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PRODUCT STATES OF CERTAIN GROUP-INVARIANT
AF-ALGEBRAS

B. M. BAKER and R. T. POWERS

INTRODUCTION

In this paper we study the restriction of product states of »* UHF-algebras
A = &S B, (where B, is an (n x n)-matrix algebra) to group invariant subalge-

k=1
bras €. The groups G considered are the unitary groups of any *-silbalgebra of
the (n X n)-matrices. For example, we could have G = U(1) X U(3) in the case
n=26, or G=U() X U() x U(l) Xx U4) X U(7) in the case n=14, or
G = U(n) for arbitrary n. The group action is of the obvious (adjoint) product
type (see Section II) and invariant algebras %° are the AF-subalgebras of the fixed
points of A under the group action. We give computable necessary and sufficient
conditions that the restriction of a product state of 2 to A€ yield a factor state
(Theorem 4.13). We determine when such restrictions are pure (Theorem 4.16)
and when such restrictions give type I or type II, representations (Theorem 4.17).
We find necessary and sufficient conditions that the restrictions of two product
states of 2 to AC yield quasi-equivalent representations of A¢ (Theorem 4.14).

In this paper we generalize the results of [4] from the case n = 2 to arbitrary
positive n. Although this paper is self contained, seeing how our arguments in our
earlier paper go for SU(2) and U(1) may make our present analysis of much more
general groups appear less mysterious.

We consider the two important ideas of this paper to be the following. The
first was introduced in our earlier paper and extended here. If #z is a representation
of A we define H%(n) = {ge G ;= ~ mo o, }. In Section III we show that for #-repre-

sentations coming from product states of U, m(AC)’ = n(WF¥)’ with H = H%(x).

The second idea is the use of a probability result of [1] to determine the facto-
riality of the restriction of product states for the case when G is an n-torus (see™
Lemma 4.12). Moreover the proof of Lemma 4.12 relies on techniques developed
in the Aldous and Pitman paper.
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Although most of this paper is concerned with product states many of the
techniques have more! general applicability. For example, in Theorem 4.18 we give
a sufficient condition. for the restriction of a factor state of 2 to U to yield a
factor state and in T%eorem 4.19 we give conditions for the quasi-equivalence of
the restrictions of factor states.

\
2. NOTATION AND DEFINITIONS
\

Let 9, be an (r‘ X r)-matrix algebra. For each k = 1,2, ... let y, bz a =-iso-

morphism of B, with B, and let A, = ® B, be the tensor product of the first n
‘ k=:1

algebras. Note 2, is an (¥" X r")-matrix algebra. We denote by U the C*-algebra

obtained from the no‘rm closure of the inductive limit of the 9, ie., W = Le)o A, .
This C*-algebra is a 1UHF-algebra of type r> (see [8]). "

For each unitary U € B, we define a product automorphism a; of 2 by requir-
ing ay(p(A)) = y(UAU-) for all 4e B, and k=1,2,... . Note that if
A= p(A)ya(As). .. ’)ln(An) then ay(A) = y(UA,U )y (UA,UY. .. y(UA,U™Y) so
@, is completely deteqmined on . Since the 2, are dense in N, a,, is then uniquely
determined on .

Suppose G is 4 group of unitary elements U e B,. We denote by ¢ the

C#-subalgebra of U consisting of w, invariant elements of A with U e G, ie.
|

%IG = {4 eW;a,(d4)= A for all Ue G}.

Note that if H is 3 subgroup of G (H <= G) then Y o A Note that A is
the norm closure of the union of the AY where

i)k(]; —_ {A € ‘l[" ; aU(A) = A4 for ali Ue G}

Since the Y are ﬁni!te dimsnsional algebras U¢ is an AF-algebra (see [5]).

In this paper we will study the restriction of product states to U®. The groups
G which we will congider are not arbitrary subgroups of the unitary group of 8,
but groups which fix a =-subalgebra R, of B,. Suppose R, is a s-subalgebra of B,
which contains the pnit 7 of B,. We will restrict our attention to groups G of
the form,

G = G(Ry)) = {U€ Ry ; U is unitary},

where Ry denotes the clements of B, which commute with R,.

The invariant algebra %C is closely related to the symmetric group or permut-
ation group S of all finite permutations of the positive integers, i.e., ¢ € Sy if
and only if i — o(/) is a one-to-one mapping so that i # ¢(i) for only finitely many
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i==1,2,... . i 6 € S, there is.a unique unitary element U, of 2 so that
Uaylc(A)Ut;l = ya(k)(A)

forall A e B, k=1,2,... and ©(U,) > 0 where 1 is the normalized trace on ¥,
For a permutation ¢ which is a cycle of length n, so o(iy) = iy, for k=1,2,...
....n — | and o(i,) = i,, Price has calculated (see [15}) that U, is given by

U, = ) Z ) yil(ejl jg)yiz(ej;g j:x) s ’}),.”(é’j” j])
where the {e;; ;i,j=1,...,r} are any set of matrix units for 9,.

It follows from Weyl’s classical work on group invariants (see [16] or [15])
that if G = {AI}' = U(r) then A¢ is generated by the U, with c € S, (6 € S, if
o(i) = i for i > n). A similar result we will use many times in this paper is that if
G == G(R,) then Y is generated by y;(Ro) and the U, with ¢ € S,. Here is a proof
of this fact.

THEOREM 2.1. AS is generated by y,(R,) and the U, with ¢ € S,.

Proof. Let BY be the algebra generated by y,(R,) and the U, with g € S,.
Clearly, 8¢ < AC. If S is a subset of A, we denote by S¢ the set of A e I,
which commute with each element of S (i.e., S¢is the commutant of S in A,
and 2, is isomorphic to the set of all bounded operators on a Hilbert space of
dimension n"). We will show (BZ) < (AY)e. Suppose A4 & (BY)e. Since VY con-
tains the permutation unitaries U, it follows that 4 commutes with the U, for
o € S,. Then it follows from Weyl’s theorem that

m

A= 3 ap(UDya(U) - (V)

where the a; are complex numbers and the U, are unitary elements of B,. Since
9(U) € BE for all unitary U e R, we have 4 = y,(U)Ay,(U~Y) for all unitary
Ue R,. Averaging over the unitary group of R, we find,

m

A= Z a(@UN)yo(Us) ... p(U)

i==1
where

o(B) = S UBU-dw(U)

for B € B, and v is Haar measure on the unitary group of R,. Since BS contains
Usaxy for k=2,...,n (a(1, k) is the permutation which transposes 1 and k)
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we have y.(B) = Uy, 1(B)Usi'sy € BS for all Be Ry and k = 2,..., n. Hence,
we have y,(U)Ay,(U ‘15 = A for all unitary U € R,. Then, averaging y,(U)Ay,(U~Y)
over the unitary group of R, we find,

m

A= ¥ 230U U - .- 1V,

' i=1

Continuing this averaging process applied to y(NAy(U™Y) for k=3,...,n
we find,
|

ni

A=Y, wn(eUe(UD) - .. vl p(U).

Let I'(B) = y,(B)ys(B)... y,(B) for Be B,. Then we have

! n

2.1) A=Y a.l'(e(Uy)).

i=1

We will show F((p(Bj) € (UC)e for any Be B,. Suppose Be B,. Since ¢(B) € R,
we have by the polar decomposition that ¢(B) = VT with ¥, € Rj a partial isometry
and T e Ry is positive. Since Ry is finite dimensional V, can be extended to a unitary
V € R;. Then we have I'(p(B)) = I'(WT) = I'(V)I'(T). Since ¥ € G we have I'(V) €
€ (AS)°. Then to show I'(@(B)) € (AF)® it suffices to show that I'(T) € (US)*. We
will show this.

By the spectral‘ theorem we have 7 .= zs +E; where 2,20, E,-- EF € Ry,

| i1

E\E; == 6,;E; and '}, E; = I. Let

i=1

it it, it

Uy, 1y, ..., t)=eE +e2E, + ... + ek

and
[

k Ak e +k =n
12 s ky ik ek ik WK ikt
Flty, ty, ..., t) = y e e T L e TS

ky k) e, k20

Then a straightforward computation shows that

@2n)-* S oNdn L dnFGy, TG 1)) = T(T).

14

| oy

n

Since U(ty, ty, ..., 1) € G we have T(U(t,, t,, . . ., t,)) € (UC). Hence, I'(T) € (AS).
Hence, I'(p(U,)) € (AS)¢ and from equation (2.1) it follows that 4 € (AS)c. Hence,
we have shown that (BE)c< (AC)e. By the double commutant theorem we have
VG > AY. Hence, B = AC. . %
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It follows immediately that A% is generated by y,(R,) and the U, with 6 € Sy
In this paper we will be primarily concerned with product states. Given states

[+e]
o, of B, for k =1, 2, ... the product state w = ® w, is defined by the requirement
k=1

that w(y,(4;)y2(4s) - . . 7,(4,)) = 0 (A)ws(4y) ... ®,(4,) for 4,€e Byandi=1, ...
..., n. This uniquely determines @ on A, and since the A, are dense in A this
uniquely determines «w on . 1t is well known that product states are factor states,
i.e., they induce cyclic *-representations n so that ()" n n(A)" = {AI}.

We will need some estimates on the norm differences of two product states
of . Suppose w :k® w, and o’ ::.® oy, are product states of 2A. For each

=1 =1

k=1,2,... let Q and Q; be the positive trace one elements in B, so that w,(4) =
= tr(AQ,) and wy(4) = tr(4Q;) for all 4 € B, where tr is the trace, normalized
(as will be our convention throughout this paper) so that tr(E) = 1 for a rank
one projection E. It follows from [13] that

where

[ee]
s = [ tr(@y2Q?).
k=1

It follows (see [13] for details) that @ and o’ are quasi-equivalent, denoted w ~ o’

(i.e., they induce quasi-equivalent s-representations) if and only if

Y Qi — Q2 s = } 2- 2tr(Q2Q1?) < oo
k=1

k=1

where [|4]],;s = tr(4*A)"? is the Hilbert-Schmidt norm of 4. We note (as we will

need this in the next sections) that if the above sum isfinite and |QY2 — Q2|5 < 2
for all k£ then |lo — 0’| < 2.

We denote by w® the restriction of the state w of U to the algebra AC.
In this paper we will be concerned with determining when @€ is a factor state
and when of and w§ are quasi-equivalent (i.e., when they induce cyclic -repre-
sentations which are quasi-equivalent) where @, and w, are product states of 2.
We will often make use of the fact (see [7]) that two =-representations 7; and =,
are quasi-equivalent if and only if the mapping ¢ defined by @(n,(A)) = 75(A)
for all A4 in the algebra is o-strongly bicontinuous (or o-weakly bicontinuous).
The extension of ¢ to the weak closures is a x-isomorphism of 7,()"" with m,(A)"".

For the case of factor states the induced representations are either quasi-
-equivalent or disjoint. It follows that if ; and w, are factor states and fjaw; — w,|] < 2
then w, ~ Wy
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3. RELATION BETWEEN n(2%)” AND m()”

Let R, be a =-subalgebra of 8, and let G - G(R,) be the group of unitaries
in B, which commute with R,. Throughout this section R, and G will be related
as just described. In this section we will show that if 7 is a representation of ¥
induced by a product state then n(AC)”" = x(AX)’" where H is a subgroup of G
which can be calculated from the product state .

DErFINITION 3.1. Suppose @ is a =-representation of 9[. We define
R(n) = {4 € By ; n(y,(4)) € n(A°)"}.

| .
Note RC(rm) is a =-subalgebra of R, containing R,. If w is a state of A we
denote by R%(w) the dlgebra R(n) where = is the cyclic #-representation induced

by w. ‘

DerFiNITION 3.2, Suppose @ is a »-representation of . We define

Hn) ={UeG;mouy, > n}.

Note H®(rn) is ? subgroup of G. Again if @ is a state of A we denote by
H%w) the group H%n) where 7 is the s-representation induced by w.

LEMMA 3.3. Rctn) and HS(n) only depend on the quasi-equivalence class
of m, ie., if m ~ then RY(m) == R%(n,) and H(m)) = Hmy).

Proof. Suppose ‘nl and n, are quasi-equivalent «-representations of 2. Then
there is a og-strongly | bicontinuous =-isomorphism ¢ of =, ()’ onto 7,(A)"" so
that ¢(m,(A)) == nz(Ai for all A € . Clearly, we have @(z,(U¢)") = n,(AC)"" so
RS(n)) = RO(my). Sin¢e n; ~ m, and 7 0%y ~ Moy for any unitary U e B, we

q q
have m, oy ~ 7, if and only if myouy ~ m,. Hence, Ho(n,) = HO(n,).
q q
|

LemmA 3.4. Suppose w is a factor state of U and Q. € B, is the uitique
positive trace one element so that tr(AQ) = w(y(A)) forall A e Byand k =1,2,....
Suppose Q is a limiti point of the sequence {Q;}. Then Q € R%w).

Proof. Suppose the hypothesis and notation of the lemma are satisfied. Since
is a limit point there is a subsequence k — g(k) so that Q) —> Q as k — oco.
Let U, = U, where o is the permutation which transposes 1 and g(k). We have

U= Z V1(eij))’q(k)(f’ji)

iJj=1

where {e;; ;i,j=1,. o r} are a set of matrix units for B,. Let (n, 3, f,) be a cyclic
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z-representation induced by w. We show that n(U,) converges weakly to m(y,{€2))
as k — co. Suppose 4, Be N,. Then for k sufficiently large so g(k) > n we have

(n(A)fy, 1(U)) 7(B)fy) = w(4*U,B) =

= Z w(A*y(e; )V (e;)B) =
ig=1

r

= E w(A*YI(eij)Byq(k)(eji))'

ij=1
Since w is a factor state it follows from Theorem 2.5 of [12] that w has the cluster
property so that w(Cy(A)) — w(C)w(y,(4)) — 0 as k — oo. Hence, we have

(n(Afy, (U 7(BYfy) = ¥ (A (e;)Bo(ranesn) =

= WAy (L)) B) - 0(A*y:(2)B) = (n(A)fy, 7(r(Q)n(B)f,)

as k — oo. Since the 7(U,) are uniformly bounded and the vectors n(A4)f, and n(B)/,
with A, Be N, for n < co are dense in # we have n(U,) converges weakly to
7(y,(Q)). Hence, n(y,(2)) € n(A®)" (since U, € A and Q € R%w). Z)

LemMaA 3.5, Suppose w = ® w, is a product state of W and p is a limit
k==1
point of the sequence wy. Then if p(A) = tr(AQ) for A€ B, we have Q € R%(w).
The proof follows immediately from the previous lemma.

LEMMA 3.6. Suppose n is a =-representation of U. Then H%(r) < G n RY(x).

