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THE DECOMPOSITION PROPERTY FOR C*-ALGEBRAS

R. R. SMITH and D. P. WILLIAMS

1. INTRODUCTION

Associated with each bounded linear map ¢: B — A between C*-algebras is
a sequence of bounded maps ¢ ® [, :B® M, » A®M,,n > 1. The map ¢ is
said to be completely positive if each ¢ ® I, is positive, and is said to be completely
bounded if supjl¢ ® I,]] < co. In case ¢ is completely bounded the completely

bounded norm ||@ic» of ¢ is defined to be this supremum. Each completely positive
map is completely bounded, {|¢|| = |j@|l», and if B is unital then these norms are
equal to {|@(1)|l. If the range or domain is commutative then positive maps are
completely positive [I, 3, 30] while if the range is commutative then all maps are
completely bounded and ||¢lis = ||@|| [27]. A C*-algebra A is said to possess
the decomposition property if each completely bounded self-adjoint map
¢ : E - A, where E is an operator system, has a completely positive decomposition

@ =@+ — ¢~ satisfying ||¢* + ¢~ || = ||¢]lev. In any decomposition it is automatic
that |j¢* + ¢~ || = ||¢|le and so the real restriction in the definition is the reverse
inequality.

C*-algebras with the decomposition property are unital [18] and so, unless
explicitly mentioned to the contrary, all C*-algebras in this paper are assumed to
be unital and all linear maps are assumed to be self-adjoint.

In the last five years completely bounded maps have begun to play a prominent
role in certain areas of C*-algebra theory. Wittstock’s decomposition theorem [35],.
Haagerup’s characterization of injective von Neumann algebras [15], the Effros-
-Haagerup work on Ext [11] and Paulsen’s investigations of operator similarities [24]
should especially be mentioned in this connection. A more complete list of recent
work will be found in the references. Briefly stated, the object of this paper is to
begin a more detailed study of the relationships between the decomposition pro-
perty, nuclearity and injectivity for general C*-algebras.

Section 2 builds on Haagerup’s characterization of injective von Neumann
algebras to obtain a new characterization of nuclear C*-algebras in terms of the
decomposition and approximation of completely bounded maps (Theorem?2.1).
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This is used in the final section to characterize nuclear C*-algebras with the decom-
position property, and in particular to extend Wassermann’s results [34] on nuclear
and injective von Neumann algebras to the C*-algebra case. The third section consi-
ders a weakened form of the decomposition property, equivalent to the decomposi-
tion property for von Neumann al gebras but distinct for C*-algebras (Corollary 3.6).
The situation is still unclear but some partial results are given. In particular the
norms of decompositions in the commutative case are related to topological pro-
perties of the maximal ideal space (Theorem 3.5).

The fourth section is concerned with the case of separable operator systems
as the domain, and here a characterization of the decomposition property for
commutative ranges is possible in terms of substonean spaces (Theorem 4.6). The
fifth section considers the relationship between the decomposition property and
injectivity in light of their equivalence for von Neumann algebras [15]. It is shown
that algebras possessing the decomposition property are AW*-algebras and that
on separable Hilbert spaces this implies injectivity under a mild restriction (Propo-
sition 5.2 and Theorem 5.3). v

For the basic definitions and results in the theory of completely bounded
maps the reader is referred to [18, 23, 24, 27, 28, 32, 35], and to the forthcoming
book by Paulsen [25].

2. NUCLEARITY AND THE DECOMPOSITION PROPERTY

In [15] Haagerup obtained a characterization of injective von Neumann
algebras in terms of the decomposition of completely bounded maps from £,. Given
the close connection between nuclearity and injectivity [7, 9, 12, 22], it should
be possible to transfer this characterization to nuclear C*-algebras. The analogues
of Haagerup’s conditions are properties P, and P; below, but are insufficient in
themselves to determine nuclearity. It is necessary to consider in addition two
closely related approximation properties. For Theorem 2.1 the restriction that A4
must be unital will be lifted.

Consider the following properties which a C*-algebra 4 may or may not
possess:

P,: Given ¢ :¢, - A and ¢ > 0, there exist completely positive maps
@* 14, —> A such that ¢ = ¢* — ¢~ and [lo* + ¢~ || < [@lls + &

P,: There exists a constant ¢ > 0 dependent only on 4 such that, given
@ : ¢, > A there exist completely positive maps ¢* : £, — A4 satisfying ¢ = @+ — ¢~
and flo* + ¢~ < dolle -

Hoills < jl@llew and lilln @, = ¢ in the point w*-topology.
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P; : There exists a constant d > 0 dependent only on 4 such that, given

@ : £, - A**, there exists a net of maps ¢, :/, » A satisfying ||¢;]le < dl|@]lo
and lim ¢, = ¢ in the point w*-topology.
A

It is now possible to prove the following characterization of nuclearity.

THEOREM 2.1. The following statements concerning a C¥-algebra A are
equivalent : '

1) A is nuclear,
2) A satisfies P, and P,,
3) A satisfies P, and P;.

Proof. 1) = 2). Initially assume that 4 is unital. Fix an integer n and a
map ¢ : £, - A** with ||@|le = 1. By assumption A is nuclear and so both A4**
and A¥* ® M, are injective {7]. On the subspace

{(}L a):)l,yeC, a,bet’,,}
b n

of £, ® M, define a map ¢ into A** ® M, by

‘//(2 a-) ___( A (p(a)).

b u o) p

Since ||@llco = 1 it follows, by work of Paulsen [23], that i is a unital completely
positive map which thus extends to a -completely positive map ¥ : M, @ M, —

and so there exists a net y,: M, ® M, - A ® M, of unital completely positive
maps converging in the point w*-topology to ¥ [27]. Now define ¢, :¢, - A by

0x(@) = (1 omm@Em)(f), act,.

