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C*-ALGEBRAS ASSOCIATED WITH DENJOY
HOMEOMORPHISMS OF THE CIRCLE

IAN PUTNAM, KLAUS SCHMIDT, CHRISTIAN SKAU

1. INTRODUCTION

Homeomorphisms of the circle S* == R/Z were studied by Poincaré (1885)
{19] in connection with the qualitative investigation of trajectories on the torus.
He introduced the notion of rotation number 0 < p(¢) < 1 of a homeomorphism
@: §* - §* and showed that homeomorphisms without periodic orbits are charac-
terized by having an irrational rotation number p(¢) = a. He proved the fundamental
theorem that for such homeomorphisms the points on any orbit {¢"(x) l ne Z}
are placed on $! in the same order as {na (mod1) ]n € Z}. (Cf. Theorem 3.1.)
This immediately yields the fundamental semiconjugation

(1) “hop=R,oh,

where R,:t — ¢ + a (mod1) denotes the rigid rotation of the circle through the
angle o (or 2na, if one prefers), and 4 is an (essentially) unique orientation-preserv-
ing continuous map of S* onto S*.

In 1932 Denjoy [4] proved the remarkable result that all C?-diffeomorphisms ¢
of the circle with no periodic orbits are conjugate to R,, where o = p(¢p); in other
words, the map 4 in (1) is a homeomorphism. He also showed that for any irrational
number 0 < o < 1 there exists a homeomorphism ¢ with rotation number o such
that ¢ is not conjugate to R,. Arnold (1961) [1] studied the delicate question
of how the diffeomorphism type of the conjugating map 4 of (1) depends upon the
rational approximation properties of the irrational number o. The final step was
taken by Herman (1976) [7] proving a conjecture of Arnold. More specifically, he
showed that there exists a measurable subset A of the irrational numbers between
0 and 1 with Lebesgue measure 1 such that if ¢ is a C"-diffeomorphism, n > 2,
with p(@) € A4, then the conjugating map 4 of (1) is C"-2

Building upon Herman’s work Katznelson studied in two papers [9], [10]
the von Neumann algebras that C*-diffeomorphisms with no periodic orbits give
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rise to via the W¥-crossed product construction. To be more specific, any
C*-difftomorphism ¢ acts non-singularly on (S, 4, m), where & denotes the Borel
setsand m is the Lebesgue measure. The action turns out to be ergodic if the rotation
number of ¢ is irrational and so one gets a factor by the crossed product construc-
tion. Katznelson showed that in this way one gets precisely all injective factors of
product type. In fact, they may all be obtained from C*-diffeomorphisms. In parti-
cular, to get the type [l factors the rotation number « must have very strong rational
approximation properties, and « will be a so-called Liouville number.

The situation is somewhat different in the C%-setting. Here one considers the
action that a homeomorphism ¢: S* — S* induces on C(S) and then form the
C*-crossed product. Assuming ¢ has irrational rotation number p(p) == a we have
to distinguish between two cases. First case: ¢ is conjugate to R, and so the crossed
product will be isomorphic to the irrational rotation algebra 4., which has been
analysed by Rieffel [22] and Pimsner-Voiculescu {17]. Second case: ¢ is a so-called
Denjoy homeomorphism with orbits that are.non-dense. In this case thiere is a
unique minimal @-invariant closed set X g St which: turns out to be totally discon-

nected. In the present paper we analyse the C~-algebras that Denjoy homeomorphisms
give rise to via the C*-crossed product construction, both when we consider them
as homeomorphisms of §! and when we restrict to the invariant sets ~. These
C*-algebras turn out to have an interesting and rich structure. In fact, all the infor-
mation of the homeomorphism is retained at the C*-algebra level, i.e., the complete
set of invariants that Markley (1969) [11] found for Denjoy homeomorphisms can
be recovered from the C*-algebras. (Cf. Theorem 3.6.)

2. NOTATION AND TERMINOLOGY

A discrete flow (X, @) is a topological space X together with a homeo-
morphism ¢: X — X. If (X, ¢) and (¥, ¥) are two discrete flows we say that (X, @)
is conjugate (semiconjugate) to (Y, ) if there exists a homeomorphism (continuous
map) 2 of X onto Y so that 0@ = iy o h. We call & a conjugating (semiconjugating)
map.

Let (X, ¢) be a discrete flow and let x € X. The orbit of x (under ¢) i3
the set {¢p™(x) |n € Z}, where ¢ denotes the n’th iterate of ¢. A subset & of X
is a minimal set of (X, @) if Z is the closure of the orbit of x for every x in Z.
So, in particular, a minimal set X is a closed @-invariant set, i.e. @(2) == 2. If X
itself is a minimal set of (X, ¢) we say that the discrete flow (X, ¢) is minimal.
A point x € X is a periodic point of (X, @) if thete exists a positive integer » such
that @"(x) = x. We say (X, ¢) has a periodic orbit if (X, @) has a periodic pomt x:
in other words, the orbit of x is finite.
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Let ¢ be a real number. Then we can write uniquely 7 -~ [t} + {¢}. Here [/]
is the greatest integer less than or equal to ¢, and {t} is the fractional part of t,
50 0< {t} < 1. For example, { — 2.7} = 0.3. We will interchangeably write # (mod 1)
instead of {r}.

Let X be a compact Hausdorff space and let ¢ : X' - X be a homeomorphism,
Then ¢ induces an action of the integers Z on C(X) and by common abuse of
notation we will denote this action ¢. Let C(X) X1 Z denote the C*-crossed product
of the C*-dynamical system (C(X), Z, ¢), cf. [“l,4; 7.6]. For fe C(X) and ne Z,
the element of C(X) 3)(1 Z which, as a function from Z to C(X), has the value f

at n and zero elsewhere, will be denoted /' ® J,. With this notation the algebraic
operations in C(X) b Z become:

(f® (Sn)(g ® 5,;;):f' (P"(g) ® 5n+m

and
(f®8) =0 "(H®5_,.

There is a natural embedding j: C(X) = C(X) bl Z given by f - f® J,.

We let # denote the compact operators on a separable, infinite-dimensional
Hilbert space.

3. DENJOY HOMEOMORPHISMS

Let $'= {ze€ C|lzl =1} be the unit circle endowed with the counter-
clockwise orientation. We will identify $* with R/Z. By choosing [0, 1) as a represen-
tative set for R/Z we have the identification [0, 1) 37« e € {ze C|jz| = 1}.
We will freely use that representation of S* which is most convenient.

Let ¢ be an orientation-preserving homeomorphism of S (Note: If ¢ is
orientation-reversing, it has at least two fixed points.) Then ¢ can be “lifted” to
a strictly increasing continuous function ¢: R — R which satisfies ¢(x - 1) ==
= @(x) -+ 1. By normalizing so that 0 € @(0) < I, ¢ is uniquely determined.
The limit

lim ¢"(x)

n—00 n

exists and is independent of x € R. Tt will be a number in the interval [0, 1] and is
called the rotation number of ¢ and denoted by p(p). (More accurately, if the limit
is 1 we set by convention p(p) = 0 and so always 0 < p(¢) < 1.) For example,
if ¢ is equal to the rigid rotation R,: # - ¢t + o (mod 1), then p(R,) = o. The rota-



102 TAN PUTNAM, KLAUS SCHMIDT, CHRISTIAN SKALU

tion number p(p) measures the average “stretch’ along any orbit of ¢. We list
some elementary properties of p(¢) and refer to [7}], [9], [2; Chapter 3, § 3] for
further details:

(1) p(p)is rational if and only if ¢ has a periodic orbit. In particular, p(¢) =: 0
if and only if ¢ has a fixed point.