Proof. Suppose U e H®(n) and 4 € R%n). Then there is a sequence A, € AC
so that n(A,) — n(y,(4)) o-strongly as n — co. Since = ~ Moy the mapping
@(n(B)) = n(oy(B)) for Be A is o-strongly bicontinuous. Hence, n(uy(4,)) —
- 1y, (UAUY)) o-strongly as n — oo. But oy(4,) = A, and = is faithful so
UAU-* = A. Since A € R%(n) is arbitrary we have U € R%(n)". A

LEMMA 3.7, Suppose m is a =-representation of W and H = G n R°(n).
Then n{AC)’ = n(AH)",

Proof. Since A? > A® we have n(WH)’ = 7(ACY". By the definition of RE(x)
we have n(y,(R%(n))) < n(NC)”’". As was pointed out in the last section, y,(R(n))y
and AC generate Y. Hence, n(AC)"’ < =(AH)"". Z

oG

THEOREM 3.8. Suppose w = &® w; is « product state of W. Then
k=1

HSw) = G n R%w).
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Furthermore, let ® be the conditional expectation of B, onto R(w) which preserves

.the trace. Let @, (A) = w,(P(A)) for A€ B, and let 0 = @ &,. Then w ~ .
k=1 aq

Proof. Suppose w, ® and @ are as given in the statement of the theorem.
‘We will begin by proving o ~ .

Suppose and @ are not quasi-equivalent. Let w,(4) = tr(4Q,) for 4 € B,
and k=1,2,.... Then @,(A) = tr(P(4)Q,) = tr(AP(Q,)). Since w and @ are
not quasi-equivalent we have

e 2
T IR — S = oo.

k=1
Let S, = &/ — ‘p(‘Pk)l/g; se == [[Sellus and Ty == Qif* + O(2,)'". Let

[\}
| N :
A, — S exp(—; tTk)Skexp(%— ka)dt-

‘The hermitian element 4, € B, is the unique solution to the equation (1/2)(4,T, +
+ T,A,) = S, subject to the requirement that the null space of A4, contain the
null space of T, (se? [11] for a general discussion of this equation). One property
of the A, that we shall need is that ||4,}| < 1. To see this suppose 1 is an eigenvalue
for 4, and f is an associated eigenvector. Then (f; S.f) = (1/2)(f; (4T, + T A)f) ==
= Af, T,f). Since T, > S, and T, > — S, we have {4 < 1. Hence, ||4,] < 1.

Since the ope%ators, sitS., A, and Q, are uniformly bounded in a finite
-dimensional space, there is by a routine compactness argument (see the proof
of Lemma 3.5 of [4] for details) a subsequence k — q(k) so that g(1) > 2,

haid 2 X,
2 ”Sq(k)HHS = 2 Saqr) = 09,
k=1 Kool

|

-1
ﬁq(k)Sq(k) > X, Quuy—Q and Ayy-Y

as k — oo. Let Q(n) be the first n numbers of the subsequence k — g(k), i.e., Q(n) =
= {g(1), g(2),...,g(n)}. Let Q be the union of the Q) for n=1,2,... . To
avoid the cumbersome subscript g(k) we will write 4, — Y as k - oo in Q. With
this notation we have

3.0) Y si=o00, 718X, 2, -Q and A4, 7Y

ke @

as k - o0 in Q.
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Let H = G n R%w)" and let I' be the conditional expectations of 2 onto A7
given by

I'4) = S ay(A)dv(U)
H

where v is Haar measure on H. Let W= W*e B,. We will specify W more
precisely later on. Let

C.=2Z;1 Y, T(p(W)y(4y) — @ (4,))

ke O(m)
with
Z,= ) %
ke Q(m)
set
B = S UWU-Y(U)dwWU)
i

with

AU) = tr((X — (1/2)XY — (1/2)YX -+ YU-'XU)U-XU).
Note |A(U)| < 3. We will show that

m(U(1)) = n(exp(itC,)) - n(exp(ity,(8))) = n(V())

strongly as n — oo, where (n, #,f,) is a cyclic =-representation of U induced
by w and U,(t), and V(¢) are defined as implied above.

Consider vectors fe # of the form f = n(y(XD)y(X2) ... vu(X,))fe with
i/l =1 with X; € B,. Since the linear span of such vectors is dense in # and the
U1) and ¥(r) are uniformly bounded, it is sufficient to show that {n(U,(¢) —
— VO = o,(U,) = VO)*(U() — V(1)) >0 as n—oo, where o, (4)=

[
== (f, n(A)f). Note that w, = & w; is a product state with w; = w, for k& sufficiently
k-=1

large (k > m). Now we have

lin(Une) — V(O * = 2 — 2Re(w(U()*V(1)))-

Differentiating U,(1)*V(r) and integrating the resulting differential equation we find

U V() = 1 — iS Uy(s)*(C — 1BV (5)ds.
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Inserting this in the above expression we find

t

I mULE) — VO I = 2Re( i S AU ()(C, — vl(B))V(S))dS) <

(3.1)

t

< 28 (€ — P(BYV(s))f]| ds.

If g = n(V(s))f then w; and w, are product states which differ only on ;-

Since n(¥(s))f is of the same general form as f and since the estimates we wil

\ 0
obtain are independent of the first few terms (w;) of the product state w, == ® wy

| ho=1
we will simply replace n(V(s))/ by f in estimating the right hand side of inequality
(3.1). Now we have '

C, — y(B) = Z;1 ), (yl(uwu—l)Lk(U)dv(U)
keQ(n)J
' H

with
L(U) = p(UAUY) — B(A,) — sif(U).

[e]
Using the fact that @, == ® w; is a product state we have
ka1

TG — 7B 1P = w, (G, — yi(B))Y) =

N Sw;(Ulwu;1Ugwug-l)w,(Lk(Ul)L,.(UZ))dv(Ul)dv(Uz),

k,je g(m
|
Now for k # j we have w (L (U))LAUy)) -~ w (L (U)o (Li(Uy)). Hence, we have

HTC(C" - ‘yl(B))f“z =

(3.2)
- Sw’l( U U UV Us N E (U Fi(U) — Go(Us, U)AW(U3)dn(Uy)
where
F) =77 Y L)
ke O(n)
and

GUy. Uy) = Z;® E wf(Lk(Ul)Lk(U’_’)) - wf(Lk(Ul))wf(Lk(UL’))'
| ke Q@)
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We will show that ||n(C, — y,(B))f{| = 0 as n - oo by showing the F, and G,
are uniformly bounded and tend to zero pointwise (in fact, uniformly) as » — oco.
We begin with F(U). We have

(3.3) w (L(U)) = of(UAUY) — @A) — siflU).
For 4 sufficiently large we have w;, = wk: We have
w(UAU™Y) — o (A4,) = tr(QUA U — QP(A,)) =
= r(UQU — S(2)4y)-
Since QI = (12T, + S,) and ®(Q)2 = (1/2)(T, — S,) we have
O {UA U — @A) = (10U (T, — S + 28)2UA, — (T, — S.)2A).

Since T, — S = 29(2,)"* commutes with Ue R%w) we have

w,\.tUAkU‘]-) — @ (Ay) = tr(U S UL 2WA, T, + T A)) —
G4 — (1/2) (S, U-'S,U + U~LS,USA,) + tr(U~1SEUA,).
Since S, == (1/2)(4, T, + T,A,) we have

o (U4 U — @& (4,) =
= tr{(S, — (1/2)S, 4, — (1/2)4, S, + AU 'S . UYU-1SU).

I J,Ke B, with [|[J]| <1 and [[K|| < 1 then [tr(SJSK) < VS|l SiKllus <
< ||Sellrs == s2. Since |[U}l = U~ = | and 4]l € 1 we have

lo(UAUY) — @ (A < 3s%.

For k sufficiently large we have w; = w, so from equation (3.3) and the fact that
1/(U)) € 3 we have
0 {(L(U)) < 6s¢

for k sufficiently large (k > m) independent of Ue H. Since Z,== Y, s we
ke O(m
have that F(U) is uniformly bounded. In fact, we have limsup|F,(U)] < 6. As

Kk —co in Q@ we have from (3.0) that

Slz‘z(a)k(UAkU—l)_w;c(Ak)) -
3.5
- tr{(X—(1/ )XY —-(1)2YYX + YU XU XU)=f(U).
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Hence, s; *w (L (U)) ~ 0 as k — oo in Q. Hence, |F,(U)} —» 0 as n — oo for U e H.
Since the F,(U) are uniformly bounded and converge pointwise to zero the terms
coming from F,(U;)E,(U,) in equation (3.2) go to zero as n — oo.

Now we consider the expression for G (U, , U,) in equation (3.2). For k suffi-
ciently large (k > m)!we have wy = w,. A small computation shows that for k > m
we have

WA LAUYL(U) — 0 {L(Up) o (Ly(Up) =
= HQUAUT WA Us ) — QU AUT Y QU AU,
Computations of the kind made in equation (3.4) show
te(Q, U, ALUT Y < || Tllus I Sellys + terms of order ||Sk”I2{S'
Hence, tr(QkUlA,‘Uf'l‘) < (constant) s,. We have

|
tr( QU AU U A, U )2 = 1te(QY2U, A, U U, A, Us '@ <
|

< t(Q U ALUT Y tr(Q U, A2 U Y.

Calculations like those done in equation (3.4) and repeated use of the inequality
tr(724}) < 2s¢ (derived by noting that s} = tr(S2) = tr((1/4) (4, T, + T A)?) =
= (1/2) te(TRAD) + (1/2) tr(T AT Ar) > (1/2) te(TEAZ)) shows that

tr(QU,45UTY) < (constant) s} .
Hence, tr(QkUlAkaleAkUgl) £ (constant) s;. Hencz, we have (for k > m)
!
o (Ly(UyLy(Us)) — o (L (U)o ,(Li(Up))| < (constant) s .
!

Since the expression for G,(U;, U,) has a Z;* term multiplying the sum which is
bounded by a consg;nt times Z, we see that G,(U,', U,) — 0 uniformly as n — co.
Hence, we have from equation (3.2) that ||n(C, — y(B))fl| -0 as » - co. Then
it follows from inequality (3.1) that ||n(U,(t) — V(£))f|l >0 as n —» oco. Hence,
we have shown that n(U,(z)) = n(V(r)) strongly as n - oco.

From Lemma 3.7 we have m(WH)”’ = n(AC)”. Since C,e AC and U,(¢) =-
= exp(itC,) we have n(V (1)) € n(AC)”". Since V(1) = exp(ity,(B)) we have n(y,(B)) €
€ n(A€)". Hence, B € R%w).

We recall that

B = S UW U-f(U)dv(U).

H
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Since @ can be expressed in the form

(3.6) P(4) = ‘ UAU - dv(U)

"

and v is invariant under left and right translation we have ®(UWU-Y) = &(W).
for U € H. Hence,

3.7) >(B) — S SOV (U)dW(U).
H

From relation (3.5) we see that s;¥w (U4, U™Y) — @,(4,)) = f,(U) - f(U) as.
k — oo in Q. Since @,(4) = w (P(A4)) it follows from (3.6) that

S];.(U)dv(U) =0 and hence, Sf(U)dv(U) =0.

H

Hence, from (3.7) we have that ®(B) = 0.

Next we show that for some choice of W = W* e 8B, we have B # 0. To-
this end suppose B=0 for all choices W = W+ e 8B,. Then for all hermitian
A, W e B, we have

tr(4B) = S tr(AUW U-1)f(U)dw(U) == 0.

We recall that f(U) = tr(XUX—(1/2)XY — (1/2)YX)U™Y)) + te(X2UYU"?Y). Since-
the above expression is zero for all choices of hermitian 4 and W and f(U) is a
linear combination of two terms of the form tr(4U WU-') with 4 and. W chosen
appropriately, it follows

Sf(U)?dv(U) - S U PT) = 0.

But this is a contradiction since f(I) = tr(X(X — (1/2)XY — (1/2)YX + XY)) =
== tr(X*) =1 and f is continuous. Hence, for some hermitian We B, we have
B #0.

We have finally reached the desired contradiction. By assuming w and @
are not quasi-equivalent we have constructed a B € R%w) with B # 0. Since @ is
the conditional expectation of B, onto R%(w) preserving the trace we have &(B) = B.
But we have shown that #(B) = 0 and B # 0. Hence, we have shown that o ~ @..
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The proof of the first statement of the theorem is now easy. From Lemma 3.6
we have H%w) = G n R%w)’. Since @ is invariant under oy, with Ue H = G n
N R%w) we have H%@)>G n R%w)'. Since w ~ @ we have from Lemma 3.3

that H%(@) = H%w). Hence, H%w)= Gn R%w), by Lemma 3.6.

4. FACTOR STATES OF ¢

Let R, be a =+subalgebra of B, and let G = G(R,) be the group of unitaries
in ¥, which commute with R,. Throughout this section R, and G will be related
as just described. The results we obtain are valid for any choice of R,. Throughout

this section the word projection will mean hermitian projection.
0

In this sectiont we analyze when the restriction of a product state w = ® oy
k=.1

to N“ is a factor state (i.e., it induces a factor representation of 2°).

We determine when they are pure states and we obtain necessary and sufficient
conditions that two such factor states be quasi-equivalent.

We apologize for the complexity of the following definition. Its purpose is
to eliminate certain problems associated with finite-dimensional representations
which would otherwise obscure the statements of our main results.

DEFINITION 4.1. Suppose w is a state of . We say £ € B, is the G,-support
projection of wif E is the smallest projection in Ry so that w(y,(E)) = 1 for all
k= 1,2,.... |

We say a state w has minimal G -support if for every projection e € Ry so
that w(y(e)) =1 e‘xactly once, say for k = k;, and w(y(e)) = 0 for k # k,, then
there is a projection fe Ry with /"< e so that w(yko( f)) =1 and fe, is either zero

or a minimal projection in Rg for each minimal central projection e, € Ryn Ry.

We show that if w is a state of A which is not of minimal G,-support
then o can be modified to produce a quasi-equivalent state o’ which has minimal]
G -support and w'and o’ coincide on AY (i.e., w® = w').

Suppose w i$ a state of A and e € R} is a projection so that w(y,(e)) =1

and w(y(e)) =0 for k = 2. Suppose ¢,,.. ., e,, are the minimal central projections
in RyN Ry so that ee; 0 for i=1,...,m. Let {e;i,j=1,..., 5/} be matrix
units for e, Ry = Rge, chosen so that i) < e for k=1,...,m. Let

) = 33, AN ()

k=11=1

for A e U. Now ‘i(,,G is spanned by elements of the form A, = U y,(4)ys(4y) ...
. 7(4,) with 4;'e Ry and ¢ a permutation so that ¢(i) =i for i > n. Because
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w(A) = w(y(e)Ay(f — e)ys(I — e) ... y,(I — ) for all AeA¢ it follows that
w(Ay) = 0 unless the permutation o fixes one (i.e., a(1) = 1). If (1) = 1 it follows
that w’(4,) = w(4,). Hence, w’'| AS = w| AG. Since n is arbitrary we have »'¢ = .

m
Let =Y, e, We have that £ < e and w'(y,(f)) — 1 and fe, is either zero or a
k=1

minimal projection in Ry for each minimal central projection ¢, € Ry, N Ry.