Then ||@,llee < ||¥,ll =1 and lim ¢; = ¢ in the point w*-topology. These maps.
F3

may not be self-adjoint but can be replaced by (¢, 4 @¥)/2. Thus A satisfies P,.

If A is non-unital let B be the C*-algebra obtained by adjoining a unit to A4,
and fix an approximate identity (e,), 0 < ¢, < 1 for 4. From above there exists
a net ¢;:£, » B of completely contractive maps converging to ¢ in the point
w-topology with respect to B**. It is easy to see that maps of the form
e.08, ', — A are completely contractive and approximate ¢ in the point
w*-topology with respect to A**. Thus in both cases A satisfies P, .

In order to establish P, first consider an arbitrary map 0 :¢, — A, write

(p)i-, for the n minimal projections in £, and denote by a; the element 6(p;) € 4.
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Then J|a;|] < ||0], and so by the spectral theorem there exist positive elements
a € Asuch that || + a7 ||<||0|| and a; = a} — a; . Define two maps 0%: 7, —» A
by

o*(i A,-pi): Y Lai.
i—:1 i-—1

Each map is positive, hence complétely positive since £, is commutative [30], and
0 = 6+ — 6-. In addition

0%+ 01 = [0°(1) + 6= = | §, @ +a7)] < ol

Now consider ¢:£,, > A and fix ¢ > 0. Since £, is finite dimensional and A
is nuclear, there exists a matrix algebra M, and contractive completely positive maps

A-S M, 254
such that
flo — ot < é&/n

{6, 21]. Since M, is injective T has a decomposition 1o = Y+ — §—, Y*:¢, - M,
and

W+ + ¥l = @il < |@lke.

‘Then g1¢ : £, - A can be decomposed as otp = oy * — oy~ where

low* 4oy~ < l¥* + ¥l < [[@lles-
From above there exist completely positive maps 8* :/, -+ A such that
¢ —otp =0+ —0- and |[0F + 0-|| < nllp — o10|| < &

Then ¢ has a decomposition

o=yt 4+ 0*) — (o~ +67)
and

oy 4 8% + o= + 07| < floy* + oy~ [ + [0 + 07| < [l@fles + &

Thus A satisfies P;.
2) = 3). It is clear from the definitions that ¢ may be chosen to be 2 in P}

and dtobe 1 in P;.
3) = 1). Consider a map ¢ : £, - A**. From P; there exist a constant d > 0

and a net ¢, :£, » A converging to ¢ in the point w*-topology and satisfying
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loills < dl|@llco. By P; each ¢, has a completely positive decomposition
9, = @i — @3 where 95 :/, > A and o + @3] < c||@;llev < cdfl@llco. Passing
to convergent subnets if necessary, there exist completely positive maps ¢* : £, - 4%+
such that lim ¢f = ¢* in the point w*-topology.

i

Then
ot + o1l < lim}supnrm+ 4+ @7l < cd|j@lleo

and ¢* — ¢~ is a decomposition of ¢. It follows from Haagerup’s characterization
[15] that A** is injective, and thus A is nuclear [7]. This completes the proof of
the theorem.

REMARK 2.2. With only minor modifications it is possible to replace ¢,
by M, throughout the proof. This emphasizes a basic difference between completely
bounded and completely positive maps: the approximations of P, and P; always
hold for completely positive maps [27], but may fail for completely bounded maps
as will be seen below.

In order to show that each of these properties alone is insufficient to charac-
terize nuclearity it is first necessary to show that P, and P; are inherited by
subalgebras.

Lemma 2.3. Let B be a C*-algebra satisfying P, (respectively P;). Then
any C*-subalgebra A also satisfies Py (respectively P; with the same constant d).

Proof. Suppose that B satisfies P; for a certain constant d > 0, and let 4
be a C*-subalgebra. Consider a map ¢ :£, —» A**. In order to construct point
w*-approximations to ¢ the following is sufficient: given &> 0 and states
0,, ..., 0, e A* there should exist a map Y :£, » 4 such that ||{|lw < dlj@|lw + &
and

0.0(p) — Ole(p))l <&, 1<i<r,1<j<n

where (p;)j-, are the minimal projections in #,. Fix a positive number J, to be
chosen later.

Since B satisfies P; there exists a net of maps ¢, :/, — B such that {|¢, |l <
< d|jo|lep and Ii;n @, = ¢ in the point w*-topology with respect to B** Choose

Ao such that
lole(p)) — op(p))l <6, 1<i<r,1<j<n

for all 1 > Ay, where each w; € B* is a fixed state extension of 0,.

Consider now the n-fold direct sum B@® ... @ B of n copies of B and view
A® ... ® A as a subalgebra. Let S = conv{(p(p,),..., 0,(p) 142 4} = B®
@ ... 0B If Sand A @ ... @ A were a strictly positive distance 5 apart then
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by Hahn-Banach separation there would exist linear functionals t; € B* such that

ﬁ; t{e;) =0 forall gq;e A
i=z1
but

n

LY niea(p)

{i=1

z2n>0 for A2 4.

It would thus be impossible for the nets {¢,(p;)} to converge to {¢(p,)} in the point
w*-topology. Consequently there exists a map o :£, — B which is a convex combi-
nation of ¢,’s for A > 4y, and elements a,. . ., a, € 4 such that

lai —a(p)ll <d, l<i<n

Note that ||o|lce < dli@lls.
Now define a map y :£, — 4 by

lf/( igluipi) = 21 nia; -

From above ||y — o|| < nd, and so, as in the proof of Theorem 2.1 y — ¢ has 'a
completely positive decomposition
y—o=¢r — &7
where ¢* :¢, —» B and ||£+ 4 £~ < n%3. It follows that ||¥ — oll, < n%0 and so
¥l < dlj@llep + 770
Finally observe that for 1 < i< rand 1 €j<n
0(p;) — 000 = 0(D)) — @,0(py) + w,0(p) — O:p(p)] <
< o) — wio(p)l + lwio(p) — wip(p)l < 6 + 6 = 24.

