we find $$\|\pi(U_{n}(t) - V(t))f\|^{2} = 2\operatorname{Re}\left(i\int_{0}^{t} \omega_{f}(U_{n}(s)^{*}(C_{n} - \gamma_{1}(B))V(s))ds\right) \leq 2\int_{0}^{t} \|\pi((C_{n} - \gamma_{1}(B))V(s))f\| ds.$$ If $g = \pi(V(s))f$ then ω_f and ω_g are product states which differ only on \mathfrak{D}_1 . Since $\pi(V(s))f$ is of the same general form as f and since the estimates we will obtain are independent of the first few terms (ω_k') of the product state $\omega_f = \frac{\infty}{k} \omega_k'$ we will simply replace $\pi(V(s))f$ by f in estimating the right hand side of inequality (3.1). Now we have $$C_n + \gamma_1(B) = Z_n^{-1} \sum_{k \in Q(n)} \int_H \gamma_1(UWU^{-1}) L_k(U) dv(U)$$ with $$L_k(U) = \gamma_k(UA_kU^{-1}) - \overline{\omega}_k(A_k) - s_k^2 f(U).$$ Using the fact that $\omega_f = \bigotimes_{k=1}^{\infty} \omega_k'$ is a product state we have $$|\pi(C_n - \gamma_1(B))f||^2 = \omega_f((C_n - \gamma_1(B))^2) =$$ $$= Z_n^{-2} \sum_{k,j \in Q(n)} \int \omega_1'(U_1 W U_1^{-1} U_2 W U_2^{-1}) \omega_f(L_k(U_1) L_j(U_2)) d\nu(U_1) d\nu(U_2).$$ Now for $k \neq j$ we have $\omega_f(L_k(U_1)L_j(U_2)) = \omega_f(L_k(U_1))\omega_f(L_j(U_2))$. Hence, we have $$||\pi(C_n - \gamma_1(B))f||^2 =$$ (3.2) $$= \int \omega_1'(U_1 W U_1^{-1} U_2 W U_2^{-1}) (F_n(U_1) F_n(U_2) - G_n(U_1, U_2)) d\nu(U_1) d\nu(U_2)$$ where $$F_n(U) = Z_n^{-1} \sum_{k \in \mathcal{Q}(n)} \omega_f(L_k(U))$$ and $$G_n(U_1, U_2) = Z_n^{-2} \sum_{k \in \mathcal{Q}(n)} \omega_f(L_k(U_1)L_k(U_2)) - \omega_f(L_k(U_1))\omega_f(L_k(U_2)).$$ We will show that $\|\pi(C_n - \gamma_1(B))f\| \to 0$ as $n \to \infty$ by showing the F_n and G_n are uniformly bounded and tend to zero pointwise (in fact, uniformly) as $n \to \infty$. We begin with $F_n(U)$. We have (3.3) $$\omega_f(L_k(U)) = \omega_k'(UA_kU^{-1}) - \overline{\omega}_k(A_k) - s_k^2 f(U).$$ For k sufficiently large we have $\omega'_k = \omega_k$. We have $$\begin{split} \omega_k(UA_kU^{-1}) &- \overline{\omega}_k(A_k) = \operatorname{tr}(\Omega_kUA_kU^{-1} - \Omega_k\Phi(A_k)) = \\ &= \operatorname{tr}((U^{-1}\Omega_kU - \Phi(\Omega_k))A_k). \end{split}$$ Since $\Omega_k^{1/2} = (1/2)(T_k + S_k)$ and $\Phi(\Omega_k)^{1/2} = (1/2)(T_k - S_k)$ we have $$\phi_k(UA_kU^{-1}) - \overline{\omega}_k(A_k) = (1/4)\operatorname{tr}(U^{-1}(T_k - S_k + 2S_k)^2UA_k - (T_k - S_k)^2A_k).$$ Since $T_k - S_k = 2\Phi(\Omega_k)^{1/2}$ commutes with $U \in R^G(\omega)'$ we have $$\omega_k(UA_kU^{-1}) - \overline{\omega}_k(A_k) = \operatorname{tr}(U^{-1}S_kU(1/2)(A_kT_k + T_kA_k)) -$$ $$- (1/2)\operatorname{tr}((S_kU^{-1}S_kU + U^{-1}S_kUS_k)A_k) + \operatorname{tr}(U^{-1}S_k^2UA_k).$$ Since $S_k = (1/2)(A_kT_k + T_kA_k)$ we have $$\omega_k(UA_kU^{-1}) - \overline{\omega}_k(A_k) =$$ $$= tr((S_k - (1/2)S_kA_k - (1/2)A_kS_k + A_kU^{-1}S_kU)U^{-1}S_kU).$$ If $J, K \in \mathfrak{V}_0$ with $||J|| \le 1$ and $||K|| \le 1$ then $||tr(S_k J S_k K)| \le ||J S_k||_{HS} ||S_k K||_{HS} \le ||S_k||_{HS}^2 = s_k^2$. Since $||U|| = ||U^{-1}|| = 1$ and $||A_k|| \le 1$ we have $$|\omega_k(UA_kU^{-1})-\overline{\omega}_k(A_k)|\leqslant 3s_k^2.$$ For k sufficiently large we have $\omega'_k = \omega_k$ so from equation (3.3) and the fact that $||f(U)|| \le 3$ we have $$\omega_{\mathfrak{c}}(L_{k}(U)) \leqslant 6s_{k}^{2}$$ for k sufficiently large (k > m) independent of $U \in H$. Since $Z_n = \sum_{k \in Q(n)} s_k^2$ we have that $F_n(U)$ is uniformly bounded. In fact, we have $\limsup |F_n(U)| \le 6$. As $k \to \infty$ in Q we have from (3.0) that $$(3.5) s_k^{-2}(\omega_k(UA_kU^{-1}) - \overline{\omega}_k(A_k)) \to tr((X - (1/2)XY - (1/2)YX + YU^{-1}XU)U^{-1}XU) = f(U).$$ Hence, $s_k^{-2}\omega_f(L_k(U)) \to 0$ as $k \to \infty$ in Q. Hence, $|F_n(U)| \to 0$ as $n \to \infty$ for $U \in H$. Since the $F_n(U)$ are uniformly bounded and converge pointwise to zero the terms coming from $F_n(U_1)F_n(U_2)$ in equation (3.2) go to zero as $n \to \infty$. Now we consider the expression for $G_n(U_1, U_2)$ in equation (3.2). For k sufficiently large (k > m) we have $\omega_k' = \omega_k$. A small computation shows that for k > m we have $$\omega_f(L_k(U_1)L_k(U_2)) - \omega_f(L_k(U_1)) \,\omega_f(L_k(U_2)) =$$ $$= \operatorname{tr}(\Omega_k U_1 A_k U_1^{-1} U_2 A_k U_2^{-1}) - \operatorname{tr}(\Omega_k U_1 A_k U_1^{-1}) \operatorname{tr}(\Omega_k U_2 A_k U_2^{-1}).$$ Computations of the kind made in equation (3.4) show $$\operatorname{tr}(\Omega_k U_1 A_k^{\dagger} U_1^{-1}) \leq ||T_k||_{HS} ||S_k||_{HS} + \text{terms of order } ||S_k||_{HS}^2.$$ Hence, $\operatorname{tr}(\Omega_k U_1 A_k U_1^{-\frac{1}{4}}) \leq (\operatorname{constant}) s_k$. We have $$\begin{split} |\mathrm{tr}(\Omega_k U_1 A_k U_1^{-1} U_2 A_k U_2^{-1})|^2 &= |\mathrm{tr}(\Omega_k^{1/2} U_1 A_k U_1^{-1} U_2 A_k U_2^{-1} \Omega_k^{1/2})|^2 \leqslant \\ &\leqslant \mathrm{tr}(\Omega_k U_1 A_k^2 U_1^{-1}) \, \mathrm{tr}(\Omega_k U_2 A_k^2 U_2^{-1}). \end{split}$$ Calculations like those done in equation (3.4) and repeated use of the inequality $\operatorname{tr}(T_k^2A_k^2) \leq 2s_k^2$ (derived by noting that $s_k^2 = \operatorname{tr}(S_k^2) = \operatorname{tr}((1/4)(A_kT_k + T_kA_k)^2) = (1/2)\operatorname{tr}(T_k^2A_k^2) + (1/2)\operatorname{tr}(T_kA_kT_kA_k) \geq (1/2)\operatorname{tr}(T_k^2A_k^2)$) shows that $$\operatorname{tr}(\Omega_k U_1 A_k^2 U_1^{-1}) \leqslant (\operatorname{constant}) s_k^2$$. Hence, $\operatorname{tr}(\Omega_k U_1 A_k U_1^{\perp 1} U_2 A_k U_2^{-1}) \leq (\operatorname{constant})
s_k^2$. Hence, we have (for k > m) $$|\omega_f(L_k(U_1)L_k(U_2)) - \omega_f(L_k(U_1))\omega_f(L_k(U_2))| \leq (\text{constant}) \, s_k^2 \, .$$ Since the expression for $G_n(U_1, U_2)$ has a Z_n^{-2} term multiplying the sum which is bounded by a constant times Z_n we see that $G_n(U_1, U_2) \to 0$ uniformly as $n \to \infty$. Hence, we have from equation (3.2) that $\|\pi(C_n - \gamma_1(B))f\| \to 0$ as $n \to \infty$. Then it follows from inequality (3.1) that $\|\pi(U_n(t) - V(t))f\| \to 0$ as $n \to \infty$. Hence, we have shown that $\pi(U_n(t)) \to \pi(V(t))$ strongly as $n \to \infty$. From Lemma 3.7 we have $\pi(\mathfrak{A}^H)'' = \pi(\mathfrak{A}^G)''$. Since $C_n \in \mathfrak{A}^G$ and $U_n(t) = \exp(itC_n)$ we have $\pi(V(t)) \in \pi(\mathfrak{A}^G)''$. Since $V(t) = \exp(it\gamma_1(B))$ we have $\pi(\gamma_1(B)) \in \pi(\mathfrak{A}^G)''$. Hence, $B \in R^G(\omega)$. We recall that $$B = \int_{H} UWU^{-1}f(U)\mathrm{d}\nu(U).$$ PRODUCT STATES 15- Since Φ can be expressed in the form (3.6) $$\Phi(A) = \int_{H} UAU^{-1} d\nu(U)$$ and v is invariant under left and right translation we have $\Phi(UWU^{-1}) = \Phi(W)$, for $U \in H$. Hence, (3.7) $$\Phi(B) = \int_{H} \Phi(W) f(U) dv(U).$$ From relation (3.5) we see that $s_k^{-2}(\omega_k(UA_kU^{-1}) - \overline{\omega}_k(A_k)) = f_k(U) \to f(U)$ as. $k \to \infty$ in Q. Since $\overline{\omega}_k(A) = \omega_k(\Phi(A))$ it follows from (3.6) that $$\int_{H} f_{k}(U) dv(U) = 0 \quad \text{and hence,} \quad \int_{H} f(U) dv(U) = 0.$$ Hence, from (3.7) we have that $\Phi(B) = 0$. Next we show that for some choice of $W=W^*\in\mathfrak{V}_0$ we have $B\neq 0$. Tothis end suppose B=0 for all choices $W=W^*\in\mathfrak{V}_0$. Then for all hermitian $A,W\in\mathfrak{V}_0$ we have $$\operatorname{tr}(AB) = \int \operatorname{tr}(AUWU^{-1})f(U)d\nu(U) = 0.$$ We recall that $f(U) = \operatorname{tr}(XU(X-(1/2)XY-(1/2)YX)U^{-1})) + \operatorname{tr}(X^2UYU^{-1})$. Since the above expression is zero for all choices of hermitian A and W and f(U) is a linear combination of two terms of the form $\operatorname{tr}(AUWU^{-1})$ with A and W chosen appropriately, it follows $$\int f(U)^2 \mathrm{d}\nu(U) = \int |f(U)|^2 \mathrm{d}\nu(U) = 0.$$ But this is a contradiction since $f(I) = \text{tr}(X(X - (1/2)XY - (1/2)YX + XY)) = \text{tr}(X^2) = 1$ and f is continuous. Hence, for some hermitian $W \in \mathfrak{B}_0$ we have $B \neq 0$. We have finally reached the desired contradiction. By assuming ω and $\overline{\omega}$ are not quasi-equivalent we have constructed a $B \in R^G(\omega)$ with $B \neq 0$. Since Φ is the conditional expectation of \mathfrak{B}_0 onto $R^G(\omega)$ preserving the trace we have $\Phi(B) = B$. But we have shown that $\Phi(B) = 0$ and $B \neq 0$. Hence, we have shown that $\omega = 0$. The proof of the first statement of the theorem is now easy. From Lemma 3.6 we have $H^G(\omega) \subset G \cap R^G(\omega)'$. Since $\overline{\omega}$ is invariant under α_U with $U \in H = G \cap R^G(\omega)'$ we have $H^G(\overline{\omega}) \supset G \cap R^G(\omega)'$. Since $\omega \sim \overline{\omega}$ we have from Lemma 3.3 that $H^G(\overline{\omega}) = H^G(\omega)$. Hence, $H^G(\omega) = G \cap R^G(\omega)'$, by Lemma 3.6. #### 4. FACTOR STATES OF \mathfrak{A}^G Let R_0 be a *-subalgebra of \mathfrak{B}_0 and let $G = G(R_0)$ be the group of unitaries in \mathfrak{P}_0 which commute with R_0 . Throughout this section R_0 and G will be related as just described. The results we obtain are valid for any choice of R_0 . Throughout this section the word projection will mean hermitian projection. In this section we analyze when the restriction of a product state $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ to \mathfrak{A}^G is a factor state (i.e., it induces a factor representation of \mathfrak{A}^G). We determine when they are pure states and we obtain necessary and sufficient conditions that two such factor states be quasi-equivalent. We apologize for the complexity of the following definition. Its purpose is to eliminate certain problems associated with finite-dimensional representations which would otherwise obscure the statements of our main results. DEFINITION 4.1. Suppose ω is a state of \mathfrak{A} . We say $E \in \mathfrak{B}_0$ is the G_{γ} -support projection of ω if E is the smallest projection in R'_0 so that $\omega(\gamma_k(E)) = 1$ for all k = 1, 2. We say a state ω has minimal G_{γ} -support if for every projection $e \in R'_0$ so that $\omega(\gamma_k(e)) = 1$ exactly once, say for $k = k_0$, and $\omega(\gamma_k(e)) = 0$ for $k \neq k_0$, then there is a projection $f \in R'_0$ with $f \leq e$ so that $\omega(\gamma_{k_0}(f)) = 1$ and fe_n is either zero or a minimal projection in R'_0 for each minimal central projection $e_n \in R_0 \cap R'_0$. We show that if ω is a state of $\mathfrak A$ which is not of minimal G_{γ} -support then ω can be modified to produce a quasi-equivalent state ω' which has minimal G_{γ} -support and ω' and ω' coincide on $\mathfrak A^G$ (i.e., $\omega^G = \omega'^G$). Suppose ω is a state of $\mathfrak A$ and $e \in R'_0$ is a projection so that $\omega(\gamma_1(e)) = 1$ and $\omega(\gamma_k(e)) = 0$ for $k \ge 2$. Suppose e_1, \ldots, e_m are the minimal central projections in $R_0 \cap R'_0$ so that $ee_i \ne 0$ for $i = 1, \ldots, m$. Let $\{e'_{ij}^{(k)}; i, j = 1, \ldots, s_k\}$ be matrix units for $e_k R'_0 = R'_0 e_k$ chosen so that $e'_1^{(k)} \le e$ for $k = 1, \ldots, m$. Let $$\omega'(A) = \sum_{k=1}^{m} \sum_{i=1}^{s_k} \omega(\gamma_1(e_{i1}'^{(k)}) A \gamma_1(e_{1i}'^{(k)}))$$ for $A \in \mathfrak{A}$. Now \mathfrak{A}_n^G is spanned by elements of the form $A_0 = U_{\sigma} \gamma_1(A_1) \gamma_2(A_2) \ldots \gamma_n(A_n)$ with $A_i \in R_0$ and σ a permutation so that $\sigma(i) = i$ for i > n. Because $\omega(A) = \omega(\gamma_1(e)A\gamma_2(I-e)\gamma_3(I-e)\dots\gamma_n(I-e))$ for all $A \in \mathfrak{U}_n^G$ it follows that $\omega(A_0) = 0$ unless the permutation σ fixes one (i.e., $\sigma(1) = 1$). If $\sigma(1) = 1$ it follows that $\omega'(A_0) = \omega(A_0)$. Hence, $\omega' | \mathfrak{U}_n^G = \omega | \mathfrak{V}_n^G$. Since n is arbitrary we have $\omega'^G = \omega^G$. Let $f = \sum_{k=1}^m e_{11}^{\prime(k)}$. We have that $f \leq e$ and $\omega'(\gamma_1(f)) = 1$ and fe_k is either zero or a minimal projection in R'_0 for each minimal central projection $e_k \in R_0 \cap R'_0$. Hence, we see that if ω is a state of $\mathfrak A$ we can, modifying ω in the manner indicated for a finite number of k (in fact, the number of modifications must be less than r/2 where $\mathfrak B_0$ is an $(r \times r)$ -matrix algebra), produce a state ω' which is quasi-equivalent with ω such that ω' has minimal G_{γ} -support and $\omega'^G = \omega^G$. If $\omega = \underset{k=1}{\overset{\infty}{\otimes}} \omega_k$ is a product state then the modified state ω' , is also a product state $\omega' = \underset{k=1}{\overset{\infty}{\otimes}} \omega'_k$ with $\omega'_k = \omega_k$ for all but a finite number of k. DEFINITION 4.2. Suppose ω is a state of \mathfrak{A} . We define $M^G(\omega)$ to be the set of projections $e \in R'_0$ so that $$\sum_{k=1}^{\infty} \omega(\gamma_k(e))(1 - \omega(\gamma_k(e))) < \infty.$$ We define $N^G(\omega)$ to be the set of projections $e \in R'_0$ so that $$\sum_{k=1}^{\infty} \omega(\gamma_k(e)) < \infty.$$ Note $N^G(\omega) \subset M^G(\omega)$. The next few lemmas lead up to Theorem 4.7 in which we determine $M^G(\omega)$ for product states and its relation to $R^G(\omega)$. LEMMA 4.3. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ is a product of $\mathfrak A$ and $e \in M^G(\omega)$. Then $e \in R^G(\omega)'$. *Proof.* Suppose the hypothesis and notation of the lemma are valid. Suppose for each $k=1,2,\ldots$ $\omega_k(A)=\operatorname{tr}(A\Omega_k)$ for all $A\in\mathfrak{B}_0$. Suppose $U(t)=\exp(\mathrm{i}te)$. We show $U(t)\in H^G(\omega)$ for all real t. We have $$U(t) \in H^{G}(\omega) \Leftrightarrow \omega \sim_{q} \omega \circ \alpha_{U(t)} \Leftrightarrow \sum_{k=1}^{\infty} \|\Omega_{k}^{1/2} - U(t)^{-1}\Omega_{k}^{1/2}U(t)\|_{HS}^{2} < \infty.$$ We have $$\|\Omega_k^{1/2} - U(t)^{-1}\Omega_k^{1/2}U(t)\|_{HS}^2 = 4(1 - \cos(t))s_k$$ with $$s_k = \text{tr}(\Omega_k^{1/2} e \Omega_k^{1/2} (I - e)).$$ Since $s_k \le \operatorname{tr}(e\Omega_k) = \omega_k(e)$ and $s_k \le \operatorname{tr}((I - e)\Omega_k) = \omega_k(I - e)$ we have $s_k \le 2\omega_k(e)(1 - \omega_k(e))$. Since $e \in M^G(\omega)$ we have $$\sum_{k=1}^{\infty} \|\Omega_k^{1/2} - U(t)^{-1} \Omega_k^{1/2} U(t)\|_{\mathrm{HS}}^2 = \sum_{k=1}^{\infty} 4(1 - \cos(t)) s_k \le 16 \sum_{k=1}^{\infty} \omega_k(e) (1 - \omega_k(e)) < \infty.$$ Hence, $U(t) \in H^G(\omega)$. By Lemma 3.6 we have $H^G(\omega) \subset G \cap R^G(\omega)'$. Hence, $e \in R^G(\omega)'$. We remark that one can prove Lemma 4.3 holds for any factor state ω of \mathfrak{A} . LEMMA 4.4. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ and $\omega' = \bigotimes_{k=1}^{\infty} \omega'_k$ and $\omega \sim_q \omega'$. Then $M^G(\omega) = M^G(\omega')$ and $N^G(\omega) = N^G(\omega')$. *Proof.* Suppose the hypothesis and notation of the lemma are valid. Suppose $e \in M^G(\omega)$ so $\sum_{k=1}^{\infty} \omega_k(e)(1-\omega_k(e)) < \infty$. For each $k=1,2,\ldots$ and $A \in \mathfrak{B}_0$ let $\rho_k(A) = \omega_k(e)^{-1}\omega_k(eAe)$ if $\omega_k(e) \ge 1/2$ and $\rho_k(A) = \omega_k(I-e)^{-1}\omega_k((I-e)A(I-e))$ if $\omega_k(e) < 1/2$. Let $\rho = \sum_{k=1}^{\infty} \rho_k$. We will show $\omega \sim \rho$. Let $x_k = \omega_k(e)^{-1/2}e$ if $\omega_k(e) \ge 1/2$ and $x_k = \omega_k(I-e)^{-1/2}(I-e)$ if
