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1. INTRODUCTION

In the theory of square-summable power series developed by L. de Branges
and J. Rovnyak [4], there arises a class of Hilbert spaces that are contained contrac-
tively in the Hardy space H? of the unit disk and are invariant under both the
unilateral shift operator, S (the operator on H? defined by (Sf)(z) = zf(2)), and
its adjoint, S* One such space is associated with each function b lying in the unit
ball of H* that is not an extreme point of the unit ball. The space associated with
is denoted by #(b) and, as a vector space, equals the range of the operator
{1l — T,T3)V® (where, in general, T, denotes the Toeplitz operator on H? with
symbol ). The norm in #(b) is denoted by || ||, and is defined by the relation
(1 — TeTp)Yefl, = |Iflly (where || |l, denotes the usual norm in H?),

The spaces J#(b) have a rich and fascinating structure whose exploration
is the aim of the present paper. For someone interested in concrete operator theory,
it is natural to seek to understand the two operators naturally associated with J2(b),
the operators X = S*[3(b) and Y = S|#(b). The main theme in what follows
will be the interplay between properties of X and Y, on the one hand, and, on
the other hand, properties of the function & and of a related function, a, the
outer function whose modulus on the unit circle equals (1 — [5{®)¥2 (normalized
to be positive at the origin).

This paper is a sequel to [12], a crucial result frem which will be stated
and further developed in Section 2. Let it be mentioned here that both [4] and
[12] contain proofs, from different viewpoints, of the invariance of J#(b) under S
and S*. (The space s#(b) can of course just as well be defined as above when b
is an extreme point of the unit ball of H*®; in that case J#(b) is S*-invariant
but not S-invariant. Versions of these spaces exist also in vector-valued H? spaces
and have been studied by de Branges and Rovnyak [S5], more recently by de
Branges alone [3], and most recently by J. A. Ball and T. L. Kriete [2]. Some
of the results from [12] are special cases of results to be found in the latter paper.)
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Section 3 is along with Section 2 of a preliminary nature. It contains a
few properties of the spaces J£(b) that lic fairly near the surface. (More general
versions of some of these properties appear in [2].) The main results are in Sections
4—8. Section 4 explores the inclusion H® < #(b), Section 5 the conditions
under which X is similar to S*, and Section 6 the conditions under which 7 is
similar to S. In Section 7 it is shown that the invariant subspaces of X arc the
intersections with #(b) of the invariant subspaces of S* The lattice of invariant
subspaces of X is thus isomorphic to the complement of the Beurling lattice {tae
lattice of inner functions). The situation with regard to the invariant subspaces
of Y is more complicated, however. That is illustrated in Section 8, where the inva-
riant subspaces of Y are classified for the special case b(z) = (1 + z)/2. The conclud-
ing Section 9 contains an example that establishes the independence of two conditions.
from the main theorem of Section 6.

NOTATIONS AND CONVENTIONS. Throughout the paper, b, a, X and Y
will have the meanings assigned above. To avoid a trivial exceptional case, it will
be assumed that 4 is not a constant function.

The open unit disk will be denoted by D and the unit circle by d.D.

The inner product in H? will be denoted by {,) and that in () by {.),.

The kernel function in H? for the functional of evaluation at the point w
of D will be denoted by &, (k,.(z) == (I — wz)~"):it is shown in [12] that these
functions belong to #(H).

With each function » in L® of 9D, we associate a Hilbert space .#(u) that
is contained boundedly in H% As a vector space, .#(i) equals the range of the
operator T,; one defines its norm by setting [T, fll.xwy = lIf|ls provided f is ortho-
gonal to ker 7. The cases of interest below are v = @ and u = a, in both of which
ker T, is trivial. (The space #(b) is what de Branges calls the complementary space
of .Z(b) [3].)

If two of the Hilbert spaces we are considering, for example .# () and . Z{¢),
are equal as vector spaces, we shall write ./Z(u) = .#(v), even when the Hilbert
space structures on the two spaces differ. If .#(u) = . #/(v) then, because both spaces
are continuously and injectively embedded in H2, the closed graph theorem implies
that their norms are equivalent, that is, the identity map of either onto the cther
is bounded.

2. PRELIMINARY LEMMAS

For 0 < r < | let a, denote the outer function with modulus (I — #2b 2=
on dD and a positive value at the origin. In [12] the equality

(1) (] - r2TbT5)—1 =1+ Trb/a,.TrB/r-lr

is derived and used to obtain the following result.
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LemMa 1. The H? function | belongs to #(b) if and only if lim HT;,,,;,_fH2 < 00.
r—-1
If fy and f; are two functions in #(b), then

oo = s for + 1M LTs 3 frs Ts/a, f20-

The following consequence will be used extensively.

LemMA 2. The H? function f belongs to J(b) if and only if T;f isin T;H*
If f, and f; are functions in H(b) and Ty f; = Tag; (j=1,2), then

Shsdeds = fos fod + <8 820

In fact, if T;f = Tzg, one easily sees that Tsa, f= Tija & $O that

155, /1l < llafalligll < ligll-

In virtue of Lemma 1, that implies f'is in #°(b), establishing one direction in the first
assertion of Lemma 2.

To establish the second assertion of Lemma 2 note that, as r tends to 1, the
functions a/a, tend pointwise in D to the constant function 1, so they tend to 1 in
the weak-star topology of H®, and therefore also in the weak-star topology of L™.
Therefore a/a, — 1 in the weak-star topology of L, which implies T; /a, = 1in

the weak operator topology. Thus, under the assumption Tj f=T;g, we can conclude
that 75, f — g weakly in H*® as r — 1. But because (|T;,5_fll2< lgll;, the preced-

ing weak convergence is actually norm convergence. The second assertion of
Lemma 2 follows immediately from this in conjunction with the second assertion
“of Lemma 1.

To establish the other direction in the first assertion of Lemma 2, assume f
is in #(b). We have ‘

TaTspa f= Tisa, Tsf.
The functions Tj /a, f remain bounded in H?norm as r — 1, so they have a weak

cluster point, say g. Because 7; @, = 1 in the weak operator topology, the equality
T;f = Tsg follows, and the proof of Lemma 2 is complete.