Now choose § to be min{g/n?, ¢/2}. By dividing ¢ by 1 4 ¢/d||¢|ls it is evident
that ¥ can be chosen to have cb-norm at most df|¢@l|l,. Thus A4 satisfies P for
the same constant d.

Satisfying property P, is clearly equivalent to satisfying Py for every number
d > 1 and so, from above, P, also passes to C*-subalgebras. %

ExampLEs 2.4. Choi [5] hasdiscovered a separable n-nuclear subalgebra A
of the nuclear Cuntz algebra O,. By Theorem 2.1 O, satisfies P, and P; and so 4
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satisfies P, and P; by Lemma 2.3. Since A4 is non-nuclear it thus cannot satisfy P,
or P}, and so P, and P, are insufficient to characterize nuclearity. Failure to
satisfy P; may be interpreted in the following manner: for each integer r there is.
an integer n, and a completely contractive map ¢, : £ n, = A so that for any decom-
position ¢ — @; of ¢, it must be that ||@;} -+ ¢ || = r. This adds one more patho-
logy to the list for 4 (see [5]).

Now consider B(H) for an infinite dimensional Hilbert space H. This is an
injective von Neumann algebra [1] and so satisfies P, and P; (Wittstock’s theorem
[35]). However B(H) is known to be non-nuclear [34], and so by Theorem 2.1 proper-
ties P, and P; must fail in this case. Thus P, and P; are insufficient to characterize
nuclearity.

With a little extra work a separable example can be constructed. There exists.
a finite dimensional operator system E in B(H) which cannot be embedded in any
nuclear C*-algebra [2]. Define inductively an increasing sequence B, < B, & ...
... S B(H) of separable C#*-algebras beginning with B, = C*(E). If B,,...,B,
have been defined, for each integer » choose a dense sequence of maps ¢,; :£, = B,,
J = 1. Each ¢,; has a completely positive decomposition ¢F; :¢, - B(H) and so
define B,,, to be the C#*-algebra generated by B, and the ranges of the maps

{@%}3;=1. Then let B be the norm closure of U B,. A short approximation argu-
r=1
ment shows that B satisfies P, and P;. However B contains E and thus cannot
be nuclear. It follows that P, and P; fail for the separable C*-algebra B.
The following result will be useful later.

COROLLARY 2.5. A nuclear C*-algebra cannot contain an injective non-nuclear
C*-algebra.

Proof. Let A be nuclear and let B be an injective subalgebra. By Wittstock’s
theorem [35] B satisfies P, and P;. By Theorem 2.1 A satisfies P, and Pj, and
so the subalgebra B also satisfies P, and P; by Lemma 2.3. One last application
of Theorem 2.1 now shows that B is nuclear. %)

3. THE WEAK DECOMPOSITION PROPERTY

A C*-algebra A is said to have the weak decomposition property if, for each
C#*-algebra B and each completely bounded map ¢: B — A, there exist completely
positive maps ¢* : B — A4 such that ¢ = ¢+ — ¢~. Notice that the norm require-
ment on @+ -+ ¢~ has been dropped. However there is an automatically imposed
condition on this quantity.

LeMMA 3.1. Let A be a C¥%-algebra with the weak decomposition property.
Then there exists a constant ¢ > 0, dependent only on A, such that any completely
bounded map ¢ : B — A decomposes as ¢ = ¢+ — ¢~ with |lo* + ¢~|| < c||@]lco -
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Proof. If the lemma is false then there exist C*-algebras B, and completely
bounded maps ¢, : B, — 4 such that, for any decompositions,

foalles = 1, llog + 051 = 4".

Let B be the direct sum @ B, and define ¢ : B - A4 by
rp=1

o(by) = ¥, 27"p,(b,), n = 1.

n=1

Then ||@]lco < 1. Suppose that ¢ has a decomposition ¢ = ¢+ — ¢~. If , denotes
the natural embedding of B, as the a*" summand of B then 2"p+y, — 2"@~V,
is a decomposition of ¢, , and ||2%¢ Y, -+ 2"¢ ¢, || € 27|e* 4+ ¢~||. For sufficiently
large n this contradicts the lower bound of 4”.

REMARK 3.2. Haagerup’s work shows that, in the case of von Neumann
-algebras, the weak decomposition property implies injectivity which in turn implies
the decomposition property {15]. As will be seen below this is not the case for
general C*-algebras (Corollary 3.6).

The weak decomposition property will now be examined for commutative
C*-algebras. This is the simplest case and also the one for which the most informa-
tion is available. The following example illustrates some of the possibilities.

ExampLe 3.3. Let A be the C*-subalgebra of £, @/, defined by

A={(fg):f— g€}
Any completely bounded map ¢ : B -+ A may be viewed as 0 ® (6 + ) where
0:8B ¢, and  : B - ¢, are completely bounded maps. Since /., is injective and

thus has the decomposition property (the weak decomposition property would
suffice) there are completely positive maps 8% : B — £, y* : B — £, such that

0=0+—0-, Y=Y+ —y.
‘Then ¢ has a completely positive decomposition
=0 +y )@@ +y*)— (0" +y)d O 4+ y).