(i) p(@) = p(h—to¢ k) for h an orientation-preserving homeomorphism of S?,
and p(p) =1 — p(k~=1o @ o k) for k an orientation-reversing homeomorphism of S
More generally, the analogous result is true if (S, ) and (S% ¥) are merely semi-
conjugate. '

(i) p(p") == {np(@)}, ne Z.

We will henceforth only consider discrete flows (S, ¢) with no periodic orbits,
which by (i) is equivalent to p(¢) being irrational. We now state the fundamental
theorem of Poincaré alluded to in the Introduction.

THEOREM 3.1. (Poincaré [19]). Let ¢ be a homeomorphism of the circle S*
with no periodic orbits, and let o = p(@) be the irrational rotation number of ¢.
Let x be any point of S*. Then the points x, == ¢"(x) are placed on S* in the same
order as the points y, = no (mod 1), n € Z.

COROLLARY 3.2. Let ¢ be as in the theorem. There exists an orientation-
-preserving (rather, non-reversing) map h: S* — S* so that

ey hoo=R,<h,

where R,: t - t + o (mod 1). The map I will necessarily be continuous and surjective
and so (S*, @) is semiconjugate to (S, R,). Moreover, h in (1) is unique up to a
rotation, i.e. the maps of the form hy = Ryoh, where B € [0, 1), are precisely the
orientation-preserving maps satisfying (1). Also, ¢ is uniquely ergodic, i.e. there
exists a unique @-invariant probability measure 1 on S, In fact, = dh and so,
in particular, p([a, b)) = h(b) — h(a), where 0 < a < b < 1.

Proof. For x € $*define i: x, - no (mod 1), where x, = ¢"(x), n € Z. Then 7
admits a unique orientation-preserving (or rather, non-reversing) extension to g,
necessarily continuous, mapping of S* onto itself. This follows readily from the
theorem and the fact that the points e (mod 1), n € Z, are dense in S*. We denote
the extension again by /1 and observe that (1) is satisfied. The other asscrtions
follows immediately from (1). For details, cf. [9].

DEFINITION 3.3. A Denjoy homeomorphism is a homeomorphism ¢ of St
with no periodic orbits such that ¢ is not conjugate to a rigid rotation. In other
words, ¢ is a Denjoy homeomorphism if p{(p) == « is irrational and ¢ is not

conjugate to KR, .
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REeMARK. If p(¢) = o, where o is irrational, then ¢ is a Denjoy homeo-
morphism if and only if one (and hence every) @-orbit is non-dense. This is an
immediate consequence of (1). Likewise we see from (1) that ¢ is a Denjoy
homeomorphism if and only if /4 is not one-to-one,

PROPOSITION 3.4. Let ¢ be a Denjoy homeomorphism with irrational rotation
number o« and with unique invariant probability measure u = dh, where h is the
map in (1). Let X = support (). Then X g St is a closed @-invariant set which

is the only minimal set of (S, ¢). Furthermore, X is a Cantor set, ie. X is a
totally disconnected compact set with no isolated points. Moreover, X coincides, for
every x € S, with the limit points of the orbit {¢p"(x) } ne Z}.

Proof. p is non-atomic since 4 is continuous, and so I is perfect, i.e. closed
t

and without isolated points. Now A(t) — A(0) = S du, t € {0,1). Hence h(X) = S
0

Also, if h(F) = S* for a closed subset F of S%, then ¥ c F. Assume now that F
is a closed @-invariant subset of S, i.e. ¢(F) = F. Because of

1) hoo=R,oh,

we have that #(F) is R invariant. Hence /(F) = S* and so ¥ < F. Hence X is
the only minimal set of (S*, ¢). In particular, X = S1. Moreover, X is a Cantor

set since the boundary of X is ¢-invariant and so must coincide with X. To prove

"the last assertion we first observe that the limit points of the orbit {¢"(x) [n € Z},
where x € X, coincides with X. It remains to prove that the limit points of any
two orbits coincide. For the proof of this, cf. [2; Chapter 3, § 3, Theorem 4].

We are now in a position to introduce a complete set of invariants for a
Denjoy homeomorphism ¢ up to conjugacy. The first invariant is the rotation
number p(p) = «, where « is an irrational number. Let /1 be the (essentially)
unique map associated to ¢ satisfying (1) and let ¥ = support(u) be the invariant
Cantor set associated with ¢, cf. Proposition 3.4. The second invariant is the
value taken by & at the gaps of the Cantor set X, i.e. the y-measure "of those parts
of X that lie between the disjoint open intervals ofj the complement of X. To be

[e] o0
more specific, let X = S*™\\_J [,, where |_J I, is a countable disjoint union of open
n=1 n=1

intervals, the intervals I, I,,. .., I,,. .. being the components of S™\Z. The map %
in (1) collapses each of the intervals I, == (a,, b,) into a single point. By continuity
Ia,) = h(b,). We call the countable set {a,, b, |n=1,2,...} the accessible points
of Z. The accessible points pair naturally two and two by being end-points of disjoint
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components in S™\Z. Also, /i is one-to-one on the inaccessible points of X, i.e.
on 2\{a,, b, |n=1,2,...}.

DEerINITION 3.5. Let ¢ be a Denjoy homeomorphism with rotation number
plp) = « and let /1 and X be as above. Set

O(o) == {h(x) | x accessible point of L} (= {i([,)|n € Z}).

Q(¢) is uniquely determined by ¢ up to a rigid rotation. The set Q(¢) is
countable and invariant under R,, a fact that follows readily from (1). Let
1 < n(@) < Ny be the number of disjoint orbits of Q(¢p) under R,.

REMARK. Q(¢) is the complement of the invariant T(¢) of [11]. Note that a{(¢)
may be equal to ¥N,.

THEOREM 3.6. (Markley [11]). Let ¢, and @, be two Denjoy homeomorphisms
of S Then (S, @,) is conjugate to (S, ¢,) via an orientation-preserving conjugating
map if and only if p(p,) == p(@.) and Q(p,) = Qp,). Similarly, (S, ©,) is conjugate to
(S?, @,) via an orientation-reversing conjugating map if and only if p(@) = 1 - p(@,)
and Q(¢y) = 1 — Q(¢y).

(Here C = D, where C, D < S%, means C == R,(D) for some B € {0, 1).)

We are now able to give a simple description and visualisation of a typical
Denjoy homeomorphism ¢, which clearly brings forth the invariants p(p), Q(¢)
and n{¢p). Recall that Q(¢) may be partitioned into n(¢) disjoint orbits under R,,

say Q(¢) -= 8 Q;, where each Q, is an orbit under R,. Here @ = p(¢). This corres-
i1
ponds to the fact that ¢ “‘permutes” the disjoint intervals in ST\ Z, i.e. ¢ maps
any component in S™\ZX homeomorphically onto another, and this “permutation™
can be partitioned into n(¢p) disjoint ““orbits”. Each Q,is of the form y; + na (mod 1),
ne Z,and y; —y; ¢ {na (mod 1) |n € Z} if i # j. According to Theorem 3.6 it
is not Q(¢) itself, but O(p) modulo rigid rotations that is of interest. Hence we are
mterested in the “gaps” y; — y,, F = 2,..., n(p). So we may assume that y, =~ 0.
(This corresponds to a choice of the map 4 in (1) such that /1 takes the value 0
at an accessible point of £.) Based upon (1) and the properties of the map /4 that

we have previously outlined we can now say that (S, ¢) is conjugate to (Sp ). fia').
Here S§, is the circle S* with the points Q(¢) being “doubled™, i.e. at each x € Q(¢)
the circle is cut open with the two end-points adjoined, and then the pair of end-

. . fal .
points are connected by an open arc. The continuous map R,: Sp,) — SH() iS

rotation of Sj,, through «, with the proviso that }Qa maps the arc at the doubled
point x € S* homeomorphically onto the arc at the doubled point x -4 2 (mod 1).