$\omega_k(e) < 1/2$. Let $C_n = x_1x_2 \dots x_n$ and $\tilde{\rho}_n(A) = \omega(C_nAC_n)$ for $A \in \mathfrak{A}$. Note $\tilde{\rho}_n | \mathfrak{A}_n = \rho | \mathfrak{A}_n$. Now a routine estimate shows $||\omega - \tilde{\rho}_n|| \le 2(1 - |\omega(C_n)|^2)^{1/2}$ (see [13], Lemma 2.4). We have $||\omega - \rho|| = \lim_{n \to \infty} ||(\omega - \rho)|| \mathfrak{A}_n|| \le \lim_{n \to \infty} 2(1 - |\omega(C_n)|^2)^{1/2}$. We have $$|\omega(C_n)|^2 = s_1 s_2 \dots s_n$$ with $s_k = \omega_k(e)$ if $\omega_k(e) \ge 1/2$ and $s_k = \omega_k(I - e)$ if $\omega_k(e) < 1/2$. Since $1 - s_k \le 2\omega_k(e)(1 - \omega_k(e))$ we have $\sum_{k=1}^{\infty} 1 - s_k < \infty$. We have $$s = \lim_{n \to \infty} |\omega(C_n)|^2 \ge s_1 s_2 \dots s_{m-1} \left(1 - \sum_{k=m}^{\infty} (1 - s_k) \right).$$ Since $s_k \ge 1/2$ for all k and $\sum_{k=1}^{\infty} 1 - s_k < \infty$ we see from the above inequality that s > 0. Hence $\|\omega - \rho\| \le 2(1-s)^{1/2} < 2$. Since ω and ρ are factor states we have $\omega \sim \rho$. Since $\omega \sim_q \omega'$ we have $\rho \sim_q \omega'$. Therefore, ω' and ρ are asymptotically equal (see [12], Theorem 2.7) so there is an integer n so that $\|(\omega'-\rho)\| \mathfrak{N}_n^c\| < 1$, where $\mathfrak{N}_n^c = \bigotimes_{k=n+1}^\infty \mathfrak{V}_k$ is the relative commutant of \mathfrak{N}_n in \mathfrak{N} . Let $e_k = \rho_k(e)e + \rho_k(I - e)(I-e)$ and $E_m = e_{n+1}e_{n+2}\dots e_m$. We have $2E_m - I \in \mathfrak{N}_n^c$ and $\|2E_m - I\| = 1$. Hence, $$|\omega'(2E_m-I)-\rho(2E_m-I)|=2\left(1-\prod_{k=n+1}^m\omega_k'(e_k)\right)<1,$$ for all m. It follows that the infinite product $\prod_{k=n+1}^{\infty} \omega_k'(e_k)$ converges to a non-zero limit. Hence, we have $\sum_{k=1}^{\infty} 1 - \omega_k'(e_k) < \infty$. Since e_k is either e or (I-e) we have $1 - \omega_k'(e_k) \geqslant \omega_k'(e)(1 - \omega_k'(e))$ for each $k=1,2,\ldots$. Hence, $\sum_{k=1}^{\infty} \omega_k'(e)(1 - \omega_k'(e)) < \infty$. Hence, we have shown that $e \in M^G(\omega)$ implies that $e \in M^G(\omega')$. The same argument gives the reverse implication so we have $M^G(\omega) = M^G(\omega')$. Now suppose $e \in N^G(\omega)$ so $\sum_{k=1}^{\infty} \omega_k(e) < \infty$. Then $e \in M^G(\omega) = M^G(\omega')$ so $\sum_{k=1}^{\infty} \omega_k'(e)(1-\omega_k'(e)) < \infty$. Since $\omega \underset{q}{\sim} \omega'$ we have ω and ω' are asymptotically equal so $|\omega_k(e)-\omega_k'(e)|\to 0$ as $k\to\infty$. Since $\omega_k(e)\to 0$ as $k\to\infty$ we have $\omega_k'(e)\to 0$ as $k\to\infty$. Hence, $\sum_{k=1}^{\infty} \omega_k'(e) < \infty$. Lemma 4.5. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ is a product state of \mathfrak{A} . Suppose $e_1, e_2 \in M^G(\omega)$ and $e_1e_2 = e_2e_1$. Then $e_1e_2 \in M^G(\omega)$ and $e_1 + e_2 - e_1e_2 \in M^G(\omega)$. *Proof.* Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ and e_1 and e_2 are commuting projections in $M^G(\omega)$. From the proof of the previous lemma there is a product state $\rho = \bigotimes_{k=1}^{\infty} \rho_k$ so that $\rho_k(e_1) = 0$ or 1 for all $k = 1, 2, \ldots$ and $\rho \sim \omega$. Since by the previous lemma $M^G(\omega) = M^G(\rho)$ we have $\sum_{k=1}^{\infty} \rho_k(e_2)(1 - \rho_k(e_2)) < \infty$. Let $Q = \{k \; ; \; \rho_k(e_1) = 1\}$. Then $$\begin{split} \sum_{k=1}^{\infty} \, \rho_k(e_1 e_2) (1 \, - \, \rho_k(e_1 e_2)) &= \sum_{k \in \mathcal{Q}} \, \rho_k(e_2) (1 \, - \, \rho_k(e_2)) \, \leqslant \\ &\leqslant \, \sum_{k=1}^{\infty} \, \rho_k(e_2) (1 \, - \, \rho_k(e_2)) \, < \infty. \end{split}$$ Hence, $e_1e_2 \in M^G(\rho) = M^G(\omega)$. To show $e_1 + e_2 - e_1 e_2 \in M^G(\omega)$ we proceed as follows. Since $e_1, e_2 \in M^G(\omega)$ we have $I - e_1$, $I - e_2 \in M^G(\omega)$. Hence, $(I - e_1)(I - e_2) \in M^G(\omega)$. Hence, $e_1 + e_2 - e_1 e_2 = I - (I - e_1)(I - e_2) \in M^G(\omega)$. Lemma 4.6. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$. Then $N^G(\omega)$ contains a unique maximal projection e_0 so that if $e \in R'_0$ is a projection then $e \in N^G(\omega)$ if and only if $e \leq e_0$. Furthermore, $e_0 \in R^G(\omega) \cap R^G(\omega)'$. *Proof.* Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$. Suppose $e_1, e_2 \in N^G(\omega)$. Let $e = e_1 \vee e_2$ (i.e., e is the smallest projection in \mathfrak{B}_0 with $e \geqslant e_1$ and $e \geqslant e_2$). Note $e \in R'_0$. Since e_1 and e_2 are in a finite dimensional algebra there is a constant λ so that $\lambda(e_1 + e_2) \geqslant e$. Then $$\sum_{k=1}^{\infty} \omega_k(e) \leqslant \lambda \sum_{k=1}^{\infty} \omega_k(e_1) + \omega_k(e_2) < \infty.$$ Hence, $e \in N^G(\omega)$. Let e_0 be the smallest projection in \mathfrak{V}_0 so that $e_0 \ge e$ for all $e \in N^G(\omega)$. Since \mathfrak{V}_0 is finite dimensional $e_0 = e_1 \vee e_2 \vee \ldots \vee e_s$ with $e_i \in N^G(\omega)$ (i.e., e_0 is the sup of a finite number of projections in $N^G(\omega)$). Hence, $e_0 \in N^G(\omega)$. Clearly if $e \in R'_0$ is a projection then $e \in N^G(\omega)$ if and only if $e \le e_0$. Since $e_0 \in N^G(\omega) \subset M^G(\omega)$, it follows from Lemma 4.3 that $e_0 \in R^G(\omega)'$. We show $e_0 \in R^G(\omega)$. Suppose $U \in H^G(\omega)$. Then $\omega \sim_q \omega \circ \alpha_U$ and by Lemma 4.4 we have $N^G(\omega) = N^G(\omega \circ \alpha_U)$. Hence, $Ue_0U^{-1} \in N^G(\omega)$. Since e_0 is maximal in $N^G(\omega)$ we have $e_0 \geq Ue_0U^{-1}$. Since e_0 is finite dimensional we have $e_0 = Ue_0U^{-1}$. Hence, e_0 commutes with all $U \in H^G(\omega)$. By Theorem 3.8 $H^G(\omega) = G \cap R^G(\omega)'$ so $e_0 \in R^G(\omega)'' = R^G(\omega)$. Hence, $e_0 \in R^G(\omega) \cap R^G(\omega)'$. REMARK. We note that if $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ is a product state with G_{γ} -support projection E, then $E \in M^G(\omega)$, and, hence, $E \in R^G(\omega)'$. THEOREM 4.7. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ is a product state of \mathfrak{A} . Then there are orthogonal projections $e_0, e_1, \ldots, e_n \in M^G(\omega) \cap R^G(\omega) \cap R^G(\omega)'$ so that $I = e_0 + e_1 + \ldots + e_n$, $$\sum_{k=1}^{\infty} \omega_k(e_0) < \infty \quad and \quad \sum_{k=1}^{\infty} \omega_k(e_i) = \infty \quad for \ i = 1, \dots, n$$ and every projection $e \in M^G(\omega)$ is of the form $e = f_0 + s_1e_1 + s_2e_2 + \ldots + s_ne_n$ where $s_i = 0$ or 1 for $i = 1, \ldots, n$ and $f_0 \in R'_0$ and $f_0 \leq e_0$. (Note e_0 may be zero.) Proof. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$. Suppose $e \in M^G(\omega)$. Let $\{E_i \ ; i=1,\ldots s\}$ be the minimal central projections of $R^G(\omega) \cap R^G(\omega)'$. Let $e_i = E_i e$ for $i=1,\ldots,s$. Clearly $e=e_1+\ldots+e_s$. Suppose $0 \neq e_j \neq E_j$. We will show that $e_j \in N^G(\omega)$. Let $\{f_i \ ; i=1,\ldots,s_j\}$ be minimal orthonormal projections in $E_j R^G(\omega)' = R^G(\omega)' E_j$ (note that $E_j R^G(\omega)'$ is an $(s_j \times s_j)$ -matrix algebra) chosen so that $e_j = f_1 + f_2 + \ldots + f_m$ with $0 < m < s_j$. Let W be a unitary in $E_j R^G(\omega)'$ (consider E_j the unit for $E_j R^G(\omega)'$) so that $Wf_1 W^{-1} = f_{m+1}$, $Wf_{m+1} W^{-1} = f_1$ and $Wf_i W^{-1} = f_i$ for $i \neq 1$ or $i \neq m+1$. Let $V=I-E_j+W$ (so V is unitary in \mathfrak{B}_0). Since $V \in G \cap R^G(\omega)' = H^G(\omega)$ we have $\omega \sim \omega \circ \alpha_V$. Then by Lemma 4.4 we have $M^G(\omega) = M^G(\omega \circ \alpha_V)$. Since $e \in M^G(\omega)$ we have $V \in V^{-1}$ and $V(I-e)V^{-1}$ are in $M^G(\omega)$. Since $e \in V(I-e)V^{-1} \in M^G(\omega)$ are commuting projections, we have $e^V(I-e)V^{-1} = f_1 \in M^G(\omega)$ by Lemma 4.5. We will show that $f_1 \in N^G(\omega)$. To this end suppose $f_1 \notin N^G(\omega)$. Then $\sum_{k=1}^{\infty} \omega_k(f_1) = \infty$. Since $f_1 \in M^G(\omega)$ we have $\sum_{k=1}^{\infty} \omega_k(f_1)(1-\omega_k(f_1)) < \infty$. Hence, there is a subsequence $k \to q(k)$ so that $\omega_{q(k)}(f_1) \to 1$ as $k \to \infty$. Since $V \in H^G(\omega)$ we have $\omega \underset{q}{\sim} \omega \circ \alpha_V$. Since $\omega \underset{q}{\sim} \omega \circ \alpha_V$ these states must be asymptotically equal (see [12], Theorem 2.7) so $\omega(\gamma_k(f_1)) - \omega(\alpha_V(\gamma_k(f_1))) \to 0$ as $k \to \infty$. But this is impossible because $\omega_{q(k)}(f_1) \to 1$ as $k \to \infty$ and $\omega_{q(k)}(Vf_1V^{-1}) = \omega_{q(k)}(f_{m+1}) \to 0$ as $k \to \infty$. Let e_0 be the maximal projection in $N^G(\omega)$. By the previous lemma $e_0 \in R^G(\omega) \cap R^G(\omega)'$. Since $f_1 \in N^G(\omega)$ we have $f_1 \leq e_0$. Since E_j is the smallest central projection with $E_j \geq f_1$ we have $E_j \leq e_0$. Since $e_j \leq E_j$ we have $e_j \in N^G(\omega)$. Hence, we have shown that if $0 \neq e_j \neq E_j$ then $e_j \in N^G(\omega)$. Hence, each $e \in M^G(\omega)$ can be written in the form $e = f_0 + h$ with $f_0 \in R'_0$ and $f_0 \leq e_0$ and h is a central projection of $R^G(\omega) \cap R^G(\omega)'$ which is orthogonal to e_0 . Furthermore, since f_0 , $e \in M^G(\omega)$ are commuting projections we have from Lemma 4.5 that $(I - f_0)e = h \in M^G(\omega)$. Hence, $f_1 \in N^G(\omega)$. In the decomposition $e = f_0 + h$ consider the h's that occur. Suppose h_1 and h_2 are two such h's. Since they lie in the center of $R^G(\omega)$ they must commute. Then by Lemma 4.5 $h_1h_2 \in M^G(\omega)$ and $h_1 + h_2 - h_1h_2 \in M^G(\omega)$. Hence, the set of such h's form a complete Boolean lattice. Let e_1, e_2, \ldots, e_n be minimal projections in $M^G(\omega)$ with $e_0e_i = 0$. Then each $h \in M^G(\omega)$ with $he_0 = 0$ can be written in the form $h = s_1e_1 + s_2e_2 + \ldots + s_ne_n$ with
$s_i = 0$ or 1. Hence, each $e \in M^G(\omega)$ can be written in the form $e = f_0 + h$ which is the form given in the statement of the theorem. Lemma 4.8. Suppose $\omega=\bigotimes_{k=1}^{\infty}\omega_k$ and e is a central projection in $R^G(\omega)\cap R^G(\omega)'$. Suppose $$(\#) \qquad 0 < \sum_{k=1}^{\infty} \omega_k(e)(1 - \omega_k(e)) < \infty.$$ Then ω^G is not a factor state. *Proof.* Assume the hypothesis and notation of the lemma are valid. Let (π, \mathcal{H}, f_0) be a cyclic *-representation of \mathfrak{A} induced by ω . Let \mathcal{H}^G be the closure of $\{\pi(\mathfrak{A}^G)f_0\}$ and let $(\pi^G, \mathcal{H}^G, f_0)$ be the restriction of π to \mathfrak{A}^G and \mathcal{H}^G (i.e., $\pi^G(A)f = \pi(A)f$ for all $A \in \mathfrak{A}^G$ and $f \in \mathcal{H}^G$). Note $(\pi^G, \mathcal{H}^G, f_0)$ is a cyclic *-representation of \mathfrak{A}^G induced by ω^G . Let $H = H^G(\omega)$. Let \mathfrak{A}^H be the closure of $\{\pi(\mathfrak{A}^H)f_0\}$ and let $(\pi^H, \mathscr{H}^H, f_0)$ be the restriction of π to \mathfrak{A}^H and \mathscr{H}^H (i.e., $\pi^H(A)f = \pi(A)f$ for all $A \in \mathfrak{A}^H$ and $f \in \mathscr{H}^H$). Note $(\pi^H, \mathscr{H}^H, f_0)$ is a cyclic *-representation of \mathfrak{A}^H induced by ω^H . From Lemma 3.7 and Theorem 3.8 we have $\pi(\mathfrak{A}^G)'' = \pi(\mathfrak{A}^H)''$. Hence, $\mathscr{H}^G = \mathscr{H}^H$ and $\pi^G(\mathfrak{A}^G)'' = \pi^H(\mathfrak{A}^H)''$. Since $\gamma_k(e) \in \mathfrak{A}^H$ we have $\pi^H(\gamma_k(e)) \in \pi(\mathfrak{A}^G)^{\prime\prime}$ for $k = 1, 2, \ldots$. Let $$J_n = \sum_{k=1}^n \gamma_k(e) - \omega_k(e)I$$ and $U_n(t) = \exp(itJ_n)$. We will show that $\pi^H(U_n(t))$ converges strongly to a one-parameter unitary group in the center of $\pi^G(\mathfrak{A}^G)''$. Suppose $A \in \mathfrak{A}_r^G$. Then using the fact that ω is a product state we have for n > m > r, $$\|\pi^{H}(U_{n}(t) - U_{m}(t))\pi^{G}(A)f_{0}\|^{2} = 2\omega(A^{*}A) - 2\operatorname{Re}\omega(A^{*}U_{m}(t)^{*}U_{n}(t)A) =$$ $$= 2\omega(A^{*}A)(1 - \operatorname{Re}\omega(U_{m}(t)^{*}U_{n}(t))) =$$ $$= 2\omega(A^{*}A)(1 - \operatorname{Re}\omega(\exp(it(J_{n} - J_{m})))) \leq \omega(A^{*}A)t^{2}\omega((J_{n} - J_{m})^{2}) =$$ $$= \omega(A^{*}A)t^{2} \sum_{k=m+1}^{n} \omega_{k}(e)(1 - \omega_{k}(e)).$$ Since the sum (#) is finite we have $\|\pi^H(U_n(t) - U_m(t)) \pi^G(A)f_0\| \to 0$ as $n, m \to \infty$ and the convergence is uniform for t in a compact set. Since the vectors $\pi^G(A)f_0$ with $A \in \mathfrak{A}_r^G$ for some $r = 1, 2, \ldots$ are dense in \mathscr{H}^G and the $\pi^H(U_n(t))$ are uniformly bounded we have $\pi^H(U_n(t)) \to V(t)$ strongly as $n \to \infty$ where V(t) is a strongly continuous unitary group. Since $\pi^H(U_n(t)) \in \pi^G(\mathfrak{A}_r^G)''$ for each n we have $V(t) \in \pi^G(\mathfrak{A}_r^G)''$. For $A \in \mathfrak{A}_m^G$ we have $U_n(t)A = AU_n(t)$ for n > m. Hence, $V(t) \pi^G(A) = AU_n(t)$ $=\pi^G(A)V(t)$ for $A\in\mathfrak{A}_m^G$. Since the \mathfrak{A}_m^G are dense in \mathfrak{A}^G we have $V(t)\in\pi^G(\mathfrak{A}^G)'$. Hence, V(t) is in the center of $\pi^G(\mathfrak{A}^G)''$. A straightforward computation using the fact that the sum (#) is neither zero nor infinite shows that $|(f_0,V(t)f_0)|=\lim_{n\to\infty}|\omega(U_n(t))|<1$ for some $t\neq 0$. Hence, V(t) is not a multiple of the identity for some $t\neq 0$. Hence, $\pi^G(\mathfrak{A}^G)''$ is not a factor and, thus, ω^G is not a factor state. Theorem 4.9. Suppose $\{Q_1, Q_2, \ldots, Q_s\}$ is a partition of the positive integers into s disjoint subsets. Suppose $\{e_1, e_2, \ldots, e_s\}$ are orthogonal central projections in $R_0 \cap R'_0$. Suppose $\mathfrak{A}(Q_i) = \underset{k \in Q_i}{\otimes} \mathfrak{B}_k$ and $\mathfrak{A}^G(Q_i)$ are the α_U invariant elements of $\mathfrak{A}(Q_i)$ with $U \in G$. Suppose ω_i are states of $\mathfrak{A}(Q_i)$ so that $\omega_i(\gamma_k(e_i)) = 1$ for $k \in Q_i$. Let $\omega = \underset{i=1}{\overset{s}{\otimes}} \omega_i$ on $\mathfrak{A} = \underset{i=1}{\overset{s}{\otimes}} \mathfrak{A}(Q_i)$. Then ω^G is a factor state if and only if ω_i^G is a factor state of $\mathfrak{A}^G(Q_i)$ for each $i=1,\ldots,s$. *Proof.