It is easy to check that these maps have their ranges in 4. Thus 4 has the weak
.decomposition property.
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Now define ¥ : ¢ — ¢, by

Y(4,) = (4, — lim2,), (%) €e,

and define ¢ :c @ ¢ - A by
ola, b) = (Y(a), y(b)), a,bee.
Then |jglle, == 2, and from above ¢ has a completely positive decomposition
o=0" —¢~, ¢f:c@®c—o A
Write ¢ *(0, 1) = (f,g) and ¢ *(1,0) = (1, k). If a € ¢, ||a]| < 1 then
(/,8) = ¢*(0, 1) > ¢*(0,a) > ¢(0,a) = (0, a)
and so g > 1. Similarly 4 = 1. Since ¢(0,1) = ¢(1,0) =0, it follows that
(p* + o)1, 1) = (o* + ¢~ )(1,0) + (0, 1)) =
=20%(1,0) + 20*(0, 1) = 2f + 2h, 2g + 2k).
In /wfey, f= & and so
2f + 2k > 4.
Thus, {|¢* + ¢~ || 2 4 = 2||¢|lw. The computations show that 4 has the weak

decomposition property, but not the decomposition property.
Similar calculations establish the following result, in which commutativity

is not assumed.
PROPOSITION 3.4. Let A have the weak decomposition property and let J,,. .. J,

be closed two-sided ideals in A. Define B to be the C*-subalgebra of @ A
i=0

B={(ay, a,...,a,) :ay, —a;€J;}.

Then B has the weak decomposition property.

It may be that, starting from an algebra A with the decomposition property,
this construction accounts for all algebras B with the weak decomposition property;
all known examples are of this type.
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Let N denote the positive integers, SN the Stone-Cech compactification of N,
and N* the corona set SN — N [33]. If the construction of Proposition 3.4 is
specialized to 4 =7, and J, = J, =...=J, = ¢, then the maximal ideal space
of the resulting algebra B is readily seen to be n copies of SN with the corona
sets N* identified pointwise. The calculations of Example 3.3 then suggest the follow-
ing result, which has also been obtained by Huruya [17].

THEOREM 3.5. Let X be a compact Hausdorff space containing a point x,
which is in the closures of n disjoint open subsets of X. Then there exists a
C*-algebra B and a completely bounded map ¢ : B — C(X) such that any decompo-
sition @* : B —» C(X) satisfies

lot + o=l = nllolicy.

Proof. Let U,,. ... U, denote the » disjoint open sets whose closures contain
a common point x,. Let X; be the compact Hausdorff space obtained by identifying
(Uyu ... uU,) to the point x, and let Z be two copies of X; identified at x,.
The second copy of U; will be denoted V;, and the point in V; correspoending
to x € U; will be written X. Finally define Y to be Z X {1,2,...,n},n topolo-
gically disjoint copies of Z.

Now define 6 : X - C(Y)* by

b(x) = {5(x, D—0x10) xel; -
0 otherwise ,
where d(x,7) denotes the point measure at x in the i* copy of Z. It is clear b
construction that ||6(x)|| < 2 for all x €e X and that 6 is continuous in the w*-topo-
logy of C(Y)*. It thus corresponds to a completely bounded map ¢ : C(Y) — C(X)
for which ||¢{|cb = 2. Any decomposition of ¢ induces a decomposition§ = §+ — 6~
of 0, where 0% are w*-continuous selections of measures.
If x € U; then clearly

@+(x) 2 o(x,i) and 6-(x) = 6(%, Q).
It follows that
0+(x) + 0-(x) = o(x,i) + (%, i), xeU,;.
By continuity
8+ (x) + 07 (x0) = 26(xq, 1)

and since this is true foreach 7, 1 < i< n

0+(x0) -+ 0-(x0) > 2 'Y, 8(xp .
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Thus||0+(x,) + 0-(xg)]| = 2n and so

lle* + ¢=ll = 2n = nll@|le.

This completes the proof. %

COROLLARY 3.6. For each integer n there exists a C*-algebra A, with the
weak decomposition property, a C*-algebra B, and a completely bounded map
¢ . B, = A, such that any decomposition ¢p% : B, — A, satisfies

len + @i li = nll@alles -

Proof. Let A, be the subalgebra of @ /., defined by
0

An = {(fO" . :fn) :fiE/ooa fo '_'fiec(,}.

This algebra is commutative and so may be represented as C(X,) where X, is the
maximal ideal space. As noted above, X, contains n open sets (copies of N) whose
closures intersect in the corona set N*,

By Proposition 3.4 4, has the weak decomposition property. By Theorem 3.5
there exists a C¥-algebra B, and a completely bounded map ¢, : B, - 4, such
that any decomposition satisfies

lor + oill 2 #ll@lle, %

completing the proof.

It is trivial to see that any direct sum of algebras with the decomposition
property again has the decomposition property. The above theorem, in conjunction
with Lemma 3.1, shows that this is not the case for the weak decomposition property.

(=]
Consider, for example, @ 4,,.

n=1
The following characterization of the decomposition property for commutative
C*-algebras has also been obtained recently by Huruya [17].

COROLLARY 3.7. A commutative C*-algebra C(X) has the decomposition property
if and only if X is stonean.

Proof. 1f X is stonean then C(X) is injective and has the decomposition pro-
perty, by Wittstock’s theorem [35].

Conversely if C(X) has the decomposition property then any completely
bounded map ¢ : B —» C(X) has a decomposition

=@t — @~ with |t 4+ ¢~ | = ||@|ib-
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By Theorem 3.5 no point in X can be in the closures of two or more disjoint open
sets. This is just a reformulation of the definition of stonean spaces. %

COROLLARY 3.8. £ has the decomposition property but £[cq does not.