The conjugating map between (S%, @) and (S, ;?a) maps the component 7, =
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= (ay, b,) of SY\Z = |/, onto one of the attached arcs with the pair a,, b,
n=1

corresponding to the relevant doubled point of S*. The lengths of the attached arcs
tend to zero as n increases to oco.

Figure 1.

Figure | shows the case where n(p) = 2 and Q(¢) = Q, U Q,, where 9, =
= {na|n e Z} and Q, = {y, + no |n € Z}, everything being taken modulo 1.
If we remove the attached open arcs of Sp,, altogether we are left with a
totally disconnected compact set without isolated points, i.e. a Cantor set. We will
denote this set §E,(q,). Observe that §b(¢) is invariant under R,. It follows from the
discussion above that (’:S'é(q,), 22“) is conjugate to (X, @), where we now, by abuse

of notation, use R, and ¢ to denote restriction mappings.
REMARK 1. An alternative way to look at the disconnected circle S5, is

to consider the abelian C*-algebra .« generated by C({S1) and all characteristic func-
tions of the form Xla, by> where ¢ and b are distinct elements of Q(¢), equipped with
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the supremum norm. Then the maximal ideal space of &7 is .SA‘é(q,). Compare this
with [3; 2.5]. A relevant reference is also [12].

REMARK 2. The description we have given of a Denjoy homeomorphism
also shows how one can conversely construct a Denjoy homeomorphism ¢ with
a given minimal Cantor set ¥ < S, a given irrational rotation number p(¢) =«

and a given Q(p) == @, where Q is a countable subset of S! invariant under R,,
In fact, according to a theorem of Cantor, cf. [2; Chapter 3, § 3, p. 81], the compo-
nents of ST\Z and the set Q can be put in a one-to-one correspondence which
preserves the induced orientation from S*. Using this fact it is straightforward to
construct a Denjoy homeomorphism ¢ with minimal Cantor set X such that (S, ¢)

is conjugate to (Sp, R,).

Remark 3. If ¢, and ¢, are two Denjoy homeomorphisms with invariant
Cantor sets X, and Z,, respectively, then (I, ¢,) is conjugate to (Z,, ¢,) if and
only if (S, ¢,) is conjugate to (S, @,). This can be shown by using the description
we have given above of Denjoy homeomorphisms. (Cf. also [11; Theorem 3.3].)
Hence the restriction of a Denjoy homeomorphism ¢ to its unique minimal
Cantor set X has the same conjugacy invariants as (S, ¢).

4. THE C*-ALGEBRAS 4, AND D, AND THE FUNDAMENTAL EXTENSION

Let ¢ be a Denjoy homeomorphism with irrational rotation number p(p) - : «

co
and let X < S? be its unique minimal Cantor set. Set Y == SY\X ==|_J I,, where
n=1

{7,) are the components of ¥. We have the short exact sequence

i q
0 = Cy(Y) —> C(SY) —> C(2) > 0,

where 7; is the natural inclusion and ¢, is the restriction mapping, i.e. if g € Cy(Y)
then iy(g) is g on Y and 0 on S'™\Y == %, and ¢,(f) = f| £ for fe C(SY). Since X
and Y are @-invariant, ¢ gives rise to Z-actions on each of the abelian C*-algebras
in the above short exact sequence. Let us use ¢ to denote each of these actions.
Taking C*-crossed products we get the foliowing short exact sequence [(cf. [24]):

) 0 = Cy(¥) I Z s C(sY X1 Z -5 C(2) X1 Z - 0.

%o ) Dy
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Here i is the natural inclusion and ¢(f ® 8,) = q.(f) ® 9,,, where fe€ C(S), n€ Z.
So A, is an extension of D, by #,, where

A, = C(SY XI Z, D,=C(%) X1 Z, £, = CyY) X| Z.
@ ® @

The extension (2) is easy to describe. In fact, the extension stems from the underlying
fact that a continuous function on X can be extended to a continuous function on
S, the non-uniqueness of the extension being measured by an element of Cy(Y).

The following three propositions give the general properties of the C*-algebras
A, and D,. Note that Proposition 4.1 contains implicitly the complete ideal struc-
ture of A4,.

PropOSITION 4.1. A, has a unique normalized trace Tt =: Tr,. Moreover,

Sfdu if n=20
Tr(f® 5n) = ol

0 otherwise,

where u is the unique @-invariant probability measure on S*. .#,, is the unique maxima
two-sided ideal in A, and 7, is equal 1o {x € A, | Tr(x*x) = 0}. Furthermore,

n(e)

7,20 Y CGR @I,
1

where n{) is defined in Definition 3.5 and A" is the algebra of compacts.

ProposITION 4.2. D, is a simple C*-algebra with a unique normalized
{faithful) trace Tr = ’i‘rq,. In fact, Tr = Tro g, where q is the map in (2).

PRropoSITION 4.3. 4, and D, can be embedded into AF-algebras.

Proof of 4.1 and 4.2. D, is simple since (Z, @) is minimal, cf. [20]. By {5},
{24] every closed two-sided ideal in 4, = C(S) Xi Z is of the form Co(U) X z,
73 q
where U is an open ¢-invariant subset of S™. Since Y according to Proposition 3.4
is the unique maximal, open, @-invariant (proper) subset of S* we conclude that
£, =Cy(Y) Xi Z is the unique maximal two-sided ideal in A4,. Since ¢ has a
(4

unique invariant probability measure p it follows by [5], [24] that 4, has a unique

normalized trace Tr as stated. The assertion about the trace Tr on D, is then
straightforward. Set ¢ = {x e 4, | Tr(x*x) = 0}. Then # is a closed two-sided
ideal in A, and so ¢ < #,. Conversely, since X --: support{u) we get that x € S,
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implies Tr(x¥x) -~ 0, and so £, = #. In fact, if f € Cy(Y), then (f ® 6,)(f ® J,) - -
=1 "(f)?® d, and so

T/ @ 8% © 8 = | o7t = | 11 = .

1 1

s s
Now elements of the form /' ® J,, f € Co(Y), n € Z, span a dense sub-algebra of .5,
and so Tr(x*x) =: 0 for every x in ..

From the description we have given in Section 3 we conclude that (Y, ¢)is
conjugate to (X, 7), where X = {(x, ) € R? |y =k, k € Z} and 7 is a “shift” map.
re. tis a map of the form (x, k) = (x, k -+ m) for x € R, k € Z, and appropriate
m € Z. The number of disjoint “orbits’ is n(¢). Figure 2 illustrates this for n(p) : - 2.

b Y
$r.
—— ——— y: 3
y=2 1
y= 1
- 3
}’: -1
y = -2 4
y=-3
Figure 2.