Hence, we see that if w is a state of A we can, modifying @ in the manner
indicated for a finite number of & (in fact, the number of modifications must be
less than r/2 where B, is an (r X r)-matrix algebra), produce a state @’ which is
quasi-equivalent with @ such that @’ has minimal G support and «'¢ = 0% If

(=]
® = ® w, is a product state then the modified state w’, is also a product state
ke:1
© , .
o = ® o, with w; = o, for all but a finite number of k.
k=1 :

DEeFINITION 4.2. Suppose w is a state of 9. We define M%w) to be the set
of projections ¢ € Ry so that

o0

Y, o)l — w(ye))) <oo.

k=1

We define N%w) to be the set of projections e € Ry so that

o

Z w(y(e)) < oo.

k=1

Note N%(w) = M%w). The next few lemmas lead up to Theorem 4.7 in which
we determine M%(w) for product states and its relation to R%(w).

LemMa 4.3, Suppose @ = ® w, is a product of W and e M%w). Then
k=1
e e RS(w)'.

Proof. Suppose the hypothesis and notation of the lemma are valid. Suppose
for each k=1,2,... o (A4)=tr(4Q,) for all 4 e B,. Suppose U(r) = exp(ite).
We show U(t) € H%w) for all real r. We have

Ut € Ho®) = © ~ ooy = T 1A — UM QP UD)|fks < oo.
k=1

We have

QU2 — U()~QM2U(1) s = 4(1 — cos())s,
with
S, = tr(QiPe QYA — e)).

2 — 2110
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Since s, < tr(eR,) = w(e) and s, < t((/ — e)Q) = w (I —e) we have s, <
< 2oe)(] — wye)). Since e € M%w) we have

3 oM — U0 U() s = 3 A1 — cos@)s, <
k.1

k=1
<16 3 01 — wyfe)) < co.
k=1

Hence, U(t)e HS(w)! By Lemma 3.6 we have H%w)cGn R%w). Hence,
e e RG(C{))’. 7/

We remark that|one can prove Lemma 4.3 holds for any factor state w of 9.

LEmMMA 4.4, Srppose w=Q w, and ' =& w; and w ~ w'. Then
k=1 k=1
MY w) = M%) and N%w) = N%w').
Proof. Suppose the hypothesis and notation of the lemma are valid. Suppose

ee M%uw) so Y, w &)l — wle)) <oo. For each k=1,2,... and 4e€ B, let
k=1

pi(A) = w(e)*w(ede) if wle) = 1/2 and p(A) = o (0 — e) ‘o ((l — e)A(I — &)
if w(e) < 1/2. Let p.= ® p;. We will show o ~p
k=1
Let x, = w,(e)~Y% if w(e)=1/2 and x, = w (I — )~ Vi1 — e) if w,le) < 172.
Let C, == x1X;... X, and p(A) = o(C,AC,) for 4 € A. Note p,| A, = p| A,. Now
a routine estimate shows ljo — p,|| < 2(1 — |w(C,)*)*? (see [13], Lemma 2.4). We
have [w — p|| = lim[(@ — p)| A,|! < lim2(1 — |w(C,)[*)*®. We have

(G2 == 8,8 ... 5, With s, =~ w,(e) if o (e) = 12
|

and s, == o (I — e) if we) < 1/2.

Since 1 — 5, < Zwk(el)(l — wy(e)) we have }7 1 — 5, < oco. We have
k=1

n—00 k.=m

s=HIm|{o(CH?> = 5155 ... Sy (l — Yy, a —sk)).

' o<1
Since 5, > 1/2 for all k and ¥} 1 — 5, < oo we see from the above inequality that
k=1
5 > 0. Hence {lo — gl <2(1 — s)* < 2. Since w and p are factor states we have
w ~ pP.
q
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Since w ~ @’ we have p v w’. Therefore, o’ and p are asymptotically equal
q

(see [12], Theorem 2.7) so there is an integer n so that ||(w’ — p)| AE|| < 1, where
W= & B, is the relative commutant of A, in A. Let ¢, = ple)e + p (I —
[ YRS | '

— eI —e)and E,, = €,,1€,45--- €,,- We have 2E, — Te WS and ||2F, — I = 1.
Hence,
lw'QRE,, —I) — pQRE,, — I)|] =2 (l | | w,’c(e,‘)) <1,

k=n+1.

(o]
for all m. It follows that the infinite product JJ wi(e,) convergesto a non-zero
. k=n+1

limit. Hence, we have Y, I — wi(e,) < co. Since e, is either e or (I —e) we
k=1
[o0]
have | — wi(e,) > wy(e)(1 — wi(e)) for each k = 1,2, ... . Hence, }, wile)(1 —
k=1
— wj(e)) < co. Hence, we have shown that e € M%(w) implies that e € M%(w").
The same argument gives the reverse implication so we have M%(w) = M%w’).

Now suppose e € N%w) so Y] oye) <oco. Then e€ M%w) = M%w') so
k=1

Y wp(e)(l — wy(e)) < co. Since @ ~ o’ we have ® and o' are asymptotically
k-1 .
equal so |w,(e) — wi(e)l - 0 as k — oo. Since w,(e) = 0 as k — oo we have w(e) - O

[>0]
as k — oco. Hence, ¥, wi(e) < oco. Hence, N%w) = N%w’). The same argument
k==1

gives the reverse inclusion so N%w) = Nw’). %

LEMMA 4.5. Suppose o = @ wy is a product state of W. Suppose ey, e, €
k=1

€ M%w) and eje, = ese;. Then ee, € M(w) and e, + e, — e,e, € M%(w).

o0
Proof. Suppose w = @ w, and e; and ¢, are commuting projections in
k=1
[ee]

MC(w). From the proof of the previous lemma there is a product state p = ® p,
k=1

so that py(ey) == 0or | forallk=1,2,... andp ~ o Since by the previous lemma

MC(w) == M%(p) we have § pilex)(l — pyley)) < oo. Let Q = {k; pi(e;) == 1}. Then

k=1

Y adeedl — pleed) = % pledl — pler) <

keQ

< § prlel1 — piley)) < oo.

k=1

Hence, e,e, € M%(p) = M%w).
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To show e, + e, — e;¢, € M®(w) we proceed as follows. Since e, e, € M%(w)
we have [-—e;, I'— e,e M%w). Hence, (I — e,)(I — e,) € M%(w). Hence,
e+ ey, — eyey =1 — (I — e X — e,) € M%w). %

| o
LeMMA 4.6. Suppose w = @ w,. Then NS(w) contains a unique maximal
k-1

projection e, so that iff e € Ry is a projection then e € N°(w) if and only if e < e,.
Furthermore, ey € R°(w) n R(w)'.

Proof. Suppose w = ® w,. Suppose ¢, e, € N%w). Let e =e,ve, (e,
k=1

e is the smallest projection in B, with e > ¢; and e > ¢,). Note e € Ry. Since ¢;
and e, are in a finite dimensional algebra there is a constant 2 so that J(e, -+ e,)>e¢-
Then

2 wle) < 2 Y wiler) + wyles) < oo
! k=1 k=1

Hence, e € N%w). Let e, be the smallest projection in %, so that e, = e for all
e e N%uw). Since B, is finite dimensional ¢, =e,ve,v ... ve, with ;e N(w)
(i.e., e, is the sup of a finite number of projections in N”(w)). Hence, ¢, € N%(w).
Clearly if e € R is a projection then e € N(w) if and only if ¢ < ¢,.

Since ¢, NS(w) = M%w), it follows from Lemma 4.3 that e, e R%(w)'.
We show e, € RS(w). Suppose Ue Hw). Then w ~weay and by Lemma 4.4

we have N%(w) = N%w - uy). Hence, Ue,U =t € Nw). Since e, is maximat in N%(w)
we have ¢, > UeOU‘ll. Since e, is finite dimznsional we have e, = Ug,U~!. Hence,
e, commutes with all Ue H%w). By Theorem 3.8 H%w)= Gn RS(w) so
€y € R°(w)’ == R%(w), Hence, e,€ R%w)n R°(w)".

o0
REMARK. We nPte that if o = ® w, is a product state with G, -support
! k=1

projection E, then E'e M%(w), and, hence, £ € R%(w).

' (o]
THEOREM 4.7. Suppose o = ® wy is a product state of W. Then there are

k-1
orthogonal projections ey, ey,. .., e,€ M%w)n R%(w) n R°(w) so that [= e, -
+€1+ +e,,,

[ee] (o]

Y, ole) < oo and Y wle) =00 fori=1,...,n

k=1 k=1
and every projection e € M%(w) is of the form ¢ = fy + se1 -+ So€y 1 - . . -+ S,€4

|
where s; =0 or | for i = 1,...,nand f,€ Ry and fy < e,. (Note e, may be zero.)
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Proof. Suppose @ = ® w,. Suppose e€ M%(w). Let {E;;i=1,...s} be
k-1

the minimal central projections of R°(w)n RC(w)’. Let ¢; = Ee for i == 1,...,s.
Clearly e == e; +...-+ e,. Suppose 0 # ¢; # E;. We will show that ¢; € Nw).
Let {f; ;i = 1,...,s;} be minimal orthonormal projections in £;R°(w)’ — R%(w)'E;
(note that £;R®(w) is an (s5; X s;)-matrix algebra) chosen so thate; = f; 4 f5 + . ..

.+ fu With 0 < m < 's;. Let W be a unitary in E;R%(w)’ (consider E; the unit
for E,Rc(w)’) so that WfW=2=f .., Wf,..W=2=f and W W -1 =f fori# 1
ori# m- 1. LetV=1— E + W(soVisunitary in 8,). Since ¥ e G n R%(w) =
= H%w) we have @ ~weay. Then by Lemma 4.4 we have M%(w) = M%w-ay).

Since e € M%w) we have VeV~ and V(I — e)V-1 are in M%w). Since e, V(I —
— e)V~te M%w) are commuting projections, we have eV (I — e)V -1 = f, € M%w)
by Lemma 4.5. '

We will show that f; € N%w). To this end suppose f; ¢ N%(w). Then ¥, wy(f;) =

k=1
= o0. Since f, € M%w) we have ¥ o (f)(1 — o (f})) < co. Hence, there is a
k- 1
subsequence k — g(k) so that o, (f;) = 1 as k > oco. Since Ve H%w) we have

w ~ woday,. Since w ~ weoa, these states must be asymptotically equal (see [12],
q q

Theorem 2.7) so a(y(f)) — wle (y(f;)) = 0 as k — co. But this is impossible
because w,u(f1) = 1 as k - oo and wuy(VAV™Y) = 0yu(fur) = 0 as k - co.
Hence, f, € N%w).

Let e, be the maximal projection in N%(w). By the previous lemma e, € R(w) 1
N R%wY)'. Since f; € N%w) we have f; < ¢,. Since E is the smallest central projection
with E; > f; we have E; < e,. Since ¢; < E; we have ¢; € N%(w). Hence, we have
shown that if 0 # e; # E; then ¢; € N%w). Hence, each ¢ € M%w) can be written
in the form e = f; + £ with fy € Ry and f, < ¢, and 7 is a central projection of
RS(w) n R(w)" which is orthogonal to e,. Furthermore, since f;, e € M%(w) are
commuting projections we have from Lemma 4.5 that (I — fy)e = h e M%w).

In the decomposition e = f; - /# consider the /’s that occur. Suppose h;
and h, are two such /’s. Since they lic in the center of R®(w) they must commute.
Then by Lemma 4.5 hh, € M%(w) and Ay -+ hy — hihy € M%(w). Hence, the set
of such #’s form a complete Boolean lattice. Let e, , ¢,,. . ., ¢, be minimal projections
in M%(w) with eye; = 0. Then each h € M%w) with he, = 0 can be written in the
form h = s;e; + sz, + ... + S,e, With s, = 0 or 1. Hence, each e e M%w) can
be written in the form e = f, + # which is the form given in the statement of
the theorem. N
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' =)
LeMMa 4.8. Suppose w = ® w, and e is a central projection in RO(w)
‘ k=1

N R%(w)’. Suppose

(3) 0 < ¥ ofe)l — wle)) < oo.

k=1

Then w® is not a fadtor state.

Proof. Assume the hypothesis and notation of the lemma are valid. Let
{m, ;) be a cyclic #-representation of A induced by w. Let #¢ be the closure
of {m(AC)f,} and let (n%, #°C, f,) be the restriction of n to AY and H#C (i.e., n(4A)f=
= n(A)f for all A€ AF and fe#°). Note (r%, #C, f,) is a cyclic *-representation
of AC induced by wC.

Let H - H%w). Let AH¥ be the closure of {n(AX)f,} and let (¥, 5", f,) be
the restriction of 7 to A7 and #°¥ (i.e., n¥(A)f = n(A)f forall 4 € A? and fe ™).
Note (n¥, #°7, f,) is a cyclic «-representation of A7 induced by w*. From Lemma 3.7
and Theorem 3.8 we have n(AC)Y’ = n(A¥)"". Hence, #° = #" and (A%’ =
== P (AHY",

Since y,(e) € A¥. we have nf(y(e)) € n(AC)’ for k=1,2, ... . Let

Jo= Y ) — o)l and U,0) = explitdy)
k=1

‘We will show that n”(U,(¢)) converges strongly to a one-parameter unitary group
in the center of n%(AC)"’. Suppose 4 € L. Then using the fact that w is a product
state we have forn > m > r,

I (U(8) — U,.,“It))n‘;(fi)foll2 = 2w(4%4) — 2Re (4*U,(1)* U ()4) =

= 20(4*4)(1 — Rea(U,()*U,(1))) =

= 20(4*4)(1 — Rew(exp(it(J, — /) < o(d*A)lo((/, — J,)) =

= o AE Y, ol — o).

k=m+1

Since the sum (%) is finite we have |[z7(U,(t) — U,(t)) n°(4)fy]l = 0 as n, m —» oo
and the convergence Hs uniform for ¢ in a compact set. Since the vectors n%(4)f,
with 4 € ¢ forsomer =1, 2,... are densein #¢ and the n¥(U,(t)) are uniformly
bounded we have nf(U,(t)) — V(t) strongly as n — oo where V{(¢) is a strongly
continuous unitary group. Since nH(U,(2)) € n°(AC)’ for each n we have V(1) e
e n%(ACY". For A e NS we have U,(t)A = AULt) for n > m. Hence, V() n1¢(4) =
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= nO(A)V(t) for A € AS. Since the AY, are dense in A we have V() e nC(ACY.
Hence, ¥(t) is in the center of n%AC)"’. A straightforward computation using the
fact that the sum () is neither zero nor infinite shows that |(fy, V(E)fo)l =
= Jim |&(U(t)| < 1 for some ¢ # 0. Hence, V(f) is not a multiple of the identity

n—c0

for some ¢ # 0. Hence, 7°(2A°)" is not a factor and, thus, w€ is not a factor state. 7

THeorREM 4.9. Suppose {Q,, Qy,. .., Q,} is a partition of the positive integers
into s disjoint subsets. Suppose {e,,e,,..., e} are orthogonal central projections
in Ry 1t Ry. Suppose W(Q;) = @ B, and A°(Q,) are the uy invariant elements of W(Q,)

keQ;

with U e G. Suppose w; are states of N(Q,) so that wye)) =1 for ke Q;. Let
s 8

w=® o on W=@® WQ,). Then o is a factor state if and only if &% is a
i=1 i=1

factor state of C(Q,) for each i=1,...,s.