* Suppose the hypothesis and notation of the theorem are valid. Let (π, \mathcal{H}, f_0) be a cyclic *-representation of \mathfrak{A}^G induced by ω^G . Let $i \to r(i)$ be the function defined on the positive integers by the requirement that r(k) = i if and only if $k \in Q_i$. Let $E_0 = \lim_{n \to \infty} \pi(\gamma_1(e_{r(1)})\gamma_2(e_{r(2)})\dots\gamma_n(e_{r(n)}))$. Clearly E_0 is the limit of a decreasing sequence of projections in $\pi(\mathfrak{A}^G)''$ so E_0 is a projection in $\pi(\mathfrak{A}^G)''$. We have $E_0 \neq 0$ since $E_0 f_0 = f_0$. Suppose σ is a finite permutation. Then we have $\pi(U_{\sigma})E_{0}\pi(U_{\sigma}^{-1})=E_{\sigma}$ is a projection and $E_{\sigma}=E_{0}$ if $\sigma(Q_{i})=Q_{i}$ for each $i=1,\ldots,s$ and $E_{0}E_{\sigma}=0$ if $\sigma(Q_{i})\neq Q_{i}$ for some $i=1,\ldots,s$. Let Θ be the set of equivalence classes θ of finite permutations where $\sigma_{1}\sim\sigma_{2}$ if and only if $\sigma_{1}(Q_{i})=\sigma_{2}(Q_{i})$ for $i=1,\ldots,s$. Then for each $\theta\in\Theta$ we define the projection $E_{\theta}=E_{\sigma}$ for σ any permutation in the equivalence class θ . One easily sees that the E_{θ} form an orthonormal set of projections and $I=\sum_{\alpha\in\Theta}E_{\theta}$. One can show that $E_0 \in \pi(\mathfrak{A}^G(Q_i))'$ for $i=1,\ldots,s$. Now \mathfrak{A}^G_n is the linear span of elements of the form $A_0 = U_\sigma \gamma_1(A_1) \ \gamma_2(A_2) \ldots \gamma_n(A_n)$ with $\sigma(i) = i$ for i > n and $A_i \in R_0$ for $i=1,\ldots,n$. For such an element one finds $R_0 E_0 \pi(A_0) E_0 = 0$ unless $\sigma(Q_i) = Q_i$ for $i=1,\ldots,s$ or equivalently unless $\sigma = \sigma_1 \sigma_2 \ldots \sigma_s$ where $\sigma_i(k) = k$ if k > n or $k \notin Q_i$. Then if A_0 is an element so that $E_0 \pi(A_0) E_0 \neq 0$, by regrouping the terms in A_0 one can write A_0 in the form $A_0 = U_{\sigma_1} D_1 U_{\sigma_2} D_2 \ldots U_{\sigma_s} D_s = B_1 B_2 \ldots B_s$ where the D_i are products of the $\gamma_k(A_k)$ with $k \in Q_i$ and hence, the B_i are elements of $\mathfrak{A}^G(Q_i)$. Hence, it follows that if $A \in \mathfrak{A}^G_n$ then $E_0 \pi(A) E_0$ is a linear combination of terms of the form $E_0 \pi(B_1 B_2 \ldots B_s) E_0$ with $B_i \in \mathfrak{A}^G(Q_i)$. Hence we have strong closure of $$E_0\pi(\mathfrak{A}^G)E_0=$$ = strong closure of $E_0\pi(\mathfrak{A}^G(Q_1)\otimes\mathfrak{A}^G(Q_2)\otimes\ldots\otimes\mathfrak{A}^G(Q_s))E_0$. Now suppose ω_i^G is a factor state for each $i=1,\ldots,s$. Suppose $C\in\pi(\mathfrak{A}^G)''\cap \pi$ $\pi(\mathfrak{A}^G)'$. Since $E_0\in\pi(\mathfrak{A}^G)''$, $CE_0=E_0C$ and E_0CE_0 is in the center of $E_0\pi(\mathfrak{A}^G)E_0$ (acting on $E_0\mathscr{H}$). But we have the center of $E_0\pi(\mathfrak{A}^G(Q_1)\otimes\mathfrak{A}^G(Q_2)\otimes\ldots\otimes\mathfrak{A}^G(Q_s))''E_0$ is the center of $E_0\pi(\mathfrak{A}^G)''E_0$. Since $\omega=\omega_1\otimes\omega_2\otimes\ldots\otimes\omega_s$ so $\omega(A_1A_2\ldots A_s)=\omega_1(A_1)\omega_2(A_2)\ldots\omega_s(A_s)$ for $A_i\in\mathfrak{A}^G(Q_i)$ and since ω_i^G is a factor state we have $E_0\pi(\mathfrak{A}^G(Q_1)\otimes\mathfrak{A}^G(Q_2)\otimes\ldots\otimes\mathfrak{A}^G(Q_s))''E_0$ is the tensor product of factors $\pi_i(\mathfrak{A}^G(Q_i))''$ where π_i is a *-representation of $\mathfrak{A}^G(Q_i)$ induced by ω_i^G . Since the tensor product of factors is a factor we have $E_0CE_0=\lambda E_0$. Hence, $Cf_0=CE_0f_0=E_0CE_0f_0=\lambda E_0$. Hence, $Cf_0=CE_0f_0=E_0CE_0f_0=\lambda E_0$. Hence, the center of $\pi(\mathfrak{A}^G)''$ is trivial so ω_i^G is a factor state. Next suppose one of the states ω_i^G is not a factor state. Then $E_0\pi(\mathfrak{A}^G(Q_1)\otimes \mathfrak{A}^G(Q_2)\otimes \ldots \otimes \mathfrak{A}^G(Q_s))''E_0$ is not a factor and there is a $C_0 \neq \lambda E_0$ in its center. Let $$C = \sum_{\theta \in \Theta} \pi(U_{\sigma(\theta)}) C_0 \pi(U_{\sigma(\theta)}^{-1})$$ where $\sigma(\theta)$ is a permutation in the equivalence class θ . A straightforward computation shows that $\pi(\gamma_k(A))C = C\pi(\gamma_k(A))$ for $A \in R_0$ and k = 1, 2, ... and $\pi(U_\sigma)C = C\pi(U_\sigma)$ for any finite permutation σ . Since the U_σ and the $\gamma_k(A)$ with $A \in R_0$ generate \mathfrak{A}^G we have $C \in \pi(\mathfrak{A}^G)'$. Since $C \in \pi(\mathfrak{A}^G)'$ and $E_0CE_0 \neq \lambda E_0$ we have $\pi(\mathfrak{A}^G)'$ is not a factor. LEMMA 4.10. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ and $\omega = \omega \circ \alpha_U$ for all $U \in G$. Suppose e is a minimal central projection in $R_0 \cap R_0'$ and $\omega_k(e) = 1$ for all $k = 1, 2, \ldots$. Then ω^G is a factor state. *Proof.* Suppose ω satisfies the hypothesis and notation of the lemma. Let (π, \mathcal{H}, f_0) be a cyclic *-representation of \mathfrak{A}^G induced by ω . Let $\{e_{ij} : i, j = 1, \ldots, r\}$ be matrix units for $M_0 = eR_0 = R_0e$ and $\{e'_{ij} : i, j = 1, \ldots, s\}$ be matrix units for $N_0 = eR'_0 = R'_0e$. For σ a cyclic permutation of (i_1, i_2, \ldots, i_n) with $\sigma(i_k) = i_{k+1}$ for $k = 1, \ldots, n-1$ and $\sigma(i_n) = i_1$ we define $$V_{\sigma} = \sum_{j_1, \dots, j_n=1}^{r, \dots, r} \gamma_{i_1}(e_{j_1 j_2}) \gamma_{i_2}(e_{j_2 j_3}) \dots \gamma_{i_n}(e_{j_n j_1})$$ $$W_{\sigma} = \sum_{j_1, \dots, j_n=1}^{s, \dots, s} \gamma_{i_1}(e'_{j_1j_2}) \gamma_{i_2}(e'_{j_2j_3}) \dots \gamma_{i_n}(e'_{j_nj_1}).$$ If $\sigma = \sigma_1 \sigma_2
\dots \sigma_m$ is a product of cycles we define $V_\sigma = V_{\sigma_1} V_{\sigma_2} \dots V_{\sigma_m}$ and $W_\sigma = W_{\sigma_1} W_{\sigma_2} \dots W_{\sigma_m}$. The combined matrix units $\{e_{ij}e'_{kl}:i,j=1,\ldots,r \text{ and } k,l=1,\ldots,s\}$ form a complete set of matrix units for the matrix algebra $e\mathfrak{B}_0e$. Then one can choose a set of matrix units $\{E_{ij}\}$ for \mathfrak{B}_0 so that $E_{pq}=e_{i(p)j(q)}e'_{k(p)l(q)}$ for $p,q=1,2,\ldots,rs$. If one constructs the permutation operators U_{σ} in terms of the $\gamma_k(E_{ij})$ (see Section 2) one finds $$V_p W_p = U_p P(Q)$$ with $P(Q) = \prod_{i \in Q} \gamma_i(e)$ where Q is the set of integers where $\sigma(i) \neq i$. Note that for the representation π one can show $\pi(\gamma_k(e)) = I$ for all $k = 1, 2, \ldots$ so $\pi(P(Q)) = I$ for all finite sets Q. Hence, $\pi(V_{\sigma})\pi(W_{\sigma}) = \pi(U_{\sigma})$ and the $\pi(U_{\sigma})$ and $\pi(W_{\sigma})$ are unitary. We show $\pi(\mathfrak{A}^G)$ is generated by the $\pi(\gamma_k(e_{ij}))$ and the $\pi(W_\sigma)$. First we note $\pi(V_\sigma) \in \pi(\mathfrak{A}^G)$ and $\pi(U_\sigma) \in \pi(\mathfrak{A}^G)$ so $\pi(W_\sigma) = \pi(V_{\sigma^{-1}})\pi(U_\sigma) \in \pi(\mathfrak{A}^G)$. Next we note that since $\pi(V_\sigma)$ lies in the algebra generated by the $\pi(\gamma_k(e_{ij}))$ we have $\pi(U_\sigma) = \pi(V_\sigma)\pi(W_\sigma)$ lies in the algebra generated by the $\pi(\gamma_k(e_{ij}))$ and the $\pi(W_\sigma)$. Since $\pi(\mathfrak{A}^G)$ is generated by the $\pi(\gamma_k(e_{ij}))$ and the $\pi(V_\sigma)$ we have $\pi(\mathfrak{A}^G)$ is generated by the $\pi(\gamma_k(e_{ij}))$ and the $\pi(V_\sigma)$. Let M be the algebra generated by the $\pi(\gamma_k(e_{ij}))$ for $i,j=1,\ldots,r$ and $k=1,2,\ldots$ and let N be the algebra generated by the $\pi(W_\sigma)$ with $\sigma\in S_\infty$. We have that M and N commute and together they generate $\pi(\mathfrak{A}^G)$ as a C^* -algebra. Next we show that the state $\omega_0(A) = (f_0, Af_0)$ (so $\omega(A) = \omega_0(\pi(A))$ for $A \in \mathfrak{A}^G$) factorizes on M and N (i.e., $\omega_0(AB) = \omega_0(A)\omega_0(B)$ for $A \in M$ and $B \in N$). Since $\omega = \omega \circ \alpha_U$ we have $\omega_k(A) = \omega_k(UAU^{-1})$ for all $A \in \mathfrak{B}_0$ and all unitary $U \in R'_0$. Hence, $\omega_k(e_{ij}e'_{kl}) = \omega_k(e_{ij})s^{-1}\delta_{kl}$. Hence, for $A_i \in M_0$ and $B_i \in N_0$ and i = 1, ..., n $\omega(\gamma_1(A_1) \gamma_2(A_2) \ldots \gamma_n(A_n) \gamma_1(B_1) \gamma_2(B_2) \ldots \gamma_n(B_n)) = \omega_1(A_1) \omega_2(A_2) \ldots$ $\dots \omega_n(A_n)s^{-n}\operatorname{tr}(B_1)\operatorname{tr}(B_2)\dots\operatorname{tr}(B_n)$. Since the W_{σ} can be written in terms of the $\gamma_k(e'_{ij})$ we have for $A, B \in \mathfrak{A}_n$ and $\pi(A) \in M$ and $\pi(B) \in N$ that $\omega(AB) = \omega(A)\omega(B)$. Since such $\pi(A)$ and $\pi(B)$ are dense in M and N (respectively) we have $\omega_0(AB) =$ $=\omega_0(A)\omega_0(B)$ for $A\in M$ and $B\in N$. Furthermore, ω_0 restricted to M is just a product state (a product of the $\omega_k|R_0$) and ω_0 restricted to N is just the trace state on the tensor product of $(s \times s)$ -matrix algebras restricted to the permutation algebra. Since $\omega_0|M$ is a product state $\omega_0|M$ is a factor state. It is known that the restriction of the trace to the permutation algebra is a factor state (see [14]) so $\omega_0|N$ is a factor state. Hence, ω_0 on $\pi(\mathfrak{A}^G)$ is the tensor product of two factor states, so it must be a factor state. Lemma 4.11. Suppose $\omega = \bigotimes_{k=1}^n \omega_k$ is a state of \mathfrak{A}_n . Suppose e is a minimal central projection in $R_0 \cap R'_0$ and $\omega_k(e) = 1$ for $k = 1, \ldots, n$. Then ω^G (the restriction of ω to \mathfrak{A}_n^G) is a factor state if and only if n = 1 or there is a projection $e_1 \in R'_0$ which is minimal in R'_0 so that $\omega_k(e_1) = 1$ for $k = 1, \ldots, n$. *Proof.* Suppose the hypothesis and notation of the lemma are valid. When n=1 the lemma is trivial so assume n>1. Let $\{e_{ij}; i,j=1,\ldots,r\}$ be matrix units for $M_0 = eR_0 = R_0e$ and $\{e'_{ij}; i, j = 1, ..., s\}$ be matrix units for $N_0 = eR'_0 = R'_0e$. Let V_{σ} and W_{σ} be as defined in the previous lemma for permutation $\sigma \in S_n$ where S_n is the group of permutations of (1, 2, ..., n). Let $E = (1/n!) \sum_{\sigma \in S_n} W_{\sigma} \gamma_1(e) \gamma_2(e) ...$... $\gamma_n(e)$. As we saw in the previous lemma we have $\pi(W_{\sigma}) \in \pi(\mathfrak{A}_{\sigma}^G)$ where (π, \mathcal{H}, f_0) is a cyclic *-representation of \mathfrak{A}_n^G induced by ω^G . Hence, $\pi(E) \in \pi(\mathfrak{A}_n^G)$. Since W_{σ} is defined in terms of the $\gamma_k(e'_{ij})$ it follows that E commutes with the $\gamma_k(A)$ with $A \in R_0$. From the form of E it follows that E commutes with the permutation elements U_{σ} . Hence $\pi(E)$ is the in center of $\pi(\mathfrak{A}_{n}^{G})$. A straightforward computation shows that $\pi(E) = \pi(E)^2$. Then if ω^G is a factor state we must have $\omega(E) = 0$ or 1. Let $\Omega'_k(i,j) = \omega_k(e'_{ij})$ for $i,j = 1, \ldots, s$ and $k = 1, \ldots, n$. The number $\omega(E)$ is directly computable from the matrices Ω'_k . One can show using the fact that ω is a product state that $\omega(E) \ge 1/n!$. Unfortunately, we do not know a quick proof of this fact, but since it only involves somewhat long but routine computations in a finite dimensional algebra we omit the proof. Then if ω^G is a factor state we must have $\omega(E) = 1$. Then $\omega(W_{\sigma}) = 1$ for all $\sigma \in S_n$. In particular if σ is a transposition interchanging i and j one computes $\omega(W_{\sigma}) = \operatorname{tr}(\Omega_i'\Omega_i')$. Since the Ω'_k are positive trace one matrices it follows that $\operatorname{tr}(\Omega'_i\Omega'_i)=1$ if and only if $\Omega_i' = \Omega_j'$ and Ω_i' is of rank one. Hence, if ω^G is a factor state we have $\Omega_k' = \Omega_0$ for k = 1, ..., n where Ω_0 is a rank one projection. Let $e_1 = \sum_{i,j=1}^{n} \Omega_0(i,j)e_{ij}'$. Then e_1 is a minimal projection in R'_0 and $\omega_k(e_1) = 1$ for k = 1, ..., n. Conversely, if there is a rank one projection $e_1 \in R'_0$ so that $\omega_k(e_1) = 1$ for $k=1,\ldots,n$ then $\Omega_k'=\Omega_0$ for $k=1,\ldots,n$ and Ω_0 is a rank one projection corresponding to e_1 . Then $\omega(W_{\sigma}) = 1$ for $\sigma \in S_n$ and $\omega(E) = 1$. We have $EW_{\sigma}E = E$ for all $\sigma \in S_n$ and from the proof of the previous lemma $\pi(E\mathfrak{A}_n^G E)$ is the tensor product of an $(r^n \times r^n)$ -matrix algebra and the algebra generated by the $\pi(EW_{\sigma}E) = I$. Hence, $\pi(\mathfrak{A}^G)$ is an $(r^n \times r^n)$ -matrix algebra. Hence, ω^G is a factor state. LEMMA 4.12. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ and $\omega = \omega \circ \alpha_U$ for all $U \in G$. Suppose e_0 is the maximal projection in $N^{G}(\omega)$ and $\omega_{k}(e_{0})=0$ for all $k=1,2,\ldots$ Suppose $\sum_{k=0}^{\infty} \omega_k(e)(1-\omega_k(e)) = \infty$ for all non zero projections $e \in R_0'$ with $e \le I-e_0$ and $e \neq I - e_0$. Then ω^G is a factor state. *Proof.* Suppose the hypothesis and notation of the lemma are valid. Let (π, \mathcal{H}, f_0) be a cyclic *-representation of \mathfrak{A}^G induced by ω^G . Suppose $0 \le C \le I$ and $C \in \pi(\mathfrak{A}^G)^{\prime\prime} \cap \pi(\mathfrak{A}^G)^{\prime}$. Let $\rho(A) = (f_0, \pi(A)Cf_0)$. We will show that $\rho = \lambda \omega$. Let $\{e_i \; ; i=1,\ldots,q\}$ be the minimal central projections of $R_0 \cap R_0'$. Let \mathfrak{D}_n be the $C^{\mathfrak{A}}$ -algebra generated by the $\gamma_k(e_i)$ for $i=1,\ldots,q$ and $k=1,\ldots,n$. Let S_n be the permutations $\sigma \in S_{\infty}$ so that $\sigma(i)=i$ for i>n. Let $\mathfrak{D}_n^s=\{A\in \mathfrak{D}_n\; ; U_{\sigma}AU_{\sigma}^{-1}=A$ for all $\sigma \in S_n\}$. Note that \mathfrak{D}_n^s is contained in the center of \mathfrak{A}_n^G . We will show that for every integer m>0 and $\varepsilon>0$ there are an integer n>m and a $C_n\in \mathfrak{D}_n^s$ with $0\leqslant C_n\leqslant I$ so that $|\rho(A)-\omega(AC_n)|\leqslant \varepsilon ||A||$ for all $A\in \mathfrak{A}_m^G$. Then using a probability result of Aldous and Pitman we will show that for such C_n the only limit points are multiples of the identity. Since any central C is a strong limit of such C_n one concludes $C=\lambda I$. We note the following general fact. Suppose A_i , $B_i \in \mathfrak{A}^G$ for i = 1, ..., m. Then (1!) $$\sum_{i=1}^{m} \omega(A_i A B_i) = 0 \qquad \sum_{i=1}^{m} \rho(A_i A B_i) = 0$$ for all $A \in \mathfrak{A}^G$. This may be seen as follows. Suppose the left hand side of (1!) holds. Then $\sum_{i=1}^{m} (\pi(A_i^*)f_0, \ \pi(A)\pi(B_i)f_0) = 0 \text{ for all } A \in \mathfrak{A}^G. \text{ Clearly, this equation extends to}$ the weak closure of $\pi(\mathfrak{A}^G)$ so $\sum_{i=1}^m (\pi(A_i^*)f_0, A\pi(B_i)f_0) = 0$ for all $A \in \pi(\mathfrak{A}^G)''$. Since $C \in \pi(\mathfrak{A}^G)'' \cap \pi(\mathfrak{A}^G)'$ we have for $A \in \mathfrak{A}^G$ that $\pi(A)C \in \pi(\mathfrak{A}^G)''$. Hence, we have $$\sum_{i=1}^{m} \rho(A_i A B_i) = \sum_{i=1}^{m} (f_0, \pi(A_i A B_i) C f_0) =$$ $$= \sum_{i=1}^{m} (\pi(A_i^*) f_0, \pi(A) C \pi(B_i) f_0) = 0$$ for all $A \in \mathfrak{A}^G$. This establishes the implication (1!). Let X_n be the cartesian product of (1, 2, ..., q) with itself n times. Each $x = (x(1), x(2), ..., x(n)) \in X_n$ corresponds to a minimal projection in \mathfrak{D}_n given by $$e_x = \gamma_1(e_{x(1)}) \gamma_2(e_{x(2)}) \ldots \gamma_n(e_{x(n)}).$$