It is worth mentioning an alternative proof of Lemma 2. Let B denote the

2-by-1 matrix inner function (b ), and let ##(B) denote the orthogonal complement
a

of BH%in H? @ H?2. It is shown in [12] that the projection P, = ((1) ?)) in H*2 @ H*

defines an isometry of s#(B) onto s#(b), and, moreover, that #(B) is the range of
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the projection

. (1 — LT — T )
—T,T5 1—T,T;)

/ ) 1S im

. —&/

H(B). The latter function is then sent into itself by the projection E, which

implies

In particular, if f is in #(b), then there is a function g in H? such that (

f=r—="1T;f+ T,Tzg,

in other words, Tj;f = T;g. This establishes one direction in the first assertion
of Lemma 2. A straightforward reversal of the preceding reasoning yields the other
direction in the first assertion. The second assertion follows because P, defines
an isometry of #(B) onto A#(b).

It should be noted that, if f is in s#(b), then the function g satisfying T f =
== T;g is unique, because the operator T; has a trivial kernel (the function @ being
an outer function).

3. SIMPLE INCLUSIONS

This section contains three simple lemmas about inclusions in s#(b), followed
by some remarks about multipliers of #(b).

LeMMA 3. The space J4/(a) is contained contractively in H(b).

This assertion is equivalent to the assertion that there is a factorization
T; = (1 — T,T;)"*R with ||R|| € 1, which, by a well-known criterion of R. G.
Douglas, [8], is equivalent to the inequality 7;7,< 1 — T,7;. The preceding ine-
quality holds because T, T; < T;T,(the operator T, being subnormal, and therefore
hyponormal) and T; 7T, + T;T, = Tlﬂlz + TI B2 = 1. (Itis equally simple to deduce
Lemma 3 from Lemma 2.)

LEMMA 4, The space J4{(a) is contained contractively in J4/(a) (and therefore
is also contained contractively in #(b)).

Because of the criterion in [8], this follows from the inequality 7,7;< T;T,,
that is, from the hyponormality of T,.

LeMMA 5. The operator T, maps J4/(a) contractively into H#(b).

Using the criterion in [8], once more, we can reduce this assertion to the ine-
quality 7,7:7,T; < 1 — T,T;. Because T;7, = 1 — T;3T,, the difference between
the right and left sides of the desired inequality equals 1 — 27,75 + (Tp7T5)%
which equals (I — 7;T3)%. The inequality therefore holds.



DOUBLY SHIFT-INVARIANT SPACES 79

A function u in H*® will be called a multiplier of () if us#’(b) < H#(b).
It follows by the closed graph theorem that a multiplier of #(b) induces a bounded
operator on #(b). These are in fact precisely thegbounded operators on #(b) that
commute with the operator Y (the operator of multiplication by z). The standard
reasoning[13] that an operator in the commutant of Y is induced by a multiplier goes
as follows. For w in D, let k& denote the kernel function in #(b) for the functional
of evaluation at w. (Explicitly, k§ = (1 — bmb)kw [12].) Let 4 be an operator
on ##(b) that commutes with Y. Since k& is an eigenvector of Y* of unit multi-
plicity (with eigenvalue w), it is also an eigenvector of A% Let u(w) be the com-
plex conjugate of the eigenvalue of k4 as an eigenvector of A* Obviously
lu(w)| < ||4|. Moreover

u(w) = (1, u(wkby, = (AL Kby,
so u = Al, and it is now clear that u is in H%. Finally, for fin #(b),

(AF) W) = < A%y = u(w)(f, kudy = u(w)f(w),

so A is the operator of multiplication by w.

In certain cases, although not in general, every function in H*® is a multi-
plier of #(b); that obviously happens, for example, if ||6|l, <1 (so that #(b)=H?).
Necessary and sufficient conditions for every function in H® to be a muiti-
plier of #(b) are given in Section 6. Here, for purposes of orientation, it will
be shown that, for any b, every function that is holomorphic in a neighborhood
of D is a multiplier of 5#(b) (and so, in particular, is an element of J#(b)).

The proof depends upon the equality Y = X* 4- (b® S*b) from [4]. (An
alternative proof is presented in [12]. By b® S*b is meant, as is standard, the
operator on () that sends the function fto (f, S¥*b),b. The proof that b belongs.
to s (b) can be found in [12]; this inclusion depends on the assumption that b
is not an extreme point of the unit ball of H®)) Since X is a contraction, it
follows that the essential spectrum of Y is contained in D. Therefore, if |w| > 1,
then ¥ — w is a Fredholm operator of index 0, so it must be invertible, because
Y obviously has no eigenvectors. Consequently, the spectrum of Y is contained
in D — in fact, it clearly equals D. Hence, if the function u is holomorphic in a
neighborhood of D, then u(Y) is defined by the standard holomorphic functional
calculus, and one easily verifies that »(Y) is the operator on J#(b) of multipli-
cation by u, so that # is a multiplier of 2(b).
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4. CONDITIONS FOR #(b) TO CONTAIN H®

THEOREM 1. The jollowing conditions are equivalent.
(i) H® < #(0D).
(ii) sup ||z"|, < oo.

nzo0
(iii) bfa is in H2
@iv) (1 — [b|H)~ is integrable on 0D.

That (i) implies (ii) follows in standard fashion from the closed graph theorem.
Because @ is an outer function, (iii) is equivalent to the integrability on 0D of
|b!%'a| =2, which, in turn, is equivalent to (iv) because (1 — {5]2)~* = 1 4 b'%a|~2
on dD. Similarly, (iv) is equivalent to the condition that 1/a belong to H?,
which implies (i) by Lemma 4. We can complete the proof of Theorem 1 by show=
ing that (ii) implies (iii), which is an immediate consequence of the following
lemma (applied to the function f = 1).

LemMMma 6. If fis in (D), then sup ||Y7f|l, < co if and only if T,f is in T,H>
nz0

To prove the lemma, suppose first that sup ||Y"f]l, = C < c0. By Lemma 1,
n>0
then,
lln; “Tb'/,;rZ’_lfllz < C (n = 0, 1, . .).