()
Hence we get that #, = Co( Y1 X Z is isomorphic to @ Y C(R) ® A, cf. [6]. Cf.
"3 T
also remark bclow.

Proof of 4.3. Pimsner [15] has given a necessary and sufficient dynanic
condition for when the C#-crossed product associated to a discrete flow (X, () is
cmbeddable into an AF-algebra. The condition is that every point shouid be “pseudo-
-non-wandering’”. For metric spaces this property is the same as ‘““‘chain recurrence’ :

Let X be a metric space with metric d, and let 6 be a homeomorphism of A"
A point x in X is chain-recurrent if, for any € > 0, there are points x;, X,,. . .. X,

i

in X (7 2 2)suchthat x; = x, == xand d(@(x;), x;4,) < eforalli=1,2.....n - I.

s &

Pimsner’s result is that C(X) Z/ Z is embeddable into an AF-algebra if and

only if every point of X is chain recurrent. Now we observe that if (X, ) is minimal
then every point in X is chain recurrent. Hence D, is embeddable into an AF-algebra
since (X, ¢) is minimel. To prove the same for A4, we first note that clearly every

N
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point in X is chain recurrent for (S, ). So let x € ¥ == S™\Z. Then x € I, where I
is a component of Y. Given ¢ > 0 there is an n > | such that the length of ¢*(J)
is less than ¢. Let p be one of the end-points of ¢™(I). Theny € X and d(p"(x), y) < &.
‘Qur g-chain from v back to x will consist of three parts. Thefirst partis: x, ¢(x),. ..
... 0" Yx), v. Now we canfind an m < — 1 such that ¢™([) has length less than &/2.
Choose z to be an end-point of ¢”'({). Then z € ¥ and d(¢p™(x), z)} < ¢/2. The third
part of the chain will bz: ¢"(x), " +(x),..., o 4x), x. Now y and z are both
in the minimal set X and so we can find & > 0 with d(¢p*(y), z) < &/2. The middle
part of the chain will be: y, @(¥),. .., *~1»), "(x). Now

d(@"(y), 9"(x)) < d{p*(y), 2) + d(z, " (x)) < &2 + ¢[2 = ¢.

The e-chainis: x, @(x),. . .," " (x), v, o), .. .,0*~Hp), @"(x), " *HX),...,0 " 1x),x.
REMARK. In Section 6 it will be useful to have an explicit isomorphism

n{ep) :
l_)etween @ )_ CO(R) ® A and #,, cf. Theorem 4.1. For our purpose the most
. L ) 1 :

(=]
convenient way is to do the following: Let Y =: SN\JZ = U 1., where as before
n—1
the open intervals {/,} are the components of Y. Let us assume we have enumerated
{I}sothat I, I,,. . ., are representatives from each of the n(¢) disjoint “orbits”

3]

(@)
of ¢ “permuting” the /,'s, cf. Section 3. Set Y, = |_J Y;. Let A (¢/*%(Z)) be the com-
i=1
pact operators on £%(Z). Then clearly Cy(Yy) ® A (¢%(Z)) is isomorphic to
n(ep)

@ ZCO(R) ® A, and by the choice of Y, it is easy to write down an explicit
1

isomorphism f: Cy(Yy) ® H(¢(Z)) - #,. In fact, let {e;} be the usual basis for

£*(Z) and let k;; be the rank one operator taking e; to ¢;, i.e. for £ e/*(Z) let

k(&) = <&, e;>e;. Then for g e Cy(Yy), Blg ® k;j) = () ® 0;-;. (The main

part of the calculation is the isomorphism between C,(Z) X Z and X(¢%(Z)),

where 7,0 Z — Z is the translationm — m + 1,asdonein [6]. Infact,n: Yo X Z - Y
defined by 5:(y, m) - ¢@™(y) is a conjugation between (¥, X Z, id ® 7,) and
(Y, 9). So

Iy = Co(Y) il Z% Co(Y,p X Z)idgll Z = (Co(Yy) ® CO(Z))ingTIZ =
= Cy(Yo) ® (C(Z) X1 Z) = C(Yy) ® A(¢%(Z)).)
: 1

Retaining the notation introduced in the above remark we state the following
fact about the primitive ideal space Prim(4,) of 4, endowed with the Jacobson
topology. ’
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PRropOsITION 4.4. Prim(A4,) is homeomorphic to Y, U {S£,}, with the usual
topology on Y,, and the single point %, in the closure of every non-empty set.

Proof. Immediate consequence of Proposition 4.1 and the above remark.
(Recall that every closed two-sided ideal in Cy(Y,) ® #({¥Z)) is of the foerm
Co(U) ® #(£¥(Z)), where U is an open set in Y,.)

REMARK. Just as Y, has n(p) open components [,, I,,. .., I, we have a

(o)
natural decomposition 5, = @ Y S« where
k=1

I = B(Co(ly) ® A (1X(2))),

and where B: Cy(Y,) ® A (/¥ Z)) — F, is the isomorphism introduced in the previous
remark. Notice that the #,’s depend only on £, (and its primitive ideal space)

and not on the choice of the I,’s or B, except for permutation of the indices. So

n(w) .
the decomposition #, - @& Y 4 is an isomorphism invariant of .¥,, and hence
k=1

of A

@

5. MAIN RESULTS
THEOREM 5.1. Let ¢ and r be two Denjoy homeomorphisms of the circle S*
and let A, = C(S*) xi Z, A, = C(SY) X| Z. Then A, is isomorphic to A, if end
¢ v
only if @ is conjugate to Y or to YL

In order to prove Theorem 5.1 we shall need to recover from A4, the complete
set of invariants p(¢) and Q(@) of a Denjoy homeomorphism ¢, cf. Theorem 3.6.
In particular, we shall need a result on the K-theory of 4,,, which we state as a sepa-
rate theorem. (For the ideal structure of 4,, cf. Proposition 4.4.)

THEOREM 5.2. Let ¢ be a Denjoy homeomorphism with p(@) = u. Then
Ky4,) = Z2® Z and K\(4,) =& Z ® Z. Furthermore, Tr8: Ky(4,) » Z + Za is
an isomorphism of ordered groups, where Z -+ Zu inherits the order structure frorm R
and Tr,, is the homomorphism induced by the unique normalized trace Tron A, .
Moreover, the irrational rotation algebra A, == C(SY) 1>2<| Z is a C*-subalgebra of A,,.

Before we state the next theorem recall (Definition 3.5) that for ¢ a Denjoy
)

homeomorphism with p(¢) = & we have Q(p) = | O, where 0,,...,0p,) are
i=1

the n(¢) disjoint R,-orbits of Q(¢). So we have

0; = {y; + na(mod1)|ne Z}; i=1,..,n(p),
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where y; — y; ¢ {nx (mod1) |n € Z} when i s j. As pointed out in Section 3
we may assume without loss of generality that y, = 0. We will do so henceforth.