Proof. 1t is clear that /£, has the decomposition property. The maximal
ideal space N* of //¢, contains two disjoint open subsets whose closures are not
disjoint [33]. Thus N* is not stonean and so //c, does not have the decomposition
property, by Corollary 3.7. Z)

4. THE SEPARABLE DECOMPOSITION PROPERTY

As was noted in the previous section, the decomposition property may hold
for a C*-algebra but fail for one of its quotients. The object of this section is to
consider a weaker property which, in certain circumstances, does extend from
a C*-algebra to its quotient by a two-sided ideal.

DEeFINITION 4.1. A C*-algebra A is said to have the separable decomposition
property if every completely bounded map ¢ : £ — A from a separable operator
system into 4 has a decomposition ¢ = ¢+ — ¢~ where ¢ : £ — A are completely
positive, and |l¢* 4 ¢~ || == ||@[lcb-

LemMa 4.2. Let A be a nuclear C*-algebra, and let S be a separable subset.
Then there is a separable, unital, nuclear subalgebra of A containing S.

Proof. An increasing sequence of separable subalgebras of 4 will be defined
in the following way: B, is the C*#-algebra generated by S and the identity. Assuming

that B,,. .., B; have been defined, choose a countable dense sequence {b,}; , in B;
and for any integer r, choose a matrix algebra M, and completely positive maps

A M, >4
such that

o7 b)) — b;l] < L. > 1 <i<r
r

Define B;,, to be the C*-algebra generated by B; and its images under the mapsa,7,.

(=]
Let B be the norm closure of |_J B;. Then B is separable, contains S, and has

j=1
approximate point norm factorizations through matrix algebras by construction. B
is thus nuclear.

PROPOSITION 4.3. Let A be a nuclear C*-algebra with a closed two-sided
ideal J. I A has the separable decomposition property then so does A|J.
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Proof. Let E be a separable operator system and consider a completely
bounded map ¢ : E — A/J. The image of E is a separable subspace of A/J. Since A
is nuclear, so too is 4/J [7] and so there is a separable, unital, nuclear subalgebra B
of A/J containing ¢@(F) by Lemma 4.2. From the Choi-Effros lifting theorem [8]
there exists a completely positive unital map  : B — 4 such that py = id on B
where p : A - A/J is the quotient map. Then ¢ : £ — A is completely bounded
with ||¥¢lle = [l@llco and so by hypothesis there exist completely positive maps.
0% : E - A such that Yo = 6+ — 0~ and

0+ — 0=l = IWollw = || @lico -

The map ¢ then has a decomposition ¢ = p8* —— p~, p6* : E - A/J and
clearly

lip0* + p0~| = |i@lcs.

Thus A/J has the separable decomposition property. %3

REMARK 4.4. This proposition applies to /./c, since £ is nuclear and
being injective, also enjoys the decomposition property.

For the remainder of the section interest will be focused on commutative:
algebras since in this case a complete characterization of the separable decompo-
sition property can be given. Some preliminary definitions are necessary before
the theorem can be stated.

DEFINITION 4.5. 1) A compact Hausdorff space is said to be substonean if”
any two disjoint co-zero sets have disjoint closures.

2) A C*-algebra A4 has the countable Riesz separation property if, given an
increasing sequence {a;};., and a decreasing sequence (b,}71 from A, satisfying
a; < b; for all i, j > 1, there exists ¢ € 4, such that

a; <c<b;, for i,j=1.

3) A C#-algebra A is separably injective if, given a separable operator system F,

a subspace E containing the identity, and a completely positive map ¢ : E — A,
there exists a completely positive extension Y : F — 4 of ¢.

The characterization of the separable decomposition property for commu--
tative C*-algebras C(X) may now be stated.

THEOREM 4.6. The following are equivalent for a commutative C*-algebra C(X)
1) C(X) has the separable decomposition property,

2) X is substonean,

3) C(X) has the countable Riesz separation property,

4) C(X) is separably injective.
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Proof. 1) = 2). Assume that C(X) has the separable decomposition property,
but that X is not substonean. Then there exist disjoint co-zero sets U and ¥V with
at feast one point x, in the intersection of their closures. Choose two functions
/o g€ C(X) such that 0 < f,g < 1 and

U = {x:f(x) # 0}, V= {x:g(x)# 0}
Define a w*-continuous map 0 : X — C[0, 3]* by

Or4s) — -y ¥EU,
0(X) = 1651 00) — O3 giey XEV,

0 otherwise,

‘where J, denotes the point measure at y € [0, 3]. The map @ arises as the dual of
a completely bounded map ¢ : C[0, 3] = C(X) of cb-norm 2. C[0, 3] is separable
and so a decomposition of ¢ exists which induces a w*-continuous decomposition
-of 0, by duality. The required contradiction will be obtained by showing that no
suitable decomposition of 8 exists.

Let 0% : X — C[0, 31* be w*-continuous positive maps satisfying

0=0+ —06- and |6+ (x) +0-(x))] <2
for all x € X. From the definition of 6 it is clear that

0+(x) = 0147, 07(X) 20—y forxelU
and
0+(x) 2 Sa4pny> 07(%) = d3_pxy for xe V.

Since x, is the closure of both U and V, by w*-continuity

0*(xg) 2 0, + 0, and 07 (xp) = &, + 9.
Thus
10+ (xo) + 0=(xp)ll > 4

and a contradiction has been reached.
2) = 3). Assume that X is substonean, and consider an increasing sequence

{f.}x1 and a decreasing sequence {g,,}m1 from C(X) such that f, < g, form,n > 1.
Without loss of generality assume that 0 < f,, g, < 1 for m,n > 1. For each
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real r € [0, 1] define

o0 [e ]
U=Uxifilx)>r}, V= {x:gux) <r}
n=1 m=1
Observe that V) =0 and U, =@. In addition each U, and ¥, is a co-zero set,
UnV,=0 and, if r < s then V, € V, and U, = U,. For each diadic rational
r == g/{2?in [0, 1] an open co-zero set W, will be constructed by induction satisfying

AV, cW,cW,c U,

b) if » < s then W, <= W,.