Moreover, the equality (1) implies that,‘ for any function g in H?, the numbers
T ,,;rg||2 increase with r. Hence, for all » and r we have

T3, 21l < C,

()

r

in other words,

< C

2

where P denotes the orthogonal projection of L? onto H2 As n — oo, the left side
of the preceding inequality tends to the L2-norm of rbf/a,. Thus ||bf/a,|ly < C/r.
Now letting r tend to 1 in the last inequality, we can conclude that bfja is in H®
To say bffaisin H?is the same as to say 7, f is in T,H?, so one direction of Lemma 6

is established.
We shall use Lemma 2 to establish the other direction. Suppose there is a

function g in H? such that 7, f = T,g. Forn > 0,

Ly Yf = Tyl oSS = T515T08"8 = TaToppaS"8-
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Therefore, by Lemma 2,
1Yf1E = IS"FIE + 1 TwseaS"glls < [If1E + lgli

and the proof of Lemma 6 is complete.

foe)
Theorem 1 can be made a bit more precise. Let ¥, ¢;z’ denote the power
0

series at the origin for the function b/a.

ProeposITION. 7[5 =1+ Y l¢2  (n=0,1, ...).
0

The implication (it) = (iii) of Theorem 1 is an obvious corollary.
The case n == 0 of the proposition is given in [12]. Here is the proof of the
induction step that yields the general case. A calculation is needed.

LeEMMA 7. {S8%b, 2", = a(0)¢c,yy (n=0,1,...).
We shall deduce this from Lemma 1. We have

2Ty S*bzP( 7rjlb|2 ) —p (_Z—(l j Iar[2)) —

a a,

r

= P(Ea,) = = —Z—(ar - (1,,(0))
Therefore

Tppsa, Tioji, S%b = — ?( b i@) — _ $% + a,0)S*(b/ay).
ar

This in conjunction with Lemma 1 gives

{S*h, Z">h = (S*b, z"> + lim <Trb/a Tri;/& S*b, 2" =
r—>1 r r

= (§%b, 2") + lim [—{S*b, z") + a,(0) {S*(b/a,), 2] =

r—1
= lima,(0) {b/a,, z"**> = a(0)c, 11 »
r-1
as desired.

To establish the proposition we use the formula Y* = X + (S*b ® b) (the
adjoint of which is mentioned in Section 3) to get

Y*Y = [X + (§*b ® B)]Y = XY + (S*b @ ¥Y*b) =

=1+ (5% ® §7) + [bI}(5* ® S*b).

6 — 2110
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As ||b]3 = 1a(0)| -2 — 1 [12], we thus have

Y*Y =1 + [a(0)| -3 S*b ® S*b).
Consequently
"2 = (Y2, 27, =

== |27|l5 + 1a(0)| ~%(S*h @ S*b)z", 2"), =
= 127118 + 1a(0)| ~ 2 S%b, z7),|* = ”Z"“g + iepal?

the final equality following by Lemma 7. The proposition now follows.

5. CONDITIONS FOR X TO BE SIMILAR TO S*

The functions a and & will be said to form a corona pair if they satisfy the
hypotheses of L. Carleson’s corona theorem [10], that is, if |a? 4 |b|? is bounded
away from 0 in D. Because [a|®> + [b[* = | on D, one might guess for an instant
that a and b would form a corona pair automatically in the case where b is an
outer function. That is not true, however. To obtain a simple counterexample,
let b be the outer function whose moduluson @D is given by |b(e!)|2 = (2n)-10 (0 <
< @ < 2n). Then both a and b have 0 as a one-sided limit along 0D at the
point 1, so, by a theorem of Lindelof [10, p. 92], they both have 0 as a radial
limit at the same point.

THEOREM 2. The following conditions are equivalent.
(i) X is similar to S*.

(i) S(b) = 4 (a).

(ii}) b is a multiplier of #(b).

(iv) a and b form a corona pair.

That (ii) implies (iii) follows immediately from Lemma 5. If (ii) holds then
the norms in 3#(b) and .#(a) are equivalent, which implies (i) because the operator
S§*% | #(a) is obviously unitarily equivalent to S* (the unitary equivalence being
implemented by 7;). We shall complete the proof of Theorem 2 by establishing the
implications (iii) = (i), (iv) <> (ii), and (i) = (ii).

(iii) = (ii). Suppose f'is a function in H? such that bf is in 2#(b), and let g
be the function in H? satisfying T;bf = T;g. Since

Tsbf = Tyf = f — Tyyef = f — Tadl,

it follows that f == T;(g <+ af), so f'is in .#(a). Hence, if b is a multiplier of s#(b),
then s#°(b) = .Z(a), which, together with Lemma 3, implies #(b) = ./ (a).
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The preceding argument, incidentally, establishes a converse to Lemma 5: If
Jis in H?, then T, f lies in 3#(b) only if fis in .#(a).

(i) = (iv). Assume #(b) = .#(a). Then the norms in #(h) and #(a) are
equivalent. Hence, there is a positive constant ¢ such that

) kulls = el llua — (wl < 1).
Since k., is an eigenvector of T; with eigenvalue a(w), we have

K lu@y = law) ~2llk , [} = la(w)| =21 — [w[*)~,
while it is shown in [12] that

lkwlls = (law)® -+ bw)F)la(w)| =2 (1 — [w[?)~%

The last two equalities together with (2) give |a(w)}? 4 |b(w)|? = ¢?, which means &
and b form a corona pair.

(iv) = (ii). Assume @ and b form a corona pair. Then, by the corona theorem,
there are functions u and v in H* such that au 4~ bv = 1. To show #(b) = .4 (a)
it will suffice, because of Lemma 3, to establish the inclusion #(b) = .#(a). Let
J be any function in #°(d), and let g be the function in H? satisfying 7} f = T;g. We
have

S=T:Tif + T;T;f = T;Taf + T;Tag = Ta(Taf + Tig),

so f'is in .#(a), as desired.