We define $x, y \in X_n$ to be equivalent (denoted $x \sim y$) if and only if there is a permutation $\sigma \in S_n$ so that $x(i) = y(\sigma(i))$ for i = 1, ..., n. Clearly, $x \sim y$ if and only if t(i, x) = t(i, y) for i = 1, ..., q where t(i, x) is the number of times x(k) assumes the value i for k = 1, ..., n. If θ is an equivalence class of X_n we define $$e_{\theta} = \sum_{x \in \theta} e_x.$$ One sees that the e_{θ} are the minimal projections in \mathfrak{D}_{n}^{s} . Let $\omega_{k}(A) = \operatorname{tr}(A\Omega_{k})$ for all $A \in \mathfrak{B}_{0}$ and $k = 1, 2, \ldots$. Since $\omega = \omega \circ \alpha_{U}$ we have $U\Omega_{k}U^{-1} = \Omega_{k}$ for all $U \in G$. Hence, $\Omega_k \in R_0$. Since $e_i \in R_0 \cap R'_0$ the Ω_k and the e_i commute. A small computation shows that the $\gamma_k(e_i)$ are in the centralizer of ω (i.e., $\omega(A\gamma_k(e_i)) = \omega(\gamma_k(e_i)A)$ for all $A \in \mathfrak{A}$, $i = 1, \ldots, q$ and $k = 1, 2, \ldots$). One first shows this for $A \in \mathfrak{A}$, and since the \mathfrak{A} , are dense in A one has this for all $A \in \mathfrak{A}$. Then products of the $\gamma_k(e_i)$ are in the centralizer of ω so e_x is in the centralizer of ω for all $x \in X_n$. We define a probability measure μ on X_n by defining $\mu_x = \omega(e_x)$ where μ_x is the measure of the point x. Since ω is a product state we have $\mu_x = \omega_1(e_{x(1)})\omega_2(e_{x(2)})\dots$ \dots $\omega_n(e_{x(n)})$ so μ is a product measure. If $\mu_x \neq 0$ we define $\omega_x(A) = \mu_x^{-1}\omega(Ae_x)$. Note that if $\mu_x \neq 0$, ω_x is a state since $\omega(Ae_x) = \omega(e_xAe_x)$. If $\mu_x = 0$ we define $\omega_x = 0$. Then we have $\omega = \sum_{x \in X_n} \mu_x \omega_x$. Let $\{e_{ij}^{(k)}: i, j=1,\ldots,r_k\}$ be a set of matrix units for $M_k=e_kR_0=R_0e_k$ and $\{e_{ij}^{\prime(k)}: i, j=1,\ldots,s_k\}$ be a set of matrix units for $N_k=e_kR_0'=R_0'e_k$, for $k=1,\ldots,q$. As we saw in the proof of Lemma 4.10 it follows from the α_U invariance of ω for $U \in G$ that $\omega_k(e_{ij}^{(m)}e_{kl}^{\prime(m)})=\omega_k(e_{ij}^{(m)})s_m^{-1}\delta_{kl}$ or equivalently for $A \in M_m$ and $B \in N_m$ we have $\omega_k(AB)=\omega_k(A)s_m^{-1}\mathrm{tr}(B)$. Let $M_x = \bigotimes_{k=1}^n \gamma_k(M_{x(k)})$ and $N_x = \bigotimes_{k=1}^n \gamma_k(N_{x(k)})$. Note e_x is the unit of M_x and N_x . From the above remarks one sees that if $\mu_x \neq 0$ then ω_x is a product state of $M_x \otimes N_x$ so that $\omega_x(AB) = \omega_x(A)\omega_x(B)$ for $A \in M_x$ and $B \in N_x$. Furthermore $\omega_x N_x$ is the normalized trace on N_x . Let $\{E_{ij}^{(x)}: i,j=1,\ldots,m(x)\}$ be a set of matrix units for M_x chosen so that if $\mu_x \neq 0$ the $E_{ij}^{(x)}$ diagonalize ω_x in the following sense. We require $\omega_x(E_{ij}^{(x)}) = \lambda_i^{(x)} \delta_{ij}$ with $\lambda_1^{(x)} \geqslant \lambda_2^{(x)} \geqslant \ldots \geqslant \lambda_{m(x)}^{(x)}$. It follows that the $E_{ii}^{(x)}$ are in the centralizer of ω_x and ω . The fact that the matrix units can be so chosen follows from the fact that a hermitian matrix can be diagonalized. One checks that for $\mu_x \neq 0$ we have $$\omega_x(A) \approx \sum_{i=1}^{m(x)} (\lambda_i^{(x)}/\lambda_1^{(x)}) \, \omega_x(E_{1i}^{(x)}AE_{i1}^{(x)})$$ for all $A \in \mathfrak{A}$. Now suppose $\mu_x \neq 0$ and $\mu_y \neq 0$ and $x \sim y$ so $x(k) = y(\sigma(k))$ for $\sigma \in S_n$. Then $M_y = U_\sigma M_x U_\sigma^{-1}$. Since $U_\sigma^{-1} E_{11}^{(y)} U_\sigma$ and $E_{11}^{(x)}$ are minimal projections in M_x there is a partial isometry $V \in M_x$ so that $V^*V = E_{11}^{(x)}$ and $VV^* = U_\sigma^{-1} E_{11}^{(y)} U_\sigma$. Direct computation then shows that $$\omega_{y}(A) = \sum_{i=1}^{m(y)} (\lambda_{i}^{(y)}/\lambda_{1}^{(x)}) \,\omega_{x}(V^{*}U_{\sigma}^{-1}E_{1i}^{(y)}AE_{i1}^{(y)}U_{\sigma}V)$$ for all $A \in \mathfrak{A}$. Suppose θ is an equivalence class of points in X_n . Note that if $x, y \in \theta$ (so $x \sim y$) then m(x) = m(y) since M_x and M_y are unitarily equivalent. Let $m(\theta) = m(x)$ for any $x \in \theta$. We define elements $B(\theta, x, i)$ for $x \in \theta$ and $i = 1, ..., m(\theta)$ as follows. If $\mu_x = 0$ for all $x \in \theta$ let $B(\theta, x, i) = 0$ for all $x \in \theta$ and $i = 1, ..., m(\theta)$. If $\mu_x \neq 0$ for some $x \in \theta$ pick an element $x(\theta) \in \theta$ so that $\mu_{x(\theta)}$ equals the maximum value of μ_x for $x \in \theta$. For $i = 1, ..., m(\theta)$ and $y \in \theta$ with $\mu_y \neq 0$ let $$B(\theta, y, i) = (\lambda_i^{(y)}/\lambda_1^{(x)})^{1/2} E_{i1}^{(y)} U_{\sigma} V$$ where V is a partial isometry in $M_{x(\theta)}$ so that $V^*V = E_{11}^{(x)}$ and $VV^* = U_{\sigma}^{-1}E_{11}^{(y)}U_{\sigma}$ and σ is a permutation so that $x(i) = y(\sigma(i))$ for i = 1, ..., n. If $\mu_y = 0$ let $B(\theta, y, i) = 0$. Then, provided $u_{x(\theta)} \neq 0$ we have $$\omega_{y}(A) = \sum_{i=1}^{m(\theta)} \mu_{x(\theta)}^{-1} \omega(B(\theta, y, i)^* A B(\theta, y, i))$$ for all $A \in \mathfrak{A}$ and $y \in \theta$. If Θ is the set of equivalence classes θ so that $\mu_{x(\theta)} \neq 0$ we have (2!) $$\omega(A) = \sum_{\theta \in \Theta} \sum_{x \in \theta} \mu_x \sum_{i=1}^{m(\theta)} \mu_{x(\theta)}^{-1} \omega(B(\theta, x, i)^* A B(\theta, x, i))$$ for all $A \in \mathfrak{A}$. Since $B(\theta, x, i) \in \mathfrak{A}_n^G$ we have from (!!) that (3!) $$\rho(A) = \sum_{\theta \subset \Theta} \sum_{x \in \Theta} \mu_x \sum_{i=1}^{m(\theta)} \mu_{x(\theta)}^{-1} \rho(B(\theta, x, i)^* A B(\theta, x, i))$$ for all $A \in \mathfrak{A}^G$. For each $\theta \in \Theta$ let $F_{\theta} = E_{11}^{(x(\theta))}$. As mentioned earlier F_{θ} is in the centralizer of ω so $\omega(AF_{\theta}) = \omega(F_{\theta}A)$ for all $A \in \mathfrak{A}$. Since $F_{\theta} \in \mathfrak{A}_n^G$ we have by (1!) that $\rho(AF_{\theta}) = \rho(F_{\theta}A)$ for all $A \in \mathfrak{A}^G$. For $\theta \in \Theta$ we have $\mu_{x(\theta)} \neq 0$ so $\omega(F_{\theta}) \neq 0$. For $\theta \in \Theta$ let $\omega_{\theta}(A) = \omega(F_{\theta})^{-1}\omega(AF_{\theta})$ and $\rho_{\theta}(A) = \omega(F_{\theta})^{-1}\rho(AF_{\theta})$ for all $A \in \mathfrak{A}$. Let $x = x(\theta)$. As we saw earlier $\omega_x | M_x \otimes N_x = \omega_x | M_x \otimes \omega_x | N_x$ and $\omega_x | N_x$ is the normalized trace on N_x . Since F_{θ} is a minimal projection in M_x we have ω_{θ} is the normalized trace on $F_{\theta}\mathfrak{A}_n$, so $\omega_{\theta}(AB) = \omega_{\theta}(BA)$ for all $A, B \in F_{\theta}\mathfrak{A}_n$. Since $\omega_{\theta}(A) = \omega_{\theta}(F_{\theta}AF_{\theta})$ for all $A \in \mathfrak{A}$ it follows that $\omega_{\theta}(AB) = \omega_{\theta}(BA)$ for all $A \in F_{\theta}\mathfrak{A}_n$. Since $\omega_{\theta}(A) = \omega_{\theta}(AB)$ is a product state with respect to \mathfrak{A}_n and $\mathfrak{A} \in \mathfrak{A}_n$. Since $\omega_{\theta}(AB) = \omega_{\theta}(AB_1)\omega_{\theta}(B_2) = \omega_{\theta}(BA)$ since every element B of $\mathfrak{A} \in \mathfrak{A}_n$ we have $\omega_{\theta}(AB) = \omega_{\theta}(AB_1)\omega_{\theta}(B_2) = \omega_{\theta}(BA)$. Since every element B of $\mathfrak{A} \in \mathfrak{A}_n$ we have $\omega_{\theta}(AB) = \omega_{\theta}(BA)$ for all $A \in F_{\theta}\mathfrak{A}_n$ and $B \in \mathfrak{A}_n$. Hence, we have $\omega_{\theta}(AB) = \omega_{\theta}(BA)$ for all $A \in F_{\theta}\mathfrak{A}_n$ and $B \in \mathfrak{A}_n$. Hence, we have $\omega_{\theta}(AB) = \omega_{\theta}(BA)$ for all $A \in F_{\theta}\mathfrak{A}_n$ and $B \in \mathfrak{A}_n$. Since every element $B \in \mathfrak{A}_n$ we have $\omega_{\theta}(AB) = \omega_{\theta}(BA)$ for all $A \in F_{\theta}\mathfrak{A}_n$ and $B \in \mathfrak{A}_n$. Hence, from (1!) we have that $\omega_{\theta}(AB) = \omega_{\theta}(BA)$ for all $A \in F_{\theta}\mathfrak{A}_n$ and $B \in \mathfrak{A}_n$. Hence, from the have $\omega_{\theta}(AB) = \omega_{\theta}(BA)$ for all $A \in F_{\theta}\mathfrak{A}_n$ and $B \in \mathfrak{A}_n$. We now examine the algebra $F_{\theta}\mathfrak{A}_{n}^{G}F_{\theta}$. Let $x=x(\theta)$ and let $Q_{i}=\{k\;;x(k)=i\}$ for $i=1,\ldots,n\}$ for $i=1,\ldots,q$. Let t(i,x) be the number of elements in $Q_{i}=\{k\;;x(k)=i\}$ note $\sum_{i=1}^{q}t(i,x)=n$. We have \mathfrak{A}_{n}^{G} is the linear span of elements of the form $U_{\sigma}\gamma_1(A_1) \ \gamma_2(A_2) \dots \ \gamma_n(A_n)$ with $A_i \in R_0$ and $\sigma \in S_n$. We have $e_x = \gamma_1(e_{x(1)})\gamma_2(e_{x(2)}) \dots \gamma_n(e_{x(n)})$ commutes with the $\gamma_k(A_k)$ with $A_k \in R_0$ and $e_x U_{\sigma} e_x = 0$ unless $\sigma(Q_i) = Q_i$ for $i = 1, \dots, q$. Since $e_x F_0 = F_0 e_x = F_0$ it follows that $F_0 U_{\sigma}\gamma_1(A_1) \ \gamma_2(A_2) \dots \gamma_n(A_n) F_0 = 0$ unless $\sigma(Q_i) = Q_i$ for $i = 1, \dots, q$. Recall that the $\{e_{ij}^{(k)}\}$ and the $\{e_{ij}^{(k)}\}$ are sets of matrix units for $M_k = e_k R_0$ and $N_k = e_k R_0$, respectively. Let $V_{\sigma}^{(k)}$ and $W_{\sigma}^{(k)}$ be defined in terms of the $e_{ij}^{(k)}$ and the $e_{ij}^{(k)}$ as was done in Lemma 4.10. 'As we saw in Lemma 4.10 we have $$V_{\sigma}^{(k)}W_{\sigma}^{(k)}=U_{\sigma}P_{k}(Q)$$ with $P_{k}(Q)=\prod_{i\in Q}\gamma_{i}(e_{k})$ where Q is the set of integers where $\sigma(i) \neq i$. Since U_{σ} , $P_k(Q)$, $V_{\sigma^{-1}}^{(k)} \in \mathfrak{A}^G$ we have $W_{\sigma}^{(k)} = V_{\sigma^{-1}}^{(k)} U_{\sigma} P_k(Q) \in \mathfrak{A}^G$. Suppose $\sigma \in S_n$ and $\sigma(Q_i) = Q_i$ for $i = 1, \ldots, q$. Then we can write σ as a product $\sigma = \sigma_1 \sigma_2 \ldots \sigma_q$ where σ_i acts on Q_i (i.e.,
$\sigma_i(k) = k$ if $k \notin Q_i$). A straightforward computation using the fact that F_0 is a minimal projection in M_x shows that for such a permutation $\sigma = \sigma_1 \sigma_2 \ldots \sigma_q$ and $A_i \in R_0$ we have $$F_{\theta}U_{\sigma}\gamma_{1}(A_{1})\gamma_{2}(A_{2})\ldots\gamma_{n}(A_{n})F_{\theta}=\lambda F_{\theta}W_{\sigma_{1}}^{(1)}W_{\sigma_{2}}^{(2)}\ldots W_{\sigma_{q}}^{(q)}$$ where λ is a complex number. Hence, $F_{\theta}\mathfrak{A}_{n}^{G}F_{\theta}=W_{1}\otimes W_{2}\otimes\ldots\otimes W_{q}$ where W_{i} is the C^{*} -algebra generated by the $W_{\sigma}^{(i)}$ with σ a permutation of Q_{i} . Furthermore, one finds that ω_{θ} is a product state on $F_{\theta}\mathfrak{A}_{n}^{G}F_{\theta}$ in that if $A_{i}\in W_{i}$ for $i=1,\ldots,q$ then $\omega_{\theta}(A_{1}A_{2}\ldots A_{q})=\omega_{\theta}(A_{1})\;\omega_{\theta}(A_{2})\;\ldots\;\omega_{\theta}(A_{q})$. To further describe ω_{θ} we introduce some notation. For $i=1,\ldots,q$ let $\widetilde{\mathfrak{V}}_{i0}$ be an $(s_i\times s_i)$ -matrix algebra. Let $\gamma_k^{(i)}$ be a *-isomorphism of $\widetilde{\mathfrak{B}}_{i0}$ with $\widetilde{\mathfrak{V}}_{ik}$ and let $\widetilde{\mathfrak{V}}_{im}=\mathop{\bigotimes}\limits_{k=1}^m\widetilde{\mathfrak{V}}_{ik}$. Let $\widetilde{\mathfrak{V}}_i$ be the norm closure of $\mathop{\bigcup}\limits_{k=1}^\infty\widetilde{\mathfrak{V}}_{ik}$. Let $\widetilde{U}_{\sigma}^{(i)}$ be the corresponding permutation elements of $\widetilde{\mathfrak{V}}_i$ constructed as the U_{σ} were in Section 2. Identify Q_i with the integers $(1,2,\ldots,t(i,x(\theta)))$ and thereby identify each permutation σ_i of Q_i with a permutation σ_i of $(1,2,\ldots,t(i,x(\theta)))$. We define a *-isomorphism φ of $F_{\theta}\mathfrak{V}_n^GF_{\theta}$ with $\widetilde{\mathfrak{V}}_i=\widetilde{\mathfrak{V}}_1\otimes\widetilde{\mathfrak{V}}_2\otimes\ldots\otimes\widetilde{\mathfrak{V}}_q$ by requiring that if σ_i is a permutation of Q_i for $i=1,\ldots,q$ we have $$\varphi(W_{\sigma_1}^{(1)}W_{\sigma_2}^{(2)}\ldots W_{\sigma_q}^{(q)}) = \tilde{U}_{\sigma_1}^{(1)}\tilde{U}_{\sigma_2}^{(2)}\ldots \tilde{U}_{\sigma_q}^{(q)}.$$ Let τ be the unique tracial state of $\widetilde{\mathfrak{A}}$ (note τ is a product state). Then we have $$\omega_{\theta}(A) = \tau(\varphi(A))$$ for all $A \in F_{\theta}\mathfrak{A}_n^G F_{\theta}$. Let \tilde{W}_i be the C^* -algebra generated by the $\tilde{U}_{\sigma}^{(i)}$ for all $\sigma \in S_{\infty}$. Note $\tilde{W}_i = \tilde{\mathfrak{A}}_i^{G_i}$ where G_i is the full unitary group of $\tilde{\mathfrak{B}}_{i0}$. Then by Lemma 4.10, $\tau \mid \tilde{W}_i$ is a factor state (in fact, an extremal trace). Let $\tilde{W} = \tilde{W}_1 \otimes \tilde{W}_2 \otimes \ldots \otimes \tilde{W}_q$. Since $\tau \mid \tilde{W} = \tau \mid \tilde{W}_1 \otimes \tau \mid \tilde{W}_2 \otimes \ldots \otimes \tau \mid \tilde{W}_q$ we have $\tau \mid \tilde{W}$ is the tensor product of factor states so $\tau^W = \tau \mid \tilde{W}$ is a factor state (in fact, an extremal trace). Very roughly speaking, this means ω_{θ} is an extremal trace if $t(i, x(\theta)) = \infty$ for $i = 1, \ldots, q$ and since ρ_{θ} is a tracial functional dominated by ω_{θ} we must have $\rho_{\theta} = \lambda \omega_{\theta}$. In the following paragraphs we will make this idea more precise. Since $0 \le \rho \le \omega$ we have $0 \le \rho_{\theta} \le \omega_{\theta}$ and $0 \le \rho_{\theta} | F_{\theta} \mathfrak{A}_n^G F_{\theta} \le \omega_{\theta} | F_{\theta} \mathfrak{A}_n^G F_{\theta}$. We have seen that ω_{θ} and ρ_{θ} are tracial functionals on $F_{\theta}F\mathfrak{A}_n^G (e.g., \rho_{\theta}(AB) = \rho_{\theta}(BA))$ for $A, B \in F_{\theta}\mathfrak{A}_n^G F_{\theta}$. Since tracial functionals are uniquely determined by their values on the center of $F_{\theta}\mathfrak{A}_n^G F_{\theta}$ there is a C' in the center of $F_{\theta}\mathfrak{A}_n^G F_{\theta}$ with $0 \le C' \le I$ so that $\rho_{\theta}(A) = \omega_{\theta}(AC')$ for all $A \in F_{\theta}\mathfrak{A}_n^G F$. We will show that for each $\varepsilon > 0$ and positive integer m there is an integer $N = N(\varepsilon, m)$ depending only on ε and m so that $|\rho_{\theta}(A) - \rho_{\theta}(I)\omega_{\theta}(A)| \leq \varepsilon ||A||$ for all $A \in F_{\theta}\mathfrak{A}_{m}^{G}F_{\theta}$ provided $t(i, x(\theta)) \ge N$ for i = 1, ..., q. Suppose for some $\varepsilon > 0$ and positive integer m no such N existed. Let $(\pi_1, \mathcal{H}_1, f_1)$ be a cyclic *-representation of \widetilde{W} induced by τ^{W} . Then for each integer n>0 we can find functionals. ρ_{θ} and ω_{θ} having the properties we have shown such functionals have and an $A_n \in F_\theta \mathfrak{A}_m^G F_\theta$ with $||A_n|| = 1$ so that $|\rho_\theta(A_n) - \rho_\theta(I)\omega_\theta(A_n)| \ge \varepsilon$ and $t(i, x(\theta)) \ge n$ for $i=1,\ldots,q$. Then there is a C_n' in the center of $F_\theta \mathfrak{A}_m^G F_\theta$ so that $0 \leqslant C_n' \leqslant I$ and $\omega_{\theta}(A_nC_n') - \omega_{\theta}(C_n')\omega_{\theta}(A_n)| \geqslant \varepsilon$. Then we have $|\tau^W(\varphi(A_n)\varphi(C_n')) - \tau^W(\varphi(A_n))\tau^W(\varphi(C_n'))| \geqslant \varepsilon$ and $\varphi(C'_n)$ is in the center of $\varphi(F_\theta \mathfrak{A}_m^G F_\theta)$. Since $0 \leq \pi_1(\varphi(C'_n)) \leq I$ we may assume by passing to a subsequence that $\pi_1(\varphi(C_n)) \to C_0$ weakly as $n \to \infty$. We $|(f_1, \pi_1(\varphi(A_n)\varphi(C_n'))f_1) - (f_1, \pi_1(\varphi(A_n))f_1)(f_1, \pi_1(\varphi(C_n'))f_1)| = |\tau^{W}(\varphi(A_nC_n')) - (f_1, \pi_1(\varphi(A_n))f_1)(f_1, \pi_1(\varphi(A_n))f_1)| = |\tau^{W}(\varphi(A_nC_n'))f_1)| |\tau^{W}(\varphi(A_nC_n'))f_1| =$ $-\tau^{W}(\varphi(A_n))\tau^{W}(\varphi(C_n'))|\geqslant \varepsilon. \text{ Since } ||A_n||=1 \text{ and } A_n\in F_\theta\mathfrak{A}_m^GF_\theta \text{ the set } \{\varphi(A_n)\} \text{ is con-}$ tained in a finite dimensional subalgebra of \tilde{W} and, thus, this set is compact. Hence, there is an $A \in \widetilde{W}$ so that $|(f_1, \pi_1(A)C_0f_1) - (f_1, \pi_1(A)f_1)(f_1, C_0f_1)| \ge \varepsilon$. Hence, $C_0 \neq \lambda I$. Clearly, we have $C_0 \in \pi_1(\widetilde{W})'$. Each C_n is contained in the center of $F_\theta \mathfrak{A}_m^G F_\theta$. Since $t(i, x(\theta)) \ge n$ the sequence $\varphi(F_{\theta}\mathfrak{A}_{m}^{G}F_{\theta})$ contains a subsequence which is increasing and whose union is dense in \tilde{W} . Hence, $C_0 \in \pi_1(\tilde{W})'$. Hence, C_0 is contained in the center of $\pi_1(\tilde{W})''$. But this is a contradiction because $\pi_1(\tilde{W})''$ is a factor and $C_0 \neq \lambda I$. Hence, for each $\varepsilon > 0$ and positive integer m an $N = N(\varepsilon, m)$ exists. Now suppose $\varepsilon > 0$ and m is a positive integer. Let $T_{in} = \{x \in X_n : t(i, x) < < N(\varepsilon/2, m)\}$ and $T_n = \bigcup_{i=1}^q T_{in}$. Let s_{in} be the μ -measure of T_{in} and s_n the μ -measure of T_n . Let $\sigma_i^{(k)} = \omega_k(e_i)$. One finds $$s_{in} = \mu(T_{in}) = \sum_{x \in T_{in}} \mu_x = \sum_{x \in T_{in}} \prod_{k=1}^n \sigma_{x(k)}^{(k)}.