To begin the induction define W, =0 and W, = X. Now suppose that W,
has been defined for r = ¢/2?, g =0, 1,... 27 so that a) and b) hold. Consider
now a rational r = (2¢ 4 1)/2°*1. For convenience of notation write « = ¢/2?,
B = (g + DP2"

Since U, and ¥V, are disjoint, the hypothesis implies the disjointness of
U, and V,. Consequently V, < US. By construction V, = Ve S Wy, and so
V,sWynU;. It follows from the inequality o <r < f that W, < W, and
that W, c U < U¢. Thus

V.uW, < W;nUs.

By Urysohn’s lemma there exists a function fe C(X) such that 0 < f< 1, f=1

on V, U W, and vanishes outside W, n Us. Define W, = {x : f(x) > 1/2} and observe
that

VoW, sW, W, < {x:f(x) 2 1/2} = W,nT:.

The induction step is complete.

Now define a function A(x) on X by A(x) = inf{r: x € W,}. It remains to
show that 4 € C(X) and that 4 separates {f,}n.; and {g,,}m=1. If & Were not conti-
nuous then there would exist a point x and a net x; — x such that A(x;) - L # h(x).
It is clear frem the definition of & that L < A(x). Choose two diadic rationals
satisfying

L <r<s < h(x).

Then, for sufficiently large A, x; € W, and so xeW,. Thus, by construction
x e W, and so A(x) < s, a contradiction. It follows that % is continuous.

For a given point x € X suppose that g,.(x) < h(x) for some integer m, and
choose a diadic rational » such that g,(x) < r < h(x). Then x ¢ W, and x ¢ V,.
From the definition of ¥, this implies that g,,(x) > r, a contradiction. Thus %4 < g,
for m > 1, and the verification of f, < & for n > 1 is similar. It follows that C(X)
has the countable Riesz separation property. This part of the proof follows the
section on Urysohn’s lemma in [10].

3) = 4). Suppose that C(X) has the countable Riesz separation property.
Let F be a separable operator system, let E be a separable subspace containing
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the identity, and let ¢ : £ — C(X) be a completely positive map. Choose a self-
-adjoint element a € F\E and consider the following two sets:

S=1{beE:b<a}l, T={ceE:a<c}

Since Econtains the identity both sets are non-empty and separable. Choose countable
dense subsets {k,}, and {I,};y of ©(S) and ¢(T) respectively and observe that
G Rl kn <1, formnz1
by positivity of ¢.

The hypothesis may be applied to the sequences {f, = sup(k,,.. .,k,,)}:il
and {g, = inf(;,...,1,)}me to obtain ke C(X) satisfying

k,<h<l

n m

for myn = 1.

From this it is easy to see that ¢ may be extended to a positive map on span{E, a}
by defining ¢(a) to be /2. A countable repetition of this argument leads to a positive
extension ¥ : F - C(X). However when the range is commutative a positive map
is automatically completely positive [30].

4) = 1). There is a duality between completely positive maps ¢ : £ - A ® M,
and completely positive maps y: E® M, - A where A is a C*-algebra and E is
an operator system. Given ¢ : E - A ® M, consider ¢ @ L,: EQ M, - A ® M,
which is also completely positive. Let ¥ = (1,0,0, 1) and define ¢ : EQ M, —» A
by ¢ = Vo @ LV*. Then ¢ is completely positive. Conversely given ¢ : E ® M, — 4,
let Pe M; be the matrix Ey, + Ey, + E,, + E,, and define i : E - A ® M, by

Y@=y @ Ia® P).

It is not difficult to see that these operations are mutually inverse to one another.
This is sufficient for present purposes, but the duality is valid when M, is replaced
by any matrix algebra M, (see [29] for the case 4 = C).

Now consider a completely bounded map ¢ : E — C(X) where E is separable.
Assume without loss of generality that || @|l, = 1. Let S be the self-adjoint separable
subspace of £ ® M, of the form

{(A b) iA,pneC, b,cEE}
¢ K

and define 0: S —» C(X) ® M, by

Tl )
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Following Paulsen [23], 0 is completely positive and so 0:5® M, - C(X) is
completely positive. By hypothesis there is a completely positive extension ¥ : £ ®
® M, » C(X) of 6 and then W :E® M, > CX)® M, is a completely positive
extension of 6. The completely positive decomposition of ¢ is now obtained by
following the proof of [23]. This completes the proof of these equivalences. )

Two recent preprints by Grove and Pedersen [13, 14] contain many results
on substonean spaces in connection with the problem of diagonalizing matrices
over C(X). Some of this information can be quickly recovered from Proposition 4.3
and Theorem 4.6. If X is substonean and Y is a closed subspace then Y is the
maximal ideal space of a quotient C(X)/J. C(X)/J has the separable decomposition
property and so Y is substonean. If X is a o-compact space and CP(X) is the
algebra of bounded continuous functions on X, then it is not difficult to show that
CP(X)/Cy(X) has the countable Riesz separation property. Thus the maximal ideal
space is substonean.

Finally if X is an infinite compact metric space, take an infinite convergent
sequence of distinct points, x, — x. Take disjoint open sets W, containing x, and
set U= |YW,, V= {JW,. These are disjoint open co-zero sets which have

neven n odd
a common point x in the closures. Thus X is not substonean. It follows that no
infinite dimensional separable C(X) can have the separable decomposition property.