(i) = (ii). Assume X is similar to S*, say X = 4S84 -1, where 4 is an inver-
tible linear map of H?® onto #(b). Since #(b) is contained contractively in H?,
we can regard 4 as a bounded linear map of H? into itself, and, when so interpreted,
A becomes an operator in the commutant of S*. Therefore 4 = T; for some func-
tion u in H*, and we have #(b) = #(u). This implies [8] that T; 7, < C(1 — T,T;)
for some positive constant C, and in fact, replacing « by a scalar multiple of itself,
we can assume without loss of generality that C = 1. As T, T; < T;T,, we have,
a fortiori, 7,7 + T, T; < 1. Hence, for w in D,

| Takliz + 1 Tskwl3 < k|3,
in other words,
lu(w) 2l 11z - 16O)RIK1IE < [k, 13

The inequality |u|% 4 |b|® < 1 therefore holds in D, so it holds also on dD, which
means |u| < |a| on dD. Since a is an outer function, the function v = u/a is thus
in H%, and we have the operator factorization T; = T;T;. Hence ./ (i) c./(a),
and it follows that 5#(b) =.#(a), which together with Lemma 3 gives S (b)=(a),
completing the proof of Theorem 2.



84 DONALD SARASON
6. CONDITIONS FOR Y TO BE SIMILAR TO S

THEOREM 3. The following conditions are equivalent.
() Y is similar to S.
(ii) Y is polynomially bounded.
(i) Y is power bounded.
(iv) Every function in H® is a multiplier of /f(b)
W) H(b) == 4 (a).
(vi) aand bforma corona pair, and the operator T, is invertible.

Some comments on condition (vi) are in order prior to the proof. The inverti-
bifity of T,,; can be characterized in several ways, thanks to the work of A. Devi-
natz, H. Widom, H. Helson and G. Szegé, and R. Hunt, B. Muckenhoupt and
R. Wheeden. These matters are discussed in [11], where references and some of
the proofs can be found; the facts are as follows. A criterion due to Devinatz and
Widom states that T,,; is invertible if and only if |a|® satisfies what is called the
Helson-Szegd condition, which is that |a|2 be writable (on 3.D) as exp(x-}- ), where x
and y are real functions in L®, ¥ denotes the conjugate function of y, and |y, <7/2.
By a theorem of Helson and Szegd, |a|? satisfies their condition if and only if P, the
orthogonal projection of L? onto H2, defines a bounded operator in the weighted
space L* a/®). Finally, the theorem of Hunt, Muckenhoupt and ;Wheeden states
that the latter condition holds if and only if |a|? satisfies Muckenhoupt's condi-
tion (A,). (The reader unfamiliar with (A,) will find a thorough discussion in [10]
which also contains detailed proofs of the second and third of the three equivalences
just stated. Proofs of the first two equivalences are in [11].)

The two parts of condition (vi) are independent. That 7,,; can be noninver-
tible when a and & form & corona pair is shown by the example b(z)=—{(1 <+ 2)/2;
in that case a(z)=(1—z)/2, and T, = — S. On the other hand, given b such that
T, is invertible, if we replace b by its product with an inner function we produce
no alteration in @; one can clearly create by such replacements examples where
T, is invertible yet ¢ and b do not form a corona pair. In none of these examples,
however, is b an outer function. An example in which b is an outer function is con-
structed in Section 9.

The implications (i) = (ii) = (iii) in Theorem 3 are trivial. Also, it is very
easy to see that (ii) and (iv) are equivalent. In fact, (ii) amounts to the existence of
a positive constant C such that [pfll, < Cilpliollflly for every polynomial p and
every function fin s#(b). Suppose such a C exists, and let # be any function in H*.
Let (p,) be the sequence of Féjer means of the power series of . Then, for any f
in % (b), the sequence (p,f) is bounded in #(b)-norm and converges pointwise in
D to uf, from which one easily deduces that uf is in s#(b). This shows that (ii}
implies (iv). In the other direction,if (iv) holds then we have a natural map of H®



DOUBLY SHIFT-INVARIANT SPACES 85

into the space of operators on #(b), namely, the map that sends each function
in H* to the multiplication operator it induces. From the remarks in Section 3
it is clear that the inverse of that map is a contraction and that its range, being
the commutant of Y, is norm closed. By the open mapping theorem, the map itself
must be bounded, which means (ii) holds.

The implication (v) = (i) is also trivial, because S |.#(a) is obviously uni-
tarily equivalent to S, and if #(b) = .#(a) then the norms in #(b) and .#(a) are
equivalent. ]

The implication (vi) = (v) is easy. In fact, if ¢ and b form a corona pair
then J#(b) = .#(a), by Theorem 2. If also T,,,a is invertible, then, because T,=
== T; T4, the operators T, and 7; have the-same range, so that (v) holds.

We[shall complete the proof of Theorem 3 by showing that (iii) implies (vi),
which is simply done on the basis of Lemma 6. Assume Y is power bounded. If
J/is any function in #(b) then, by Lemma 6, the function bf/a is in HZ2. Since
|bffal?+|f1? = | flal?, it follows that f/ais in H2, so we can conclude that #(b) c
< 4 (a). The opposite inclusion is given by Lemma 4, and thus #(b) = .#(a).
Since .Z(a) lies between #°(b) and .#(a) (Lemmas'3 and 4), we also have J#(b) =
= J#(a), so aJand b form a corona pair by Theorem 2. Furthermore, in view
of the factorization T, = T;T,;, the equality of .#(a) and .#(a) implies T,z is
surjective (since T} is one-to-one). The same factorization shows 7,,; is one-to-one
(since T, is one-to-one). Hence T,; is invertible, and the proof of Theorem 3 is
complete.

Theorem 3 has a close analogue for the spaces #(u) with » in H®. One
looses no generality in taking-u« to be an outer function, for if it is not (and
is not identically 0), one can replace it by its outer factor without altering . (u).

THEOREM 4. If u is an outer function in H®, then the space A/(i) is invariant
under S, and the following conditions are equivalent for the operator Z = S| ().

Q) Z is similar to S.

(i) Z is polynomially bounded.

(ii)) Z is power bounded.

(iv) Every function in H® is a multiplier of . (u).

) M) = M (u).

(vi) T, is invertible.