$$ The numbers s_{in} have the following probabilistic interpretation. Suppose a Markov coin has a probability $\sigma_i^{(k)}$ of producing a "heads" on the k^{th} toss. The number s_{in} is the probability of getting $N = N(\varepsilon/2, m)$ "heads" or less in the first n tosses. Since $\sum_{k=1}^{\infty} \sigma_i^{(k)} = \infty$ (since $e_i \le I - e_0$ and $0 \ne e_i \ne I - e_0$) we have from the Borel-Cantelli lemma that the coin will almost surely produce an infinite number of "heads" (see [10]). Hence, $s_{in} \to 0$ as $n \to \infty$. Hence, there is an integer n so that $s_{in} < \varepsilon/2q$ for i = 1, ..., q. Then, we have $$s_n = \mu(T_n) \leqslant \sum_{i=1}^q \mu(T_{in}) = \sum_{i=1}^q s_{in} < \varepsilon/2.$$ We now define $C_n \in \mathfrak{D}_n^s$ as follows. Let $$_{\dagger} C_n := \sum_{\theta \in \Theta} \rho_{\theta}(I) e_{\theta}$$ where $e_{\theta} = \sum_{x \in \theta} e_x$. Since $0 \le C \le I$ we have $0 \le \rho_{\theta}(I) \le 1$, so $0 \le C_n \le I$. We show that for $A \in \mathfrak{A}_m^G$ we have $|\rho(A) - \omega(AC_n)| \le \varepsilon ||A||$. Suppose $A \in \mathfrak{A}_m^G$. Then we have from (2!) and (3!) $$\rho(A) - \omega(AC_n) = \sum_{\theta \in \Theta} \sum_{x \in \theta} \mu_x \sum_{i=1}^{m(\theta)} \mu_{x(\theta)}^{-1}(\rho(B(\theta, x, i)^*AB(\theta, x, i)) - \omega(B(\theta, x, i)^*AC_nB(\theta, x, i))).$$ $$(4!)$$ From the definition of $B(\theta, x, i)$ and C_n we have that these elements commute and $C_nB(\theta, x, i) = \rho_{\theta}(I)B(\theta, x, i)$. Since $D(\theta, x, i) = B(\theta, x, i)^*AB(\theta, x, i) \in F_{\theta}\mathfrak{A}_n^GF_{\theta}$ we have $$\begin{aligned} |\rho_{\theta}(D(\theta, x, i)) - \rho_{\theta}(I)\omega_{\theta}(D(\theta, x, i))| &\leq \frac{1}{2} \varepsilon ||D(\theta, x, i)|| \leq \\ &\leq \frac{1}{2} \varepsilon (\lambda_{i}^{(x)}/\lambda_{1}^{(x(\theta))}) ||A||, \end{aligned}$$ for $x(\theta) \notin T_n$. Since $\rho_{\theta}(A) = \rho(AF_{\theta})/\omega(F_{\theta})$ and $\omega_{\theta}(A) = \omega(AF_{\theta})/\omega(F_{\theta})$ for $A \in \mathfrak{A}$ and $\omega(F_{\theta}) = \mu_{x(\theta)}\lambda_1^{(x(\theta))}$ we have $$\mu_{x(\theta)}^{-1}|\rho(B(\theta,x,i)^*AB(\theta,x,i)) - \omega(B(\theta,x,i)AC_nB(\theta,x,i))| \leq \frac{1}{2} \varepsilon \lambda_i^{(x)}||A||$$ for $x(\theta) \notin T_n$. For $x(\theta) \in T_n$ the above expression is bounded by $\lambda_i^{(x)} ||A||$ since $||\omega_{\theta} - \rho_{\theta}|| \le 1$. Hence, from (4!) we have $$|\rho(A) - \omega(AC_n)| \leq \sum_{\substack{\theta \in
\Theta \\ x(\theta) \notin T_n}} \sum_{x \in \theta} \mu_x \sum_{i=1}^{m(\theta)} \frac{1}{2} \varepsilon \lambda_i^{(x)} ||A|| + \sum_{\substack{\theta \in \Theta \\ x(\theta) \notin T_n}} \sum_{x \in \theta} \mu_x \sum_{i=1}^{m(\theta)} \lambda_i^{(x)} ||A|| .$$ Since $\sum_{i=1}^{m(\theta)} \lambda_i^{(x)} = 1$ and since for $x \in \theta$ we have $x \in T_n$ if and only if $x(\theta) \in T_n$ we have from the above estimate $$|\rho(A) - \omega(AC_n)| \leq \sum_{\substack{x \in X_n \\ x \notin T_n}} \mu_x \frac{1}{2} \varepsilon ||A|| + \sum_{\substack{x \in X_n \\ x \notin T_n}} \mu_x ||A|| \leq$$ $$\leq \frac{1}{2} \varepsilon ||A|| \sum_{x \in X_n} \mu_x + ||A|| \mu(T_n) \leq \frac{1}{2} \varepsilon ||A|| + \frac{1}{2} \varepsilon ||A|| = \varepsilon ||A||.$$ Let $\mathfrak D$ be the norm closure of the union of the $\mathfrak D_n$. We claim $C \in \pi(\mathfrak D)''$. To see this suppose $\varepsilon > 0$ and m is a positive integer. Suppose A_i , $B_i \in \mathfrak U_m^G$ for $i = 1, \ldots, k$. Then there are an integer n > m and a $C_n \in \mathfrak D_n^s \subset \mathfrak D_n \subset \mathfrak D$ with $0 \le C_n \le I$ so that $$|(\pi(A_i)f_0, (C - \pi(C_n))\pi(B_i)f_0)| = |(f_0, \pi(A_i^*B_i)(C - \pi(C_n))f_0)| =$$ $$= |\rho(A_i^*B_i) - \omega(A_i^*B_iC_n)| \leq \varepsilon ||A_i^*B_i||$$ for $i=1,\ldots,k$. Since $\varepsilon>0$ is arbitrary, the $\pi(C_n)$ are uniformly bounded and the vector $\pi(A_i)f_0$ and $\pi(B_i)f_0$ with A_i , $B_i \in \mathfrak{A}_m^G$ for some $m=1,2,\ldots$ are dense in \mathscr{H} , we have C is in the weak closure of $\pi(\mathfrak{D})$. Hence, $C \in \pi(\mathfrak{D})''$. We define X_{∞} with its infinite product measure (which we also denote by μ) by taking the limit as $n \to \infty$ of the spaces X_n . We define a *-homomorphism Ψ of \mathfrak{D} into the algebra of bounded functions on X_{∞} . For $x = (x(1), x(2), \ldots) \in X_{\infty}$ we define $$\Psi(\gamma_k(e_i))(x) = \begin{cases} 1 & \text{if } x(k) = i \\ 0 & \text{if } x(k) \neq i \end{cases}$$ for $i=1,\ldots,q$ and $k=1,2,\ldots$. Since the $\gamma_k(e_i)$ generate $\mathfrak D$ as a C^* -algebra there is a unique *-homomorphism Ψ satisfying the above requirements. From the construction of Ψ we have $\mu(\Psi(A))=(f_0,\pi(A)f_0)$ for all $A\in \mathfrak D$. Hence, the mapping Γ given by $\Gamma(\pi(A))=\Psi(A)$ for $A\in \mathfrak D$ extends to a *-homomorphism of $\pi(\mathfrak D)''$ into the bounded μ -measurable functions on X_∞ . Consider the μ -measurable function $\Gamma(C)$. Since C is in the center of $\pi(\mathfrak A^G)$, C commutes with the permutation elements $\pi(U_\sigma)$. It follows that $\Gamma(C)$ is a permutation invariant function on X_∞ . It is shown in [1] that the only permutation invariant functions on X_∞ are trivial (almost everywhere equal [to a constant function) if and only if for each set $S\subset (1,2,\ldots,q)$ $$\sum_{k=1}^{\infty} \sigma^{(k)}(S)(1 - \sigma^{(k)}(S)) = 0 \quad \text{or } \infty,$$ where $\sigma^{(k)}(S) = \sum_{i \in S} \sigma_i^{(k)}$. Since $\sigma_i^{(k)} = \omega_k(e_i)$ it follows from the assumption of the lemma that the condition of Aldous and Pitman is satisfied. Hence, $\Gamma(C)$ is a constant. Hence, we have $(f_0, C^2f_0) = \mu(\Gamma(C^2)) = \mu(\Gamma(C)\Gamma(C)) = \mu(\Gamma(C))^2 = (f_0, Cf_0)^2$. Hence, $Cf_0 = (f_0, Cf_0)f_0 = \lambda f_0$. Since for $A \in \mathfrak{A}^G$ we have $C\pi(A)f_0 = \pi(A)Cf_0 = \lambda\pi(A)f_0$ we have $C = \lambda I$. Hence, the center of $\pi(\mathfrak{A}^G)''$ consists of multiples of the identity. Hence, ω^G is a factor state. THEOREM 4.13. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ is a product state of minimal G_{γ} -support. Suppose E is the G_{γ} -support projection of ω . Then, ω^G is a factor state if and only if (*) $$\sum_{k=1}^{\infty} \omega_k(e)(1-\omega_k(e)) = 0 \quad or \, \infty$$ for all $e \in R'_0$ with $e \leqslant E$. *Proof.* Suppose the hypothesis and notation of the theorem are satisfied Let $H = H^G(\omega)$ and let (π, \mathcal{H}, f_0) , $(\pi^G, \mathcal{H}^G, f_0)$ and $(\pi^H, \mathcal{H}^H, f_0)$ with $\mathcal{H}^H = \mathcal{H}^G$ be cyclic *-representations of \mathfrak{A} , \mathfrak{A}^G and \mathfrak{A}^H induced by ω , ω^G and ω^H , respectively, as constructed in Lemma 4.8. Recall that $\pi^G(\mathfrak{A}^G)'' = \pi^H(\mathfrak{A}^H)''$. Hence, ω^G is a factor state if and only if ω^H is a factor state. First we prove the implication (\Rightarrow) . Assume ω^G is a factor state. Suppose $e \in R'_0$, $e \leq E$ and the sum (*) is finite. We will show that the sum (*) is zero. We have $e \in M^G(\omega)$. Then, by Theorem 4.7 we have $e = e'_0 + e'$ where $e' \in M^G(\omega)$ is a central projection in $R^G(\omega) \cap R^G(\omega)'$ and $e'_0 \in N^G(\omega)$. Since ω^G is a factor state we have from Lemma 4.8 that $\omega_k(e') = 0$ or 1 for all $k = 1, 2, \ldots$. Hence, $$\sum_{k=1}^{\infty} \omega_k(e)(1-\omega_k(e)) \leq \sum_{k=1}^{\infty} \omega_k(e_0')(1-\omega_k(e_0')) < \infty.$$ We will show the right hand sum is zero. Let $\{e_1, \ldots, e_m\}$ be the minimal central projections in $R_0 \cap R'_0$ so that $e_ie'_0 \neq 0$ for $i=1,\ldots,m$. Let e_0 be the maximal projection in $N^G(\omega)$ as described in Lemma 4.6. Since $e_i \in R_0 \cap R'_0$ and $e_0 \in R^G(\omega) \cap R^G(\omega)'$ we have $e_ie_0 = e_0e_i \in R^G(\omega)$. And since $e_ie_0 \leq e_0$ we have $e_ie_0 \in N^G(\omega) \subset M^G(\omega)$ and by Lemma 4.3 we have $e_ie_0 \in R^G(\omega)'$. Hence, $e_ie_0 \in R^G(\omega) \cap R^G(\omega)'$. Since ω^H is a factor state we have from Lemma 4.8 that $\omega_k(e_ie_0) = 0$ or 1 for all $i=1,\ldots,m$ and $k=1,2,\ldots$. Let $Q_i = \{k; \omega_k(e_ie_0) = 1\}$ for $i=1,\ldots,m$. Note each Q_i is a finite set since $e_ie_0 \in N^G(\omega)$. Since ω^H is a factor state it follows from Theorem 4.9 that $\omega|\mathfrak{A}^H(Q_i)$ is a factor state for $i=1,\ldots,m$. Then it follows from Lemma 4.11 that for each $i=1,\ldots,m$ either Q_i has only one element or there is a projection $e_i' \in R^G(\omega)'$ with $e_i' \leq e_ie_0$ which is minimal in $R^G(\omega)'$ so that $\omega_k(e_i') = 1$ for all $k \in Q_i$. Since $e'_i \in R^G(\omega)'$ we have $e'_i \in R'_0$. We claim e'_i is minimal in R'_0 . If e'_i is not minimal in R'_0 there is a unitary $V \in R'_0$ which commutes with e'_i and $Ve'_i \neq \lambda e'_i$. Let $U = I - e'_i + Ve'_i$. Since $\omega_k(e'_i) = 0$ except for a finite number of k we have $\omega_k(UAU^{-1}) = \omega_k(A)$ for all $A \in \mathfrak{B}_0$ except for a finite number of k. Hence, $\omega \sim_{q} \omega \circ \alpha_{U}$ and $U \in H^{G}(\omega)$. Then, by Lemma 3.5 we have $U \in R^{G}(\omega)'$. Since e'_{i} is minimal in $R^{G}(\omega)'$ we must have $Ue'_{i} = Ve'_{i} = \lambda e'_{i}$. But this contradicts the fact that $Ve'_i \neq \lambda e'_i$. Hence, e'_i must be minimal in R'_0 . If Q_i contains only one element then it follows from the fact that ω is of minimal G_{γ} -support that there is a projection $e'_i \in R'_0$ which is minimal in R'_0 so that $\omega_k(e'_i) = 1$ for $k \in Q_i$. Hence, for i = 1== 1,..., m we have found projections $e'_i \in R'_0$ which are minimal in R'_0 so that $\omega_k(e_i') = 1$ for $k \in Q_i$. From the definition of the G_{γ} -support projection E it follows that $Ee_ie_0 = e_i'$ for i = 1, ..., m. Since $e_0' \le E$, $e_0' \le e_0$ and $e_ie_0' = e_0'e_i \ne 0$ it follows that $0 \neq Ee_i e_0' \leq e_i'$ for i = 1, ..., m. Since e_i' is minimal in R_0' we have $Ee_i e_0' = e_i'$ for $i=1,\ldots,m$. Hence, we have
$\omega_k(e_ie_0')=\omega_k(Ee_ie_0')=\omega_k(e_i')=\omega_k(Ee_ie_0)=\omega_k(e_i')=\omega_k(Ee_ie_0)=\omega_k(e_i')=\omega_k(Ee_ie_0)=\omega_k(e_i')=\omega_k(Ee_ie_0)=\omega_k(e_i')=\omega_k(Ee_ie_0)=$ $=\omega_k(e_ie_0)$ and as we noted earlier $\omega_k(e_ie_0)=0$ or 1 for all $i=1,\ldots,m$ and $k=1,2,\ldots$ Since $\omega_k(e_0')=\sum_{i=1}^m\omega_k(e_ie_0')$ it follows that $\omega_k(e_0')=0$ or 1 for all $k=1,2,\ldots$ Hence, $\sum_{k=1}^{\infty}\omega_k(e_0')(1-\omega_k(e_0'))=0$ and as we have seen this implies $\sum_{k=1}^{\infty} \omega_k(e)(1-\omega_k(e)) = 0.$ Hence, we have shown the sum condition (*) is satisfied for all $e \in R'_0$ with $e \leqslant E$. We now prove the implication (\Leftarrow). We assume the sum condition (*) is satisfied for all $e \in R'_0$ with $e \leqslant E$. We will show that ω^H and, therefore, ω^G is a factor state. Let Φ be the conditional expectation of \mathfrak{B}_0 onto $R^G(\omega)$ relative to the trace. We define a new product state $\overline{\omega} = \bigotimes_{k=1}^{\infty} \overline{\omega}_k$ as follows. Let e_0 be the maximal projection in $N^G(\omega)$. Since $e_0 \in R'_0$, $I - e_0 \leqslant E$ and ω is assumed to satisfy (*) we have $\omega_k(e_0) = 0$ or 1 for all $k = 1, 2, \ldots$ and $\omega_k(e_0) = 1$ for only a finite number of k. We define $\overline{\omega}_k = \omega_k(\Phi(A))$ if $\omega_k(e_0) = 0$ and $\overline{\omega}_k(A) = \omega_k(A)$ if $\omega_k(e_0) = 1$. From Theorem 3.8 it follows that $\overline{\omega} \sim \omega$ (note the $\overline{\omega}_k$ of Theorem 3.8 and the $\overline{\omega}_k$ just defined differ for only a finite number of k and so the $\overline{\omega}$ of Theorem 3.8 and the $\overline{\omega}_k$ is just defined are quasi-equivalent). Then, from Lemma 3.3 we have $R^G(\omega) = R^G(\overline{\omega})$ and $R^G(\omega) = R^G(\overline{\omega})$ and from Lemma 4.4 we have $R^G(\omega) = R^G(\overline{\omega})$ and $R^G(\omega) = R^G(\overline{\omega})$. First we will show that $\overline{\omega}^H$ is a factor state and then we will show that $\omega^H \sim \omega^H$. From Theorem 4.7 we have that every projection $e \in M^G(\omega)$ is of the form $e = e'_0 + s_1 e_1 + s_2 e_2 + \ldots + s_n e_n$ where $e'_0 \in R'_0$ with $e'_0 \leq e_0$, $s_i = 0$ or 1 and $e_i \in M^G(\omega) \cap R^G(\omega) \cap R^G(\omega)'$ for $i = 1, \ldots, n$. Since ω satisfies the sum condition (*) we have $\omega_k(e_i)=0$ or 1 for $i=1,\ldots,n$ and $k=1,2,\ldots$. Since $\Phi(e_i)=e_i$ for $i=0,1,\ldots,n$ we have $\overline{\omega}_k(e_i)=0$ or 1 for $i=0,1,\ldots,n$ and $k=1,2,\ldots$. Let $Q_i=\{k\;;\omega_k(e_i)=1\}$ for $i=0,1,\ldots,n$. Note Q_0 is finite and Q_i is infinite for $i=1,\ldots,n$. Let $\mathfrak{A}(Q_i)=\bigotimes_{k\in Q_i}\mathfrak{B}_k$ and $\rho_i=\bigotimes_{k\in Q_i}\overline{\omega}_k$ be defined on $\mathfrak{A}(Q_i)$ for $i=0,1,\ldots,n$. We see that for $i=1,\ldots,n$, ρ_i satisfies the hypothesis of Lemma 4.12 with G=H and $R_0=R^G(\omega)$. Hence, $\rho_i^H=\rho_i|\mathfrak{A}^H(Q_i)$ is a factor state for $i=1,\ldots,n$. Then applying Theorem 4.9 with the partitions $\{Q_0,Q_1,\ldots,Q_n\}$ and $\{e_0,e_1,\ldots,e_n\}$ and with $R_0=R^G(\omega)$ and G=H we find that ω^H is a factor state if and only if ρ_0 is a factor state of $\mathfrak{A}^H(Q_0)$. Note that $\rho_0=\omega|\mathfrak{A}(Q_0)$ since $\overline{\omega}_k=\omega_k$ for $k\in Q_0$. By the remark after Lemma 4.6 we have that