5. INJECTIVITY AND THE DECOMPOSITION PROPERTY

For von Neumann algebras injectivity is equivalent to possessing the decom-
position property [15, 35). The situation for C*-algebras is less well understood,
although the decomposition property is a consequence of injectivity without
restriction [35]. The remaining question is whether the decomposition property
implies injectivity for C*-algebras, and this will be investigated below. It should
be noted that Hamana [16] has discovered an example of an injective non-nuclear
C*-algebra which fails to be a von Neumann algebra (in any faithful represen-
tation). In the commutative case, the algebra of bounded Borel functions on [0, 11
modulo the ideal of functions supported on sets of first category is an old example
of this phenomenon, due to Dixmier.

It is now necessary to establish some preliminary results before the main
theorem can be stated.

LemMma 5.1, Let B, represented as C(X), be a maximal abelian subalgebra
of a unital C*-algebra A. Let x, be a non-isolated point in X and let J denote
the ideal in B consisting of functions vanishing at x,. If ¢ : B — A is a completely
positive unital map satisfying ¢(j) > j for j& J*, then ¢ is the identity.
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Proof. Define  : J — 4 by
V(@ =e()—j for jel
By hypothesis y is positive and thus completely positive since the domain is commu-

function of X\{x,}) and consider ¢** : B** — 4** Note that ¢** is completely
positive, unital, and | ¥*|| = 1. Then ¢**(p) = p + Y**(p). Since p is a projection
it follows that Y**(p) is orthogonal to p in order that || p**(p)|| < 1.

Thus
Jl‘ﬁ(Jz) = ‘//(Jz)h = 0.

By linearity this orthogonality condition can be extended to all j;, j, € J. Since J
is a maximal ideal in B it is clear that each y(j) commutes with every clement
of B and so y(j) € B for all jeJ, by hypothesis.

For each x € X \{x,) choose j. € J such that j(x) = 1. The orthogonality
conditions applied to j, and y(j) imply that

W]')lX\{xo} =0 forjel

Since x, is not an isolated point in X it follows that iy =0, and so ¢ is the identity
on J. Thus ¢ is the identity on B. Y

Recall that a C*-algebra 4 is said to be monotone complete if any increasing
bounded net from A has a least upper bound in A. In the case of a commutative
algebra C(X) this is equivalent to the topological property that the closure of any
open subset of X is again open [33]. Of course, this is equivalent to the definition
of X being stonean given earlier.

PROPOSITION 5.2. Suppose that a C*-algebra A has the decomposition pro-
perty. Then every maximal abelian subalgebra of A is monotone complete.

Proof. Assume the contrary. Then there is a maximal subalgebra B = C(X)
for which X is not stonean. Let U be an open subset of X whose closure is not
open, and set ¥ equal to the complement of U. Let E=TUn V, which is non-empty
by construction, and fix an element x, € E. Alsc observe that X = U u ¥. Form
a new compact Hausdorff space Y as the disjoint topological unicn of U and V.
E embeds into U and V as E, and E, respectively and the poiat x, may be iden-
tified with two points x; € F; and x, € F,. Now define two operator systems in
C(Y) by

T={fe C(Y):f|E, and f|E, differ by a multiple of the identity}
and
S = {fe C(V):f|E, =fIEy}.
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S is clearly. completely order isomorphic to C(X) and T may be obtained from S
by adjoining the projection p € C(¥) which is the characteristic function of T.
Define ¢ : T —» C(X) by

n_ [flU—=f(x) onT
P )_{W—f(xz) on 7

The definition of T ensures that ¢(f) is well defined as an element of C(X). Moreover
lloll < 2 and, by choosing an element f € T of unit norm which takes the value 1
at x; and the value — 1 at some other point of T, it is clear that {j@|| = 2. Addi-
tionally the range of ¢ is commutative and so ||l = [|@|] = 2. By assumption ¢
has a completely positive decomposition ¢ = ¢* — ¢~ where ¢*: T - 4 and
ot + ¢~ |l =2. Now ¢(1) =0 and so ¢*(1) = @~ (1). It follows that

2 =lle*() + o=} = 2{le* (D}

and so [l@*(1)]| == 1. If ¢*(1) # 1 then choose a state @ on T and define new
completely positive maps y* : T — 4 by

YE) = o*5(f) + w(f)L — o*(1)).

Then ¢ ==* — ¢y~ and
I+ + =il =Y+ 1) + =] = 2.

Thus it may be assumed from the outset that ¢ can be decomposed by unital com-
pletely positive maps ¢* : T — A.

Set J = {fe C(X):f(x,) = 0} and remember that S is identified with C(X).
Then ¢ : C(X) - C(X) and ¢ is the identity on J. Then ¢* : C(X) - 4 and, for
jeur,

(N =0+ o (D=i+ e () =/

Clearly x, is not an isolated point of X and so Lemma 5.1 may be applied to obtain
that o™ is the identity on C(X).

Now the C*-algebra 4 may be viewed as a subalgebra of a suitably chosen
B(H). By the injectivity of B(H) {1], ¢*: T — A has a completely positive unital
eXtension 0: C(Y) — B(H), and it has already been shown that if fe S then

07*) = o*(£*) = o*(fe*(f) = 0F0()

and

0™ = ¢*(ff*) = @* (N (f*) = 0(f*)0(f).
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Thus S is contained in the multiplicative domain of 0 [4] and so for fe S and
g € C(Y)

0(f2) = 0(f)6(e) and 06(gf) = B(g)0(f)

[4]. Obviously fg = gf and so 6(g) commutes with each 0(f) for fe S. However
the image of ¢* acting on S is C(X) and so 6(g) commutes with every element
of B. Since B is a maximal abelian subalgebra of 4, it follows in particular that
¢*(p)€ B.