THEOREM 5.3. Let ¢ be a Denjoy homeomorphism with p(@) = o and let %
be the unique minimal Cantor set. Let D, be the simple C*-algabra C(X) >| Z with
(4

A n(p)+1
unique (faithful) normalized trace Tr. Then K¢D,) = @& Zand Ky(D,) = Z.
1

Moreover, the range of Tr on the projections in D, is (L + Zo 4+ Zy, + ... +
+ Zyyo)) N0, 1. In particular, if 1,%, ys,. .., Yy are linearly independent over
the rational numbers, then

ry: Ko(D,) » Z4+ Za 4+ Zy, + ... + Zy,,

is an order-isomorphism of ordered groups, where Z -+ Zo. + Zy, + ... + LYoy
inherits the order from R and ﬁl’r* is the induced homomorphism.

k
As above let Q(¢) = UQ,.SetC 0,,C=0U0,,...C=0:. .-
i=1

n(e)

oy Cupy = U Q: = QO(¢). Set B, = C(Sé.) XV Z,i=1,2,...,n(p). (Confer Section
i R(l

3 for notatlon.) Then B,,, = D, and B;, for I <i < n(p), is isomorphic to
Dy, where §; is a Denjoy homeomorphism with the invariants p(/;) = p(p) ==
and Q(J;) = C;, cf. Section 3. As before let 4, be the irrational rotation algebra
C(SY) X Z. Then we can state the following proposition:

a

PROPOSITION 5.4. Let ¢ be as in Theorem 5.3. Then we have a natural hier-
archical embedding :

" By(g)-1 Z D,.

0

6. PROOFS

We shall make extensive use of K-theory for C*-algebras and the theorems
on exact sequences for K-groups, cf. [23] and [18]. Let us introduce some notation.
"For p a (self-adjoint) projection in the C*-algebra </ let [p], denote its class in
K(&). Similarly, for « a unitary in &% (where * denotes adjunctlon of a unit)
let [u], denote its class in K,(27).

We will organize the proofs so that we first prove Theorem 5.3 and Propo-
sition 5.4, arguing directly with D, and not invoking 4, at all. This gives an indi-
cation that it might be possible to recover the invariants p(¢) and Q(¢) of a Denjoy
homeomorphism ¢ just from D,. We raise this question in Section 7.



112 TAN PUTNAM, KLAUS SCHMIDT, CHRISTIAN SKAU

In the sequel we make the obvious modifications if n(¢) = §,. Recall that
n(e)

Qi) = | Q;, where Q; =1y, + na(mod 1), ne€ Z. As before we may assume
i=1

v = 0. Recall also that (X, ¢) is conjugafe to (S’i,»(,ﬂ) s IA?,,), where §é«,, is the discon-

nected (*“doubled™) circle of Section 3.

ey 1

Lemma 6.1. Ky(D,) = Z and is generated by [1 @ §,),. Ko(D,) = @ Z
1

and is generated by [Z[O,a) ® b4lo » o0, ® Oolos- - s K, - o ® 4]y and [1 ® dyly.
3 ' ne

Here y 4 are characteristic functions that lie in C(Spp)).

0> 210,502 X0, 3,000

Proof. Set A = C(gb@,)‘) and note that K;(4) = 0 since A4 is a (commutative)

AF-algebra. Now D, = A X; Z. From [18] we have the following six-term exact
. R T

4

sequence:
id-(R e ' is
Ko(4) ——n"  Ko(d) ——— K4 11 Z)
R
(3) v P
Je id— (ﬁa)"’
K,(4 »1 Z) K, (4) Ky(4)
R, I I
0 0

Herej: A - A4 X1 Z is the natural embedding and p and v are boundary maps
Rqa

described in [18] (cf. also [13]). Observe that
Kid)= FL@FL @ ... ® Fup»

where F;, 2 < i < n(p), is the free abelian group generated by the projections
{z[m y i) | me Z}, F, is the free abelian group generated by the projections

{ X foma, (mi-1)a) | m e Z} and, finally, F, is the free abelian group generated by the
identity 1, hence F, =~ Z. (In fact, open-closed intervals [a, b), where a and b are
in Q(¢), form a basis for .g'b(,,) )

Now id——(f(a)k.: maps each F; into itself. For 1 <7 < n(p), let a,,

= X[nlq, yi—'{-ma)
(respectively, a,, == [ma, (m + 1)a) for i = 1). Define the homomorphism I';: F; - Z
by

I;: E Pl = E Py
meZ meZ
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A simple computation shows that KerI'; = ImA;, where A;: F; - F, is the res-
triction of id — (R,), to F;. So

Z =~ Fi/Kerl'; == F,/ImA;.

For i == 0 the restriction A, of id — (ﬁa)* to Fy is the null map. Hence Z x~ F ==
=: Fy/ITm A, . From the exact sequence (3) we get

Ko(d X Z) = Ky(A)/ImGd - (R,),),
R

4

n(p)+1
and so Ky(D,) = Ko(4 X1 Z) = @ Z, with generators as asserted.
R 1

a

Clearly the kernel of id—(l@a)*: Ko(A4) = Ko(d) is Fy=~ Z. By (3) v is injective
and so

K,(D,) = K\(4 x| Z) = Tm(v) = Ker(id — (R,),) = Z.
R

«®

From [18] (or [13]) we get that v maps [1 ® J,]; onto the generator [1], of F,.
This completes the proof.

LemMMa 6.2. The range of Tt on the projections in D, is:
(Z 4 Zo+ Zy, + ... -+ Zy,y N[0, 1.

Proof. If p is a projection in D, then [p], can be expressed as a finite linear
combination over Z of the generators of K,(D,) exhibited in Lemma 6.1. The values
of the induced homomorphism 'i“r* on these generators are 1, &, 75, - . ., Y,y T€S-
peptively. Hence ‘\I“r('p) = ’f‘r*([p]o) is a number in the given set.

To prove the converse it will be convenient to make an ad thoc notational
change and set y; == a. Let my, m,, ..., m,,, be integers. We must find a projection
pin D, = C(ASé(q,)) Y1 Z so that ’fr(p) = 0, where

a
0 = myy; + Mays + o . Myg)ngy (Mod1).

(We may assume 0 < 0 < 1). In fact, we will construct a projection p of the form
P = yv ® Oy, where V is a finite union of disjoint open-closed intervals [a, b), a
and b in Q(e), of total (Lebesgue-) length 0. Let 6 > 0 be the smallest distance

n(e) ~
between the points {sa} (= s« (mod 1)), s =1,2,...,Y; lm,, on St . For each
i=1
1 € i < n(p) choose n; € Z so that {y; 4 nx} has distance from 0 less than §/2. If
m; 2 0 (m; < 0), we choose n; so that {y, 4 na} lies to the “right” of 0, i.e. in the in-

8 — 2110
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terval (0, 1/2) (to the “left” of 0, i.e. in the interval (12, 0)). For m; > 0 the length
of the open-closed interval {0, {y; + n,a})is y; + {n,#} — 1. For m; < 0 the length
of the open-closed interval [{y; 4 na},0) is 1 — y, — {ma}. We now rotate sz, of
the intervals [0, {y; + n,a}) (respectively, |m;| of the intervals [{y; + n,a}, 0) if m; < 0)

n(p)
for each i =:1,2, ..., n(¢p), so that we get altogether Yy, im;] disjoint open-closed
i=1
a(p)

intervals in Sp(,), each with one end-point in the set {sa}, s = 1,2,..., %, ;.
i:==1

If m; > 0, {so} shall be a “left” end-point of the corresponding rotated intervals,
while if m; < 0, {sa} shall be a “right” end-point of the corresponding rotated
intervals. The total length of these intervals is

@ B = Y mly; + {na} — 1) +.Z fm; (L — y; — {na}),
i€y

ey

n(o)
where & - {i|m; > 0}, 7 = {i|m; <0}. Observe that B = { Yy, miy:
i=:1

n(ep)
-+ {Z minioc}}. This is an easy consequence of the elementary relations: {— a}=
i::1

