C*-ALGEBRAS ASSOCIATED WITH DENJOY HOMEOMORPHISMS OF THE CIRCLE IAN PUTNAM, KLAUS SCHMIDT, CHRISTIAN SKAU #### 1. INTRODUCTION Homeomorphisms of the circle $S^1 = \mathbf{R}/\mathbf{Z}$ were studied by Poincaré (1885) [19] in connection with the qualitative investigation of trajectories on the torus. He introduced the notion of rotation number $0 \le \rho(\varphi) < 1$ of a homeomorphism $\varphi \colon S^1 \to S^1$ and showed that homeomorphisms without periodic orbits are characterized by having an irrational rotation number $\rho(\varphi) = \alpha$. He proved the fundamental theorem that for such homeomorphisms the points on any orbit $\{\varphi^n(x) \mid n \in \mathbf{Z}\}$ are placed on S^1 in the same order as $\{n\alpha \pmod{1} \mid n \in \mathbf{Z}\}$. (Cf. Theorem 3.1.) This immediately yields the fundamental semiconjugation $$h \circ \varphi = R_{\alpha} \circ h,$$ where R_{α} : $t \to t + \alpha \pmod{1}$ denotes the rigid rotation of the circle through the angle α (or $2\pi\alpha$, if one prefers), and h is an (essentially) unique orientation-preserving continuous map of S^1 onto S^1 . In 1932 Denjoy [4] proved the remarkable result that all C^2 -diffeomorphisms φ of the circle with no periodic orbits are *conjugate* to R_α , where $\alpha = \rho(\varphi)$; in other words, the map h in (1) is a homeomorphism. He also showed that for any irrational number $0 < \alpha < 1$ there exists a homeomorphism φ with rotation number α such that φ is not conjugate to R_α . Arnold (1961) [1] studied the delicate question of how the diffeomorphism type of the conjugating map h of (1) depends upon the rational approximation properties of the irrational number α . The final step was taken by Herman (1976) [7] proving a conjecture of Arnold. More specifically, he showed that there exists a measurable subset A of the irrational numbers between 0 and 1 with Lebesgue measure 1 such that if φ is a C^n -diffeomorphism, $n \ge 2$, with $\rho(\varphi) \in A$, then the conjugating map h of (1) is C^{n-2} . Building upon Herman's work Katznelson studied in two papers [9], [10] the von Neumann algebras that C^2 -diffeomorphisms with no periodic orbits give rise to via the W^* -crossed product construction. To be more specific, any C^2 -diffeomorphism φ acts non-singularly on (S^1, \mathcal{B}, m) , where \mathcal{B} denotes the Borel sets and m is the Lebesgue measure. The action turns out to be ergodic if the rotation number of φ is irrational and so one gets a factor by the crossed product construction. Katznelson showed that in this way one gets precisely all injective factors of product type. In fact, they may all be obtained from C^{∞} -diffeomorphisms. In particular, to get the type III factors the rotation number α must have very strong rational approximation properties, and α will be a so-called Liouville number. The situation is somewhat different in the C^* -setting. Here one considers the action that a homeomorphism $\varphi\colon S^1\to S^1$ induces on $C(S^1)$ and then form the C^* -crossed product. Assuming φ has irrational rotation number $\rho(\varphi)=\alpha$ we have to distinguish between two cases. First case: φ is conjugate to R_α and so the crossed product will be isomorphic to the irrational rotation algebra A_α , which has been analysed by Rieffel [22] and Pimsner-Voiculescu [17]. Second case: φ is a so-called Denjoy homeomorphism with orbits that are non-dense. In this case there is a unique minimal φ -invariant closed set $\Sigma \subseteq S^1$, which turns out to be totally disconnected. In the present paper we analyse the C^* -algebras that Denjoy homeomorphisms give rise to via the C^* -crossed product construction, both when we consider them as homeomorphisms of S^1 and when we restrict to the invariant sets Σ . These C^* -algebras turn out to have an interesting and rich structure. In fact, all the information of the homeomorphism is retained at the C^* -algebra level, i.e., the complete set of invariants that Markley (1969) [11] found for Denjoy homeomorphisms can be recovered from the C^* -algebras. (Cf. Theorem 3.6.) #### 2. NOTATION AND TERMINOLOGY A discrete flow (X, φ) is a topological space X together with a homeomorphism $\varphi: X \to X$. If (X, φ) and (Y, ψ) are two discrete flows we say that (X, φ) is conjugate (semiconjugate) to (Y, ψ) if there exists a homeomorphism (continuous map) h of X onto Y so that $h \circ \varphi = \psi \circ h$. We