Proof. Suppose the hypothesis and notation of the theorem are valid. Let
(n, #, f,) be a cyclic »-representation of AC induced by w®. Let i — r(i) be the
function defined on the positive integers by the requirement that r(k) = i if and
only if ke Q;. Let E, = limn(y,(e,q))va(es2)- - - Val€rmy). Clearly E, is the limit

of a decreasing sequence of projections in n(U°)"" so E, is a projection in n(A°)".
We have E, # 0 since Eyfy = f,.

Suppose ¢ is a finite permutation. Then we have n(U)E;n(U;Y) = E, is
a projection and E, = E, if ¢(Q;) = Q, for each i=1,...,s and E,E, =0 if
o(Q;) # Q; for some i =1,...,s. Let @ be the set of equivalence classes 8 of
finite permutations where o, ~ o, if and only if 6,(@;) = 6,(Q)) for i=1,...,s.
Then for each 8 € ©® we define the projection E, = E, for ¢ any permutation in

the equivalence class 6. One easily sees that the E, form an orthonormal set of
projections and I =Y, E,.
fec o

One can show that E,e n(A°(Q)) for i=1,...,s. Now A¢ is the linecar
span of elements of the form Ay = U,y,(4,) y5(4y) . . . yu(A4,) with 6(i) = ifori > n
and 4;€ R, for i = 1,.. ., n. For such an element one finds RyEqn(4,)E, = 0 unless
o(Q;) = Q;fori = 1,..., s or equivalently unless ¢ = 0,0, ... o, where ¢;(k) = k
if k >nork¢Q,;. Then if 4, is an element so that E,n(A4y)E, # 0, by regrouping
the terms in A, one can write A, in the form A, = Us D, UdzDg e Uast = BB, ...
... B, where the D; are products of the y,(4,) with k€ Q; and hence, the B; are
elements of AC(Q;). Hence, it follows that if 4 € AZ then E,n(A)E, is a linear

combination of terms of the form Eyn(B,B,... B)E, with B;e U%(Q,). Hence
we have

strong closure of Egm(WC)E, =

= strong closure of E,n(A(Q,) ® A%(Qy) ® ... @ U(Q)E,.
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Now suppose w? is a factor state for eachi = 1,..., 5. Suppose C € n(A°)" n
n n(ACY. Since Eye n(ACY’, CE, = E,C and E,CE, is in the center of E,n(U%)E,
(acting on Eo). But we have the center of E,n(A°(Q;) ® U°(0,)®...QA%(Q,))'E,
is the center of Eyn(AC)" " Eq. Since 0 = 0, ® 0, ® ... @ w, 50 w(A,A,... Ag) =
= 0y(4)wy(A4y). .. w(4,) for 4; € AS(Q,) and since wf is a factor state we have
En(AC(0) @ UYQ) ® ... ® N°(Q))'E, is the tensor product of factors
n,(A°(Q;))” where n; is a »-representation of A(Q,) induced by w€. Since the tensor
product of factors is a factor we have E,CE, = AE,. Hence, Cfy = CEyf ==
= E,CEyfy = ’fy. Hence, Cn(A)f, = n(A)Cf, = in(A)f, for all A e A°. Hence
C = JI. Hence, the center of n(A®)"” is trivial so w® is a factor state.

Next suppose one of the states wf is not a factor state. Then E,m(U°(Q,) ®
® UYQY) ® ... ® UC(Q))'E, is not a factor and there is a C, # AE, in its

center. Let

C =Y (Uye)Con(Usdy)

fe @

where ¢(0) is a permutation in the equivalence class 0. A straightforward computa-
tion shows that n{y(A))C = Cn(y,(4)) for Ae Ryand k == 1,2,... and n(U)C =
== Cn(U,) for any finite permutation ¢. Since the U, and the y,(4) with A€ R,
generate A® we have C e m(AY. Since Ce n(A°)’ and E,CE, # AE, we have
7(A°Y" is not a factor. %,

Lemma 4.10. Suppose o = ® o, and o = weoy for all UeG. Suppose
k-1

e is a minimal central projection in Ryn Ry and wi(e) =1 for all k =1,2,... .
Then w° is a factor state.

Proof. Suppose & satisfies the hypothesis and notation of the lemma. Let
(n, #, f,) be a cyclic x-representation of A€ induced by w. Let {e;; ;7,7 =1,...,¢}
be matrix units for M, = eR, = Rye and {e¢j;;i,j= 1,...,s} be matrix units
for N, == eR} == Rje. For ¢ a cyclic permutation of (i}, is,..., i) with ¢(i) =
=4, for k =1,...,n — 1 and o(i,) = i; we define

[ 4

Va t . Z yi1(€j1 j{)))’iﬁ((’jgﬁ) s 'yin(ejnjl)
Jp k=1 :
‘ Sy iy s , ,
Wo = . Z yil(ej1j2)yfz(ej2j3) o yin(ejnj)).
Jire oo Jp=1
If 6 =00,...0, is a product of cycles we define V, = Vt,ch,n ...V, and

W, =W, W, ...W, .
1 2 nﬂ
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The combined matrix units {e;;er; 57,/ ==1,...,r and k, I =1,..., s} form
a complete set of matrix units for the matrix algebra eQ,e. Then one can choose
a set of matrix units {E;;} for B, sothat £,, = e,,)i¢mie fOr p, g =1,2,..., rs.

If one constructs the permutation operators U, in terms of the y,(E;;) (see Section
2) one finds

VW,= UP(Q) with P(Q)= [T y.(e)
ie@

where Q is the set of integers where (i) # /. Note that for the representation =
one can show n(y(e)) = [ for all k = 1,2,... so n(P(Q)) = I for all finite sets Q.
Hence, n(V )n(W,) = =(U,) and the n(U,) and a(W,) are unitary.

We show n(%) is generated by the n(yi(e;;)) and the n(W,). First we note
(V) e (A% and n(U,)en(A°) so n(W,) = n(V -)a(U,) € (A°). Next we
note that since n(¥,) lies in the algebra generated by the n(y,(e;;)) we have n(U,) =
== n(V,)n(W,) lies in the algebra generated by the n(y.(e;;)) and the =(W,). Since
n(AC) is generated by the n(yi(e;;)) and the n(U,) we have n(A°) is generated by the
n(yie;;)) and the n(W,). Let M be the algebra generated by the =n(y.e;)) for
i,j==1,...,rand k=1,2,... and let N be the algebra generated by the n(W )y
witho € S,,. We have that M and N commute and together they generate m(2°)
as a C¥-algebra.

Next we show that the state wo(4) = (fy, Afy) (50 w(A) = wy(n(A4)) for 4 € ACY
factorizes on M and N (i.e., wy(4AB) = wy(A)wy(B) for Ae M and Be N). Since
w = wony we have w(4) = 0w (UAUY) for all A€ B, and all unitary U € R,.
Hence, wyle;;er) = wile;;)s~*0y,. Hence, for 4, € M, and B,e Npand i=1,...,n
we  have  a(yi(4y) ya(dy) - - 7a(A,) 11(B) 7a(By) - .. 7,(B,) = wi(4;) @y(4y) . ..

. w,(A4,)s™"tr(By) tr(By) . .. tr(B,). Since the W, can be written in terms of the
yi(e;) we have for 4, B e U, and n(4) € M and n(B) € N that w(4B) = w(4A)w(B).
Since such n(4) and n(B) are dense in M and N (respectively) we have wy(4B) =
= wo(A)we(B) for A € M and B e N. Furthermore, w, restricted to M is just a
product state (a product of the w,|R,) and w, restricted to N is just the trace state
on the tensor product of (s X s)}-matrix algebras restricted to the permutation
algebra. Since wq|M is a product state wy|M is a factor state. It is known that
the restriction of the trace to the permutation algebra is a factor state (see [14])
S0 w,lN is a factor state. Hence, w, on n(AC) is the tensor product of two factor
states, so it must be a factor state. Z

LemMMA 4.11. Suppose o = & w, is a siate of N,. Suppose e is a minimal
k=1

central projection in Ry N Rq and wi(e) = 1fork == 1,...,n. Then o (the restriction
of w to AE) is a factor state if and only if n = 1 or there is a projection e, € R},
which is minimal in Ry so that w(e)) = 1fork =1,...,n.



26 B. M. BAKER and R. T. POWERS

Proof. Suppose the hypothesis and notation of the lemma are valid. When
n = 1 the lemma is trivial so assume n > 1. Let {e;; ;i,j = 1, ..., r} be matrix units
for My, = eR, = Rye and {e}; ;i,j = 1,..., s} be matrix units for N, = eRy = Rge.
Let V, and W, be as defined in the previous lemma for permutation o € S, where
S, is the group of permutations of (1,2, ...,n). Let E= (1/n!) '}, Wy (@) ys(e) ...

oES,

... 7.(e). As we saw in the previous lemma we have n(W,) e n(UC) where
(n, 7, f) is a cyclic =-representation of A induced by w®. Hence, n(E) e n(AC).
Since W, is defined in terms of the yc(e;;) it follows that E commutes with
" the y,(4) with 4 € R,. From the form of E it follows that E commutes with the
permutation elements U,. Hence n(E) is the in center of n(AS). A straightforward
computation shows that n(E) = n(E)2 Then if 0% is a factor state we must have
w(E)=0 or 1. Let Q(i,j)) = we,) for i,j=1,...,5 and k=1,...,n. The
number w(E) is directly computable from the matrices €. One can show using
the fact that e is a product state that w(E) > 1/n!. Unfortunately, we do not
know a quick proof of this fact, but since it only involves somewhat long but routine
computations in a finite dimensional algebra we omit the proof. Then if % is
a factor state we must have o(E) = 1. Then w(W,) = 1 for all ¢ € §,,. In particular
if ¢ is a transposition interchanging i and j one computes w(W,) = tr(£;Q)).
Since the £ are positive trace one matrices it follows that tr(2;Q)) =1 if and
only if ; = Q} and Q] is of rank one. Hence, if w® is a factor state we have
Q. = Q,fork = 1,...,n where Q, is a rank one projection. Lete, = Sv_: Qi )e;; .

ij=1

Then e, is a minimal projection in Ry and w,(e,) =1 fork =1, .. .,jn.
Conversely, if there is a rank one projection e; € Ry so that w,(e;) = 1 for
k =1,...,nthen @ = Q,for k = 1,...,n and Q, is a rank one projection corres-
ponding to e;. Then w(W,) =1 for ¢ € S, and w(F) = 1. We have EW,E=E
for all o € §, and from the proof of the previous lemma n(EUAZE) is the tensor
product of an (" X r*)-matrix algebra and the algebra generated by the n(EW ,E) = I
Hence, n(A) is an (#* X r")-matrix algebra. Hence, w® is a factor state. %,

LeMMA 4.12. Suppose & = ® w, and o = weoy for all Ue G. Suppose e,
k=1
is the maximal projection in N%(w) and wle,) = 0 for all k =1,2,... . Suppose
o 1
3, o(e)(1 — wy(e)) = oo for all non zero projections e € Ry with e < I — e, and

k=1
e 7 I — ey. Then o® is a factor state.

Proof. Supppse the hypothesis and notation of the lemma are valid. Let (n, 52, f;)
be a cyclic *-representation of AY induced by »® Suppose 0 < C < I and
C e (A" n 2(ACY'. Let p(4) = (fy, n(4)Cf,). We will show that p = lw.
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Let {¢; ;i = 1,...,q} be the minimal central projections of R,n R;. Let D,
be the C*-algebra generated by the y(e) fori=1,...,gand k =1,...,n. Let S,
be the permutations 6 € S, sothat a(i) =ifori > n. Let Dy ={4eD, ; U,AU; =4
forall o € S,}. Note that D is contained in the center of A . We will show that
for every integer m > 0 and ¢ > 0 there are an integer » > m and a C, € D} with
0 < C, < [ so that [p(4) — w(4C,)| < ¢|| 4| for all 4 e AS. Then using a proba-
bility result of Aldous and Pitman we will show that for such C, the only limit
points are multiples of the identity. Since any central Cis a strong limit of such C,
-one concludes € = Al

We note the following general fact. Suppose A4;, B;e A¢ for i=1,...,m.
“Then

nt n

Y w(4,4B) = 0 Y, p(4;4B) = 0
(l !) i=1 = i==1
for all 4 e AC for all 4 e A°.

‘This may be seen as follows. Suppose the left hand side of (I!) holds. Then
Y, ((AH)fo, n(ADn(B)f) = 0 for all 4 € AC. Clearly, this equation extends to

d==k
the weak closure of (%) so ¥, (n(4F)fy, An(By)fy) = O for all 4 € n(A°)”. Since

i=1

C e n(A°Y’ n n(A°)’ we have for 4 € A® that n(4)C € n(A°)"". Hence, we have

3, PAAB) = ¥, (fo, HAABCE,) =

i=21

(AN, n(A)Cr(B)fy) = 0

R

i=1

il

for all 4 € A°. This establishes the implication (1!).
Let X, be the cartesian product of (1,2,...,q) with itself n times. Each
x == (x(1), x(2),. . ., x(n)) € X,, corresponds to a minimal projection in D, given by

€y = ?1(€x(1)) Vz(ex(z))- s ?n(ex(n))-

‘We define x, y € X, to be equivalent (denoted x ~ y)if and only if there is a permut-
ation o € S, so that x(i) = y(6(i)) for i =1,...,n. Clearly, x ~ y if and only if
(i, x) = t(i, y) for i = 1,..., g where (i, x) is the number of times x(k) assumes
the value i for k = 1,..., n. If 6 is an equivalence class of X, we define
e =Y, e,.
xcl
One sees that the e, are the minimal projections in D§. Let w(4) = tr(4Q,) for
all4e Byand k= 1,2,... . Since w = woay we have UQU 1= Q, for all U e G..
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Hence, Q, € R,. Since ¢; € R, n R; the ©, and the ¢; commute. A small computation
shows that the y,(e;) are in the centralizer of w (i.e., w(Ay(e;) = w(y,(e;)A4) for
allAe¥,i=1,...,q9and k =1, 2,...). One first shows this for 4 € 2, and since
the ¥, are dense in A4 one has this for all 4 € 2. Then products of the y,(e¢;) are
in the centralizer of w so e, is in the centralizer of w for all x € X,,.