The S-invariance of .#(u) holds because 7;S-ST; is a rank-one operator
whose range is spanned by the constant function 1, which belongs to .#(u) (as it
is an eigenvector of T;). All of the arguments used in the proof of Theorem 3
carry over to Theorem 4 except for the proof that (iii) implies (vi), which implica-~
tion can be established as follows.

Saying that Z is power bounded is the same as saying that there exist factori-
zations S"T; = TwR,, n=0,1, ..., with sulgl\RnH = C < co. By Douglas’s cri-

nz -



86 DONALD SARASON

terion [8], the last condition is equivalent to the inequalities
(S"T) (S"Tp)* < C*T;T, (n=0,1,...).

Hence, assuming Z is power bounded, we have [[uS*f|, < Cllufll, (n =10,1, ...)
for all fin H2 Let g be any trigonometric polynomial, and choose r so that z"g
is in A% The preceding inequality applied to the function f = z"q gives

S |PqPiuf® d8 < czS lql2/u® do.

-7

‘We can conclude that P is bounded in L? (u]?), so T,z is invertible by the theorems
of Devinatz-Widom and Helson-Szeg6. The proof of Theorem 4 is complete.

7. THE INVARIANT SUBSPACES OF X

THEOREM 5. The invariant subspaces of X are the intersections with 3#(b)
of the invariant subspaces of S*.

By the theorem of A. Beurling [10], the invariant subspaces of S are the
subspaces # (1) (= H? @ uH? with u an inner function. The intersections of those
subspaces with 3#(b) are obviously invariant subspaces of X it remains to show
that they are the only ones. A few remarks about the functional calculus for X are
needed.

From Lemma 2 it follows immediately that, for any function u in H*, the
space H#(b) is invariant under T; and the restriction of 7; to s (b) is a bounded
operator of norm at most |jull,. If u is a polynomial then T;| #(b) = u*(X), where
u* is defined by u*(z)=u(z). If u is any function in H* and (p,) is the sequence of
Féjer means of its power series, then, for f in #(b), the sequence (T,;" f) converges
pointwise in D to T; f and is bounded in the norm of #(b), from which one easily
sees that T; [Tz f weakly in #(b). Thus, T; | #(b) lies in the weakly closed oper-
ator algebra generated by X, so every invariant subspace of X is also invariant
under 7;. (Since X is a completely nonunitary contraction [12], the H* functional
calculus of B. Sz.-Nagy and C. Foias [14] applies to it. The preceding remarks
show that, for # in H®, u(X) = T;.#(b).)

The following lemma contains the key step in the proof of Theorem 5.

LemMma 7. If # is an invariant subspace of X, then T; ¢ is dense in §.

In fact, suppose the function fin £ is orthogonal to T ¢, and let g be the func-
tion in H? satisfying T;f=T3g. The function f is then orthogonal to S$*"T; f for
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any nonnegative integer n. Since T S*"T;f=T;5*"T;g, it follows by Lemma 2 that

0= <f, S¥Taf 5y =<f, S*'Taf) + <g, $*'Tag> =

_ ~‘~Sei"0a<sf12 FlgHdoe (m=0,1,...).
2

-7t

Consequently, the function a(] f]2 + |g|?) belongs to the space Hj (that is, it belongs
to H* and vanishes at the origin). Since a is an outer function, the function |f|*-
+ lgf* therefore also belongs to HE. Because the only nonnegative function in Hj
is 0, we can conclude that f = 0, concluding the proof of the lemma.

Lemma 7 has a couple of corollaries that will be mentioned before it is used
to complete the proof of Theorem 5.

COROLLARY 1. The polynomials are dense in H#(b).

In fact, it follows from Lemma 7 that .#(a) is dense in s#(b). The functions
T;z2" (n =0, 1, ...) obviously span .#(a), so their linear combinations are dense
in (@) relative to the norm of #(b): These linear combinations are therefore dense
in J#(b). Since T;z" is a polynomial, the coroliary is established.

COROLLARY 2. The operators commuting with X are the operators T; | #(b)
with u in H®.

Suppose the operator 4 on (b)) commutes with X. For |w| <1, the
function k,, is an eigenvector of X of unit multiplicity, so it is an eigenvector

of A ; let the corresponding eigenvalue be denoted by u(w). The function k, (=0 —
~ wY)~11) is an antiholomorphic function of w, implying that « is a holomorphic
function of w. Obviously ||u|l, < ||4]l. The operators A and T;| 2 (b) thus coincide
on k, for every w; we shall be able to conclude that A = T;|5#(b) once we
know that the functions k, span #(b). To establish the last fact it will suffice,
because of Corollary 1, to show that every polynomial lies in the span of the
functions k,,. That can be seen, for example, on the basis of the holomorphic func-
tional calculus; if p is a polynomial, then

p=p¥Y)l= ——1— S pW(w — Y)~]dw.
2ni

|w]=2

The integral exists as an ordinary #(b)-valued Riemann integral, and its Riemann
sums are linear combinations of the functions k,,. The proof of Corollary 2 is com-
plete.
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Returning now to the proof of Theorem 5, suppose ¢ is an invariant subspace
of X, and let & be the closure of ¢ in H% Then & is an invariant subspace
of S*{If fis in A, there is a sequence (f,) in Fconverging to fin the norm of #?2
Then T; f,—T; fin the norm of .Z#(a) and so also in the norm of #(b) (Lemma 3).
As T; f, belongs to # for each », the function T; f thus also belongs to £. Hence
T;4 < #. By Lemma 7, T;( na#(b)) is dense in & n#(b), so A n#(®b) < J.
The opposite inclusion being trivial, we can conclude that ¢ = o n #(b), complet-
ing the proof of Theorem 5.

According to the theory of Sz.'-Nagy and Foias [14], each invariant subspace
of X determines a factorization of the characteristic operator function of X.It
would be interesting to see those factorizations displayed concretely.

In connection with the first corollary of Lemma 7 the question arises whether
the polynomials are dense in the space of multipliers of #(b) relative to the weak
operator topology. The author does not know the answer. A related question is
whether, for f in 3#(b), the functions f,(z) = f(rz) (0 < r < 1) remain bounded in
the norm of #(b).