call h a conjugating (semiconjugating) map. Let (X, φ) be a discrete flow and let $x \in X$. The *orbit* of x (under φ) is the set $\{\varphi^n(x) \mid n \in \mathbb{Z}\}$, where φ^n denotes the n'th iterate of φ . A subset Σ of X is a *minimal set* of (X, φ) if Σ is the closure of the orbit of x for every x in Σ . So, in particular, a minimal set Σ is a closed φ -invariant set, i.e. $\varphi(\Sigma) = \Sigma$. If X itself is a minimal set of (X, φ) we say that the discrete flow (X, φ) is minimal. A point $x \in X$ is a *periodic point* of (X, φ) if there exists a positive integer n such that $\varphi^n(x) = x$. We say (X, φ) has a *periodic orbit* if (X, φ) has a periodic point x; in other words, the orbit of x is finite. Let t be a real number. Then we can write uniquely $t = [t] + \{t\}$. Here [t] is the greatest integer less than or equal to t, and $\{t\}$ is the fractional part of t, so $0 \le \{t\} < 1$. For example, $\{-2.7\} = 0.3$. We will interchangeably write $t \pmod{1}$ instead of $\{t\}$. Let X be a compact Hausdorff space and let $\varphi: X \to X$ be a homeomorphism. Then φ induces an action of the integers \mathbb{Z} on C(X) and by common abuse of notation we will denote this action φ . Let $C(X) \underset{\varphi}{\times} \mathbb{I}$ denote the C^* -crossed product of the C^* -dynamical system $(C(X), \mathbb{Z}, \varphi)$, cf. [14; 7.6]. For $f \in C(X)$ and $n \in \mathbb{Z}$, the element of $C(X) \underset{\varphi}{\times} \mathbb{I}$ which, as a function from \mathbb{Z} to C(X), has the value f at f and zero elsewhere, will be denoted $f \otimes \delta_n$. With this notation the algebraic operations in $C(X) \underset{\varphi}{\times} \mathbb{I}$ become: $$(f \otimes \delta_n) \cdot (g \otimes \delta_m) = f \cdot \varphi^n(g) \otimes \delta_{n+m}$$ and $$(f \otimes \delta_n)^* = \overline{\varphi^{-n}(f)} \otimes \delta_{-n}.$$ There is a natural embedding $j: C(X) \to C(X) \underset{\alpha}{\times} \mathbb{Z}$ given by $f \to f \otimes \delta_0$. We let \mathcal{K} denote the compact operators on a separable, infinite-dimensional Hilbert space. #### 3. DENJOY HOMEOMORPHISMS Let $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ be the unit circle endowed with the counter-clockwise orientation. We will identify S^1 with \mathbb{R}/\mathbb{Z} . By choosing [0, 1) as a representative set for \mathbb{R}/\mathbb{Z} we have the identification $[0, 1) \ni t \leftrightarrow \mathrm{e}^{2\pi it} \in \{z \in \mathbb{C} \mid |z| = 1\}$. We will freely use that representation of S^1 which is most convenient. Let φ be an orientation-preserving homeomorphism of S^1 . (Note: If φ is orientation-reversing, it has at least two fixed points.) Then φ can be "lifted" to a strictly increasing continuous function $\widetilde{\varphi} \colon \mathbf{R} \to \mathbf{R}$ which satisfies $\widetilde{\varphi}(x+1) = \widetilde{\varphi}(x) + 1$. By normalizing so that $0 \leqslant \widetilde{\varphi}(0) < 1$, $\widetilde{\varphi}$ is uniquely determined. The limit $$\lim_{n\to\infty}\frac{\tilde{\varphi}^n(x)}{n}$$ exists and is independent of $x \in \mathbb{R}$. It will be a number in the interval [0, 1] and is called the *rotation number* of φ and denoted by $\rho(\varphi)$. (More accurately, if the limit is 1 we set by convention $\rho(\varphi) = 0$ and so always $0 \le \rho(\varphi) < 1$.) For example, if φ is equal to the rigid rotation $R_{\alpha}: t \to t + \alpha \pmod{1}$, then $\rho(R_{\alpha}) = \alpha$. The rota- tion number $\rho(\varphi)$ measures the average "stretch" along any orbit of φ . We list some elementary properties of $\rho(\varphi)$ and refer to [7], [9], [2; Chapter 3, § 3] for further details: - (i) $\rho(\varphi)$ is rational if and only if φ has a periodic orbit. In particular, $\rho(\varphi) = 0$ if and only if φ has a fixed point. - (ii) $\rho(\varphi) = \rho(h^{-1} \circ \varphi \circ h)$ for h an orientation-preserving homeomorphism of S^1 , and $\rho(\varphi) = 1 \rho(k^{-1} \circ \varphi \circ k)$ for k an orientation-reversing homeomorphism of S^1 . More generally, the analogous result is true if (S^1, φ) and (S^1, ψ) are merely semiconjugate. (iii) $$\rho(\varphi^n) = \{n\rho(\varphi)\}, n \in \mathbb{Z}.$$ We will henceforth only consider discrete flows (S^1, φ) with no periodic orbits, which by (i) is equivalent to $\rho(\varphi)$ being irrational. We now state the fundamental theorem of Poincaré alluded to in the Introduction. THEOREM 3.1. (Poincaré [19]). Let φ be a homeomorphism of the circle S^1 with no periodic orbits, and let $\alpha = \rho(\varphi)$ be the irrational rotation number of φ . Let x be any point of S^1 . Then the points $x_n = \varphi^n(x)$ are placed on S^1 in the same order as the points $y_n = n\alpha \pmod{1}$, $n \in \mathbb{Z}$. Corollary 3.2. Let φ be as in the theorem. There exists an orientation-preserving (rather, non-reversing) map $h: S^1 \to S^1$ so that $$h \circ \varphi = R_{\alpha} \circ h,$$ where R_{α} : $t \to t + \alpha \pmod{1}$. The map h