We define a probability measure i on X, by defining u, = w(e,) where g, is the
measure of the point x. Since w is a product state we have u, = @,(€,))@a(ex)- - -
.. @y (ey,) so pis a product measure. If i, # 0 we define w,(A4) = pu; w(Ae,).
Note that if p, # 0, w, is a state since w(Ae,) = wle Ae,). If u, =0 we define
o, = 0. Then we have w = ¥}, p0,.

zeX
n
Let {e%);i,j=1,...,r]) be a set of matrix units for M, = ¢,R, = R,e, and
{eif;i,j=1,..., 5.} be a set of matrix units for N, = ¢,R; = Rie,,fork=1,...,q.

As we saw in the proof of Lemma 4.10 it follows from the 2, invariance of w for
U € G that wi(e[[Pel{")) == w(elM) 5,0, or equivalently for 4 € M,, and Be N,
we have w,(AB) = w,(A)s;; 'tr(B).

Let M, = ® 1(M.u) and N, = ® y(Nyw). Note e, is the unit of M,
k-1 k=1

and N,. From the above remarks one sees that if u, # 0 then w, is a product
state of M, ® N, so that w (4AB) = o (A)w,(B)for A € M, and B € N,. Furthermore
w, N, 1s the normalized trace on N,.

Let {E};i,j=1,..., m(x)} be a set of matrix units for M, chosen so that
if 11, #0 the ES diagonalize w, in the following sense. We require w(E{P) = 2{5;;
with Af > 20 > ... > 2§, . Tt follows that the £ are in the centralizer of w,
and w. The fact that the matrix units can be so chosen follows from the fact that
a hermitian matrix can be diagonalized. One checks that for u, % 0 we have

0ld) = ', (U 0 EPAE)
i=1
for all 4 e A
Now suppose p, # 0 and p, # 0 and x ~ y so x(k) = y(a(k)) for c € S,.
Then M, = U,M,U;. Since U,E{’U, and E{f’ are minimal projections in M,
there is a partial isometry ¥V € M, so that V*V = E@ and VV'* =U;*EPU, . Direct
computation then shows that

m(y)
0y(4) = S (1) o VU EPAEDU,V)
=1

1=

for all A e 2.

Suppose 6 is .an equivalence class of points in X,. Note that if x,ye€ 0
(so x ~ y) then m(x) = m(y) since M, and M, are unitarily equivalent. Let m(d) =
= m(x) for any x & 0. We define elements B(f, x,{) for xe § and i =1, ..., m(6)
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as follows. If y, = O for all x € 0 let B(#, x,i) =O0forallx e @and i = 1,..., m(0).
If pt, # 0 for some x € 0 pick an element x(0) € 0 so that p, ., equals the maximum
value of y, for xe 0. For i =1, ..., m(0) and y € 0 with u, # 0 let

B, y,1) = QPDPOVEERUY

where ¥ is a partial isometry in M,q, so that V*V = E and VV* = U;*EQU,
and ¢ is a permutation so that x(i) = p(a(i)) for i=1,...,n If u, =0 let
B(0, y,i) = 0. Then, provided w4 # 0 we have

’"(a) 3 Yy ats .
w(A) =Y wnw(BO, y,i)*AB(0, y, i)
fe=1
for all Ae W and ye 6.
If @ is the set of equivalence classes 6 so that p,, # 0 we have

m(f)

29 w(A) = = Y, Y u. Y ey (B, x, iy*AB(0, x, 1))

fe @ xel i=1
for all 4 € A. Since B, x, i) € N we have from (1) that

m(6)
(39 pd)=% Y u 2‘, txy (B0, x, iY*AB(0, x,1))
0_0 xe 0 i=1
for all 4 e AC.

For each 0 € @ let F, = EFf. As mentioned earlier Fy is in the centralizer
of w s0 w(AF,)) = w(F,4) for all A€ Since F,e A we have by (1!) that
p(AFy) = p(FyA) for all A€ A°. For 0 € © we have ) # 0 so w(F,) # 0. For
0 € 0O let wy(Ad) == w(Fy) 'w(AFy) and py(A) = w(Fy) p(AFy) for all Ae.
Let x = x(0). As we saw earlier o /M, ® N, = o M, ® o /N, and wN, is the
normalized trace on N,. Since F, is a minimal projection in M, we have w, is the
normalized trace on F,F,, so wy(AB) = wy(BA) for all A, Be F, A F,. Since
wolA) = wy(FyAF,) forall 4 € Wit follows that wy(A4B) = wys(BA) for all A € F W, Fy
and Be 9,. Since w is a product state w, is a product state with respect to U,
and US. Hence, we have for 4 € FyU, Fy; and B = BB, with B, € %, and B, e A;
that we(AB) = we(AB)wy(B,) = w,(B1A)wye(B,) = wye(BA). Since every element B
of 9 can be expressed as a linear combination of terms of form BB, with B, € U,
and B, € W we have wy(AB) = wy(BA) for all Ae F,0,F, and Be A. Hence,
from (1!) we have that py(4B) = pe(BA) for all A e F,ASF, and Be °.

We now examine the algebra F;U%F,. Let x = x(0) and let Q; = {k ; x(k) == i
for k+==1,...,n} for i=1,...,¢9. Let t(/, x) be the number of elements in @,

q
(note Y 1, x) = n). We have UY is the linear span of elements of the form
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U, (41 72(4)- . . 74(4,) with 4; € Ry and o € S,. We have e, = y,(e,))72(ex) - -
-+« Pulexm) commutes with the y,(4,) with 4, € R, and e, U,e, = O unless 6(Q;) = Q;
fori =1,..., q. Since e Fy = Fge,= F, it follows that FyU_y,(4;) y5(45). . . 7s(A,) Fp== 0
unless 6(Q;) = Q; for i =1, ..., q. Recall that the {e{¥} and the {e[*} are cets
of matrix units for M, = ¢, R, and N, = ¢, Ry, respectively. Let V%) and W) be
defined in terms of the e’ and the e;{) as was done in Lemma 4.10. 'As we saw
in Lemma 4.10 we have

VIOW®H = U,P(Q)  with P(Q) = IT vi(ey)
ic @

where Q is the set of integers where (/) 5 /. Since U,, P{0), V“"_)1 € NA° we have
WK = Vik_)anPk(Q) € AC. Suppose o€ S, and a(Q;) = Q, for i = 1,...,q. Then

we can write ¢ as a product ¢ = g,0,... g, where o; acts on Q; (ie., o,k) =k
if k ¢ 0)). A straightforward computation using the fact that F,is a minimal projec-
tion in M, shows that for such a permutation ¢ = 0,0, ... g,and 4; € R,we have

FoU, (A1) 9o As) .. pu( A Fy = ZEW WS L WD

where / is a complex number. Hence, FACF, =W, @ W, ® ... ® W, where
W; is the C*-algebra generated by the W) with ¢ a permutation of Q;. Furthermore,
one finds that w, is a product state on FpUC¢F, in that if 4, e W, for i=1,...,q
then w,(A4,4,. .. A,) = wy(A,) we(As) ... we(A4,).

To further describe w, w2 introduce some notation. For i =1, ..., g let ‘iim

be an (s; X s;)-matrix algebra. Let y{" be a x-isomorphism of Q~3i0 with i%ik and let

~ -~ ~ B ~ ~o. .
W, = ® B,,.Let; be the norm closure of |_J V.. Let UY) be the corresponding
k-1 k-1

permutation elements of §[i constructed as the U, were in Section 2. Identify Q;
with the integers (1,2, ..., (i, x(0))) and thereby identify each permutation o;
of Q; with a permutation o; of (1, 2, ....1(i, x(0))). We define a *-isomorphism ¢

of FyAYF, with A = *5[1 ® 5(2 ® ... ® :)I,, by requiring that if ¢, is a permutatiomn
of O; for i=1,...,9 we have
PWEWD WD) = GOOED L T,

Let 7 be the unique tracial state of oA (note 7 is a product state). Then we have

wi(A) =- 1(p(4)) for all A e F,ACF,.
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Let W, be the C*-algebra generated by the U for all 6 € Se. ‘Note W, = 5(?;
where G; is the full unitary group of 8,,. Then by Lemma 4.10, t|W,is a factor
state (in fact, an extremal trace). Let W= Ifffl ® I7V2 ®...® ﬁ/q. Since 1]1’17 =
= r|I/~V1 ® 1|I7Vg ®...® r]Vf/q we have r|VI7 is the tensor product of factor states

so W = ‘clI7V is a factor state (in fact, an extremal trace). Very roughly speaking,.
this means w, is an extremal trace if (i, x(8)) = co for i =1, ..., ¢ and since p, .
is a tracial functional dominated by w, we must have p; = Aw,. In the following
paragraphs we will make this idea more precise.

Since 0 < p < w we have 0 < py < wp and 0 < pg|FoUSF, < gl FUSF,.
We have seen that wg and p, are tracial functionals on F,FUS, (e.g., po(AB) = py(BA)
for A, Be FyACF,). Since tracial functionals are uniquely determined by their
values on the center of F,USF, thereis a C’ in the center of F,ASF, with 0 < C' < T
s0 that py(4) = w4(AC’) for all 4 € FAS, F.

We will show that for each ¢ > 0 and positive integer m there is an integer
N = N(g, m) depending only on & and m so that |py(4) — pe(Dwe(A)] < &||A]]
for all 4 e F,ASF, provided (i, x(6)) > N for i=1,...,q. Suppose for some
¢ > 0 and positive integer m no such N existed. Let (n,, #;, f,) be a cyclic =-repre-
sentation of W induced by t%. Then for each integer n > 0 we can find functionals.
po and wy having the properties we have shown such functionals have and an
A, € FUSF, with ||4,]|=1 so that [pg(4,)—ps(Dws(4,)! = ¢ and 1(i, x(0)) > n for
i=1,...,q Then there is a C, in the center of F,2¢F, so that 0 < C,, < [ and
0o(A,Cp) —wo(C)wg(4,)| =¢. Then we have [#%(p(A4,)0(C,) — ™ (9(4,)T*(@(Co)| > &
and ¢(C,) is in the center of @(F,ASF,). Since 0 < m,(p(C))) < I we may
assume by passing to a subsequence that =,(¢(C,)) - C, weakly as n —co. We
have  |(fy, m(@(4)0(C)fD) — (fi, m(e(AND(fr, me(CNMD! = 1T (@(4,C) —
— ™(p(4,))?"(p(C,))| > ¢. Since ||4,]] = 1 and A4, € F,AS F, the set {¢p(4,)} is con-
tained in a finite dimensional subalgebra of 174 and, thus, this set is compact..
Hence, there is an A € W so that |(f,, 7, (A)Cofy) — (fr > ma(A)(f1, Cofy)| = €. Hence,
C, # /I Clearly, we have C, € nl(ﬁ/)”. Each C, is contained in the center of FyASF,.
Since #(i, x(6)) > n the sequence ¢(F,ASF,) contains a subsequence which is increas-
ing and whose union is dense in w. Hence, C, € nl(VI7)’. Hence, C, is contained in
the center of nl(I/f/)”. But this is a contradiction because 7-c1(I/I7 Y’ is a factor and
C, # AL Hence, for each ¢ > 0 and positive integer m an N = N(g, m) exists..

Now suppose ¢ > 0 and m is a positive integer. [Let T}, = {x € X, ; 1(i, x) <

q
< N(¢/2,m)} and T,, = \_J T;,. Lets,, be the y-measure of T;, and s, the y-measure
i=1
of T,. Let 6¥¥) = w,(e;). One finds

Sin = ﬂ(Tin) = ‘6; l’lx = Z H agclzl)c) .

in *eTpy k=1
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The numbers s;, have the following probabilistic interpretation. Suppose a Markov
coin has a probability ¢*) of producing a “heads” on the kth toss. The number s,,
is the probability of getting N = N(g/2, m) **heads’ or less in the first n tosses.
Since Y} oY = oo (since e; < I —¢, and 0 # e; # [ — ¢,) we have from the
k=1 ‘

Borel-Cantelli lemma that the coin will almost surely produce an infinite number
of “*heads” (see [10]). Hence, s;, — 0 as n — co. Hence, there is an integer # so that
S, < €/2g for i=1,...,q. Then, we have

q q
§, = /1(771) < Z 'Ll(Ti") = Z Sin < 8/2
i—1 i--1

We now define C, e D], as follows. Let
, C“ B po([)eo Where €y = Z ex.
‘ 0EC f€0
Since 0 < € < I we have 0 < p(/) < 1,500 < C, < I. We show that for 4 € UAS,

we have |p(4) — w(AC,)} < &||4||. Suppose 4 € Y. Then we have from (21) and (3 1)

m(8)
p(A) - w(ACn) o Z 2 Hx 2 #R}n(P(B(Q, X, l):AB(07 X, 7)) -
f=z0 xed i=1

N
— (B, x, )*AC,B(0, x, i))).

From the definition of B(0, x, i) and C, we have that these elements commute and
C,B(0, x, i) = po(DBW, x,i). Since DO, x,i) = B, x,Y*ABO, x, i) € F;UCF, we
have

. . [
Ipe(D(0, x, 1)) — po(Dewe(D(O, x, N)] < o ellD(0, x, D <

S %E(l‘f"’/f”-‘i“””)”flll ;

for x(0) ¢ T,. Since py(A) = p(AF)]w(F,) and wy(A) = w(AFy)jw(Fy) for Ae N
and o(Fy) = i, A5? we have
1
Hx@)p(B(O, x, )*AB(0), x, )) — (BB, x,NAC,B(0, x, i))| < by A (Al

for x(0) ¢ T,. For x(0) e T, the above expression is bounded by A?|l4] since
llewg — poll < 1. Hence, from (4!) we have

m(0) 1 ) ‘
lp(d) —(4C)i < Y % 1 Y — el 4
6c®@ xe 8 a1 2
“O¢T,
m(6) o
+ Y Ty Ol
e @ =xc6 i=1

T(0y¢ T,
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m(e)

Since Y A%} =: 1 and since for x €0 we have xe T, if and only if x()e T,
i=1

we have from the above estimate

1
() —0(AC) < Y we—eldll+ Y w4l <
xeX 2 seX
x¢T" x¢T”

< Lol S et KT < Lelld) 4 elid] = efl4]].
2 1eX 2 2

Let D be the norm closure of the union of the D,. We claim Ce n(D)",
To see this suppose ¢ > 0 and m is a positive integer. Suppose A4;, B; € AS for

i=1,...,k. Then there are an integer n > m and a C,e®D] < D, = D with
0<C, <Iso that

I(m(4:fo, (C — (CH(BYfo) = I(fo, (AF BYIC — n(CHHf)l =
= |p(4} B)) — w(4} B,C,)| < &||4} B,

for i=1,...,k. Since ¢ > 0 is arbitrary, the n(C,) are uniformly bounded and
the vector n(4,)f, and n(B)f, with 4;, B; € A for some m = 1,2, ... are dense
in #, we have C is in the weak closure of n(D). Hence, C € n(D)".