8. THE CASE b(z) ~- (1 + 2)/2

If ¥ is an inner function, then #(b) n.#(x) is obviously an invariant subspace
of the operator Y. If the conditions of Theorem 3 hold, Beurling’s theorem implies
every nontrivial invariant subspace of Y has the preceding form. In this section a
simple case will be examined where the conditions of Theorem 3 fail. The inva-
riant subspace lattice of ¥ will be determined and seen to be more complicated
than Beurling’s lattice.

We take b(z) = (1 + z)/2, which gives a(z) = (1 — z)/2. The functionsa and 5
then form a corona pair, s¢ #(b) = .Z/(a) by Theorem 2. The operator Y is similar
to the restriction of S to.#{a), enabling us to work instead with the latter operator.
It is actually slightly more convenient (and obviously permissible) to work in.Z(24)
rather in .//(a). We let e denote the function 2g, that is, e(z) = 1 — z, and we denote
the norm and inner product in the space ./Z(€) by || ||z and {, Yz. The operator
S| #(€) will be denoted by Z.

The following lemma describes the functions in .#(€).

Lemma 8. The H? function f belongs to JZ/(€) if and only if it can be writien
as f= (S — Dg -+ ¢ where g is in H? and c is a constant. If f; and f5 are two func-
tions in J(€) and f; = (S — 1)g; + ¢; (j=1, 2), then ’

3) {isfoe =481, 80 + ¢4 Ca-
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To prove the lemma one needs only to note that T; = 1 — S* and then to
use the easily established identity 1 —S*=(S—1)S*+1Q @ 1). If f= (1 — S
is a typical function in .#(e), then the function g and constant ¢ of the lemma are
given by g = S*h, ¢ = h(0). Conversely, if g and ¢ are given, / is determined by
the equality z = Sg + ¢. If f; = (1 — S¥)h; (j=1, 2) are two functions in .#(¢)
then, by definition, {f;, fy>s = {A;, hy), which coincides with the right side of (3)
when g, ¢;, g, ¢, are defined in terms of &; and 4, as indicated above.

The first statement in the lemma says that the functions in .#(e) are the func-
tions in M2 that are divisible by the function z — 1, or that differ by a constant from
such a function. In virtue of the estimate |g(z)] = o((1 — |z))~%) (Jz] = 1), valid for
any function g in H?, it follows that every function f in .#(e) has a radial limit at
the point 1, denoted hereafter by f(1). The radial limit f(1) is the constant ¢ of
Lemma 8. The functional ' — f(1) on .#(e) is the bounded linear functional induced
by the constant function 1. The kernel of that linear functional is .#(e), which is
thus a closed subspace of .#(¢) of codimension 1. By Lemma 8, the norm in
#(e) is the norm it acquires as a subspace of /#(e). The subspace .#(e) is obviously
an invariant subspace of Y. '

Every function in H* obviously is a multiplier of .#(e). As () is sparméd
by .Z(e) and the constant function 1, a function in H* is a multiplier of .#(e) if
and only if it belongs to .#(e). The multipliers of .#(€) are thus described, in a sense,
by Lemma 8. For inner functions more precise information is available.

THEOREM 6. Let u be the inner function with zero sequence (z;) and singular
measure p. The following conditions are equivalent.
() u is in MH(e).
G) 1 — [u@))2=01 —r?® as r — 1-— .
(iii) u has an angular derivative at the point 1.

vy ——at +S (@)

lz; — 112 lz— 112

The equivalence of (ii) and (iii) is a special case of a well-known theorem of
C. Carathéodory [6], [7]; it will not play a role below but is mentioned for the sake
of completeness. From condition (iv) one sees that an inner muitiplier of .#(€) can
have a singularity at the point 1. (Every inner function that is regular at 1 is obvious-
ly a multiplier.) The equivalence of (ii) and (iv) can be extracted from a paper of
P. R. Ahern and D. N. Clark [1]; the case of a Blaschke product goes back to
O. Frostman {9] and Carathéodory [7, pp. 31 ff.]. For completeness a simple proof
of the equivalence of (ii) and (iv) will be presented here. Before that, however, the
equivalence of (i) and (ii) will be established.
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Suppose first that the inner function # belongs to .#(e). Since the function
(u — u(1))/(z — 1) belongs to H? while [u| = 1 on 8D, we must have [u(1)| =1,
and clearly we loose no generality if we assume #(1) = 1. For 0 < r < 1 we have

—1 1 d — 2
o> LA L= Pag s L1t [ag
2z Veio — 1 P TARL ——l/rl
; 2
= "\ —Rewy L= ap—
n(l — r?) e — ri?
2 r 2 2
= -——(1 - Reu(r)) = (1 — u(r)iz + 1 — [u(r)i®.
1 — r? 1 —r?

The estimate 1 — {u(r)2 = O(1 — r? (r - 1— ) follows immediately from the
last inequality, so the implication (i) = (ii) is established.

To establish the reverse implication, assume that u satisfies (ii). Let v be the
inner function uu* (wWhere u*(z) = u(z)). Condition (ii) for u implies that v has 1 as
a radial limit at the point 1, and 1 — o(r) = O(1 — r?) as r - 1 —. If we replace
u by v in the string of equalities above, we get, for 0 < r < 1,

1.__
2n

-

v—1

2r(1 — v(r)) )
=i YT e

1 —r?

do =

The left side is therefore O(1) as r - 1— , so applying the monotone convergence
theorem, we can conclude that the function (v — 1)/(z — 1) is in H? and hence
(by Lemma 8) that v is in #(€). As u = T;.v, the function » is also in .#(e), and
the implication (ii) = (i) is established.