will necessarily be continuous and surjective and so (S^1, φ) is semiconjugate to (S^1, R_{α}) . Moreover, h in (1) is unique up to a rotation, i.e. the maps of the form $h_1 = R_{\beta} \circ h$, where $\beta \in [0, 1)$, are precisely the orientation-preserving maps satisfying (1). Also, φ is uniquely ergodic, i.e. there exists a unique φ -invariant probability measure μ on S^1 . In fact, $\mu = dh$ and so, in particular, $\mu([a,b)) = h(b) - h(a)$, where $0 \le a < b < 1$. **Proof.** For $x \in S^1$ define $h: x_n \to n\alpha \pmod{1}$, where $x_n = \varphi^n(x)$, $n \in \mathbb{Z}$. Then h admits a unique orientation-preserving (or rather, non-reversing) extension to a, necessarily continuous, mapping of S^1 onto itself. This follows readily from the theorem and the fact that the points $n\alpha \pmod{1}$, $n \in \mathbb{Z}$, are dense in S^1 . We denote the extension again by h and observe that (1) is satisfied. The other assertions follows immediately from (1). For details, cf. [9]. DEFINITION 3.3. A Denjoy homeomorphism is a homeomorphism φ of $S^{\mathfrak{t}}$ with no periodic orbits such that φ is not conjugate to a rigid rotation. In other words, φ is a Denjoy homeomorphism if $\rho(\varphi) = \alpha$ is irrational and φ is not conjugate to R_{α} . REMARK. If $\rho(\varphi) = \alpha$, where α is irrational, then φ is a Denjoy homeomorphism if and only if one (and hence every) φ -orbit is non-dense. This is an immediate consequence of (1). Likewise we see from (1) that φ is a Denjoy homeomorphism if and only if h is not one-to-one. PROPOSITION 3.4. Let φ be a Denjoy homeomorphism with irrational rotation number α and with unique invariant probability measure $\mu = dh$, where h is the map in (1). Let $\Sigma = \text{support}(\mu)$. Then $\Sigma \subseteq S^1$ is a closed φ -invariant set which is the only minimal set of (S^1, φ) . Furthermore, Σ is a Cantor set, i.e. Σ is a totally disconnected compact set with no isolated points. Moreover, Σ coincides, for every $x \in S^1$, with the limit points of the orbit $\{\varphi^n(x) \mid n \in \mathbf{Z}\}$. *Proof.* μ is non-atomic since h is continuous, and so Σ is perfect, i.e. closed and without isolated points. Now $h(t) - h(0) = \int_{0}^{t} d\mu$, $t \in [0, 1)$. Hence $h(\Sigma) = S^{1}$. Also, if $h(F) = S^1$ for a closed subset F of S^1 , then $\Sigma \subset F$. Assume now that F is a closed φ -invariant subset of S^1 , i.e. $\varphi(F) = F$. Because of $$(1) h \circ \varphi = R_{\sigma} \circ h,$$ we have that h(F) is R_{α} -invariant. Hence $h(F) = S^1$ and so $\Sigma \subset F$. Hence Σ is the only minimal set of (S^1, φ) . In particular, $\Sigma \subseteq S^1$. Moreover, Σ is a Cantor set since the boundary of Σ is φ -invariant and so must coincide with Σ . To prove the last assertion we first observe that the limit points of the orbit $\{\varphi^n(x) \mid n \in \mathbb{Z}\}$, where $x \in \Sigma$, coincides with Σ . It remains to prove that the limit points of any two orbits coincide. For the proof of this, cf. [2; Chapter 3, § 3, Theorem 4]. We are now in a position to introduce a complete set of invariants for a Denjoy homeomorphism φ up to conjugacy. The first invariant is the rotation number $\rho(\varphi) = \alpha$, where α is an irrational number. Let h be the (essentially) unique map associated to φ satisfying (1) and let $\Sigma = \text{support}(\mu)$ be the invariant Cantor set associated with φ , cf. Proposition 3.4. The second invariant is the value taken by h at the gaps of the Cantor set Σ , i.e. the μ -measure of those parts of Σ that lie between the disjoint open intervals of the complement of Σ . To be more specific, let $\Sigma = S^1 \setminus \bigcup_{n=1}^{\infty} I_n$, where $\bigcup_{n=1}^{\infty} I_n$ is a countable disjoint union of open intervals, the intervals $I_1, I_2, \ldots, I_n, \ldots$ being the components of $S^1 \setminus \Sigma$. The map h in (1) collapses each of the intervals $I_n = (a_n, b_n)$ into a single point. By continuity $h(a_n) = h(b_n)$. We call the countable set $\{a_n, b_n \mid n = 1, 2, \ldots\}$ the accessible points of Σ . The accessible points pair naturally two and two by being end-points of disjoint components in $S^1 \setminus \Sigma$. Also, h is one-to-one on the inaccessible points of Σ , i.e. on $\Sigma \setminus \{a_n, b_n \mid n = 1, 2, ...