We define X, with its infinite product measure (which we also denote by )
by taking the limit as # — oo of the spaces X,. We define a *-homomorphism ¥
of D into the algebra of bounded functions on X,,. For x = (x(1), x(2),...) € X
we define

Prule))(x) = {1 ) =1

0 if x(k) #i
for i=1,...,9 and k=1,2,... . Since the y,(e;) generate D as a C*-algebra
there is a unique =*-homomorphism ¥ satisfying the above requirements. From
the construction of ¥ we have u(¥(4)) = (fy, n(4)fy) for all 4 € D. Hence, the
mapping I' given by I'(n(4)) = Y(4) for A € D extends to a =-homomorphism
of o(D)"’ into the bounded p-measurable functions on X, . Consider the y-measurable
function I'(C). Since C is in the center of 7(UY), C commutes with the permutation
elements n(U,). It follows that I'(C) is a permutation invariant function on X, .
It is shown in [1] that the only permutation invariant functions on X, are trivial

(almost everywhere equal to a constant function) if and only if for each set
S<1,2,...,9

i‘ o ®(S)1 — c®(8S) =0 or co,

k=1

3 — 2110
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where 6®)(S) = Y] o\). Since o{? = w,(e;) it follows from the assumption of
i€S

the lemma that the condition of Aldous and Pitman is satisfied. Hence, I'(C) is
a constant. Hence, we have (f,, C¥;) = w(I'(C?) = w(I'(C)I'(C)) = p(I'(C))? ==
= (f4, Cfo)®. Hence, Cf, = (fy, Cfo)fo = /fo- Since for 4 € U® we have Cr(A)f, -~
= n(A)Cf, = in(A)f, we have C = AL Hence, the center of n(U%)" consists of
multiples of the identity. Hence, o€ is a factor state.

THEOREM 4.13. Suppose w = @ wy is a product state of minimal G,
k=1

-support. Suppose E is the G ,-support projection of w. Then, w® is a factor state
if and only if

(=) i o)l — oe)) =0 or oo

ko1
for all e € Ry with e < E.

Proof. Suppose the hypothesis and notation of the theorem are satisfied
Let H = H%w) and let (n, #, f;), (n%, #C, f,) and (n¥, 5P, £,) with #¥ = #C be
cyclic -representations of 2, A¢ and A induced by w, w® and w¥, respectively,
as constructed in Lemma 4.8. Recall that n¢(2A¢)"" = n#(AH)"’. Hence, € is a
factor state if and only if w* is a factor state.

First we prove the implication (=). Assume w® is a factor state. Suppose
e € Ry, e £ E and the sum () is finite. We will show that the sum (x) is zero. We
have e e M%(w). Then, by Theorem 4.7 we have e = e + ¢’ where ¢’ € M%w)
is a central projection in R%(w) n R°(w)’ and e; € Nw). Since w® is a factor state
we have from Lemma 4.8 that w(¢") =0or 1 for altk =1,2,... . Hence,

T ol — o) < 3 ol — wyled)) < oo.

k=1 k=1

We will show the right hand sum is zero. Let {e,,...,e,} be the minimal
central projections in R, N Ry so thateeq # Ofori = 1,..., m. Let ¢, be the maximal
projection in N%(w) as described in Lemma 4.6. Since e; € Ry n Ry and e, € RS(w) n

n R%(w)’ we have e;e, = eye; € RS(w). And since e;e, < e, we have ¢;¢, € NS(w) <
= M%) and by Lemma 4.3 we have ¢;e, € R%(w)’. Hence, e;e,€ R%(w) n RS(w)'.
Since w® is a factor state we have from Lemma 4.8 that w,(e;e,) = 0 or 1 for all
i=1, .. ,mand k=1,2,... . Let Q; = {k; w(ee,) = 1} for i = 1, ..., m. Note
each Q; is a finite set since e;e, € NS(w). Since o is a factor state it follows from
Theorem 4.9 that o|W¥(Q,) is a factor state for i = 1,..., m. Then it follows from
Lemma 4.11 that for each i = 1,..., m either Q; has only one element or there is
a projection e} € RS(w)’ with €; < e;e, which is minimal in RS(w)’ so that w,(e}) = 1
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for all k € Q;. Since ¢; € R°(w) we have e, € R,. We claim ¢} is minimal in Rj_
If e; is not minimal in R there is a unitary ¥V € R; which commutes with ¢; and
Ve; # Je;. Let U=1I— e; + Ve;. Since w(e;) = 0 except for a finite number
of k we have w (UAU~Y) = w,(A) for all 4 € B, except for a finite number of k.
Hence, o ~ wedy and U € H%w). Then, by Lemma 3.5 we have U € R°(w)'. Since ¢}

is minimal in R%(w)’ we must have Ue, = Ve! == Je;. But this contradicts the fact
that Ve, # Ae;. Hence, e; must be minimal in Ry. If Q; contains only one element
then it follows from the fact that w is of minimal G -support that there is a pro-
jection e; € Ry which is minimal in R, so that wy(e}) = 1 for k € Q;. Hence, for i =

== 1,..., m we have found projections e; € R; which are minimal in R; so that
w,(e;) = 1 for k € Q;. From the definition of the G,-support projection £ it follows.
that Ee;e, = e;fori=1,...,m. Since ey < E, e, < e, and e;ep = ege; # 0 it follows
that 0 # Eeeq < € fori=1,..., m. Since ¢; is minimal in R} we have Ee,e == €}
for i=1,...,m Hence, we have wfeep) = w,(Ee;eq) = wle)) = w(Eeey) =
= wy(e;e,) and as we noted earlier wye;ep) =0 or 1 for all i=1,...,m and
nt
k=1,2,... . Since wyeg) = Z w,(e;ep) it follows that wy(eg) =0 or 1 for all

i=1
k=1,2,...

. Hence, ¥ w;(ep)(1 — wylep)) = 0 and as we have seen this implies
k=1

(o]
Y awle(l — w(e)) = 0. Hence, we have shown the sum condition (x) is satisfied
ko '
for all e € R with e < E.

We now prove the implication (<=). We assume the sum condition (%) is
satisfied for all e € R}, with e < E. We will show that w? and, therefore, »® is a
factor state. Let ¢ be the conditional expectation of B, onto R%(w) relative to the

o0
trace. We define a new product state @ = @ @, as follows. Let ¢, be the maximal
k=1

projection in N%w). Since e, € Ry, I — ¢4 < E and o is assumed to satisfy (+)
we have w,(e,) = 0or 1 forallk =1, 2,... and w,(e,) = 1 for only a finite number
of k. We define @, = w,(P(4)) if wle,) =0 and @ (4) = w(A4) if wle) = 1.
From Theorem 3.8 it follows that @ ~ o (note the &, of Theorem 3.8 and the @,
just defined differ for only a finite number of k and so the @ of Theorem 3.8 ‘and
the @ just defined are quasi-equivalent). Then, from Lemma 3.3 we have R%(w) =
== R6(®) and H%w) = HE(@) and from Lemma 4.4 we have M%(w) = M%@) and
N%w) = N%®). First we will show that @ is a factor state and then we will show
that o* ~ o4,

From Theorem 4.7 we have that every projection e € M%) is of the form
e = el + 516, + Se5 + ... - s.e, where ey € Ry with e < ey, 5; =0 or 1 and
e;€ M%w) n R°(w) n RS(w) fori = 1,..., n. Since w satisfies the sum condition (x)
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we have @i (e;) =0 or 1l fori=1,...,n and k= 1,2,... . Since &(¢;) = ¢; for
i=0,1,...,n we have @ (e))=0or 1 for i=0,1,...,n and k=1,2,... .
Let O, = {k; we;) =1} for i=0,1,...,n Note Q, is finite and Q; is infinite

for i=1,...,n Let AWQ,) = ® B, and p;= ® @, be defined on WAW(Q;) for
keQ,;

i=0,1,...,n Weseethat fort == 11,. c R, Py sat1sﬁes the hypothesis of Lemma 4.12
with G = H and Ry = R%(w). Hence, pf = p,/UAM(Q,) is a factor state for
i=:1,...,n Then applying Theorem 4.9 with the partitions {QO, 0O1-..,0,) and

{eg,€1....,e,} and with Ry = R%(w) and G = H we find that w¥ is a factor state
if and only if pyis a factor state of AH(Q,). Note that p, = w|A(Q,) since @, = w,
for k € Q,.

By the remark after Lemma 4.6 we have that e, and E commute and Ee, € RS (w)’.
Let {e},. .., e;,} be minimal central projections of R%(w) n R%(w)’ so that Ee,e; # 0

fori =1, ..., m. Since by Lemma 4.6 we have ¢, € R%(w) n R%(w)’ we have ey} = ¢!
for i=1,...,m. Since E > Fe; € Ry we have from the sum condition (%) that
wle)) = w(Eey=0o0r1 foralli=1,...,mand k= 1,2,... . Now we further

partition Q, as follows. Let Q,; = {k; wy(e;) =1}. Note Q,= U Qoi. Let

Poi = PolW(Qy;)- Again it follows from Theorem 4.9 that pilis a factor state if and
only if p¥ is a factor state for each i = 1,..., m.

Note Ee; € Ry and Fe; < e, so Ee, € N%(w) < M%w). Then by Lemma 4.3
we have Fe; € R°(w). We claim Ee] is minimal in R%(w) for each i =1,..., m.
‘Suppose Ee, is not minimal in R(w)". Let {ej; ;i,j=1,...,s} be a set of matrix
units for e,R%(w)'e, so that Ee, = e}; -+ ejy + ... + e},. Since ¢}; € Ry and e}, < F
we have from the sum condition (+) that w,(e;;) =0 or 1 forall k=1,2,... «
Furthermore, w,(e},) # 0for some k, forif w,(e};) == 0for all k then w (E — ¢};) == 1
for all £k and by definition E is the smallest projection in Ry with w,(E):==1
for all k. Hence, there is an integer k so that w,(e;,) = 1. Let f = (1/2)(e;; + €12 +
4 by -+ ep). Wehavef e Ryandf < Esow(f) = 0 or 1, butw(f) = (1/2)w(e1)=
= 1/2. We have a contradiction so Ee; is minimal in R%(w)’ for i=1,..., m.

Since e/ is a minimal central projection in R%(w) n R%(w)’ and Ee} is a minimal
projection in R%(w)’ so that w,(Ee}) = 1 for all k € Q,, it follows from Lemma 4.11
(with G = H and R,= R%(w)) that pfl = o|UA7(Q,,;) is a factor state. Hence,
p¥ is a factor state for i =1, ..., m. Hence, from Theorem 4.9 we have p¥ is
a factor state. As we have seen, this implies @® is a factor state.

We now show w® is a factor state by showing w® ~ @°. Let Q. € B, be
defined by w,(4) = tr(4Q,) for all 4 € B,. For k ¢ O, we have @,(4) = tr(4AP(Q,))
for A e B,. If ¢(2,) = Z AE; with ; > 0 is the spectral decomposition of &(2,),

=1

we define ©(2,)"1= Z ATYE; so P(2)P(2) 7t = P(Q,)1¥(Q,) = E, where E,
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is the support projection of $(2,). For k € Q, let B, = I and for k ¢ Q, let B, =
=+ Q. @(Q,)~1. Since the support projection of &(,) is greater than the support
projection of @, we have B,®(Q,) = Q,. Then we have @, (4B,) = w,(4) for all

Ae®B and k=1,2,... .Let p, = ® w, ® @, and let C, = y,(B)ys(By). ..
k=1

k=n+1
v.. 7.(B,). We have p,(4) = @(AC,) for all 4 € . Since w ~ @ we have (see [12],
Theorem 2.7) |(w — @)| US|} = 0 as n — oo. Since |p, — o] = ||(w — @)| US| we
have ||p, — w|| >0 as n - o0. Let

D,=I(C) = Sau(cn)de),

G

where v is Haar measure on G. We have D, € A and for 4 € A°
W(AD,) = &(AI'(C,)) = B(I'(AC,)) = W(AC,) = p,(A4).

Hence, @°(AD,) = pS(A) for all 4 € A°. Since p¢ is a density matrix state of the
representation of Y induced by @® we have p¢ is a factor state. Since |jp, —
— w| = 0 as n — co we have ||[p¢ — w%|| - 0 as n — oo. Since the factor states of
a C*-algebra form a norm closed set (see [6]) it follows that w® is a factor state,
Since the states p¢ are quasi-equivalent to @ it follows that @° "q' w®. Note that

we have also shown @7 ~ w?. %

i

[ee] (o]
THEOREM 4.14. Suppose w = ® o, and o' = ® w; are product states
k=1 . k=1

of W of minimal G,-support and E and E’ are-the G, support projections of o
and @', respectively. Suppose % and w'C are factor states of WC. Then w® :{w G

if and only if there is a unitary U € G satisfying the following conditions :

1) o~ woay;
q

i) E' = UEU-;
iii) If e€ Ry and e < E then wy(e) =0 or 1 for all k if and only if
@ (UeU~Y) =0 or 1 for all k and, furthermore, if w,(e) =0 or 1 for all k ther

Y, lo(e) — @i(UeU] < oo
k=1

and

§ wi(e) — o (UeU™1) = 0.

k=1

Proof. Suppose w, w’, F and E’ satisfy the hypothesis and notation of the
theorem. Suppose there is a U € G satisfying conditions i), ii) and iii). We will
show % ~ w’C.
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Recalling the proof of the previous theorem we see that the projections e € R,

with e <E for which w,(¢) = 0 or 1 for all k are of the form ¢ = ’Zl s;e; where
i=1
s;=0o0r1, ¢ for i=1,...,m are minimal projections in R} (and they are
minimal projections in R%(w)’) with e; < e, where e, is the maximal projection
in N%w) and e; for i =m -+ 1,...,n are central projections in R%(w) n RS(w)’
with e;eq = 0. Furthermore, for any choice of zero’s and one’s for the s; for
i=1,...,n one obtains a projection e so that w(e) =0 or 1 forallk =1,2,... .