e_0 and E commute and $Ee_0 \in R^G(\omega)'$. Let $\{e_1',\ldots,e_m'\}$ be minimal central projections of $R^G(\omega) \cap R^G(\omega)'$ so that $Ee_0e_i' \neq 0$ for $i=1,\ldots,m$. Since by Lemma 4.6 we have $e_0 \in R^G(\omega) \cap R^G(\omega)'$ we have $e_0e_i' = e_i'$ for $i=1,\ldots,m$. Since $E \geqslant Ee_i \in R_0'$ we have from the sum condition (*) that $\omega_k(e_i') = \omega_k(Ee_i') = 0$ or 1 for all $i=1,\ldots,m$ and $k=1,2,\ldots$. Now we further partition Q_0 as follows. Let $Q_{0i} = \{k \; ; \; \omega_k(e_i') = 1\}$. Note $Q_0 = \bigcup_{i=1}^m Q_{0i}$. Let $\rho_{0i} = \rho_0 | \mathfrak{A}(Q_{0i})$. Again it follows from Theorem 4.9 that ρ_{0i}^H is a factor state if and only if ρ_{0i}^H is a factor state for each $i=1,\ldots,m$. Note $Ee_i' \in R_0'$ and $Ee_i' \leq e_0$ so $Ee_i' \in N^G(\omega) \subset M^G(\omega)$. Then by Lemma 4.3 we have $Ee_i' \in R^G(\omega)'$. We claim Ee_i' is minimal in $R^G(\omega)'$ for each $i=1,\ldots,m$. Suppose Ee_i' is not minimal in $R^G(\omega)'$. Let $\{e_{ij}' : i,j=1,\ldots,s\}$ be a set of matrix units for $e_i'R^G(\omega)'e_i'$ so that $Ee_i' = e_{11}' + e_{22}' + \ldots + e_{in}'$. Since $e_{11}' \in R_0'$ and $e_{11}' \in E$ we have from the sum condition (*) that $\omega_k(e_{11}') = 0$ or 1 for all $k=1,2,\ldots$. Furthermore, $\omega_k(e_{11}') \neq 0$ for some k, for if $\omega_k(e_{11}') = 0$ for all k then $\omega_k(E-e_{11}') = 1$ for all k and by definition E is the smallest projection in R_0' with $\omega_k(E) = 1$ for all k. Hence, there is an integer k so that $\omega_k(e_{11}') = 1$. Let $f = (1/2)(e_{11}' + e_{12}' + e_{21}' + e_{22}')$. We have $f \in R_0'$ and $f \leq E$ so $\omega_k(f) = 0$ or 1, but $\omega_k(f) = (1/2)\omega_k(e_{11}') = 1/2$. We have a contradiction so Ee_i' is minimal in $R^G(\omega)'$ for $i=1,\ldots,m$. Since e_i' is a minimal central projection in $R^G(\omega) \cap R^G(\omega)'$ and Ee_i' is a minimal Since e_i' is a minimal central projection in $R^G(\omega) \cap R^G(\omega)'$ and Ee_i' is a minimal projection in $R^G(\omega)'$ so that $\omega_k(Ee_i') = 1$ for all $k \in Q_{0i}$ it follows from Lemma 4.11 (with G = H and $R_0 = R^G(\omega)$) that $\rho_{0i}^H = \omega | \mathfrak{A}^H(Q_{0i})$ is a factor state. Hence, ρ_{0i}^H is a factor state for $i = 1, \ldots, m$. Hence, from Theorem 4.9 we have ρ_0^H is a factor state. As we have seen, this implies $\overline{\omega}^G$ is a factor state. We now show ω^G is a factor state by showing $\omega^G \underset{q}{\sim} \overline{\omega}^G$. Let $\Omega_k \in \mathfrak{B}_0$ be defined by $\omega_k(A) = \operatorname{tr}(A\Omega_k)$ for all $A \in \mathfrak{B}_0$. For $k \notin Q_0$ we have $\overline{\omega}_k(A) = \operatorname{tr}(A\Phi(\Omega_k))$ for $A \in \mathfrak{B}_0$. If $\Phi(\Omega_k) = \sum_{i=1}^s \lambda_i E_i$ with $\lambda_i > 0$ is the spectral decomposition of $\Phi(\Omega_k)$, we define $\Phi(\Omega_k)^{-1} = \sum_{i=1}^s \lambda_i^{-1} E_i$ so $\Phi(\Omega_k) \Phi(\Omega_k)^{-1} = \Phi(\Omega_k)^{-1} \Phi(\Omega_k) = E_0$ where E_0 is the support projection of $\Phi(\Omega_k)$. For $k \in Q_0$ let $B_k = I$ and for $k \notin Q_0$ let $B_k = \cdots \Omega_k \Phi(\Omega_k)^{-1}$. Since the support projection of $\Phi(\Omega_k)$ is greater than the support projection of Ω_k we have $B_k \Phi(\Omega_k) = \Omega_k$. Then we have $\overline{\omega}_k(AB_k) = \omega_k(A)$ for all $A \in \mathfrak{V}_0$ and $k = 1, 2, \ldots$. Let $\rho_n = \bigotimes_{k=1}^n \omega_k \bigotimes_{k=n+1}^\infty \overline{\omega}_k$ and let $C_n = \gamma_1(B_1)\gamma_2(B_2) \ldots \gamma_n(B_n)$. We have $\rho_n(A) = \overline{\omega}(AC_n)$ for all $A \in \mathfrak{U}$. Since $\omega \sim \overline{\omega}$ we have (see [12], Theorem 2.7) $\
(\omega - \overline{\omega})\|\mathfrak{A}_n^c\| \to 0$ as $n \to \infty$. Since $\|\rho_n - \omega\| = \|(\omega - \overline{\omega})\|\mathfrak{A}_n^c\|$ we have $\|\rho_n - \omega\| \to 0$ as $n \to \infty$. Let $$D_n = \Gamma(C_n) = \int_C \alpha_U(C_n) d\nu(U),$$ where ν is Haar measure on G. We have $D_n \in \mathfrak{A}_n^G$ and for $A \in \mathfrak{A}^G$ $$\overline{\omega}(AD_n) = \overline{\omega}(A\Gamma(C_n)) = \overline{\omega}(\Gamma(AC_n)) = \overline{\omega}(AC_n) = \rho_n(A).$$ Hence, $\overline{\omega}^G(AD_n) = \rho_n^G(A)$ for all $A \in \mathfrak{A}^G$. Since ρ_n^G is a density matrix state of the representation of \mathfrak{A}^G induced by $\overline{\omega}^G$ we have ρ_n^G is a factor state. Since $\|\rho_n - \omega\| \to 0$ as $n \to \infty$ we have $\|\rho_n^G - \omega^G\| \to 0$ as $n \to \infty$. Since the factor states of a C^* -algebra form a norm closed set (see [6]) it follows that ω^G is a factor state. Since the states ρ_n^G are quasi-equivalent to $\overline{\omega}^G$ it follows that $\overline{\omega}^G \sim \omega^G$. Note that we have also shown $\overline{\omega}^H \sim \omega^H$. THEOREM 4.14. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ and $\omega' = \bigotimes_{k=1}^{\infty} \omega'_k$ are product states of $\mathfrak A$ of minimal G_γ -support and E and E' are the G_γ -support projections of ω and ω' , respectively. Suppose ω^G and ω'^G are factor states of $\mathfrak A^G$. Then $\omega^G \sim_q \{\omega'^G\}$ if and only if there is a unitary $U \in G$ satisfying the following conditions: - i) $\omega \sim \omega' \circ \alpha_U$; - ii) $E' = UEU^{-1}$; - iii) If $e \in R'_0$ and $e \leqslant E$ then $\omega_k(e) = 0$ or 1 for all k if and only if $\omega'_k(UeU^{-1}) = 0$ or 1 for all k and, furthermore, if $\omega_k(e) = 0$ or 1 for all k then $$\sum_{k=1}^{\infty} |\omega_k(e) - \omega_k'(UeU^{-1})| < \infty$$ and $$\sum_{k=1}^{\infty} \omega_k(e) - \omega_k'(UeU^{-1}) = 0.$$ *Proof.* Suppose ω , ω' , E and E' satisfy the hypothesis and notation of the theorem. Suppose there is a $U \in G$ satisfying conditions i), ii) and iii). We will show $\omega^G \sim \omega'^G$. Recalling the proof of the previous theorem we see that the projections $e \in R'_0$ with $e \leq E$ for which $\omega_k(e) = 0$ or 1 for all k are of the form $e = \sum_{i=1}^n s_i e_i$ where $s_i = 0$ or 1, e_i for $i = 1, \ldots, m$ are minimal projections in R'_0 (and they are minimal projections in $R^G(\omega)$) with $e_i \leq e_0$ where e_0 is the maximal projection in $N^G(\omega)$ and e_i for $i = m+1, \ldots, n$ are central projections in $R^G(\omega) \cap R^G(\omega)$ with $e_i e_0 = 0$. Furthermore, for any choice of zero's and one's for the s_i for $i = 1, \ldots, n$ one obtains a projection e so that $\omega_k(e) = 0$ or 1 for all $k = 1, 2, \ldots$. Also, note that $E = \sum_{i=1}^n e_i$. Let Q be the set of $k = 1, 2, \ldots$ so that $\omega_k(e_i) \neq \omega_k'(Ue_iU^{-1})$ for some $i = 1, \ldots, n$. One sees from condition iii) that Q is finite. Furthermore, it follows from condition iii) that $$\sum_{k\in\mathcal{Q}}\omega_k(e_i)-\omega_k'(Ue_iU^{-1})=0$$ for $i=1,\ldots,n$. Hence, there is a permutation σ with $\sigma(j)=j$ for $j\notin Q$ so that $\omega_k(e_i)=\omega'_{\sigma(k)}(Ue_iU^{-1})$ for $i=1,\ldots,n$ and $k=1,2,\ldots$ Let $\rho(A) = \omega'(\alpha_U(U_\sigma A U_\sigma^{-1}))$ for all $A \in \mathfrak{A}$. We have $\rho = \bigotimes_{k=1}^\infty \rho_k$ where $\rho_k(A) = \omega'_{\sigma(k)}(UAU^{-1})$ for all $A \in \mathfrak{B}_0$. Since $\rho(A) = \omega'(U_\sigma A U_\sigma^{-1})$ for all $A \in \mathfrak{A}^G$ we have $\rho^G \sim_q \omega'^G$. Since $\rho \sim_q \omega' \circ \alpha_U$ and $\omega' \circ \alpha_U \sim_q \omega$ we have $\rho \sim_q \omega$. Summarizing the situation at this point we have $\omega \sim_q \rho$, E is the G_γ -support projection for both ω and ρ , from Lemma 3.3 we have $R^G(\omega) = R^G(\rho)$, from Lemma 4.4 we have $M^G(\omega) = M^G(\rho)$ and $N^G(\omega) = N^G(\rho)$. Let $\omega_k(A) = \operatorname{tr}(A\Omega_k)$ and $\rho_k(A) = \operatorname{tr}(A\Omega_k')$ for all $A \in \mathfrak{B}_0$ and $k = 1, 2, \ldots$. Since $\omega \sim_q \rho$ we have $$\sum_{k=1}^{\infty} \|\Omega_k^{1/2} - \Omega_k'^{1/2}\|_{HS}^2 < \infty.$$ Let $Q_1 = \{k \; ; \; \|\Omega_k^{1/2} - \Omega_k'^{1/2}\|_{\mathrm{HS}}^2 = 2\}$. We have Q_i is a finite set. We define a new state $\bar{\rho} = \underset{k=1}{\otimes} \bar{\rho}_k$ as follows. Let $k \in Q_1$. Since $e_i \in M^G(\omega)$ then one and only one of the numbers $\omega_k(e_i) = \rho_k(e_i)$ is equal to one for $i = 1, \ldots, n$. If $e_i \leq e_0$ then e_i is minimal in R'_0 . Hence, there is a unitary $U_k \in R_0$ so that $|\omega_k(A) - \rho_k(U_kAU_k^{-1})| < 2$ and $|\rho_k(A) - \rho_k(U_kAU_k^{-1})| < 2$ for all $A \in \mathfrak{B}_0$ with $||A|| \leq 1$. (If such a U_k did not exist then ω_k and ρ_k would have disjoint support in R'_0 which is impossible.) Then we define $\bar{\rho}_k(A) = \rho_k(U_kAU_k^{-1})$ for $A \in \mathfrak{B}_0$. If $e_ie_0 = 0$ we define $\bar{\rho}_k = (1/2)\rho_k + (1/2)\omega_k$. One can easily check that $\bar{\rho}$ satisfies the sum condition (*) of the previous theorem so $\bar{\rho}^G$ is a factor state. Since $\rho_k = \bar{\rho}_k$ for all but a finite number of k we have $\rho \sim \bar{\rho}$. If $\bar{\rho}_k(A) = \operatorname{tr}(A\bar{\Omega}'_k)$ for all $A \in \mathfrak{B}_0$ we have $$\sum_{k=1}^{\infty} \|\Omega_k'^{1/2} - \bar{\Omega}_k'^{1/2}\|_{HS}^2 < \infty.$$ By construction we have $\|\Omega_k^{1/2} - \bar{\Omega}_k'^{1/2}\|_{HS}^2 < 2$ and $\|\Omega_k'^{1/2} - \bar{\Omega}_k'^{1/2}\|_{HS}^2 < 2$ for all $k = 1, 2, \ldots$. Hence $\|\omega - \bar{\rho}\| < 2$ and $\|\bar{\rho} - \rho\| < 2$. Thus, $\|\omega^G - \bar{\rho}^G\| < 2$ and $\|\bar{\rho}^G - \rho^G\| < 2$. Hence, $\omega^G \sim \bar{\rho}^G$ and $\bar{\rho}^G \sim \rho^G$. Hence, $\omega^G \sim \rho^G$. Since $\rho^G \sim \omega'^G$ we have $\omega^G \sim \omega'^G$. Now suppose $\omega^G \sim \omega'^G$. We will show there exists a $U \in G$ satisfying conditions i), ii) and iii). Let $(\pi_i, \mathcal{H}_i, f_i)$ be cyclic *-representations of \mathfrak{A} induced by ω for i=1 and ω' for i=2. Let P_i be the orthogonal projection of \mathcal{H}_i onto $\mathcal{H}_i^G = \text{closure of } \{\pi_i(\mathfrak{A}^G)f_i\}$. Let $(\pi_i^G, \mathcal{H}_i^G, f_i)$ be the restriction of π_i to \mathfrak{A}^G and \mathcal{H}_i^G (i.e., $\pi_i^G(A)f = \pi_i(A)f$ for $A \in \mathfrak{A}^G$ and $f \in \mathcal{H}_i^G$). Note π_1^G and π_2^G are cyclic *-representations of \mathfrak{A}^G induced by ω^G and ω'^G , respectively. Let $H_1 = H^G(\omega)$ and $H_2 = H^G(\omega')$. From Lemma 3.6 we have $\pi_i(\mathfrak{A}^G)'' = \pi_i(\mathfrak{A}^H{}^i)''$ and, therefore, $\mathscr{H}_i^G = \mathscr{H}_i^H = \text{closure of } \{\pi_i(\mathfrak{A}^H{}^i)f_i\}$. Let $(\pi_i^H, \mathscr{H}_i^H, f_i)$ be the restriction of π_i to $\mathfrak{A}^H{}^i$ and \mathscr{H}_i^H (i.e., $\pi_i^H(A)f = \pi_i(A)f$ for all $A \in \mathfrak{A}^H{}^i$ and $f \in \mathscr{H}_i^H$). Since $\pi_i(\mathfrak{A}^G)'' = \pi_i(\mathfrak{A}^H{}^i)''$ [we have $\pi_i^G(\mathfrak{A}^G)'' = \pi_i^H(\mathfrak{A}^H{}^i)''$. Since $\omega^G \sim_q \omega'^G$ there is a σ -strongly (σ -weakly) bicontinuous *-isomorphism Φ of $\pi_1^G(\mathfrak{A}^G)''$ onto $\pi_2^G(\mathfrak{A}^G)''$ so that $\Phi(\pi_1^G(A)) = \pi_2^G(A)$ for all $A \in \mathfrak{A}^G$. Suppose $A \in R^G(\omega)$. Then, $\pi_1^H(\gamma_1(A)) \in \pi_1^H(\mathfrak{A}^H)'' = \pi_1^G(\mathfrak{A}^G)''$. We will show that there is a $B \in R^G(\omega')$ so that $\Phi(\pi_1^H(\gamma_1(A))) = \pi_2^H(\gamma_1(B))$. Let $\overline{\mathfrak{A}}_n$ be the C^* -subalgebra of \mathfrak{A} generated by $\mathfrak{B}_1 = \gamma_1(\mathfrak{B}_0)$ and $\mathfrak{B}_k = \gamma_k(\mathfrak{B}_0)$ for k > n, i.e., $\overline{\mathfrak{A}}_n = \mathfrak{B}_1 \otimes \bigotimes_{k=n+1}^{\infty} \mathfrak{B}_k$. Let $\overline{\mathfrak{A}}_n^G$ be the α_U -invariant elements of $\overline{\mathfrak{A}}_n$ with $U \in G$. If one examines the proofs of Lemma 3.3 and Theorem 3.7 one sees that these proofs only depend on the asymptotic properties of the state ω . It follows that for the product state ω , if $A \in R^G(\omega)$ there is a sequence $A_k \in \overline{\mathfrak{A}}_n^G$ so that $\pi_1(A_k)$ converges strongly to $\pi_1(\gamma_1(A))$ as $k \to \infty$. It then follows that if $A \in R^G(\omega)$ there is a sequence $A_n \in \overline{\mathfrak{A}}_n^G$ with $||A_n|| \leq ||A||$ so that $\pi_1(A_n)$ converges strongly to $\pi_1(\gamma_1(A))$ as $n \to \infty$. Since $A_n \subset \mathfrak{A}_n^G \subset \overline{\mathfrak{A}}_n$, A_n can be expressed in the form $$A_n = \sum_{i,j=1}^r \gamma_1(e_{ij}) A_n(i,j)$$ where the $\{e_{ij} ; i,j=1,\ldots,r\}$ are matrix units for \mathfrak{B}_0 and the $A_n(i,j) \in \mathfrak{A}_n^c$. Expli- citly, the $A_n(i, j)$ are given by the formula, $$A_n(i,j) = \sum_{k=1}^r \gamma_1(e_{ki}) A_n \gamma_1(e_{jk}).$$ Now for each n the $(r \times r)$ -matrix of operators $\pi_2(A_n(i,j))$ is bounded in norm by ||A||. Since the unit ball of $\mathfrak{B}(\mathscr{H}_2)$ is weakly compact there is a cluster point C = C(i,j) of the sequence $\pi_2(A_n(i,j))$ in the weak topology. Since the C(i,j) are weak limit points of the $\pi_2(A_n(i,j)) \in \pi_2(\mathfrak{A})$ we have $C(i,j) \in \pi_2(\mathfrak{A})''$. And since $A_n(i,j) \in \mathfrak{A}_n^c$ we have $C(i,j) \in \pi_2(\mathfrak{A})''$ for all $n=1,2,\ldots$. Hence, $C(i,j) \in \pi_2(\mathfrak{A})'' \cap \pi_2(\mathfrak{A})''$. Since ω' is a