=1~ {a}, {a+ b} {{a} +-{b}} and {a+ 1} = {a} if I€ Z. So if we can
show

.. | "((p)
(it) {— 2 mm,a} <1 —4
| iecl

then we may place a finite set of disjoint open-closed intervals, with both end-points

(@)
at {na}’s, n € Z, in the complement of the original ¥y {m;| intervals and with total
i=1
n(p)

length {—— ¥ minicx}. Then the open-closed set V' that will do the job will be
ie1

the union of the intervals considered. Now let k € Z so that

(iii) E<¥Ymy, + Y imid—9y)<k+1
&7

iey
(Note that we will have strict inequality in (iii) since 0 < 0 < 1.) By choosing the
previous »;’s so that {n,a} is sufficiently close to 1 — y; for every i/, we may assume
that

@iv) k< m{l — {na}) + |m;|{na} < k 4 1.

iey ieg
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Now (iv) implies that

ieg

n(e)

) {—» Z¢ m,-nioz} = Y m(l — {na})+ {m;|{na} — k.
i=o i€y

By (i) and (v), to prove the inequality (ii) we must show

(vi) = (F myi+ 3 im0l — ) + k> 0.

ey

However, (vi) is implied by (iii).
This completes the proof.
Proof of Theorem 5.3. By Lemma 6.1 the vatue of ”i"r on the generators of

n(e)--1 A
Ko(D,) = (;9 Z is 1, o, y;,..., Vup respectively. So the range of Try is

Z-+Zo+ Zy, ... + Zy,un- If 1, 2, 95, ..., Yoy are linearly independent over
the rational numbers then Tr, is a group isomorphism between Ky(D,) and

Z+4 Za -+ Zy, 4 ... + Zy,,,. By Lemma 6.2 we conclude that 'f'r$ also is an
order-isomorphism.

Proof of Proposition 5.4. Recall that for 1 < k < n(¢p) — 1 we have B, =

S k ()
= C(Sé/-) ;}f] Z, where C, = |_) Q; and Q(p) = |_J Q;. There is a natural embedding
o

i=1 i=1
CS) g CHS3) < -+ g CSay 1) G C(Sh,)-

All the C#-subalgebras of C(S‘(lg(,,,)) above are ﬁa-invariant. Hence we have a natural
embedding of the B,’s as claimed, according to [14; 7.7.9].
We are now going to calculate the K-groups of A, = C(S) X| Z, thereby
[

proving Theorem 5.2. We will do this working with A, directly and not using the
results on D, we have already obtained. We state two elementary K-theory facts
that we shall need in the sequel:

K, (C(8Y) = Z and is generated by [1],.
K(C(SY)) = Z and is generated by [f];,
where f(1) =: 2™, t € [0, 1).

N.B. For the rest of this section f will always denote the function f(t) = 2™ |
te[0, 1.
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We are again going to invoke the six-term exact sequence of [18]:

id - iy
KolC(S) s K(C(8) s Ky(C(SY) 1 2)

(4) v ”

j* id—(p¢ 4
K(C(8Y) >i Z) «—— K (C(SY)) «—— K, (C(SY).
%]
Since ¢(1) = 1, and using our description of Ky (C(S")), id -- ¢, <= 0 on the
top row. On the bottom row, id — ¢, == 0 since ¢ is orientation-preserving. Thus (4)
splits into two short exact sequences:

@y 0 —> Ky(C(SY) —5 Ko(A,) ~= K(C(SY) — 0
@y 0—> Ky(C(SY) 2> Ky(A,) — Ko(C(SY) — 0.

Lemma 6.3. K(4,) = Z @ Z and is generated by [f ® dy), and [1 ® &4, .

Proof. Tmmediate consequence of (4)”.by noting that j,(if/%) - [f ® d]
and v([1 ® o6,],) -~ [1],-

LemMAa 6.4, Ko(4,) =2 Z @ Z and (assuming o€ (0,1/2)) is generated by
[1 ® b0}y and [ply, where p is a (self-adjoint ) projection in A, of the formp = o~ f,) @
® 0_1 + fo ® 9y + f1 ® 8, (p is a so-called Ricffel projection) such that Tr(p) - - x.
Here fy and fy are particular functions in C(S') to be described in the proof.

Proof. We may assume that p(e) = o € (0, 1/2). (In fact, if p(@) e (1/2, i},
replace ¢ by ¢~' and notice that A, = 4 1 and p(¢~Y) =1 — p(@).} By
Theorem 3.1 we conclude that @*(0) does not lie between ¢ and ¢(0). Define

fo € C(SY) as follows:
j 1/¢(0) for 0 < 1 < (0)
Jolt) = ‘}1 — o~ (1)/p(0) for @(0) < 1 < ¢*0)

{ 0 otherwise
ie.
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Define f; € C(SY) as follows:

Vi) —fu(£?)  for ¢(0) < t < ¥(0)
i) =

0 otherwise

0 »(0) o »*0)

It is easily seen that:

0] : Jo = fo + <P 1(/1 S +f1 S
(i) H=f i Helfo) fi
(iii) 0=/ o Yf):

(i) — (iii) imply thatp = ¢ ~%f}) ® 0_1 -+ f,.® d + f1 ® 0, is a self-adjoint pro-
jection in A,,. As in the appendix of [18], p([ply) = [f],. Clearly, j.([1],) = [1 & Jlo-
So by (4) we get that Ky(4,) = Z @ Z with generators [1 ® 6,), and [p],. It remains
to prove that Tr(p) = a. But:

Tr(p) = Sfbdy: S £1p(0) dyu(t) + S (1 = o=10)p(0) dult) =

st 0.e@ [0(0), 0%(0)]

=\ om0+ | @~ oo -

J
0, #(0)) [0, #(O]
= 1 dp = u([0. ©(0)]) = h(e(0)) — h(0) = .
" [0, 5(0)] L '

We have used the (p-mvanance of p= d/z and the propertles of I as outlined in
Corollary 3.2. This completes the proof. :
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ReEMaRK. We could alternatively have constructed the generator p in the
above lemma by using the natural embedding of 4, into A, (cf. proof of Theorem
5.2 below) and then find a Rieffel projection in A, with the desired properties.
This would correspond to choosing the functions f; and f; above to be constant on
each of the intervals of the complement of the invariant Cantor set of ¢. However,
the above proof is direct and shows the freedom we have in choosing f,.

Proof of Theorem 5.2. Let D be the functions in C(S?) that are constant on
each of the intervals {,} of the complement of the invariant Cantor set X of ¢.
Alternative description: D consists of the continuous functions on Sg, that are
constant on each of the atiached arcs of the “doubled” circle, cf. Figure 1. Then D
is a C*-subalgebra of C(Sb(,,,)) that is invariant under the action ﬁa. There is a
natural isomorphism of D >§l Z with C(SY) %(l Z = A,. By [14; 7.7.9] we have

D X Z = C(So) X' Z = Ad,. So A, is embedded in a natural way as a C*%-sub-
R ®

a @

algebra of 4,. By Lemma 6.3 and Lemma 6.4 we know K,(4,) and K,(4,) as
abstract groups. What remains to show is that Tr,: Ko(4,) - Z 4- Zx is an order-
-isomorphism between K,(4,) as an ordered group, and Z +- Za, with the inherited
ordering from R. By Lemma 6.4 we know that the range of Tr, is Z - Za. It will
be sufficient to show that if 0 < m 4+ na < 1 for some m, n € Z, then there is a
projection g inA, so that Tr(g) = m + nu. However, we know that 4, is a
C#-subalgebra of 4,. By [22] we can find a projection g in A4, with the desired
property. So the proof is complete.