Also, note that E = Y e Let Q be the set of k =1,2,... so that wye;) #

i=1
# w(Ue;U~1) for some / = 1,..., n. One sees from condition iii) that Q is finite.
Furthermore, it follows from condition iii) that

Z wk(ei) - w}’g(U(’iU—l) =

ke 0

for i = 1,...,n. Hence, there is a permutation ¢ with o(j) = j for j¢ Q so that
wk(e,-) == a)(',(k)(UeiU‘l) for i = 1,. o n and k == l, 2,. e

Let p(A) = o' (ay(U,AU;Y)) for all A e N. We have p = 55 o, where
k=1

pi(A) = Wiy (UAUY) for all A€ By. Since p(A) = '(U,AU,™) for all 4 € A
we have p° v w'®. Since p ~ w'oay and o' s ay ~ o we have p ~ w.
q

Summarizing the situation at this point we have w ~ p, E is the G,-support
q

projection for both @ and p, from Lemma 3.3 we have R®(w) == R%(p), from
Lemma 4.4 we have M%w) = M%(p) and N%w) == N%p). Let w,(4) = tr(42,)
and p(4) = tr(4Q;) forall A € Byand k= 1,2,... . Since w ~ pwe have

et 2
Y, 1902 — Q0 s < oo.
k=1

Let O, = {k; |Q¥* — Q2| hs = 2}. We have 0, is a finite set. We define a new
state p = ® p, as follows. Let k € Q,. Since ¢; € M%w) then one and only one
k=1
of the numbers w,(e;) = pile;) is equal to one for i =1,...,n. If e; < ¢4 then ¢;
is minimal in R§. Hence, there is a unitary U, € R, so that fo (4) — p (U AUY < 2
and |p(4) — p (U AU Y| < 2 for all 4 € B, with {|4]] < 1. (If such a U, did
not exist then w, and p, would have disjoint support in Rg which is impossible.}
Then we define p,(4) == p (U, AU ) for A € B,. If e;e, = 0 we define p, = (1/2)p;,
-1 (1/2)w, . One can easily check that p satisfies the sum condition (x) of the previous
theorem so p¢ is a factor state. Since p, = p, for all but a finite number of & we
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have p ~ 7. If p(A) == tr(A) for all A € B, we have
Y, o2 — p2|fhs < co.
k=1

By construction we have ||Q4* — 0;12|5s < 2 and ||Q{2 — Q2|5 < 2 for all

k=1,2,... . Hence |l — p|| <2 and ||p — p]| < 2. Thus, [0 — p%| <2

and ||p° — p%| < 2. Hence, w® ~ p¢ and p¢ ~ p%. Hence, w® ~ p®. Since
q q

G G

PP~ w

we have w® ~ ¢
& 4

Now suppose w® ~ ©'®. We will show there exists a U € G satisfying condi-
q

tions 1), ii) and iii). Let (r=;, o#;,f;) be cyclic =-representations of 2 induced
by w for i =1 and w’ for i = 2. Let P; be the orthogonal projection of #; onto
H#HS = closure of {m(UC)f;}. Let (n¥ #F,f,) be the restriction of n; to AY and
HE (i.e., 18(A)f = n,(A)f for A€ N° and fe #7). Note n{ and = are cyclic
x-representations of A® induced by w® and w’C, respectively.

Let H, = H%w) and H, = H%w"). From Lemma 3.6 we have n;(A%)"’ =
=7 ("IH’)” and, therefore, #°¢ = #H = closure of {n,(QIHi)ﬁ} Let (B, Jf,”,f)
be the restriction of =x; to i and # ¥ (ie., nH(A)f = n(A)f for all A € A Hi and

fe#H). Since n (A%’ = ni(QI Y’ lwe fhave n¥(AC)" = nf’(?[ iy,

Since w° ~ ' there is a g-strongly (g-weakly) bicontinuous =-isomorphism
@ of nf(AC)”’ onto nf(AC)’ so that O(nf(A)) = n§(A4) for all A € A°. Suppose
A € R%(w). Then, nf(y,(4)) € =i(A 1)” 7$(AC)". We will show that there is
a B e R(w') so that &(nj(yy(4)) = i (vl(B))

Let 2, be the C*-subalgebra of A generated by B, = y:(B,) and B, = y,(B,)

for k > n, ie., A, =B, ®k°é 193:(. Let AC be the ay-invariant elements of €A,
=n+

with U € G. If one examines the proofs of Lemma 3.3 and Theorem 3.7 one sees
that these proofs only depend on the asymptotic properties of the state . It follows
that for the product state e, if 4 € RS(w) there is a sequence A, € ﬁ,ﬁ so that
7,(4,) converges strongly to m,(y;(4)) as k — co. It then follows that if 4 € R%(w)
there is a sequence A4, € AC with |4, < ||A]l so that m,(4,) converges strongly
to m(y,(4)) as n — oo.

Since 4,c G < A,, A, can be expressed in the form
n p

An = 2 yl(eij)An(i:j)

i,j=1

where the {e;; ; i,j = 1,...,r} are matrix units for B, and the 4,(i, /) € A;. Expli-
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citly, the A4,(i,j) are given by the formula,
. k3 r
A7) = Z Pilec)Anvile)-
k=1

Now for each n the (r X r)-matrix of operators my(4,(/,/)) is bounded in norm
by [l4}]. Since the unit ball of B(s#,) is weakly compact there is a cluster point
C = C(i, ) of the sequence m,(4,(i, 7)) in the weak topology. Since the C(i, ) are
weak limit points of the m(4,(i, j)) € n(A) we have C(,j) € n(A)’. And since
A, j) € A5, we have C(i,7) € ny(A,) foralln=1,2,... . Hence,C(i, j) € n,(W"' n
N my(N)". Since @’ is a factor state of A the C(i, j) must be multiples of the identity

(ie. C(G,j)==c;yl). Let B= Y, cijei;. It follows that my(y,(B)) is a cluster point
L=l
of the sequence m,(A,). Since 4, € A° we have that B e R%w’). One sees that
@(nfl(y,(4))) = nf(y.(B)) as follows.

Since m,(A,) — m;(y,(4)) strongly we have nfi(4,) — nf(y,(4)) strongly as
1 —oo. Since @ is strongly bicontinuous on bounded sets we have nf(4,) =
= &(nfl(4,)) - P(nf(y,(4))) strongly as n — co. Since m,(y,(B)) is a weak cluster
point of the m,(4,) we have nf(y,(B)) is a weak cluster point of the nf(4,). Since
13 (4,) = P(n(y.(A))) strongly as n — co we have S(nf (y,(4))) = 7§ (yo(B)).

Hence, for each 4 € R°(w) there is a B e R%w’) so that &(n(y,(4))) =
== 78 (y,(B)). We could have just as well started with a B € R%(w’) and then found
a corresponding 4 € R%(w). It is very tempting to conclude at this point that we
have a x-isomorphism of R%(w) with R(w’). However, all we can safely conclude
is that & provides a x-isomorphism of n(y,(R%(w))) with n(y,(R°(w"))).

One easily checks that for 4 € R%w) we have nf(y,(4)) = 0 if and only if
AE = 0 and for 4 € R%w’), nf(y:(4)) = 0 if and only if AE' = 0, where E and E’
are the G,-support projections for w and w’. Hence, ® provides a #-isomorphism
of Ré(w)E with RC(w’)E’.

Let e, and ¢, be the maximal projections in N(w) and N®(w’). Let N =

(=]
= Z w;(e,). Since w® is a factor state it follows from the previous theorem
k=1

that w,(e,) == 0 or 1 so N is an integer. We show ®(n(y,(e,))) = 7 (y,(en)) and

o0
Y, wies) = N. Let e be the largest projection in RC(w") so that &(nH(yi(ey)) =
=1

= n'(n:(e)). Let D, = ¥ n{'(yi(ep)). Since the D, converge to a central element
k==1

and w(D,) — N, we have D, — NI strongly as n = co. Since @ is bicontinuous

we have Y} wu(e) =N. Hence, e < ej. If e # eg then let f be the largest projection
k=1



PRODUCT STATES 41

in R%w) so that ®(nf (y,(f))) = n&(pi(ep)). Clearly, f # e, f > e, and i wlf)=

E=1
[>0]
==Y, wi(ey) < co. But this contradicts the fact that e, is maximal in N¢(w).
k=1
[>+]
Hence, e = ¢y, ®(nf(yiley))) = 75 (yuler)) and ¥ wpleq) = N. |

k=1

Since I — ey < E and I — ¢y < E’ the mappings A — n¥(y,(4)) and 4’ —
— nf(y,(4")) are faithful for A € R%(w)(I — e,) and A’ € R%(w)(I — &}), respective-
ly. Hence, there is a *-isomorphism a of RS(w)(I — e,) onto R%(w')I — e5) so
that @(nf(y,(4))) = =& (y,(a(A4))) for all 4 € Ré(w)(I — ¢,). We will show that
there is a unitary U, € B, so that a(4) = U, AUy for all 4 € RE(0)(I — e;).

It is well known that a =-isomorphism o between two finite dimensional
algebras acting on a finite dimensional Hilbert space is unitarily implementable
if and only of rank(e) = rank(a(e)) for all minimal projections e. Suppose that ¢
is a minimal projection in R%(w)(I — e,) and r = rank(e). Let Q be a finite set of
positive integers. Suppose f; € R%(w) and £, € R°(w’) and f; and f, are projections.
For i = 1,2 we define

rQ.fy=nff( ¥ 5(U)kaIIka(fi))

o€ S(Q)

where S(Q) is the set of permutations ¢ so that o(i) =i for i ¢ Q, é(c) = | for
even permutations and 6(¢) = — 1 for odd permutations. One finds that I',(Q,f;) = 0
if the number of elements in Q exceeds the rank of f;. (This corresponds to
the fact that the » fold antisymmetric tensor product of a Hilbert space is zero
if n exceeds the dimension of the Hilbert space.) We show that if Q has r elements
then I'y(Q, ) # 0.

Suppose Q has r elements and I'y(Q, ¢) = 0. Then we have n(U,)I,(Q, ¢)
7 (U;Y) = 0 for all finite permutations o. Hence, I'y(Q,e) =0 for all sets Q
containing r elements. Now let @ = o(:b o, be the state constructed from w as

k=1

was done in the proof of the previous theorem. Let (7, , #,, f.), (7%, #C, f,) and
7, J/?{’,.}Tl) be the associated representations constructed from @. Let I',(Q, ¢) be
defined as I'y(Q, e), using the representation 7. We saw in the proof of the previous

theorem that w® ~ @° and, therefore, w1 ~ @"1. Hence, if I'1(Q, ¢) = 0 we must
q

have I'(Q, ¢) = 0 (since quasi-equivalent representations have the same kernel).
A somewhat lengthy computation shows

(fi. 1@, epf) = TI @(e) = [I wule).
ke Q keQ

o)
Since ¥} w,(e) = oo we can certainly find a set Q of r elements so that I @ule) #0.
k1 keQ
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Hence, I';(Q, e) # 0. This is the desired contradiction, so we have shown that
I'(Q,e) # 0 for Q having r elements. Since @ is a sx-isomorphism we have
D(I'1(Q, ) = I'y(Q, a(e)) # 0. Hence, the rank of a(e) must equal or exceed r.
Hence, we have shown that rank(e) < rank(a(e)) for all minimal projections in
RN )T — e).

Repeating this argument with =f’ to =}’ reversed we find rank(e) > rank(a(e))
for minimal projections ¢ € R°(w)(I — e,). Hence, rank(e) = rank(a(e)) and there
is a unitary U, € B, so that a(4) = U;AU;? for all 4 € RE(w){I — e,).

Let V = U(I — e,). Note V is a partial isometry so that a(4) = VAV*
for all 4 € R°(w)(I — e,). We will extend V to a unitary U so that &(zZ(y,(4))) =
= nf(y,(UAU-Y) for all A € R%(w).

As we have seen ¢, and Fare commuting projections in Ry so Ee,yis a projec-
tionin Ry. Let {e,,. . ., e,,} be minimal central projectionsin R, n R{so that Eege; # 0
for i = 1,..., m. It follows from the first part of the proof of the previous theorem
that eye; is a minimal central projection in R%w) n R°(w)’ and Eeye; is a minimal

projection in Ry. Let N, = 2 w(ege;). Note N = Z N;.

i=

Since y,(e;) € AC we have O (n(y,(e) = nH(p,(e,)). Since & is an isomor-
phism and @(ni(yi(ep))) = n5'(yies)) we have D(nf(yi(eoer))) = ni(yi(ecer)) for
i=1,...,m. Againit follows from the first part of the proof of the previous theorem
that eje; is a minimal central projection in R%(w’) n R°(w’) and E’eje; is a minimal
projection in Rj. Furthermore, ¥ wi(ege;)) = N; since D;, =Y, il (y(eges)) —

k=1 k=1
— N[ as n — oo so we have (fy, o(Dy,)fs) = Y, wilege;) = N; as n — oco.
k:-1

Since e; is a minimal projection in Ry n Ry we have e;Ry = Rge; is an (s; X §;)-
-matrix algebra. Since Feye; and E’ege; are minimal projections in e;Ry there is a
partial isometry V;; € e;R; so that V3V, = Eeje; and V,;Vji = E’eqe;. Since
yile;) € O, (I — eple;) = Uy(I — ep)e;Urt = (I — eple; and we have rank((/—
— ep)e;) = rank((I — ep)e;). Hence, rank(eye;) = rank(ege;) and, thus, rank(e,e;—
— FEe,e;) = rank(eje; — E’eqe;). Since two projections of the same rank in an
(s; X s;)-matrix algebra are related by a partial isometry there is a partial isometry
V, € e;Ry so that VEV,, = eje; — Eege; and Vo Vi = eqe; — E'ege;. Let V-
== Vi, -+ V. Then VEV, = epe;, V.VF¥ = eqe; and V Eeqe,V* = E'ege;.

Finally let e, be the largest central projection in Ry n Ry so that Fe, ., = 0
Since Ee,,.;=0 we have n¥(y,(e,,+,))—=0 and, thus, (i (y1(emr ) =78 (r(ep+ )=

m+1
Hence, E'e, 4y =0. Let V., = e, andlet U=V 4y, V;. A little checking

i=1

shows U is unitary, UAU-* = A for all Ae Ry, so U e Ry, and ®(nf(y,(4))) =
= a8 (y,(UAU-Y)) for all 4 € RS(w) and, finally, E' = UEU"*.
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We will show that w ~ ooy, Let p= w'ony. Note o’® = p%, R%(p) ==
= U~ R%(@")U = R%(w) and, hence, by Theorem 3.8, H%p) = H%w) = H,.
Let my(4) = my(ay(4)) for A e A, n(A) = n§(ay(A4)) = nf(4) for 4 € A and
w(A) = nli(oy(A)) for A € A1 (note that ay(A"1) = A™s). Note n,, z§ and 7 are
cyclic #-representations induced by p, p¢ and p™3, respectively. Note my(§AC)"’ =
= (A7), Since w'® = p® we have ¢ ~ ng. Let @, be the unique *-isomorphism
of nH@"ey’ = nG(USY" onto my(W1)” = 7,(AC)Y" so that &,(n§(A4)) = nS(4) for
all A € AC. Clearly, we have &,(nf(y,(4))) = n(y,(U~14U)) for A € R°(w’). Let
Y = od. We have ¥ is a s-isomorphism of 7#(A1) = 7,(A%)"" onto nH(A1)" =
— 7,(UC)" so that Y(nf(A)) = n9(4) for A€ A and Y(rl(3,(A) = wH(y.(A))
for A € RS(w). Since A1 is generated by 7,(R%(w)) and AC, and ¥ is a *-isomor-
phism, we have ¥(nf(4)) = nf/(4) for all 4 € A, Hence, o™ ~ le.