factor state of \mathfrak{A} the C(i,j) must be multiples of the identity (i.e. $C(i,j) = c_{i,j}I$). Let $B = \sum_{i,j=1}^r c_{i,j}e_{i,j}$. It follows that $\pi_2(\gamma_1(B))$ is a cluster point of the sequence $\pi_2(A_n)$. Since $A_n \in \mathfrak{A}^G$ we have that $B \in R^G(\omega')$. One sees that $\varphi(\pi_1^H(\gamma_1(A))) = \pi_2^H(\gamma_1(B))$ as follows. Since $\pi_1(A_n) \to \pi_1(\gamma_1(A))$ strongly we have $\pi_1^H(A_n) \to \pi_1^H(\gamma_1(A))$ strongly as $n \to \infty$. Since Φ is strongly bicontinuous on bounded sets we have $\pi_2^H(A_n) = \Phi(\pi_1^H(A_n)) \to \Phi(\pi_1^H(\gamma_1(A)))$ strongly as $n \to \infty$. Since $\pi_2(\gamma_1(B))$ is a weak cluster point of the $\pi_2(A_n)$ we have $\pi_2^H(\gamma_1(B))$ is a weak cluster point of the $\pi_2^H(A_n)$. Since $\pi_2^H(A_n) \to \Phi(\pi_1^H(\gamma_1(A)))$ strongly as $n \to \infty$ we have $\Phi(\pi_1^H(\gamma_1(A))) = \pi_2^H(\gamma_1(B))$. Hence, for each $A \in R^G(\omega)$ there is a $B \in R^G(\omega')$ so that $\Phi(\pi_1^H(\gamma_1(A))) = \pi_2^H(\gamma_1(B))$. We could have just as well started with a $B \in R^G(\omega')$ and then found a corresponding $A \in R^G(\omega)$. It is very tempting to conclude at this point that we have a *-isomorphism of $R^G(\omega)$ with $R^G(\omega')$. However, all we can safely conclude is that Φ provides a *-isomorphism of $\pi_1^H(\gamma_1(R^G(\omega)))$ with $\pi_2^H(\gamma_1(R^G(\omega')))$. One easily checks that for $A \in R^G(\omega)$ we have $\pi_1^H(\gamma_1(A)) = 0$ if and only if AE = 0 and for $A \in R^G(\omega')$, $\pi_2^H(\gamma_1(A)) = 0$ if and only if AE' = 0, where E and E' are the G_{γ} -support projections for ω and ω' . Hence, Φ provides a *-isomorphism of $R^G(\omega)E$ with $R^G(\omega')E'$. Let e_0 and e'_0 be the maximal projections in $N^G(\omega)$ and $N^G(\omega')$. Let $N=\sum_{k=1}^\infty \omega_k(e_0)$. Since ω^G is a factor state it follows from the previous theorem that $\omega_k(e_0)=0$ or 1 so N is an integer. We show $\Phi(\pi_1^H(\gamma_1(e_0)))=\pi_2^H(\gamma_1(e'_0))$ and $\sum_{k=1}^\infty \omega_k'(e'_0)=N$. Let e be the largest projection in $R^G(\omega')$ so that $\Phi(\pi_1^H(\gamma_1(e_0)))=\pi_2^H(\gamma_1(e))$. Let $D_n=\sum_{k=1}^n \pi_1^H(\gamma_k(e_0))$. Since the D_n converge to a central element and $\omega(D_n)\to N$, we have $D_n\to N\cdot I$ strongly as $n\to\infty$. Since Φ is bicontinuous we have $\sum_{k=1}^\infty \omega_k'(e)=N$. Hence, $e\leqslant e'_0$. If $e\neq e'_0$ then let f be the largest projection in $R^G(\omega)$ so that $\Phi(\pi_1^H(\gamma_1(f))) = \pi_2^H(\gamma_1(e_0'))$. Clearly, $f \neq e_0$, $f \geqslant e_0$ and $\sum_{k=1}^{\infty} \omega_k(f) = \sum_{k=1}^{\infty} \omega_k'(e_0') < \infty$. But this contradicts the fact that e_0 is maximal in $N^G(\omega)$. Hence, $e = e_0'$, $\Phi(\pi_1^H(\gamma_1(e_0))) = \pi_2^H(\gamma_1(e_0'))$ and $\sum_{k=1}^{\infty} \omega_k'(e_0') = N$. Since $I-e_0 \leqslant E$ and $I-e_0' \leqslant E'$ the mappings $A \to \pi_1^H(\gamma_1(A))$ and $A' \to \pi_2^H(\gamma_1(A'))$ are faithful for $A \in R^G(\omega)(I-e_0)$ and $A' \in R^G(\omega')(I-e_0')$, respectively. Hence, there is a *-isomorphism α of $R^G(\omega)(I-e_0)$ onto $R^G(\omega')(I-e_0')$ so that $\Phi(\pi_1^H(\gamma_1(A))) = \pi_2^H(\gamma_1(\alpha(A)))$ for all $A \in R^G(\omega)(I-e_0)$. We will show that there is a unitary $U_1 \in \mathfrak{V}_0$ so that $\alpha(A) = U_1AU_1^{-1}$ for all $A \in R^G(\omega)(I-e_0)$. It is well known that a *-isomorphism α between two finite dimensional algebras acting on a finite dimensional Hilbert space is unitarily implementable if and only of rank $(e) = \operatorname{rank}(\alpha(e))$ for all minimal projections e. Suppose that e is a minimal projection in $R^G(\omega)(I-e_0)$ and $r = \operatorname{rank}(e)$. Let Q be a finite set of positive integers. Suppose $f_1 \in R^G(\omega)$ and $f_2 \in R^G(\omega')$ and f_1 and f_2 are projections. For i = 1, 2 we define $$\Gamma_i(Q, f_i) = \pi_i^H(\sum_{\sigma \in S(Q)} \delta(\sigma) U_{\sigma} \prod_{k \in Q} \gamma_k(f_i))$$ where S(Q) is the set of permutations σ so that $\sigma(i)=i$ for $i \notin Q$, $\delta(\sigma)=1$ for even permutations and $\delta(\sigma)=-1$ for odd permutations. One finds that $\Gamma_i(Q,f_i)=0$ if the number of elements in Q exceeds the rank of f_i . (This corresponds to the fact that the n fold antisymmetric tensor product of a Hilbert space is zero if n exceeds the dimension of the Hilbert space.) We show that if Q has r elements then $\Gamma_1(Q,e)\neq 0$. Suppose Q has r elements and $\Gamma_1(Q,e)=0$. Then we have $\pi_1^H(U_\sigma)\Gamma_1(Q,e)$ $\pi_1^H(U_\sigma^{-1})=0$ for all finite permutations σ . Hence, $\Gamma_1(Q,e)=0$ for all sets Q containing r elements. Now let $\overline{\omega}=\mathop{\bigotimes}\limits_{k=1}^\infty\overline{\omega}_k$ be the state constructed from ω as was done in the proof of the previous theorem. Let $(\overline{\pi}_1,\overline{\mathscr{M}}_1,\overline{f_1})$, $(\overline{\pi}_1^G,\overline{\mathscr{M}}_1^G,\overline{f_1})$ and $(\overline{\pi}_1^H,\overline{\mathscr{M}}_1^H,\overline{f_1})$ be the associated representations constructed from $\overline{\omega}$. Let $\Gamma_1(Q,e)$ be defined as $\Gamma_1(Q,e)$, using the representation $\overline{\pi}_1^H$. We saw in the proof of the previous theorem that $\omega^G \underset{q}{\sim} \overline{\omega}^G$ and, therefore, $\omega^{H_1} \underset{q}{\sim} \overline{\omega}^{H_1}$. Hence, if $\Gamma_1(Q,e)=0$ we must have $\overline{\Gamma}_1(Q,e)=0$ (since quasi-equivalent representations have the same kernel). A somewhat lengthy computation shows $$(\overline{f_1}, \overline{\Gamma}_1(Q, e)^2\overline{f_1}) \geqslant \prod_{k \in Q} \overline{\omega}_k(e) = \prod_{k \in Q} \omega_k(e).$$ Since $\sum_{k=1}^{\infty} \omega_k(e) = \infty$ we can certainly find a set Q of r elements so that $\prod_{k \in Q} \omega_k(e) \neq 0$. Hence, $\bar{\Gamma}_1(Q,e) \neq 0$. This is the desired contradiction, so we have shown that $\Gamma_1(Q,e) \neq 0$ for Q having r elements. Since Φ is a *-isomorphism we have $\Phi(\Gamma_1(Q,e)) = \Gamma_2(Q,\alpha(e)) \neq 0$. Hence, the rank of $\alpha(e)$ must equal or exceed r. Hence, we have shown that $\operatorname{rank}(e) \leq \operatorname{rank}(\alpha(e))$ for all minimal projections in $R^G(\omega)(I-e_0)$. Repeating this argument with π_2^H to π_1^H reversed we find $\operatorname{rank}(e) \geqslant \operatorname{rank}(\alpha(e))$ for minimal projections $e \in R^G(\omega)(I - e_0)$. Hence, $\operatorname{rank}(e) = \operatorname{rank}(\alpha(e))$ and there is a unitary $U_1 \in \mathfrak{B}_0$ so that $\alpha(A) = U_1 A U_1^{-1}$ for all $A \in R^G(\omega)(I - e_0)$. Let $V = U_1(I - e_0)$. Note V is a partial isometry so that $\alpha(A) = VAV^*$ for all $A \in R^G(\omega)(I - e_0)$. We will extend V to a unitary U so that $\Phi(\pi_1^H(\gamma_1(A))) = \pi_2^H(\gamma_1(UAU^{-1}))$ for all $A \in R^G(\omega)$. As we have seen e_0 and E are commuting projections in R'_0 so Ee_0 is a projection in R'_0 . Let $\{e_1, \ldots, e_m\}$ be minimal central projections in $R_0 \cap R'_0$ so that $Ee_0e_i \neq 0$ for $i = 1, \ldots, m$. It follows from the first part of the proof of the previous theorem that e_0e_i is a minimal central projection in $R^G(\omega) \cap R^G(\omega)'$ and Ee_0e_i is a minimal projection in $$R'_0$$. Let $N_i = \sum_{k=1}^{\infty} \omega_k(e_0 e_i)$. Note $N = \sum_{i=1}^{m} N_i$. Since $\gamma_1(e_i) \in \mathfrak{A}^G$ we have $\Phi(\pi_1^H(\gamma_1(e_i))) = \pi_2^H(\gamma_1(e_i))$. Since Φ is an isomorphism and $\Phi(\pi_1^H(\gamma_1(e_0))) = \pi_2^H(\gamma_1(e_0'))$ we have $\Phi(\pi_1^H(\gamma_1(e_0e_i))) = \pi_2^H(\gamma_1(e_0'e_i))$ for $i = 1, \ldots, m$. Again it follows from the first part of the proof of the previous theorem that $e_0'e_i$ is a minimal central projection in $R^G(\omega') \cap R^G(\omega')'$ and $E'e_0'e_i$ is a minimal projection in $$R_0'$$. Furthermore, $\sum_{k=1}^{\infty} \omega_k'(e_0'e_i) = N_i$ since $D_{in} = \sum_{k=1}^{n} \pi_1^H(\gamma_k(e_0e_i)) \rightarrow$ $$\rightarrow N_i I$$ as $n \rightarrow \infty$ so we have $(f_2, \varphi(D_{in})f_2) = \sum_{k=1}^n \omega_k'(e_0'e_i) \rightarrow N_i$ as $n \rightarrow \infty$. Since e_i is a minimal projection in $R_0 \cap R'_0$ we have $e_iR'_0 = R'_0e_i$ is an $(s_i \times s_i)$ -matrix algebra. Since Ee_0e_i and $E'e'_0e_i$ are minimal projections in $e_iR'_0$ there is a partial isometry $V_{1i} \in e_iR'_0$ so that $V_{1i}^*V_{1i} = Ee_0e_i$ and $V_{1i}V_{1i}^* = E'e'_0e_i$. Since $\gamma_1(e_i) \in \mathfrak{A}^G$, $\alpha((I-e_0)e_i) = U_1(I-e_0)e_iU_1^{-1} = (I-e'_0)e_i$ and we have $\mathrm{rank}((I-e_0)e_i) = \mathrm{rank}((I-e_0)e_i)$. Hence, $\mathrm{rank}(e_0e_i) = \mathrm{rank}(e'_0e_i)$ and, thus, $\mathrm{rank}(e_0e_i-Ee_0e_i) = \mathrm{rank}(e'_0e_i-E'e'_0e_i)$. Since two projections of the same rank in an $(s_i \times s_i)$ -matrix algebra are related by a partial isometry there is a partial isometry $V_{2i} \in e_iR'_0$ so that $V_{2i}^*V_{2i} = e_0e_i-Ee_0e_i$ and $V_{2i}V_{2i}^* = e'_0e_i-E'e'_0e_i$. Let $V_i = V_{1i} + V_{2i}$. Then $V_i^*V_i = e_0e_i$, $V_iV_i^* = e'_0e_i$ and $V_iEe_0e_iV_i^* = E'e'_0e_i$. Finally let e_{m+1} be the largest central projection in $R_0 \cap R_0'$ so that $Ee_{m+1} = 0$. Since $Ee_{m+1} = 0$ we have $\pi_1^H(\gamma_1(e_{m+1})) = 0$ and, thus, $\Phi(\pi_1^H(\gamma_1(e_{m+1}))) = \pi_2^H(\gamma_1(e_{m+1})) = 0$. Hence, $E'e_{m+1} = 0$. Let $V_{m+1} = e_{m+1}$ and let $U = V + \sum_{i=1}^{m+1} V_i$. A little checking shows U is unitary, $UAU^{-1} = A$ for all $A \in R_0$, so $U \in R_0'$, and $\Phi(\pi_1^H(\gamma_1(A))) = \pi_2^H(\gamma_1(UAU^{-1}))$ for all $A \in R^G(\omega)$ and, finally, $E' = UEU^{-1}$. We
will show that $\omega \sim_q \omega' \circ \alpha_U$. Let $\rho = \omega' \circ \alpha_U$. Note $\omega'^G = \rho^G$, $R^G(\rho) = U^{-1}R^G(\omega')U = R^G(\omega)$ and, hence, by Theorem 3.8, $H^G(\rho) = H^G(\omega) = H_1$. Let $\pi_3(A) = \pi_2(\alpha_U(A))$ for $A \in \mathfrak{A}$, $\pi_3^G(A) = \pi_2^G(\alpha_U(A)) = \pi_2^G(A)$ for $A \in \mathfrak{A}^G$ and $\pi_3^H(A) = \pi_2^H(\alpha_U(A))$ for $A \in \mathfrak{A}^H$ (note that $\alpha_U(\mathfrak{A}^H) = \mathfrak{A}^H$). Note π_3 , π_3^G and π_3^H are cyclic *-representations induced by ρ , ρ^G and ρ^H , respectively. Note $\pi_3(\mathfrak{A}^G)'' = \pi_3(\mathfrak{A}^H)''$. Since $\omega'^G = \rho^G$ we have $\pi_2^G \sim_q \pi_3^G$. Let Φ_1 be the unique *-isomorphism of $\pi_2^H(\mathfrak{A}^H)'' = \pi_2^G(\mathfrak{A}^G)''$ onto $\pi_3(\mathfrak{A}^H)'' = \pi_3(\mathfrak{A}^G)''$ so that $\Phi_1(\pi_2^G(A)) = \pi_3^G(A)$ for all $A \in \mathfrak{A}^G$. Clearly, we have $\Phi_1(\pi_2^H(\gamma_1(A))) = \pi_3^H(\gamma_1(U^{-1}AU))$ for $A \in R^G(\omega')$. Let $\Psi = \Phi_1 \circ \Phi$. We have Ψ is a *-isomorphism of $\pi_1^H(\mathfrak{A}^H)'' = \pi_1(\mathfrak{A}^G)''$ onto $\pi_3^H(\mathfrak{A}^H)'' = \pi_3(\mathfrak{A}^G)''$ so that $\Psi(\pi_1^G(A)) = \pi_3^G(A)$ for $A \in \mathfrak{A}^G$ and $\Psi(\pi_1^H(\gamma_1(A))) = \pi_3^H(\gamma_1(A))$ for $A \in R^G(\omega)$. Since \mathfrak{A}^H is generated by $\pi_1(R^G(\omega))$ and π_2^G , and π_2^G is a *-isomorphism, we have $\Psi(\pi_1^H(A)) = \pi_3^H(A)$ for all $A \in \mathfrak{A}^H$. Hence, $\omega^H = \omega$ Since $\omega^{H_1} \sim_q \rho^{H_1}$ it follows from ([5], Theorem 4.5) that for every $\varepsilon > 0$ (and in particular for $\varepsilon = 1/2$) there is an integer n_1 so that $$\|(\omega^{H_1} - \rho^{H_1})|(\mathfrak{A}_{n_1}^{H_1})^c \cap \mathfrak{A}^{H_1}\| < \frac{1}{2}.$$ Since $\mathfrak{A}^c_{n_1} \cap \ \mathfrak{A}^{H_1} \subset (\mathfrak{A}^{H_1}_{n_1})^c \cap \ \mathfrak{A}^{H_1}$ we have $$\|(\omega^{H_1} - \rho^{H_1})|\mathfrak{A}_{n_1}^c \cap \mathfrak{A}^{H_1}\| < \frac{1}{2}.$$ Let $\overline{\omega}$ and $\overline{\rho}$ be the H_1 -invariant states constructed from ω and ρ by the procedure described in the statement of Theorem 3.8. By Theorem 3.8 we have $\omega \sim \overline{\omega}$ and $\rho \sim \overline{\rho}$. Hence, there are integers n_2 and n_3 so that $$\|(\omega-\overline{\omega})|\mathfrak{A}_{n_2}^{\mathbf{c}}\|<\frac{1}{2}\quad\text{and}\quad\|(\rho-\bar{\rho})\,|\mathfrak{A}_{n_3}^{\mathbf{c}}\|<\frac{1}{2}\,.$$ Combining these inequalities with the above inequality we find $$\|(\overline{\omega} - \overline{\rho})|\mathfrak{A}_n^c \cap \mathfrak{A}^{H_1}\| < \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 3/2,$$ where $n = \max(n_1, n_2, n_3)$. Suppose Γ is the conditional expectation of \mathfrak{A} onto \mathfrak{A}^{H_1} given by $$\Gamma(A) = \int_{U \in H_*} \alpha_U(A) \, \mathrm{d}\nu(U)$$ where ν is Haar measure on H_1 . Suppose $A \in \mathfrak{A}_n^c$. Since $\overline{\omega}$ and $\overline{\rho}$ are H_1 -invariant we have $\overline{\omega}(A) = \overline{\omega}(\Gamma(A))$ and $\overline{\rho}(A) = \overline{\rho}(\Gamma(A))$. Since $\Gamma(A) \in \mathfrak{A}_n^c \cap \mathfrak{A}^{H_1}$ we have $$|\overline{\omega}(A) - \overline{\rho}(A)| = |\overline{\omega}(\Gamma(A)) - \overline{\rho}(\Gamma(A))| \leq (3/2) ||\Gamma(A)|| \leq (3/2) ||A||.$$ Hence, $|(\overline{\omega} - \overline{\rho})|\mathfrak{A}_n^c| \leq 3/2 < 2$ and, thus, $\overline{\omega} \sim_q \overline{\rho}$. Since $\omega \sim_q \overline{\omega}$ and $\rho \sim_q \overline{\rho}$ we have $\omega \sim_q \rho = \omega' \circ \alpha_U$. Hence, U satisfies conditions i) and ii) of the theorem. We show U satisfies condition iii). Suppose $e \in R'_0$ and $e \le E$ and $\omega_k(e) = 0$ or 1 for all k. Then $e \in M^G(\omega)$. Since $\omega \sim_q \rho$ we have from Lemma 4.4 that $M^G(\omega) = M^G(\rho)$. Since ρ^G is a factor state we have from the previous theorem that $\rho_k(e) = \omega_k'(UeU^{-1}) = 0$ or 1 for all $k = 1, 2, \ldots$. Similarly if $\rho_k(e) = 0$ or 1 for all k we find $\omega_k(e) = 0$ or 1 for all k. Hence, if $e \in R'_0$ and $e \le E$ we have $\omega_k(e) = 0$ or 1 for all k if and only if $\omega_k'(UeU^{-1}) = 0$ or 1 for all k. If $e \in R'_0$, $e \le E$ and $\omega_k(e) = 0$ or 1 for all k then by Theorem 4.7 we have $e = f_0 + \sum_{i=1}^r s_i f_i$ where $s_i = 0$ or 1, $f_0 \le e_0$ and the f_i are central projections in $R^G(\omega) \cap R^G(\omega)'$ with $f_i e_0 = 0$ for $i = 1, \ldots, r$. To show U satisfies the sum condition in iii) it is sufficient to show the sum conditions are satisfied for the projections f_i for $i = 0, 1, \ldots, r$ individually. Recall e_1, \ldots, e_m are minimal projections in $R_0 \cap R'_0$ such that $Ee_0e_i \ne 0$. Since Ee_0e_i is minimal in R'_0 we have f_0 is a sum of these projections, i.e., $f_0 = Ee_0e_{i_1} + \ldots + Ee_0e_{i_s}$. Then $Uf_0U^{-1} = E'e'_0e_{i_1} + \ldots + Ee_0e_{i_s}$. $$+\ldots + E'e'_0e_{i_s}$$. Since $\sum_{k=1}^{\infty} \omega_k(e_0e_i) = N_i = \sum_{k=1}^{\infty} \omega'_k(e'_0e_i)$ we have $$\sum_{k=1}^{\infty} \omega_k(f_0) = N_{i_1} + \ldots + N_{i_s} = \sum_{k=1}^{\infty} \omega_k'(Uf_0U^{-1}).$$ Hence, the sum condition iii) is satisfied for f_0 . Now we consider the f_i for $i=1,\ldots,r$. We have $\omega_k(f_i)=0$ or 1 and $\rho_k(f_i)=0$ or 1 for all $k=1,2,\ldots$. If $\omega_k(f_i)\neq\rho_k(f_i)$ we have $\|\omega_k-\rho_k\|=2$, since they have disjoint support. Since $\omega \underset{\sim}{\sim} \rho$ we have that $\|\omega_k-\rho_k\|=2$ for only a finite number of k (or else $\|(\omega-\rho)\|\Re_n^c\|=2$ for all $n=1,2,\ldots$). Hence, we have $\sum_{n=1}^{\infty}|\omega_k(f_i)-\omega_k'(Uf_iU^{-1})|<\infty.$ For i satisfying $1\leqslant i\leqslant r$ let $$J_n = \sum_{k=1}^n \gamma_k(f_i) - \omega_k(f_i)I$$ and $U_n(t) = \exp(itJ_n)$. Recalling the proof of Lemma 4.8 we see that $\pi_1^H(U_n(t)) \to V(t) \in \pi_1^H(\mathfrak{A}^{H_1})''$ ($\cap \pi_1^H(\mathfrak{A}^{H_1})' = \{\lambda I\}$. Since $\omega(J_n) = 0$ we see that $\pi_1^H(U_n(t)) \to I$ strongly as $n \to \infty$. Since $\Psi = \Phi_1 \circ \Phi$ is strongly continuous on bounded sets we have $\Psi(\pi_1^H(U_n(t))) \to I$ strongly as $n \to \infty$. Now, $$(f_2, \Psi(\pi_1^H(U_n(t)))f_2) = \rho(U_n(t)) =$$ $$= \prod_{k=1}^n (1 + (e^{it} - 1)\rho_k(f_i)) \exp(-it\omega_k(f_i)) = \prod_{k=1}^n S_k(t) \to 1$$ as $n \to \infty$. Since $S_k(t) = 1$ for all t (except for a finite number of k) we have $\prod_{k=1}^n S_k(t) = 1$ for n sufficiently large. Then for n sufficiently large we have $(\mathrm{d}/\mathrm{d}t) \prod_{k=1}^n S_k(t)|_{t=0} = \mathrm{i} \sum_{k=1}^n \rho_k(f_i) - \omega_k(f_i) = 0$. Hence, we have $\sum_{k=1}^\infty \omega_k(f_i) - \omega_k'(Uf_iU^{-1}) = 0$ for each $i = 1, \ldots, r$. Hence, we have shown condition iii) is satisfied for each f_i for $i = 0, 1, \ldots, r$. Hence, U satisfies condition iii). Lemma 4.15. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ is a product state of \mathfrak{A} of minimal G_{γ} -support. Suppose ω^G is pure. Then ω_k is pure for each $k=1,2,\ldots$. *Proof.* Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$, ω is of minimal G_{γ} -support and ω^G is pure. Suppose ω_i is not pure. Let $\omega_k(A) = \operatorname{tr}(A\Omega_k)$ for all $A \in \mathfrak{B}_0$ and $k = 1, 2, \ldots$. Suppose $\sigma = \sigma(i,j)$ is the permutation which transposes i and j and suppose $V \in R_0$ is unitary and $\{e_{kl}; k, l = 1, \ldots, r\}$ are matrix units for \mathfrak{B}_0 . Then we have $$\begin{split} \omega(\gamma_i(V)U_{\sigma(i,j)}\gamma_i(V^{-1})) &= \sum_{k,l=1}^r \omega(\gamma_i(V)\gamma_i(e_{kl})\gamma_j(e_{lk})\gamma_i(V^{-1})) = \\ &= \sum_{k,l=1}^r \operatorname{tr}(Ve_{kl}V^{-1}\Omega_i)\operatorname{tr}(e_{lk}\Omega_j) = \operatorname{tr}(V\Omega_jV^{-1}\Omega_i). \end{split}$$ Let E_i and E_j be the support projections for Ω_i and Ω_j . Let e_i and e_j be rank one projections in \mathfrak{B}_0 with $e_i \leqslant E_i$ and $e_j \leqslant E_j$. Let $\omega_i'(A) = \operatorname{tr}(Ae_i)$, $\omega_j'(A) = \operatorname{tr}(Ae_j)$ and $\omega_k'(A) = \omega_k(A)$ for $k \neq i$ or $k \neq j$ for all $A \in \mathfrak{B}_0$. Let $\omega' = \bigotimes_{k=1}^{\infty} \omega_k'$. Since $\lambda \omega' \leqslant \omega$ for some $\lambda > 0$ and since ω^G is pure we have $\omega'^G = \omega^G$. Hence, $$\omega'(U_{\sigma(i,j)}) = \operatorname{tr}(e_j e_i) = \omega(U_{\sigma(i,j)}).$$ We identify \mathfrak{B}_0 with $\mathfrak{B}(\mathscr{H}_0)$ where \mathscr{H}_0 is an r-dimensional complex Hilbert space. If f_i and f_j are unit vectors in the range of e_i and e_j , respectively, then we have $\operatorname{tr}(e_j e_i) = |(f_i, f_j)|^2$. Hence, if f_i and f_j are unit vectors in the range of E_i and E_j , respectively, we have $|(f_i, f_j)|^2 = \omega(U_{\sigma(i,j)})$. If $E_i E_j \neq 0$ there are unit vectors f_i and f_j in the range of E_i and E_j , respectively, so that $(f_i, f_j) \neq 0$. Since ω_i is not pure the rank of E_i is at least two so there is another unit vector f_i' in the range of E_i so that $(f_i', f_j) = 0$. But this is a contradiction, since $|(f_i', f_j)|^2 = \omega(U_{\sigma(i,j)}) \neq 0$. Hence, we have $E_i E_j = 0$. Now if $V \in R_0$ is unitary we have $$\omega'(\gamma_i(V)U_{\sigma(i,j)}\gamma_i(V^{-1}))=\operatorname{tr}(Ve_jV^{-1}e_i)=\omega(\gamma_i(V)U_{\sigma(i,j)}\gamma_i(V^{-1})).$$ Thus, the same argument that shows $E_i E_j = 0$ shows that $V E_i V^{-1} E_j = 0$ for all unitary $V \in R_0$. Let e be the smallest projection in \mathfrak{B}_0 so that $e \geqslant VE_iV^{-1}$ for all
unitary $V \in R_0$. Clearly, $e \in R'_0$, $\omega_i(e) = 1$ and from the last paragraph $\omega_k(e) = 0$ for $k \neq i$. As we saw in the discussion at the beginning of this section, it follows from the fact that $\omega_i(e) = 1$ and $\omega_k(e) = 0$ for $k \neq i$ that the dependence of ω^G on ω_i is completely determined by $\omega_i|R_0$. Since ω^G is pure it then follows that $\omega_i|R_0$ is pure (since decomposing $\omega_i|R_0$ yields a decomposition of ω^G). Since ω is of minimal G_γ -support it follows that $\omega_i|R'_0$ is pure. Hence, ω_i is pure. But this contradicts our assumption that ω_i is not pure. Hence, we have shown ω_k is pure for all $k = 1, 2, \ldots$ THEOREM 4.16. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ is a product state of $\mathfrak A$ of minimal G_{γ} -support. Suppose E is the G_{γ} -support projection of ω . Then ω^G is pure if and only if ω_k is pure for all $k = 1, 2, \ldots$ and (#) $$\sum_{k=1}^{\infty} \omega_k(e)(1 - \omega_k(e)) = 0 \quad or \quad \infty$$ for all projections $e \in R'_0$ with $e \leqslant E$. *Proof.* Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ is a product state of minimal G_{γ} -support and E is the G_{γ} -support projection of ω . Suppose ω^G is pure. Then ω^G is a factor state and by Theorem 4.13 the sum condition (#) is satisfied for all projections $e \in R'_0$ with $e \leq E$. By Lemma 4.15 we have ω_k is pure for each $k = 1, 2, \ldots$. Hence, we have proved the implication (\Rightarrow). Now suppose ω_k is pure for each $k=1,2,\ldots$ and the sum condition (#) is satisfied for all $e \in R'_0$ with $e \leq E$. Let $H=H^G(\omega)$ and $K=\{U \in H \; ; \; UE=EU\}$. Note K' is generated by $R^G(\omega)$ and E. Let (π, \mathcal{H}, f_0) be a cyclic *-representation of \mathfrak{A} induced by ω . Let \mathcal{H}^G , \mathcal{H}^H and \mathcal{H}^K be the closure of $\{\pi(\mathfrak{A}^G)f_0\}$, $\{\pi(\mathfrak{A}^H)f_0\}$ and $\{\pi(\mathfrak{A}^K)f_0\}$, respectively. Let $\{\pi^G, \mathcal{H}^G, f_0\}$, $\{\pi^H, \mathcal{H}^H, f_0\}$ and $\{\pi^K, \mathcal{H}^K, f_0\}$ be the restrictions of π to \mathfrak{A}^G , \mathfrak{A}^H and \mathfrak{A}^K and \mathfrak{H}^G , \mathfrak{H}^H and \mathfrak{H}^K , respectively (e.g., $\pi^H(A)f = \pi(A)f$ for all $f \in \mathcal{H}^H$ and $A \in \mathfrak{A}^H$). By Lemma 3.7 and Theorem 3.8 we have $\pi(\mathfrak{A}^G)'' = \pi(\mathfrak{A}^H)''$. Hence, $\mathscr{H}^G = \mathscr{H}^H$ and $\pi^G(\mathfrak{A}^G)'' = \pi^H(\mathfrak{A}^H)''$. We show that $\mathscr{H}^H = \mathscr{H}^K$ and $\pi^K(\mathfrak{A}^K)'' = \pi^H(\mathfrak{A}^H)''$. Let $E_n = \pi^K(\gamma_1(E)\gamma_2(E)...\gamma_n(E))$ and let E_0 be the strong limit of this decreasing sequence of projections. We have $E_0f_0 = f_0$ since $\pi^K(\gamma_k(E))f_0 = f_0$ for all $k = 1, 2, \ldots$. Clearly, we have $\pi^K(U_\sigma)E_0\pi^K(U_\sigma^{-1}) = E_0$ for all finite permutations σ . By the remark after Lemma 4.6 we have $E \in R^G(\omega)'$. Hence, $E \in \{R^G(\omega), E\}'$ so E_0 commutes with $\pi^K(\gamma_1(A))$ for all $A \in \{R^G(\omega), E\}''$. Since $\gamma_1(A)$ commutes with $A \in \{R^G(\omega), E\}''$ and the U_σ generate \mathfrak{A}^K we have $E_0 \in \pi^K(\mathfrak{A}^K)'$. Since $E_0f_0 = f_0$ and E_0f_0 is cyclic in \mathcal{H}^K we have $E_0 = I$. Since $E_0f_0 = I$ we have $E_0f_0 = I$ we have $E_0f_0 = I$. Since $E_0f_0 = I$ we have $E_0f_0 = I$. Since $E_0f_0 = I$ we have $E_0f_0 = I$. Since $E_0f_0 = I$ we have $E_0f_0 = I$ and $E_0f_0 = I$ we have $E_0f_0 = I$ we have $E_0f_0 = I$. Since $E_0f_0 = I$ we have $E_0f_0 = I$ and $E_0f_0 = I$ we have $E_0f_0 = I$ and $E_0f_0 = I$ we have $E_0f_0 = I$. Hence, we have $E_0f_0 = I$ and $E_0f_0 = I$ we have $E_0f_0 = I$ and $E_0f_0 = I$. Hence, we have $E_0f_0 = I$ and $E_0f_0 = I$ we have $E_0f_0 = I$ and $E_0f_0 = I$. Hence, we have $E_0f_0 = I$ and $E_0f_0 = I$ we have $E_0f_0 = I$ and $E_0f_0 = I$. Hence, we have $E_0f_0 = I$ and $E_0f_0 = I$ and $E_0f_0 = I$ we have $E_0f_0 = I$ and $E_0f_0 = I$ we have $E_0f_0 = I$ and $E_0f_0 = I$ we have $E_0f_0 = I$ and Suppose $e \in \{R^G(\omega), E\}'$ and U = I - 2e. Since $U \in R^G(\omega)'$ we have by Lemma 3.7 and Theorem 3.8 that $U \in H^G(\omega)$. Hence, we have $\omega \approx \omega \circ \alpha_U$. Let $\omega_k(A) = \operatorname{tr}(A\Omega_k)$ for $A \in \mathfrak{B}_0$ and $k = 1, 2, \ldots$. Then we have $$\sum_{k=1}^{\infty} \|\Omega_k^{1/2} - U^{-1}\Omega_k^{1/2}U\|_{\mathrm{HS}}^2 < \infty.$$ Since ω_k is pure for each k we have $\Omega_k^{1/2} = \Omega_k$ and (since U = I - 2e) $$\|\Omega_k^{1/2} - U^{-1}\Omega_k^{1/2}U\|_{\mathbf{HS}}^2 = \omega_k(e)(1 - \omega_k(e)).$$ Hence, $\sum_{k=1}^{\infty} \omega_k(e)(1-\omega_k(e)) < \infty$. Since $\omega_k(Ee) = \omega_k(e)$ and $Ee \in R_0'$ and $Ee \in E$, it follows from the sum condition (#), which ω is assumed to satisfy, that $\omega_k(Ee) = \omega_k(e) = 0$ or 1 for all k. Hence, we have shown that if e is a projection in $\{R^G(\omega), E\}'$ then $\omega_k(e) = 0$ or 1 for all $k = 1, 2, \ldots$. Hence, if $e \in \{R^G(\omega), E\}'$ we have $\omega_k(eA) = \omega_k(Ae)$ for all $A \in \mathfrak{B}_0$. Since each unitary $U \in K$ is a linear combination of projections in $\{R^G(\omega), E\}'$ we have $\omega_k(UA) = \omega_k(AU)$ or $\omega_k(UAU^{-1}) = \omega_k(A)$ for all $A \in \mathfrak{B}_0$, $U \in K$ and $k = 1, 2, \ldots$. Hence, $\omega = \omega \circ \alpha_U$ for all $U \in K$. Let Γ be the conditional expectation of \mathfrak{A} onto \mathfrak{A}^K given by $$\Gamma(A) = \int_{U \in K} \alpha_U(A) d\nu(U)$$ where ν is Haar measure on K. Since ω is α_U invariant for $U \in K$ we have $\omega(A) = \omega(\Gamma(A)) = \omega^K(\Gamma(A))$ for all $A \in \mathfrak{A}$. Now suppose ω^K is not pure. Then we have $\omega^K = (1/2)(\rho_1 + \rho_2)$ with $\rho_1 \neq \rho_2$ states of \mathfrak{A}^K . But then $\omega = (1/2)(\tau_1 + \tau_2)$ where $\tau_i(A) = \rho_i(\Gamma(A))$ for $A \in \mathfrak{A}$. Since $\rho_1 \neq \rho_2$ we have $\tau_1 \neq \tau_2$ and hence ω is not pure. But this is a contradiction since $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ and the tensor product of pure states is well known to be pure. Hence, we have shown that ω^K is pure and, thus, ω^G is pure. THEOREM 4.17. Suppose $\omega = \bigotimes_{k=1}^{\infty} \omega_k$ is a product state of $\mathfrak A$ so that ω^G is a factor state. Suppose $\omega_k(A) = \operatorname{tr}(A\Omega_k)$ for all $A \in \mathfrak B_0$ and $k = 1, 2, \ldots$ Then, A) $$\omega^G$$ is of type $I \Leftarrow \sum_{k=1}^{\infty} 1 - tr(\Omega_k^2) < \infty$; B) ω^G is of type $\mathrm{II}_1\Leftrightarrow$ there is a positive trace one matrix $\Omega_0\in R_0'$ (not of rank one) so that $\sum_{k=1}^\infty\|\Omega_0^{1/2}-\Omega_k^{1/2}\|_{\mathrm{HS}}^2<\infty$ and the support of Ω_k is contained in the support of Ω_0 for $k=1,2,\ldots$. *Proof.* Suppose ω , ω_k and Ω_k satisfy the hypothesis and notation of the theorem. Suppose the sum in the second part of (A) is finite. Let E_k be a rank one projection in \mathfrak{B}_0 which maximizes $\omega_k(E)$ with E rank one. Let $\rho = \bigotimes_{k=1}^{\infty} \rho_k$ with $\rho_k(A) = \operatorname{tr}(AE_k)$ for $A \in \mathfrak{B}_0$ and $k = 1, 2, \ldots$. Since the some in (A) is finite a short computation shows that $\lambda \omega \geqslant \rho \geqslant 0$ for some $\lambda > 0$. Since ω^G is a factor state we have ρ^G is a factor state and from Theorem 4.16 we have ρ^G is pure. Since $\omega^G \approx \rho^G$ we have ρ^G is of type I. Suppose now that ω^G is of type II₁. Then $\omega^G \sim_q \tau$, where τ is an extremal trace on \mathfrak{A}^G . Using a result of [14], in [9] it was recently shown that each extremal trace τ of \mathfrak{A}^G is of the form $\tau = \rho^G$ with $\rho = \underset{k=1}{\overset{\infty}{\otimes}} \rho_k$ and $\rho_k(A) = \operatorname{tr}(A\Omega)$ for $A \in \mathfrak{B}_0$ for $k = 1, 2, \ldots$ with $\Omega \in R'_0$ and, conversely, each positive trace one $\Omega \in R'_0$ gives rise to an extremal trace on \mathfrak{A}^G . (This result can be derived for faithful extremal trace from [14] and Theorem II.4 of [2].) Since $\omega^G \sim \rho^G$ it follows from Theorem 4.14 that the implication (\Leftarrow) (B) of holds. Conversely, if the second condition of (B) holds then by Theorem 4.14 ω^G is quasi-equivalent to an extremal trace. REMARK. We believe the implication (\Leftarrow) in statement (A) of the last theorem is actually (\Leftrightarrow). We close by giving generalizations of Theorems 4.13 and 4.14 to arbitrary factor states of \mathfrak{A} . THEOREM 4.18. Suppose ω is a factor state of \mathfrak{A} . Let $\Omega_k \in \mathfrak{B}_0$ be given by $\omega(\gamma_k(A)) = \operatorname{tr}(A\Omega_k)$ for all $A \in \mathfrak{B}_0$. Let S be the set of accumulation points of PRODUCT STATES 49 · the sequence $\{\Omega_k\}$. Let $G(S) = \{g \in G ; U_g\Omega U_g^{-1} = \Omega \text{ for all } \Omega \in S\}$. Then if $G(S) = \{\lambda I\}$, ω^G is a factor state. *Proof.* Suppose the hypothesis of the theorem is valid. From Lemma 3.4 we have $S \subset R^G(\omega)$. Since $G(S) = \{\lambda I\}$ we have $H = G \cap R^G(\omega)' = \{\lambda I\}$. Suppose π is a cyclic *-representation of $\mathfrak A$ induced by ω . Then by Lemma 3.7 we have $\pi(\mathfrak A^G)'' = \pi(\mathfrak A^H)'' = \pi(\mathfrak A^H)''$. Hence, $\pi(\mathfrak A^G)''$ is a factor and this implies ω^G is a
factor state. Following a greatly simplified version of the argument of Theorem 4.14 one obtains: THEOREM 4.19. Suppose ω is a factor state of $\mathfrak A$ satisfying the hypothesis of Theorem 4.18. Suppose ω' is a factor state of $\mathfrak A$. Then $\omega^G \sim_q \omega'^G$ if and only if there is a $g \in G$ so that $\omega \sim_q \omega' \circ \alpha_g$. ## REFERENCES - 1. Aldous, D.; Pitman, J., On the zero-one law for exchangeable events, Ann. Probab., 7(1979), 704--733. - 2. ARAKI, H.; KASTLER, D.; TAKESAKI. M.; HAAG, R., Extensions of KMS states and chemical potential, Comm. Math. Phys., 53(1977), 97-134. - 3. Baker, B.; Powers, R., Product states and C*-dynamical systems of product type, J. Funct. Anal., 50(1983), 229-266. - 4. Baker, B.; Powers, R., Product states of the gauge invariant and rotationally invariant CAR algebras, J. Operator Theory, 10(1983), 365-393. - 5. Bratteli, O., Inductive limits of finite dimensional C*-algèbre, Trans. Amer. Math. Soc., 171(1972), 195-234. - 6. COMBES, F., Sur les états factoriels d'une C*-algèbre, C. R. Acad. Sci. Paris Sér. A-B, 265(1976), 736-739. - DIXMIER, J., Les C*-algèbres et leur representations, Cahiers Scientifiques, Fascicule XXIX, Gauthier-Villars, Paris, 1969. - 8. GLIMM, J., On a certain class of operator algebras, Trans. Amer. Math. Soc., 95(1960), 318-340. - 9. Handelman, D., Extending traces on fixed point C*-algebras under Xerox product type actions of compact Lie groups, J. Funct. Anal., to appear. - 10. MORAN, P., An introduction to probability theory, Clarendon Press, Oxford, 1968. - 11. PEDERSEN, G., On the operator equation HT + TH = 2K, Indiana Univ. Math. J., 25(1976), 1029-1033. - 12. Powers, R., Representations of uniformly hyperfinite algebras and their associated von Neumann algebras, Ann. of Math., 86(1967), 138-171. - 13. Powers, R; Stormer, E., Free states of the canonical anticommutation relations, Comm. Math. Phys., 16(1970), 1-33. - 14. PRICE, G., Extremal traces on some group-invariant C*-algebras, J. Funct. Anal., 49(1982), 145-151. - 15. PRICE, G., Representations of some group invariant C*-algebras, Thesis, University of Pennsylvania, 1981. - 16. WEYL, H., The classical groups, Princeton University Press, Princeton, 1939. B. M. BAKER Department of Mathematics, SUNY at Buffalo, 106 Diefendorf Hall/MSC, Buffalo, NY 14214, U.S.A. R. T. POWERS Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A. Received October 29, 1984.