\}$. DEFINITION 3.5. Let φ be a Denjoy homeomorphism with rotation number $\rho(\varphi) = \alpha$ and let h and Σ be as above. Set $$Q(\varphi) = \{h(x) \mid x \text{ accessible point of } \Sigma\} \ (= \{h(I_n) \mid n \in \mathbb{Z}\}).$$ $Q(\varphi)$ is uniquely determined by φ up to a rigid rotation. The set $Q(\varphi)$ is countable and invariant under R_{α} , a fact that follows readily from (1). Let $1 \le n(\varphi) \le \aleph_0$ be the number of disjoint orbits of $Q(\varphi)$ under R_{α} . REMARK. $Q(\varphi)$ is the complement of the invariant $T(\varphi)$ of [11]. Note that $n(\varphi)$ may be equal to \S_0 . THEOREM 3.6. (Markley [11]). Let φ_1 and φ_2 be two Denjoy homeomorphisms of S^1 . Then (S^1, φ_1) is conjugate to (S^1, φ_2) via an orientation-preserving conjugating map if and only if $\rho(\varphi_1) = \rho(\varphi_2)$ and $Q(\varphi_1) \equiv Q(\varphi_2)$. Similarly, (S^1, φ_1) is conjugate to (S^1, φ_2) via an orientation-reversing conjugating map if and only if $\rho(\varphi_1) = 1 - \rho(\varphi_2)$ and $Q(\varphi_1) \equiv 1 - Q(\varphi_2)$. (Here $C \equiv D$, where $C, D \subset S^1$, means $C = R_{\beta}(D)$ for some $\beta \in [0, 1)$.) We are now able to give a simple description and visualisation of a typical Denjoy homeomorphism φ , which clearly brings forth the invariants $\rho(\varphi)$, $Q(\varphi)$ and $n(\varphi)$. Recall that $Q(\varphi)$ may be partitioned into $n(\varphi)$ disjoint orbits under R_x , say $Q(\varphi) = \bigcup_{i=1}^{n(\varphi)} Q_i$, where each Q_i is an orbit under R_{α} . Here $\alpha = \rho(\varphi)$. This corresponds to the fact that φ "permutes" the disjoint intervals in $S^1 \setminus \Sigma$, i.e. φ maps any component in $S^1 \setminus \Sigma$ homeomorphically onto another, and this "permutation" can be partitioned into $n(\varphi)$ disjoint "orbits". Each Q_i is of the form $\gamma_i + n\alpha \pmod{1}$, $n \in \mathbb{Z}$, and $\gamma_i - \gamma_j \notin \{n\alpha \pmod{1} \mid n \in \mathbb{Z}\}\ \text{if } i \neq j$. According to Theorem 3.6 it is not $Q(\varphi)$ itself, but $Q(\varphi)$ modulo rigid rotations that is of interest. Hence we are interested in the "gaps" $\gamma_i - \gamma_1$, $i = 2, ..., n(\varphi)$. So we may assume that $\gamma_1 = 0$. (This corresponds to a choice of the map h in (1) such that h takes the value 0 at an accessible point of Σ .) Based upon (1) and the properties of the map h that we have previously outlined we can now say that (S^1, φ) is conjugate to $(S^1_{Q(\varphi)}, \hat{R}_{\alpha})$. Here $S^1_{Q(\varphi)}$ is the circle S^1 with the points $Q(\varphi)$ being "doubled", i.e. at each $x \in Q(\varphi)$ the circle is cut open with the two end-points adjoined, and then the pair of endpoints are connected by an open arc. The continuous map $\hat{R}_{\alpha}: S_{O(\varphi)}^1 \to S_{O(\varphi)}^1$ is rotation of $S_{O(\varphi)}^1$ through α , with the proviso that \hat{R}_{α} maps the arc at the doubled point $x \in S^1$ homeomorphically onto the arc at the doubled point $x + \alpha \pmod{1}$. The conjugating map between (S^1, φ) and $(S^1_{\mathcal{O}(\varphi)}, \hat{A}_{\alpha})$ maps the component $I_n =$ $=(a_n,b_n)$ of $S^1 \setminus \Sigma = \bigcup_{n=1}^{\infty} I_n$ onto one of the attached arcs with the pair a_n,b_n corresponding to the relevant doubled point of S^1 . The lengths of the attached arcs tend to zero as n increases to ∞ . Figure 1. Figure 1 shows the case where $n(\varphi)=2$ and $Q(\varphi)=Q_1\cup Q_2$, where $Q_1=\{n\alpha\mid n\in \mathbf{Z}\}$ and $Q_2=\{\gamma_2+n\alpha\mid n\in \mathbf{Z}\}$, everything being taken modulo 1. If we remove the attached open arcs of $S^1_{Q(\varphi)}$ altogether we are left with a totally disconnected compact set without isolated points, i.e. a Cantor set. We will denote this set $\hat{S}^1_{Q(\varphi)}$. Observe that $\hat{S}^1_{Q(\varphi)}$ is invariant under \hat{R}_α . It follows from the discussion above that $(\hat{S}^1_{Q(\varphi)}, \hat{R}_\alpha)$ is conjugate to (Σ, φ) , where we now, by abuse of notation, use \hat{R}_α and φ to denote restriction mappings. REMARK 1. An alternative way to look at the disconnected circle $\hat{S}^1_{Q(\varphi)}$ is to consider the abelian C^* -algebra $\mathscr A$ generated by $C(S^1)$ and all characteristic functions of the form $\chi_{[a,b)}$, where a and b are distinct elements of $Q(\varphi)$, equipped with the supremum norm. Then the maximal ideal space of \mathscr{A} is $\hat{S}^1_{Q(\varphi)}$. Compare this with [3; 2.5]. A relevant reference is also [12]. REMARK 2. The description we have given of a Denjoy homeomorphism also shows how one can conversely construct a Denjoy homeomorphism φ with a given minimal Cantor set $\Sigma \subseteq S^1$, a given irrational rotation number $\rho(\varphi) := \alpha$ and a given $Q(\varphi) := Q$, where Q is a countable subset of S^1 invariant under $R_{\alpha \bullet}$. In fact, according to a theorem of Cantor, cf. [2; Chapter 3, § 3, p. 81], the components of $S^1 \setminus \Sigma$ and the set Q can be put
in a one-to-one correspondence which preserves the induced orientation from S^1 . Using this fact it is straightforward to construct a Denjoy homeomorphism φ with minimal Cantor set Σ such that (S^1, φ) is conjugate to $(S^1_O, \hat{R}_{\alpha})$. REMARK 3. If φ_1 and φ_2 are two Denjoy homeomorphisms with invariant Cantor sets Σ_1 and Σ_2 , respectively, then (Σ_1, φ_1) is conjugate to (Σ_2, φ_2) if and only if (S^1, φ_1) is conjugate to (S^1, φ_2) . This can be shown by using the description we have given above of Denjoy homeomorphisms. (Cf. also [11; Theorem 3.3].) Hence the restriction of a Denjoy homeomorphism φ to its unique minimal Cantor set Σ has the same conjugacy invariants as (S^1, φ) . # 4. THE C° -ALGEBRAS A_{φ} AND D_{φ} AND THE FUNDAMENTAL EXTENSION Let φ be a Denjoy homeomorphism with irrational rotation number $\rho(\varphi) = \alpha$ and let $\Sigma \subseteq S^1$ be its unique minimal Cantor set. Set $Y = S^1 \setminus \Sigma = \bigcup_{n=1}^{\infty} I_n$, where $\{I_n\}$ are the components of Y. We have the short exact sequence $$0 \to C_0(Y) \xrightarrow{i_1} C(S^1) \xrightarrow{q_1} C(\Sigma) \to 0,$$ where i_1 is the natural inclusion and q_1 is the restriction mapping, i.e. if $g \in C_0(Y)$ then $i_1(g)$ is g on Y and 0 on $S^1 \setminus Y = \Sigma$, and $q_1(f) = f \mid \Sigma$ for $f \in C(S^1)$. Since Σ and Y are φ -invariant, φ gives rise to \mathbb{Z} -actions on each of the abelian C^* -algebras in the above short exact sequence. Let us use φ to denote each of these actions. Taking C^* -crossed products we get the following short exact sequence [(cf. [24]): $$(2) \qquad 0 \to \underbrace{C_0(Y) \underset{\varphi}{\times} | \mathbb{Z}}_{} \xrightarrow{i} \underbrace{C(S^1) \underset{\varphi}{\times} | \mathbb{Z}}_{} \xrightarrow{q} \underbrace{C(\Sigma) \underset{\varphi}{\times} | \mathbb{Z}}_{} \to 0.$$ Here *i* is the natural inclusion and $q(f \otimes \delta_n) = q_1(f) \otimes \delta_n$, where $f \in C(S^1)$, $n \in \mathbb{Z}$. So A_{φ} is an extension of D_{φ} by \mathscr{I}_{φ} , where The extension (2) is easy to describe. In fact, the extension stems from the underlying fact that a continuous function on Σ can be extended to a continuous function on S^1 , the non-uniqueness of the extension being measured by an element of $C_0(Y)$. The following three propositions give the general properties of the C^* -algebras A_{φ} and D_{φ} . Note that Proposition 4.1 contains implicitly the complete ideal structure of A_{φ} . **Proposition** 4.1. A_{φ} has a unique normalized trace $Tr = Tr_{\varphi}$. Moreover, $$\operatorname{Tr}(\boldsymbol{f} \otimes \delta_n) = \begin{cases} \int_{S^1} f \, \mathrm{d}\mu & \text{if } n = 0 \\ s^1 & \text{otherwise,} \end{cases}$$ where μ is the unique φ -invariant probability measure on S^1 . \mathscr{I}_{φ} is the unique maxima $tw\omega$ -sided ideal in A_{φ} and \mathscr{I}_{φ} is equal to $\{x \in A_{\varphi} \mid \operatorname{Tr}(x^*x) = 0\}$. Furthermore, $$\mathscr{I}_{\varphi} \cong \bigoplus \sum_{1}^{n(\varphi)} C_{0}(\mathbf{R}) \otimes \mathscr{K},$$ where $n(\varphi)$ is defined in Definition 3.5 and \mathcal{K} is the algebra of compacts. PROPOSITION 4.2. D_{φ} is a simple C^* -algebra with a unique normalized (faithful) trace $\hat{T}r = \hat{T}r_{\varphi}$. In fact, $Tr = \hat{T}r \circ q$, where q is the map in (2). Proposition 