Since o™ ~ pHI it follows from ([5], Theorem 4.5) that for every ¢ > 0 (and

in particular for ¢ = 1/2) there is an integer n, so that

s — i a oy < .
1
Since ;0 A = A 0 A we have

1

™ — p™yIRrs, n A < _;_

Let @ and p be the H,-invariant states constructed from @ and p by the
procedure described in the statement of Theorem 3.8. By Theorem 3.8 we have
w ~ @ and p ~ p. Hence, there are integers n, and ny so that

q a

—\are { e 1
H(CO - w)[9[n2|l < ? and H(p - P) IQ[ns” < -é— .

Combining these inequalities with the above inequality we find
1@ —ps n o <l L
2 2 2

where n == max{n,, n,, n15). Suppose I' is the conditional expectation of 2 onto
D] given by
riy =\ w4 dv(U)

Uz H,
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where v is Haar measure on H,. Suppose 4 € ¢, Since @ and g are Hy-invariant
we have @(A) = @(I'(4)) and p(4) = p(I'(4)). Since I'(4)e AN A1 we have

la(A4) — p(A) = ([ (4)) — pT'(A)] < B/2)IF(AII<(B/2)lA4lL

Hence, [(w — p)|A5 < 3/2 < 2 and, thus, @ ~ p. Since w ~ @ and p ~ p we
q q q
have w ~ p = w o ay.
q

Hence, U satisfies conditions i) and ii) of the theorem. We show U satisics
condition iii). Suppose ¢ € Ry and e < £ and wyle) =0 or 1 for all k. Then
e € M%w). Since @ ~ p we have from Lemma 4.4 that M%) = M®(p). Since p©

is a factor state we have from the previous theorem that p,(e) = wp(UeU~?) = §
or 1 forall k=1,2,... . Similarly if p.(e) = 0 or 1 for all k¥ we find w,(e) = 0
or 1 for all k. Hence, if e € Ry and ¢ < E we have w,(¢) =0 or 1 for all 4 if
and only if w(UeU~1) =0 or | for all k.

Ifee Ry, e < Fand afe) =0or 1 forall k then by Theorem 4.7 we have

e=fo+ isif,- where s,:20 or 1, f; < e, and the f; are central projections
i=1

in R%w) n R%w)’ with fieq =0 for i=1,...,r. To show U satisfies the sum

condition in iii) it is sufficient to show the sum conditions are satisfied for the

projections f; for i =0, 1,..., r individually. Recall ¢,,. .., ¢,, are minimal projec-

tions in Ry n Ry such that Eeye; # 0. Since Eeye; is minimal in Ry we have f; is a

sum of these projections, i.e., fo = Eepe; + ...+ Eege; . Then UfU~t = E’e{,e,—l—%—

+... + E’e{,e,-s. Since Y wilege;) == Ny =Y wilege;) we have

k=l k=1
$ nfo = Ny + o+ Ny = § 0O

Hence, the sum condition iii) is satisfied for f; .

Now we consider the f;fori = 1,...,r. Wehave w,(f;) =0 or 1 and p(f;) =0
or 1 for all k=1,2,... . If w/f;) # p{f)) we have |lw, — p,lj = 2, since they
have disjoint support. Since w ~ p we have that {lw, — p,| == 2 for only a finite

number of k (or else |l(w — p)! N¢|| =2 for all » =1,2,...). Hence, we have

Y | (f;) — o (Uf;U-Y| < oo. For i satisfying 1 </ < r let
nezl

Jo= % w(f) — o) and  U,(1) = exp(itl,).
k=1

Recalling the proof of Lemma 4.8 we see that n(Ut)) - V() e a1
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n @y = {AI}. Since w(J,) = 0 we see that nf(U,(t)) — I strongly as n —oo.
Since ¥ = &, o ® is strongly continuous on bounded sets we have ¥(zf(U,(1))) —» I
strongly as n — co. Now,

(for Y(m(ULONf2) = p(Ux1)) =

— JT (1 + (€ — Dp(fexp(— it (£) = [] Sd6)— 1
k=1

as n — oo. Since S (1) =1 for all ¢ (except for a finite number of k) we have

II Sit) =1 for n sufficiently large. Then for n sufficiently large we have
k.1

(A Y] Sdli=o =1 Y, plf) — ou(f) = 0. Hence, we have Y, olf;) —
k=1 k=1 k=1

— wy(Uf;U-Y = 0 for each i = 1,...,r. Hence, we have shown condition iii) is

satisfied for each f, for i = 0, 1,..., r. Hence, U satisfies condition iii).

LemMMA 4.15. Suppose w = ® wy is a product state of W of minimal G, -
k=1

-support. Suppose w® is pure. Then w, is pure for each k = 1,2,... .

[2<]
Proof. Suppose w = ® w,, w is of minimal G, -support and % is pure.
k=1

Suppose ; is not pure. Let w(4) = tr(AQ,) for all Ae B, and k=1,2,... .
Suppose @ = a(i, j) is the permutation which transposes / and j and suppose V € R,
is unitary and {e;; ; k,/=1,...,r} are matrix units for B,. Then we have

0@y, y1(V1) = kz’ oGV e e (V-D) =
=1

= Z tl‘( Vele—IQ,-)tl'(e,ij) = tr(VQjV_l.Q,-).
k,l=1

Let E; and E; be the support projections for Q; and Q;. Let ¢; and ¢; be rank
one projections in B, with e; < E; and e; < E;. Let wi(d) = tr(de,), wj(4) =

= tr(de;) and w(4) = o (4) for k #ior k #j for all A€ B,. Let o' = ® wy.
k=1

Since Ao’ € w for some A > 0 and since w® is pure we have »'® = »®. Hence,
@'(Uyq, ) = ti(ee;) = o(Uyq j)-

We identify B, with B(H#,) where o, is an r-dimensional complex Hilbert
space. If f; and f; are unit vectors in the range of e; and ¢;, respectively, then we
have tr(ee;) = |(f;, f)I®. Hence, if f; and f; are unit vectors in the range of E;
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and E;, respectively, we have I(f;, [;)i* = o(U,; ;). If E,E;50 there are unit vectors
Ji and f; in the range of E; and E;, respectively, so that (f;,f;) # 0. Since o,
is not pure the rank of E, is at least two so there is another unit vector f; in the
range of E; so that (f/,f;)) =0. But this is a contradiction, since |(f;,f;)>
= (U, ;) # 0. Hence, we have EE; = 0.

Now if Ve R, is unitary we have

w’(yi(V)Uv(i,j)Yi(V—])) = tr(VejV_l()i) = w(yi(V)Ua(iij)Yi(V_l))

Thus, the same argument that shows E;E; == 0 shows that VE,V-1E; =0 for all
unitary V € R, .

Let e be the smallest projection in B, so that e > VE,JV~! for all unitary
Y e R,. Clearly, ¢ € Ry, w;(e) == 1 and from the last paragraph w,(e) = 0 for k # :.
As we saw in the discussion at the beginning of this section, it follows from the fact
that w;(e) = 1 and w,(e) = 0 for k # i that the dependence of w® on w, is com-
pletely determined by w;|R,. Since w® is pure it then follows that w,|R, is pure
(since decomposing w,|R, yields a decomposition of w®). Since w is of minimal
G,-support it follows that w;|Ry is pure. Hence, w,; is pure. But this contradicts
our assumption that w; is not pure. Hence, we have shown w, is pure for all
k=1,2,....

[eo]

THEOREM 4.16. Suppose w == ® w, is a product state of W of minimal
k==1

G

G,-support. Suppose E is the G -support projection of w. Then w" is pure if and

only if wy is pure for all k =1,2,... and

oo

(%) Y ofeXl —ofe)) =0 or oo

k=1

Jor all projections e € Ry with e < E.

(o]
Proof. Suppose w == @ w, is a product state of minimal G,-support and E
k=-1

G G

is the G,-support projection of w. Suppose w“ is pure. Then w” is a factor state
and by Theorem 4.13 the sum condition () is satisfied for all projections e € Rp

with e < E. By Lemma 4.15 we have w, is pure for each £ = 1,2, ... . Hence, we
have proved the implication (=).
Now suppose w, is pure for each k =:1,2,... and the sum condition ()

is satisfied for all e € R with e < E. Let H = H%w) and K= {U€ H; UE = EU}-
Note K' is generated by R%(w) and E. Let (n, #,f,} be a cyclic x-representation
of ¥ induced by w. Let s#C, #7 and #% be the closure of {R(AC)f}, {m(WH)/,}
and {m(AX)f,}, respectively. Let {n®, #C, 1.}, {n¥, #¥, £} and {nX, #X, f,} be the
restrictions of 7 to UAC, A and AX and #C, #¥ and #X, respectively (e.g.,
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n(A)f == n(A)f for all fe #¥ and 4 € AH), By Lemma 3.7 and Theorem 3.8 we
have n(AC)” .= n(AH)". Hence, #° = #¥ and n%(U°)’ = 77 (AH)". We show
that Y = #% and nX(AXY' = nH(UH)",

Let E, = nX(y(E)yo(E). . . y,(E)) and let E, be the strong limit of this decreas-:
ing sequence of projections. We have FEyf, = f, since nX(y(E))f, =/f, for all
k=:1,2,... . Clearly, we have n¥(U,)E,n*(U;") = E, for all finite permutations o.
By the remark after Lemma 4.6 we have E € R°(w)’. Hence, E € {R(w), E}' so E,.
commutes with n¥(y,(4)) for all 4 € {R%w), E}". Since y,(4) commutes with
A€ {R%w), E}" and the U, generate AX we have E, € nX(AXY. Since Eyf; == f,
and f is cyclic in X we have E, = I. Since nX(y,(E))> E, = I we have n¥(p,(E)) = I.
Since AX is generated by y,(E) and ¥ we have #¥ = #*X and n#(UH)" =
== nX(AX)"’". Hence, we have #C = #H = K and nC(ACY’ = nH(UH)"" = nK(UKY".
Hence, o’ is pure if and only if w* is pure. We show w¥ is pure.

Suppose e € {R%(w), E}' and U= 1I— 2e. Since Ue R°(w) we have by
Lemma 3.7 and Theorem 3.8 that U € H%w). Hence, we have w ~ woay. Let

w(A) = tr(4Q,) for A€ B, and k =1,2,... . Then we have

¥ QM — U= U s < oo
k=1

Since w, is pure for each & we have Q2 = Q, and (since U =1 — 2¢)

Q42 — U=1Q}2U s = o)1 — wy(e)).

(o]
Hence, }; o (e)(1 — w(e)) < oco. Since w,(Ee) = w(e) and Ee € Ry and Ee < E, it
k=1

follows from the sum condition (4 ), which w is assumed to satisfy, that w,(Ee) =

= wile) =0 dr 1 for all k. Hence, we have shown that if ¢ is a projection in

{R%w), E} then wy(e) =0 or 1 for all k=1,2,... . Hence, if e € {R%w), E}"

we have w,(e4) = w,(4e) for all 4 € L,. Since each unitary U € K is a linear combi--

nation of projections in {R%w), E}' we have o (U4) = w,(AU) or o (UAUY) =

=i (d) forall A€ By, Ue Kand k =1,2,... . Hence, @ = wooy forall U € K.
Let I be the conditional expectation of 2 onto AX given by

r)= S oy (A)dv(U)

UekK

where v is Haar measure on K. Since w is oy invariant for U € K we have w(4) ==
= o(I'(4)) = o®(I'(4)) for all A € A. Now suppose wX is not pure. Then we have
¥ = (1/2)(p, + py) with p,#p, states of UX. But then o = (1/2)(z; + 1)
where 7,(4) = p('(4)) for A€ A. Since p, # p, we have 7, # 1, and hence w
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[v =)
is not pure. But this is a contradiction since w = ® w, and the tensor product

k=1
of pure states is well known to be pure. Hence, we have shown that w¥ is pure
and, thus, € is pure. : %,

THEOREM 4.17. Suppose w :kg)lwk is a product state of N so that % is
a factor state. Suppose w(A) = tr(lek) for all Ae B, and k=1,2,... . Then,

A) o is of type I <= § 1 —tr(Q%) < oo;

B) % is of type 11, ¢:7l:ere is a positive trace one matrix Q,€ Ry (not of
rank one) so that % QY2 — Q¥2|4s < co and the support of @ is contained in
the support of &, ;ojlk =1,2,....

Proof. Suppose w, w, and Q, satisfy the hypothesis and notation of the theorem.
Suppose the sum in the second part of (A) is finite. Let E, be a rank one projection

[==]
in B, which maximizes w,(E) with E rank one. Let p = ® p, with p(4) = tr(4E)
k=1

for AeB, and k= 1,2,... . Since the some in (A) is finite a short computation
shows that Aw > p > O for some A > 0. Since wC is a factor state we have p® is
a factor state and from Theorem 4.16 we have p® is pure. Since w® ~ p% we have
w? is of type L

Suppose now that &%

is of type II;. Then o° ~ T, where 7 is an extremal

trace on A€, Using a result of [14], in [9] it was recently shown that each extremal
trace T of AY is of the form 7= p¢ with p = ® p, and p,(4) = tr(4Q) for
k=1

AeByfork==1,2,... with Q € R; and, conversely, each positive trace one Q € Rg
gives rise to an extremal trace on A®. (This result can be derived for faithful
extremal trace from [l4] and Theorem IL4 of [2].) Since % ~ p© it follows
from Theorem 4.14 that the implication (<) (B) of holds.

Conversely, if the second condition of (B) holds then by Theorem 4.14 w® is
quasi-equivalent to an extremal trace. %

REMARK. We believe the implication (<) in statement (A) of the last theorem
is actually (<).

We close by giving generalizations of Theorems 4.13 and 4.14 to arbitrary
factor states of 9.

THEOREM 4.18. Suppose w is a factor state of W. Let Q. € B, be given
by w(y(A)) = tr(4Q,) for all A€ B,. Let S be the set of accumulation points of
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the sequence {Q,}. Let G(S) = {g€ G ; U,QU;* = Q for all Q € S}. Then if G(S) =
= {Al}, &% is a factor state.

Proof. Suppose the hypothesis of the theorem is valid. From Lemma 3.4 we
have S = R%(w). Since G(S) = {AI} we have H = G n R%w) = {AI}. Suppose n
is a cyclic *-representation of U induced by ®. Then by Lemma 3.7 we have
T(NCY" = n(AH)" = n(A)"". Hence, n(AC)”’ is a factor and this implies w® is
a factor state,

Following a greatly simplified version of the argument of Theorem 4.14 one
obtains:

THEOREM 4.19. Suppose w is a factor state of W satisfying the hypothesis
of Theorem 4.18. Suppose ' is a factor state of N. Then w° ~ '® if and only

if there is a g€ G so that © ~ @ o,
q
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