REMARK. Pimsner {16; Proposition 6] has by a different approach showed
that the range of Tr, is Z 4+ Zo.

We now turn to the proof of Theorem 5.1. Let us fix ¢ throughout to be a

Denjoy homeomorphism with rotation number p(p) = « and invariant Cantor
(=]

set Z. Set ¥ = S™\X = |_J I,, where {I,} are the components of Y. As in Propo-
n=1

sition 4.4 we assume that we have enumerated {I,} so that I, I,,. . ., I, are repre-

sentatives from each of the n(p) disjoint “orbits” of ¢ “permuting” the I,’s, and

n(e)
we set ¥, =|_JI;. Recall the fundamental semiconjugation (1):
=1

'¢)) hop = R,oh.

Set y;=H({T), i =1, 2, ...,n(p). As before we assume we have chosen an /i so
n(e)

that y, = 0. Now the invariant Q(p) of ¢ is Q(¢) = | Q;, where Q; =
i=1

== {y; +no(mod1) | n € Z}. By Theorem 5.2 we can recover ‘p(¢) =« from
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A,. To prove Theorem 5.1 we need to recover Q(¢) from A, . Before we start the
rigorous development, let us give a rough description of our procedure to
recover Q(¢), thereby pointing out the basic idea.

Recall the fundamental extension (2):

2) 0—> 4, —> A, —> D, —0.

Consider the following function g, (1 < k < n()):

Figure 3.

Observe the following:

(i) g restricted to X is always zero or one. That is, q(g, ® J,) = X0, 4,y ® 3o
> Tk
is a projection in D, .
(i) exp(2rig,) is identically 1, except on I, where it winds once, and on 1,
where it winds once in the opposite direction.
(i) Tr(ge ® 8)) = TrCi , , ® 80) = 7.

QO(¢) will appear as the trace of certain elements of Ky(D,), whose images under
exp are specific elements in K,(#,), cf. (5) below.
We now begin a rigorous development, starting with the unique decompo-

n(@)
sition £, = @ Y, F, of £, where S, = B(Cy(I) ® H (¢%(Z))), B being the isomor-
k=1

phism
B: Co(Yy) ® H(¢X(Z)) - S,

introduced in Section 4. We refer to Section 4 for the details. Let i and i, denote

the natural inclusion maps i:.#, - 4, and i :#, - 4,. As before, f will denote
the function f{t) = €™, t € [0, 1).
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Lemma 6.5. K(F#) = Z for each k=1, 2,..., n(p). If x, is a generator
of Ky(F), then (i)(x,) == [f ® Soly or (i)s(x) = — [ ® Sl

Proof. K(SF)) = K (Co(l) ® #({HZ)) = K(Co(l)) = Z, since I, is an
open interval.

Now choose g € C(S) such that [g];, = [f], in K (C(SY), i.e. g has winding
number 1,}and such that g is identically 1 off of Z,, i.e. g — | € Cy(Z,). Theny : -
=[1®1+ (g — 1) ® kel is a generator for K,(Cy(Z,) ® # (/¥ Z))). Hence §..(1)
is a generator for K,(#,) and so it must be either x, or — x,. Now

BUR®I+ (g —N®ky) =1+ Blg—1) ® ky) =

=1 ®8 + (g — 1) ® by,
R

and so E

(ik)*(xk) = t (fz.-')* " ﬁ:-;(J’) = 4 [ik(l ® ‘50 -+ (g - 1) ® 50)]1 =
= ?J:[g®50]1: i[f®5o]1

by the choice of g. So the proof is complete.

Let us assess the situation: ., decomposes naturally into a(¢) summands
#, each corresponding to an orbit of a Cantor gap ;. By (ii) of the general discus-
sion above we need to know when functions over different I,’s are winding in the
same directions or opposite ones. By Lemma 6.5 [K,(.#,) measures the winding
number, and we may control the orientation as follows:

(1) Choose a generator x, for K,(#,) arbitrarily. Then for each k > 2, choose
a generator x, for K,(#,) such that (i).(x,) = (i)«(xy) in K (4,).

REMARK 1. We have a choice of a plus or a minus in selecting x, . This really
corresponds to the fact that we do not recover Q(¢) but either Q(¢) or 1 — QO(gp).

REMARK 2. We will aiso denote by x;,..., X, the classes in K,(.#,) under
n(e)
the natural maps S, — £,,. Clearly K,(4,) = @ Z, with generators x,,. .., X,)-
1

A]SO l*(x,‘) = (ik)*(xk).
By (2) we get the following fundamental exact sequence of K-theory (cf. [23]):

iy . 9, ;
Koy ;) ————> K(4,) ————— K(D,)

(5) . 0 exp

Ky(Dy) i Ky(A,) e Ky(7,).
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Define, for each k =1, 2, ..., n(p), a subset of Ky(D,) by

(tt X = {y € Ko(D,) | exp(y) = x1 — x;}.
A n(e) .
Our goal is to show that Q(p) = Tr*(u Xk> up to a sign, everything takenr
ka=1

mod 1. (If we had not normalized so that y, = i(f}) = 0, we would get Q(¢) =

A n(ep)
= Tr*(L‘pj Xk). (Cf. Theorem 3.6 for notation.).)

k=1

LEMMA 6.6. Let g, (k=2,...,n(p)) be the functions with graphs showm
in Figure 3, and set g, = 0. Then

[9(g ® do)ly € Xy for all k,
or else

— [g(gy ® 63)lp € X for all k.

Proof. If k=1 we get [q(g, ® J9)ly = — [9(g1 ® )] = 0 € X, = Ker(exp).
So we only have to show the result for £ > 2. Now

e = | hy -+ Ay,

where h, € Cy(L), h € Cy(I) and hy - h, = 0. (h, is the same function for all k.)
A1 and -1 have winding number 1 and — I, respectively. Thus [(#,4+1)®J,]4
is a generator for K,(#,), so it must be either x; or — x,. Assume, for now,
that it is x;. Analogously, [(/4, -+ 1) ® 0], is either x, or — x,. Now

explg(g ® So)lo = [€75% @ Soly = [(1 + Iy -+ h) ® ol =
= [(1 + AL+ h) ® Sgly = [ + /) @ ok + [(1 + /1) ® &o)y =
=+ [(1 4 h) ® doky.-
Since this is in the image of exp, it is in the kernel of i, according to (5). But
By A [ ) ® Solu) = iy £ x) = i) -k i) = iy (%) = i),

by the choice of x, (cf. (1)). Thus, in order to get 0, we must have a minus sign, so
that [(1 + /1) ® 6y}, = — x,. This is true for each k > 2. So [¢(g, ® p)lo € X&
for all k (cf. (1)). If [(1 -+ A) ® 6o}, = — x,, the same argument shows [(1 4+ /) ®
® Joly = x for k > 2. So in this case we have — [¢(g, ® J,)], € X, forall k. This
completes the proof. ’ ' '
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By Lemma 6.6 and (5) we get

X = [g(g. ® 6p)lo + Ker(exp) = [g(gi ® o))y + Im(qy),

or alternatively,
X = — [q(gx ® o)l + Im(qy).