4.3. A_{φ} and D_{φ} can be embedded into AF-algebras. Proof of 4.1 and 4.2. D_{φ} is simple since (Σ, φ) is minimal, cf. [20]. By [5], [24] every closed two-sided ideal in $A_{\varphi} = C(S^1) \times |\mathbf{Z}|$ is of the form $C_0(U) \times |\mathbf{Z}|$, where U is an open φ -invariant subset of S^1 . Since Y according to Proposition 3.4 is the unique maximal, open, φ -invariant (proper) subset of S^1 we conclude that $\mathscr{I}_{\varphi} = C_0(Y) \times |\mathbf{Z}|$ is the unique maximal two-sided ideal in A_{φ} . Since φ has a unique invariant probability measure μ it follows by [5], [24] that A_{φ} has a unique normalized trace Tr as stated. The assertion about the trace Tr on D_{φ} is then straightforward. Set $\mathscr{J} = \{x \in A_{\varphi} \mid Tr(x^n x) = 0\}$. Then \mathscr{J} is a closed two-sided ideal in A_{φ} and so $\mathscr{J} \subset \mathscr{J}_{\varphi}$. Conversely, since $\Sigma = \sup \operatorname{support}(\mu)$ we get that $x \in \mathscr{J}_{\varphi}$ implies $\operatorname{Tr}(x^{*}x)=0$, and so $\mathscr{I}_{\varphi}\subset\mathscr{J}$. In fact, if $f\in C_{0}(Y)$, then $(f\otimes\delta_{n})^{*}(f\otimes\delta_{n})=(\varphi^{-n}(f))^{2}\otimes\delta_{0}$, and so $$\operatorname{Tr}((f \otimes \delta_n)^* f \otimes \delta_n) = \int_{S^1} \varphi^{-n}(|f|^2) d\mu = \int_{S^1} |f|^2 d\mu = 0.$$ Now elements of the form $f \otimes \delta_n$, $f \in C_0(Y)$, $n \in \mathbb{Z}$, span a dense sub-algebra of \mathscr{S}_{σ} and so $Tr(x^*x) = 0$ for every x in \mathscr{S}_{σ} . From the description we have given in Section 3 we conclude that (Y, φ) is conjugate to (X, τ) , where $X = \{(x, y) \in \mathbb{R}^2 \mid y = k, k \in \mathbb{Z}\}$ and τ is a "shift" map. i.e. τ is a map of the form $(x, k) \to (x, k + m)$ for $x \in \mathbb{R}$, $k \in \mathbb{Z}$, and appropriate $m \in \mathbb{Z}$. The number of disjoint "orbits" is $n(\varphi)$. Figure 2 illustrates this for $n(\varphi) = 2$. Figure 2. Hence we get that $\mathscr{I}_{\varphi} = C_0(Y)_{\varphi}^{\times} \mathbb{Z}$ is isomorphic to $\bigoplus \sum_{1}^{n(\varphi)} C_0(\mathbb{R}) \otimes \mathscr{K}$, cf. [6]. Cf. also remark below. *Proof of 4.3.* Pimsner [15] has given a necessary and sufficient dynamic condition for when the C^* -crossed product associated to a discrete flow (X, θ) is embeddable into an AF-algebra. The condition is that every point should be "pseudo-non-wandering". For metric spaces this property is the same as "chain recurrence": Let X be a metric space with metric d, and let θ be a homeomorphism of X. A point x in X is chain-recurrent if, for any $\varepsilon > 0$, there are points x_1, x_2, \ldots, x_n in X $(n \ge 2)$ such that $x_1 = x_n = x$ and $d(\theta(x_i), x_{i+1}) < \varepsilon$ for all $i = 1, 2, \ldots, n + 1$. Pimsner's result is that $C(X) \underset{\theta}{\times} \mathbf{Z}$ is embeddable into an AF-algebra if and only if every point of X is chain recurrent. Now we observe that if (X, θ) is minimal then every point in X is chain recurrent. Hence D_{φ} is embeddable into an AF-algebra since (Σ, φ) is minimal. To prove the same for A_{φ} we first note that clearly every . point in Σ is chain recurrent for (S^1, φ) . So let $x \in Y - S^1 \setminus \Sigma$. Then $x \in I$, where I is a component of Y. Given $\varepsilon > 0$ there is an $n \ge 1$ such that the length of $\varphi^n(I)$ is less than ε . Let y be one of the end-points of $\varphi^n(I)$. Then $y \in \Sigma$ and $d(\varphi^n(x), y) < \varepsilon$. Our ε -chain from x back to x will consist of three parts. The first part is: $x, \varphi(x), \ldots, \varphi^{n-1}(x), y$. Now we can find an $m \le -1$ such that $\varphi^m(I)$ has length less than $\varepsilon/2$. Choose z to be an end-point of $\varphi^m(I)$. Then $z \in \Sigma$ and $d(\varphi^m(x), z) < \varepsilon/2$. The third part of the chain will be: $\varphi^m(x), \varphi^{m+1}(x), \ldots, \varphi^{-1}(x), x$. Now y and z are both in the minimal set Σ and so we can find $k \ge 0$ with $d(\varphi^k(y), z) < \varepsilon/2$. The middle part of the chain will be: $y, \varphi(y), \ldots, \varphi^{k-1}(y), \varphi^m(x)$. Now $$d(\varphi^k(y), \varphi^m(x)) \leq d(\varphi^k(y), z) + d(z, \varphi^m(x)) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$ The ε -chain is: x, $\varphi(x)$,..., $\varphi^{n-1}(x)$, y, $\varphi(y)$,..., $\varphi^{k-1}(y)$, $\varphi^m(x)$, $\varphi^m(x)$,..., $\varphi^{-1}(x)$, x. REMARK. In Section 6 it will be