To establish the equivalence of (ii) and (iv), fix a Stolz angle G with vertex
at the point 1, symmetric with respect to the radius to that point. If the zero sequence
.(z;} clusters at the point 1 from within G, conditions (ii) and (iv) both clearly fail.
We can assume therefore that (z;) does not cluster at 1 from within G. The inner
factor of » whose zeros are the points z; lying inside G and whose singular measure
is the portion of u carried by G clearly satisfies both (ii) and (iv), so u will satisfy
one of these conditions or the other if and only if its complementary inner factor
does. We can therefore assume without loss of generality that every z; lies outside
of G and that u is carried by the complement of G.
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Let v be the measure u 4 Y.(1 — [zjlz)ézj. Condition (iv) can then be rewrit-

ten as

(4) _dv@) < o0
fz — 1[?
Condition (i1) holds if and only if log is O(l — r?) asr — 1 —. We have
u(r
1 —zyr 1 — r?
log = ot - - + 7; d#(z)
fu(r)| zZ;—r |z — r[?
The quantities — 271 remain uniformly bounded because the points z; are
Zj - F

outside of G. Therefore, the ratio

1—2z.r

j 1—2_,'"

log

5=

remains bounded away from 0 (and of course is less than 1). Because

Zj—r Z_,——*I‘

1 —z;r? 1= (I —rA( =z

z; —r

J |Zj—r|2

we see that log is comparable to

lue(r)]

2 (1 — 1 — Izjlz_) +S 1 —r2

lz; — r|? lz — r|?

in the sense that the ratio of log 2 Y to the preceding quantity is bounded (by 1)
ulr

and bounded away from 0 (0 < r < 1). Hence condition (ii) is equivalent to the
condition

)

S 4@ _ o r—1-).

lz —r[?

Itis elementary that (4) and (5) are equivalent. That (4) implies (5) follows by Fatou’s
lemma, and the opposite implication holds because the ratio |z — 1|/[z — r|, for
£ in the support of v and 0 < r < 1, does not exceed the cosecant of half the ape-
rature of G. The proof of Theorem 6 is complete.
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A passing REMARK. By using the reasoning employed above to establish the
equivalence of (i) and (ii), together with Carathéodory’s theorem, one can show
that, if the inner function u belongs to .#(¢), then |[ul|§ =1+ |¢'(1)], where «'(1)
denotes the angular derivative of # at 1. The proof will be omitted as the result is
not needed here.

THEOREM 7. The invariant subspaces of Z, besides {0}, are the subspaces .#(€) ~
O A (1) and Jl(e) n A (1) with u an inner function.

If the inner function # is not in .#(€) then #(é) n .4 (u) and .Z(e) n Ziu)
coincide, but in the contrary case they are different. Thus, an inner function is asso-
ciated with each nontrivial invariant subspace of Z, but certain inner functions,
those in .#{e), are associated with two different invariant subspaces.

That the subspaces mentioned in the theorem are invariant under Z is obvious,
It remains to show that there are no others (besides {0}).

The operator Zi.#(e) is unitarily equivalent to S, the unitary equivalence
being implemented by 7,. This together with Beurling’s theorem implies that the
Z-invariant subspaces contained in .#(e), other than {0}, are the subspaces .Z(e) -
N (1) with u an inner function. It remains to treat invariant subspaces of Z not
contained in .Z(e).

Let ¢ be a Z-invariant subspace not contained in .#(e), and suppose that
the greatest common inner divisor of the functions in # is 1. Then 1 is also the
greatest common inner divisor of the functions in # n .#(e) (since (Z — 1)¢ < ¢,
and therefore ¢ o./#(e) {by what was noted in the preceding paragraph). Since #
contains a function that does not vanish at the point 1, it thus contains the constant
function 1, and we can conclude that ¢ = .#(¢).

To finish the proof of the theorem, let ¢ be any Z-invariant subspace not
contained in .#(e), and let u be the greatest common inner divisor of the functions
in #. Choose a function f in ¢ with f(1) # 0. Then f = ug where g (= T;f) is
in .Z(€). Obviouslyg(l) # 0, so « has a (nonzero) radial limit «(1) at the point I.
We have

[=FD) _ ule—2) | () @ — (1)

z—1 z—1 z—1

The term on the lefi and the first term on the right belong to %, and thercfore
so does the second term on the right, which means that » is in #Z(e). Let 4 = T;¢.
Then J is contained in .Z/(¢), and its closure in ./#(€) is a Z-invariant subspace.
By what was established in the preceding paragraph, the closure of /7" equals .Z(e).
Since u is a multiplier of ./Z(é), it follows that u2¢" = ¢ contains w.Z(@)=.#(g) n
n #(u). The opposite inclusion being trivial, we can conciude that #=.4(2) n 4 (),
completing the proof of Theorem 7.
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The equality $*S — SS* = 1 ® 1 together with a little juggling enables one
to show that ZT; = T;(S + (1 ® 1)), which tells us that the operator Z is unitarily
equivalent to the operator S + (1 ® 1). Theorem 7 thus raises the question of
‘ describing the invariant subspace lattice of § + ¢(1 ® 1), where ¢ is a complex
number other than 1. The case |c| = 1 is really the same as the case ¢ = 1, because
if (¢]==1 we can write S+ (1l ® 1) =c(cS+ (1 ® 1)), and ¢ S is unitarily
equivélent to S.

The case |c| < 1 is very simple, because in that case S + ¢(1 ® 1) is similar
to S; in fact, one can easily check that

S+c(1®1)=(01—cS*H1SA — ¢S¥).

Thus, when |¢| < 1, the invariant subspace lattice of S + ¢(1 ® 1) is isomorphic
to Beurling’s lattice.

The case |¢| > 1 is only slightly more complicated. In that case one can easily
check that ¢ is an eigenvalue of S + ¢(1 ® 1), the corresponding eigenspace
being spanned by the function (¢ — z)~'. Let A", denote the eigenspace. Then H?
is the (nonorthogonal) direct sum of A", and Hj, both of which are invariant under
S -+ ¢(l ® 1). The restriction of S+ c¢(1 ® 1) to H{ is the same as the restriction
of S, so the invariant subspaces of S -+ c¢(1 ® 1) contained in Hg are described
by Beurling’s theorem. An invariant subspace not contained in H§ is the vector
sum of A4, and its intersection with HE. The invariant subspace lattice of S -
4+ ¢(l ® 1), when |¢| > 1, is thus isomorphic to the direct sum of Beurling’s lattice
with the lattice {0, 1}. Each inner function gives rise to two invariant subspaces.

From Theorem 7 we see that, in som2 sense, the invariant subspace lattice
of S+ ¢(1 ® 1) for |¢| = 1 is intermediate between the lattices for |¢| < I and
lel > 1.