Take an increasing positive net (f,) € S converging pointwise to the characte-
zistic function of U and a decreasing net (gz) € S converging pointwise to the charac-
teristic function of U U E,. Then for each « and f

P*(f) < ot (p) < 07 (gp)
and so

e*(pIU =1, o*(p)lV = 0.

This would imply that U and ¥ have disjoint closures, and this contradiction proves
the proposition. Z

The following theorem constitutes the main result of the section.

THEOREM 5.3. Let A be a C*-algebra faithfully represented on a separable
Hilbert space and assume that the centre of A is a von Neumann algebra. Then A
1s injective if and only if A has the decomposition property.

Proof. As observed several times above, injectivity implies the decomposition
property [35].

Conversely if 4 has the decomposition property then 4 is an AW*-algebra
by Proposition 5.2, (see [26]). Since the centre is a von Neumann algebra, A is
also a von Neumann algebra [36] and it follows from [15] that 4 is injective.

The theorem applies, of course, to all simple C*-algebras and to those with
a finite dimensional centre.

6. NUCLEAR AND INJECTIVE C*-ALGEBRAS

In this section the results of the second and fifth sections will be applied tc
determine the structure of those nuclear C*-algebras which possess the decomposition
property. As a corollary those C*-algebras which are both nuclear and injective
will be characterized, thus extending the work of Wassermann in the von Neumann
algebra case. The methods employed owe much to [34].

It was shown in the previous section that algebras with the decomposition
property are AW#-algebras. It is thus necessary to obtain some basic facts for such
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algebras. Lemma 6.1 is trivial, and Lemmas 6.2 and 6.4 are immediate deductions
from Kaplansky’s work [19, 20].

LemMMA 6.1. Let A be a C*-algebra containing n orthogonal equivalent projec-
tions with sum 1. Then there is a C*-algebra B such that A is isomorphic to
B®M,.

LeMMA 6.2. Let A be an AW*-algebra and suppose that there exists an
integer n such that any collection of orthogonal equivalent projections has at most n
elements. Then there exist integers ny < n, < ... <n,<n and stonean spaces

r
Xy,. .o, X, such that A is isomorphic to @ C(X;) ® M,,.

i=1
LEMMA 6.3. Let {p;}ioy be a sequence of orthogonal projections in an AW*-

-algebra A. Then A contains a subalgebra isomorphic to @ p,Ap;.
i=1

Proof. Let p =Y, p;. By restricting to the AW*-algebra pAp it may be
i=1
assumed from the outset that Y pi=1
i=1
If each p; were a central projection then the result is true {19, Lemma 2.5].
In general consider B = {x : xp;, = p;x for all i > 1}. This is an AW#-algebra [19],
contains each projection p;, and it is clear from the definition that each p; is

central in B. Thus B is isomorphic to @ Bp; [19], and since B contains p;Ap, it
i=1
follows that B is isomorphic to @ p;Ap;. %
i=1 )

Recall that an AW®*-algebra has a unique decomposition as a direct sum
of type I, type II and type III AW#*-algebras, exactly as in the von Neumann

algebra case [19]. Let M, denote the von Neumann algebra @ M,.
n==1

LEMMA 64. Let A be o type 1 AW*-algebra. Then either A contains a
subalgebra isomorphic 10 M or A is isomorphic to a finite direct sum @ C(X;) @ Mn,
1=2]

where each X, is stonean.

LEMMA 6.5, Let A be an AW™*-algebra containing no abelian projections.
Then A contains a subalgebra isomorphic to Mew .

Proof. From (31, p. 302] any projection pe A may be decomposed as
p = p, + p, where p, ~ p, (the proof given for von Neumann algebras is also
valid for AW#-algebras). The following procedure can clearly be continued inde-
finitely: Write 1 = p, + p, and define p,; to be p,. Now write py = py; + Paa +
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+ Poy + poy Where py; ~ po; and set aside p,,; and p,, . Divide p,, into eight equivalent
subprojections

8
Pay = ‘z Psi
i=1
and set aside pg,, ps, and ps,.
In this way an infinite collection (p;;), 1 < j < i < oo, of orthogonal projec-
tions is defined and for each n = 1

Py ~ Puz ™~ oo ™~ Doy

The concluding argument of the previous lemma now shows that 4 contains a
subalgebra isomorphic to M, .

PROPOSITION 6.6. An AW™*-algebra A either contains a subalgebra isomorphic

r
to My or it is of the form @ C(X}) ® Mp, where each X; is stonean.
i=1

Proof. A may be expressed as the direct sum 4; @ 4, ® A4; of algebras of
types I, IT and IIL If A, or A; is non-zero then Lemma 6.5 shows that A contains
a subalgebra isomorphic to M. On the other hand if both 4, and 4; are zero
then A is type I and Lemma 6.4 can be applied. 2

This completes the necessary preliminary work and the main results can
be stated.

THEOREM 6.7. A nuclear C*-algebra has the decomposition property if and

only if it has the form @ C(X;,) ® M, where each X; is stonean.
i=1 '

Proof. Algebras of the stated form are nuclear and have the decomposition
property. In the opposite direction, if 4 has the decomposition property then it
is an AW#*-algebra by Proposition 5.2. Then by Proposition 6.6 there are two
possibilities : either 4 contains M, or 4 has the desired form. Now M is a non-
-nuclear injective von Neumann algebra [34]. The nuclearity of 4 and Corollary 2.5
then combine to rule out the first possibility, completing the proof. 2

COROLLARY 6.8. C*-algebras which are both injective and nuclear are of the

form @® CX)) ® M, where each X; is stonean.
i=1 g

Proof. In the von Neumann algebra case this is due to Wassermann [34],
In general injective C*-algebras have the decomposition property and the result
then follows from Theorem 6.7.
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