useful to have an explicit isomorphism between $\bigoplus \sum_{i=1}^{n(\varphi)} C_0(\mathbf{R}) \otimes \mathcal{K}$ and \mathcal{I}_{φ} , cf. Theorem 4.1. For our purpose the most convenient way is to do the following: Let $Y = S^1 \setminus \Sigma = \bigcup_{n=1}^{\infty} I_n$, where as before the open intervals $\{I_n\}$ are the components of Y. Let us assume we have enumerated $\{I_n\}$ so that $I_1, I_2, \ldots, I_{n(\varphi)}$ are representatives from each of the $n(\varphi)$ disjoint "orbits" of φ "permuting" the I_n 's, cf. Section 3. Set $Y_0 = \bigcup_{i=1}^{n(\varphi)} Y_i$. Let $\mathcal{K}(\ell^2(\mathbf{Z}))$ be the compact operators on $\ell^2(\mathbf{Z})$. Then clearly $C_0(Y_0) \otimes \mathcal{K}(\ell^2(\mathbf{Z}))$ is isomorphic to $\bigoplus \sum_{i=1}^{n(\varphi)} C_0(\mathbf{R}) \otimes \mathcal{K}$, and by the choice of Y_0 it is easy to write down an explicit isomorphism $\beta \colon C_0(Y_0) \otimes \mathcal{K}(\ell^2(\mathbf{Z})) \to \mathcal{I}_{\varphi}$. In fact, let $\{e_i\}$ be the usual basis for $\ell^2(\mathbf{Z})$ and let k_{ij} be the rank one operator taking e_j to e_i , i.e. for $\xi \in \ell^2(\mathbf{Z})$ let $k_{ij}(\xi) = \langle \xi, e_j \rangle e_i$. Then for $g \in C_0(Y_0)$, $\beta(g \otimes k_{ij}) = \varphi^{-i}(g) \otimes \delta_{j-i}$. (The main part of the calculation is the isomorphism between $C_0(\mathbf{Z}) \times |\mathbf{Z}| = 1$ and $\mathcal{K}(\ell^2(\mathbf{Z}))$, where $\tau_1 \colon \mathbf{Z} \to \mathbf{Z}$ is the translation $m \to
m+1$, as done in [6]. In fact, $\eta \colon Y_0 \times \mathbf{Z} \to Y$ defined by $\eta \colon (y, m) \to \varphi^m(y)$ is a conjugation between $(Y_0 \times \mathbf{Z})$, id $\otimes \tau_1$) and (Y, φ) . So $$\mathcal{I}_{\varphi} = C_0(Y) \underset{\varphi}{\times} | \mathbf{Z} \underset{\eta}{\cong} C_0(Y_0 \times \mathbf{Z}) \underset{\mathrm{id} \otimes \tau_1}{\times} \mathbf{Z} \cong (C_0(Y_0) \otimes C_0(\mathbf{Z})) \underset{\mathrm{id} \otimes \tau_1}{\times} \mathbf{Z} \cong$$ $$\cong C_0(Y_0) \otimes (C_0(\mathbf{Z}) \underset{\tau_1}{\times} | \mathbf{Z}) \cong C_0(Y_0) \otimes \mathcal{K}(\ell^2(\mathbf{Z})).)$$ Retaining the notation introduced in the above remark we state the following fact about the primitive ideal space $\operatorname{Prim}(A_{\varphi})$ of A_{φ} endowed with the Jacobson topology. **PROPOSITION** 4.4. $Prim(A_{\varphi})$ is homeomorphic to $Y_0 \cup \{\mathscr{I}_{\varphi}\}$, with the usual topology on Y_0 , and the single point \mathscr{I}_{φ} in the closure of every non-empty set. *Proof.* Immediate consequence of Proposition 4.1 and the above remark. (Recall that every closed two-sided ideal in $C_0(Y_0) \otimes \mathcal{K}(\ell^2(\mathbf{Z}))$ is of the form $C_0(U) \otimes \mathcal{K}(\ell^2(\mathbf{Z}))$, where U is an open set in Y_0 .) REMARK. Just as Y_0 has $n(\varphi)$ open components $I_1, I_2, \ldots, I_{n(\varphi)}$, we have a natural decomposition $\mathscr{F}_{\varphi} = \bigoplus_{k=1}^{n(\varphi)} \mathscr{F}_k$, where $$\mathscr{I}_k = \beta(C_0(I_k) \otimes \mathscr{K}(\ell^2(\mathbf{Z}))),$$ and where $\beta \colon C_0(Y_0) \otimes \mathcal{K}(/^2(\mathbf{Z})) \to \mathcal{I}_{\varphi}$ is the isomorphism introduced in the previous remark. Notice that the \mathcal{I}_k 's depend only on \mathcal{I}_{φ} (and its primitive ideal space) and not on the choice of the I_k 's or β , except for permutation of the indices. So the decomposition $\mathcal{I}_{\varphi} = \bigoplus_{k=1}^{n(\varphi)} \mathcal{I}_k$ is an isomorphism invariant of \mathcal{I}_{φ} , and hence of A_{φ} . ## 5. MAIN RESULTS THEOREM 5.1. Let φ and ψ be two Denjoy homeomorphisms of the circle S^1 and let $A_{\varphi} = C(S^1) \underset{\varphi}{\times} | \mathbf{Z}, A_{\psi} = C(S^1) \underset{\psi}{\times} | \mathbf{Z}$. Then A_{φ} is isomorphic to A_{ψ} if and only if φ is conjugate to ψ or to ψ^{-1} . In order to prove Theorem 5.1 we shall need to recover from A_{φ} the complete set of invariants $\rho(\varphi)$ and $Q(\varphi)$ of a Denjoy homeomorphism φ , cf. Theorem 3.6. In particular, we shall need a result on the K-theory of A_{φ} , which we state as a separate theorem. (For the ideal structure of A_{φ} , cf. Proposition 4.4.) Theorem 5.2. Let φ be a Denjoy homeomorphism with $\rho(\varphi)=\alpha$. Then $K_0(A_\varphi)\cong \mathbb{Z}\oplus \mathbb{Z}$ and $K_1(A_\varphi)\cong \mathbb{Z}\oplus \mathbb{Z}$. Furthermore, $\mathrm{Tr}_*^{\mathrm{ll}}\colon