We are now in a position to prove the crucial lemma:

Lemma 6.7. Qo) = "(qu ’i‘r*(Xk) or Olp)=1— 'C_‘j%r*(/\’k), everything
taken mod 1. - -
Proof. Case 1: [g(g, ® dy))y € X, for all k. Recall that
O(p) = W(Y) = "(L_(PJ) {h(1) + no (mod 1) [ne Z} =

k=1

n(p)

=\J {7 + nz(mod1) |ne Z}.
k=1
Now

Tr(g(g, ® 0y)) = Tr(g, ® dy) = Sgk du =

Sl

= k() — h(l)) = 7 — 1 = V.

Hence we get:
Tra(X) = Tra(9(ge ® 5oy + 7:(Ko(4,)) =
= Tr(g(ge ® 50)) + (Tr09)o(Ko(4,)) = 7 + Tra(Ko(4,)) =

:'Yk_{“z—{'_zua

(@) 5
by Theorem 5.2. Thus Q(p) = |_J Try(X,), everything taken mod 1.
k=1
Case 2: —[q(gr ® 8y)]p € X, for all k. By the same calculation we get:

fr*(Xk) = — vy + Z 4 Za.

(@) A
‘Thus Q(p) =1 — { Tr (X)), everything taken mod 1. So the proof is complete.

k=1
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REMARK. We emphasize again that the .#,’s, the x,’s and the X}’s have all been
defined independently of the choice of g, the I,’s, etc., and without using the embed-
ding j: C(S?) — 4,. So we may conclude by Lemma 6.7 that Q(¢p) (or 1 — Q(¢))
is, up to a rigid rotation, an isomorphisminvariant of 4,,.

Proof of Theorem 5.1. By Theorem 5.2 we get that A4, = A, implies p(@) - -
= p(¢) or p(@) =1 — p(y). By Lemma 6.7 we get that 4, = A, implies Q(p) =
= Q) or Q(¢) = | — Q@). In general, if 0 is a Denjoy homeomorphism we
note that p(0-') = 1 — p(0) and Q(0-) = Q(0). (This is a simple consequence
of the fundamental semiconjugation (1).) The proof of the theorem is now an
immediate consequence of Theorem 3.6. '

7. CONCLUDING REMARKS AND OPEN PROBLEMS

As pointed out in Section 6 we proved Theorem 5.3 and Proposition 5.4
directly from D,, without invoking A,. We conjecture it is possible to recover p(¢)
and Q(p) from D, directly. Let us put this conjecture in its right perspective:

As pointed out in Remark 3 of Section 3, (X, ¢) has the same conjugacy inva-
riants as (S, ¢), where ¢ is a Denjoy homeomorphism with minimal Cantor set .
So if ¢, and ¢, are two Denjoy homeomorphism with invariant Cantor sets X, and
Z,, respectively, the conjecture would entail the following theorem:

Dy = C(Zy) XI Z is isomorphic to Dy = C(Z,) XI Z if and only if ¢, [
@ ° @q

is conjugate to @y | 2, or to @z | Z,.
This leads to the more general conjecture:

Let 8,: X; > X; (i = 1, 2) be a minimal homeomorphism of the Cantor set
X; (in other words, X; is a compact Hausdorff space without isolated points and
with a countable basis of open-closed sets) and assume 8; is uniquely ergodic, i.e.
there exists a unique 0;-invariant probability measure u; on X;. So By, = C(X)) X z

is a simple C*-algebra with a unique normalized (and faithful) trace Tr;. Then
B, = B, if and only if 0, is conjugate to 0, or to 657 *.

Let us exhibit a concrete example to support the conjecture:

Let (X, 8)), fori=1,2, be an odometer (also known as “adding-machines’) with

{natural number) parametersdg, d:, ...,d.,... . That is, X;= I {0,1,...,di — 1}
k=0

with product topology and 8;: X; — X, is “addition of 1 with carry-over” (cf.[10]).
Now X; is naturally organized to a compact abelian group which is monothetic,
i.e. it has a dense subgroup which is the homomorphic image of Z. (X; becomes
the group 4, of a-adic integers, wherea = (di, di, ..., d}, ...),cf. [8; §10and § 25).
In fact, these are precisely the 0-dimensional monothetic compact groups [8].
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Then (X;, 0,), i =1, 2, satisfies the conditions of the above conjecture, the
unique 0-invariant measure being the Haar-measure. Also, it is known that B,
= C(X}) ><[ Z is isomorphic to B, = C(X,) Vl Z if and only if 0, is conjugate to

0, or to 05 1 In fact, 0; (/ == 1,2) is a minimal rotatlon R,, of the compact abelian
group X;, where p; = (1,0,0,...,0,...). So the result follows from [21]. it
turns out that in this case the range of the trace on projections in the lcrossed-pro-
s

———— 0 <5 £
didi ... d,

duct is a complete conjugacy invariant, the range being {

Sdidi ... dl,n=0,1, ... }, i =1, 2. (We mention as an aside that K, (B;) and

K,(B;) can be computed using the six-term exact sequence (3) and proceeding as
in the proof of Lemma 6.1. We can also construct an embedding of B; in the UHF-al-
gebra A%, of rank {d] |k -=0,1,2, ...}. By Glimm’s theorem B, = B, if and only
if AL = A2, cf. [11; 6.4].)

Finally, let us return to the first conjecture about the D,’s. By Proposition 5.4
(respectively, Theorem 5.2) we know that the irrational rotation algebra A, is a
C*-subalgebra of D, (respectively, 4,), where o == p(¢). We conjecture that if 4, is
a C*-subalgebra ofD (respectively, 4,) then f§ == {na} for some n € Z. This result
would imply that we can recover the rotation number p(p) from D,. However, a
word of warning is in order: If ¢, and @, are two Denjoy homeomorphisms with
the same rotation number and KO(D¢1) is order-isomorphic to Ky(D,,), this in

itself is not enough to conclude that ¢, is conjugate to ¢, or to @z *.
ExAaMpLE. Let 1, o, y5, p; lie in [0,1] and be linearly independent over the
rational numbers. Let ¢; be a Denjoy homeomorphism such that:

p(@y) = o and Q@) -~ {nx (mod1l) [ne Z} U {y, + no(mod1) |ne Z} u

U {ys + na (mod 1) | n eZ}.

Let @, be a Denjoy homeomorphism such that:
o(p,) =a and Q(p,) = {na(modl)|ne Z}u{— v =+ no (mod 1) |ne Z}y
U {ys + noe (mod 1) [n e Z}.

So n(ep,) -+ n(py) = 3, and by Theorem 5.3 we know that KO(D(,1) = KO(D¢2) ~
~ Z + Za + Zy, + Zy, as ordered groups. (Moreover, by Lemma 6.2 the ranges
of the traces on the projections in D, and D,, coincide.) However, O(p;) # QO(p.)
and Q(¢,) # 1 — Q(@,), i.e. thereis no By so that Q(¢y) = Ry, (Q(¢), or f, 50
that 1 — Q(gp,) = R,qg(Q((pl)). This is shown by a simple computation. So by Theorem
3.6 (and Remark 3 in Section 3) ¢, is not conjugate to.g, or to ¢;*.
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So to prove the conjecture about the D,’s, just a recovery of the rotation number
p(¢) is not sufficient.

|

in
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