9. AN EXAMPLE

An example will now be constructed to show that it is possible for b to be
an outer function and |a|® to satisfy the condition (A,) (implying the invertibility
of T,z) even though a and b fail to form a corona pair. The example is needed
to show that Theorem 3 cannot be strengthened in one plausible direction. The
simple example in Section 5 of an outer function b such that ¢ and 4 do not
form a corona pair does not suffice here, for if |a|? satisfies (A,), then log |a| must
belong to BMO, the space of functions of bounded mean oscillation on 9D [10],
[L13, a requirement that is not met by the example in Section 5.

The following notations will be used. The Poisson kernel for the point w in D
will be denoted by P,,. The value at w of the Poisson integral of the integrable
function x will be denoted by x(w) or by P,(x). We shall employ the standard
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seminorm || ||, in the space BMO [10], [11]: if x is in BMO, then jix!. is the
supremum of the mean oscillations of x over the subarcs of dD. The seminorm
Il |l fails to be a norm because it annihilates the constant functions, but we shzil
nevertheless refer to it as the #-norm. The usual norm in BMO (or rather, ore
of the usual norms) is defined by ||x||gyo= [Ix[l: + |x(0)|. The letter C will stand
for a generic absolute constant, possibly varying in magnitude from one occurence
to the next.

The construction is ever so slightly delicate for the following reason. The
condition (A,) on |a|?implies the inequality

aw))? = const. P(lal?d)  (wj < 1)

with a constant that is independent of w (and is in fact equivalent to that conditior
together with its analogue for @~ [11, p. 83]). Thus, if 5 is an outer function,
and if la? and |bj? both satisfy (A,), then a and b will automatically form a
corona pair (since P,(|al?) + P,(1612) = 1 for all w). In the desired example, there-
fore, (A,) must fail for 1 — |a|? while holding for |a|2, entailing a mild schizo-
phrenia on the part of the function a. Roughly speaking, such behavior is possible
because, while the (A,) condition for |a|? imposes severe restrictions on |a2 where
it is small, it does not impose comparable restrictions on |a|® where it is close to 1.
The following lemma contains the main step in the construction,

LEMMA 9. There exists a pair x, y of nonnegative functions on 0D with
the following properties :
(i) x is in BMO with !|x||, less than any preassigned positive number;
(it) y is integrable;
(iii) min{x(w), y(w)} < 1 for each w in OD;
(iv) there is a sequence (w,) in D with |w, — | such that x(w,) - oo and
y(w,) — co.

Once this lemma is established, we can obtain the desired functions ¢ and &
as follows. It is known [10], [11] that a nonnegative function on 9D will satisfy
(A,)if itslogarithmisin BMO and has a sufficiently small #-norm. We can therefore
suppose that we have selected functions x and y as in Lemma 9 such that e—2*
satisfies (A,). Let u be the outer function with modulus e=* and v the outer function
with modulus e~?. Condition (iv) implies that u(w,) — 0 and v(w,) - 0, while
(iii) implies that {#|? + |v® is bounded away from 0 on dD. Let s be the outer
function with modulus (iu|% 4 912)~Y2 The functions @ = su and b = sv then
meet all of our requirements.

The proof of the lemma involves certain auxiliary functions. The function x
will be constructed first. For 0 < 7 < 1, let 7, denote the closed subarc of D centered
at the point 1 of arclength 2¢%2. Let x, denote the function on 9D whose value
at €' is log(t*/3/|0}) for ‘0, < r*® and 0 for r*3 < 0] < 7.



DOUBLY SHIFT-INVARIANT SPACES 95

SuBLEMMA 1. |lx,]l. £ C (0 <t <1).

In fact, the function x, is the maximum of 0 and the function log(¢¥?/|0!)
(0 < 18] < n), so, as is easily seen, its #-norm is at most twice the *-norm of
the latter function. That function is the sum of the function log(1/0]) (0 < 8] < =)
and a constant, soits %-norm is thesame as that of the function log(1/|6]) (which
is wellknown to be finite).

SUBLEMMA 2. If r=1—1t, then P, > Ct~V3 on I,.

This follows immediately from the expression

1 —r2

P,06) =

(1 —rp+ ar sinﬁg—

SUBLEMMA 3. If r =1 — ¢, then P,(x,) = Clog(l/1).

As P,0) > for |0] < | — r, we have

—_—F

t

P(x) 2z ] ¢ Slog(tm/()) do =

—r
0

" ¢ (tlog(1/¢Y3) 4 1) = Clog(1/1).
-

To construct the function x, we choose a sequence (eion) of points of IO
and two sequences (c,) and. (z,) of positive numbers, with ¢, < 1 for all n, such
that the following conditions are satisfied:

(A) The arcs I, = ewﬂl,n are mutually disjoint.

(B) Yc, < oo

(C) ¢, log(l/t,) = co.

(D) Y nt)® < co.
One can obviously do this by choosing (eion) first, then (c,), and then (¢,), and at
the same time make Y c, as small as desired. For each n, let w, = (1 — t,,)eioﬂ and
x,(e%) = c,,x,"(ei(o'gn)). Then [|x,]l,. < Cc, by Sublemma 1. Since x, vanishes on
at least half of 9D, one easily checks that ||x,lzmo < 2lix4l., and therefore the
series Zx,, converges in the norm of BMO. Defining x = Zx,,, we have |jx|), <
< CY¢,, s0 we can attain condition (i) of Lemma 9 by choosing ¥,c, sufficiently
small. Condition (iv) holds for x because of Sublemma 3 and condition (C).
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To construct the function yp, let E, denote the subset of I, where x, < I.
The set E, has positive measure because x, is continuous (except at the center of 1)
and vanishes at the endpoints of I,. Let y, be that multiple of the characteristic
function of E, satisfying Pwn(y,,) =n, and let y = Y y,. The integrability of y
follows from Sublemma 2 and condition (D):

Sy do Y, Sy,, do <

- In

< C\Z.t,l,/:’Sy,,Pwn do = CY n)? < co.

-5

‘Condition (iv) for y and condition (iii) being immediate from the construction,
the proof of Lemma 9 is complete.
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