K_0(A_\varphi)\to \mathbb{Z}+\mathbb{Z}\alpha$ is an isomorphism of ordered groups, where $\mathbb{Z}+\mathbb{Z}\alpha$ inherits the order structure from \mathbb{R} and Tr_* is the homomorphism induced by the unique normalized trace Tr on A_φ . Moreover, the irrational rotation algebra $A_\alpha=C(S^1)\underset{\mathbb{R}}{\times}\mathbb{Z}$ is a C^* -subalgebra of A_φ . Before we state the next theorem recall (Definition 3.5) that for φ a Denjoy homeomorphism with $\rho(\varphi) = \alpha$ we have $Q(\varphi) = \bigcup_{i=1}^{n(\varphi)} Q_i$, where $Q_1, \ldots, Q_{n(\varphi)}$ are the $n(\varphi)$ disjoint R_{α} -orbits of $Q(\varphi)$. So we have $$Q_i = \{ \gamma_i + n\alpha \pmod{1} \mid n \in \mathbf{Z} \}; \quad i = 1, \ldots, n(\varphi),$$ where $\gamma_i - \gamma_j \notin \{n\alpha \pmod{1} \mid n \in \mathbb{Z}\}$ when $i \neq j$. As pointed out in Section 3 we may assume without loss of generality that $\gamma_1 = 0$. We will do so henceforth. Theorem 5.3. Let φ be a Denjoy homeomorphism with $\rho(\varphi) = \alpha$ and let Σ be the unique minimal Cantor set. Let D_{φ} be the simple C^* -algabra $C(\Sigma) \underset{\alpha}{\searrow} \mathbf{Z}$ with unique (faithful) normalized trace $\hat{T}r$. Then $K_0(D_{\varphi}) \cong \bigoplus_{i=1}^{n(\varphi)+1} Z$ and $K_1(D_{\varphi}) \cong Z$. Moreover, the range of $\hat{\mathbf{T}}\mathbf{r}$ on the projections in D_{φ} is $(\mathbf{Z} + \mathbf{Z}\alpha + \mathbf{Z}\gamma_2 + \ldots + \mathbf{Z}\gamma_{n(\varphi)}) \cap [0, 1]$. In particular, if $1, \alpha, \gamma_2, \ldots, \gamma_{n(\varphi)}$ are linearly independent over the rational numbers, then $$\hat{T}r_*: K_0(D_{\varphi}) \to Z + Z\alpha + Z\gamma_2 + \ldots + Z\gamma_{n(\varphi)}$$ is an order-isomorphism of ordered groups, where $\mathbf{Z} + \mathbf{Z}\alpha + \mathbf{Z}\gamma_2 + \ldots + \mathbf{Z}\gamma_{n(\varphi)}$ inherits the order from \mathbf{R} and $\mathbf{\hat{T}r}_{z}$ is the induced homomorphism. As above let $$Q(\varphi) = \bigcup_{i=1}^{n(\varphi)} Q_i$$. Set $C_1 = Q_1$, $C_2 = Q_1 \cup Q_2, \ldots, C_k = \bigcup_{i=1}^k Q_i, \ldots$ $$\ldots, C_{n(\varphi)} = \bigcup_{i=1}^{n(\varphi)} Q_i = Q(\varphi). \text{ Set } B_i = C(\hat{S}_{C_i}^1) \underset{\hat{R}_{\alpha}}{\times} \mathbf{Z}, i = 1, 2, \ldots, n(\varphi). \text{ (Confer Section } \mathbf{Z})$$ 3 for notation.) Then $B_{n(\varphi)} \cong D_{\varphi}$ and B_i , for $1 \leq i \leq n(\varphi)$, is isomorphic to D_{ψ_i} where ψ_i is a Denjoy homeomorphism with the invariants $\rho(\psi_i) = \rho(\varphi) = \alpha$ and $Q(\psi_i) = C_i$, cf. Section 3. As before let A_{α} be the irrational rotation algebra $C(S^1) \underset{R_{\alpha}}{\times} \mathbb{Z}$. Then we can state the following proposition: **PROPOSITION** 5.4. Let φ be as in Theorem 5.3. Then we have a natural hierarchical embedding: $$A_{\alpha} \subseteq B_1 \subseteq \ldots \subseteq B_{n(\varphi)-1} \subseteq D_{\varphi}.$$ # 6. PROOFS We shall make extensive use of K-theory for C^* -algebras and the theorems on exact sequences for K-groups, cf. [23] and [18]. Let us introduce some notation. For p a (self-adjoint) projection in the C^* -algebra $\mathscr A$ let $[p]_0$ denote its class in $K_0(\mathscr A)$. Similarly, for u a unitary in $\mathscr A^+$ (where $^+$ denotes adjunction of a unit) let $[u]_1$ denote its class in $K_1(\mathscr A)$. We will organize the proofs so that we first prove Theorem 5.3 and Proposition 5.4, arguing directly with D_{φ} and not invoking A_{φ} at all. This gives an indication that it might be possible to recover the invariants $\rho(\varphi)$ and $Q(\varphi)$ of a Denjoy homeomorphism φ just from D_{φ} . We raise this question in Section 7. In the sequel we make the obvious modifications if $n(\varphi) = \aleph_0$. Recall that $Q(\varphi) = \bigcup_{i=1}^{n(\varphi)} Q_i$, where $Q_i = \gamma_i + n\alpha \pmod{1}$, $n \in \mathbb{Z}$. As before we may assume $\gamma_1 = 0$. Recall also that (Σ, φ) is conjugate to $(\hat{S}^1_{Q(\varphi)}, \hat{R}_{\alpha})$, where $\hat{S}^1_{Q(\varphi)}$ is the disconnected ("doubled") circle of Section 3. LEMMA 6.1. $K_1(D_{\varphi}) \cong \mathbb{Z}$ and is generated by $[1 \otimes \delta_1]_1$. $K_0(D_{\varphi}) \cong \bigoplus_{1}^{n(\varphi)+1} \mathbb{Z}$ and is generated by $[\chi_{[0,\alpha)} \otimes \delta_0]_0$, $[\chi_{[0,\gamma_2]} \otimes \delta_0]_0$,..., $[\chi_{[0,\gamma_{n(\varphi)}]} \otimes \delta_0]_0$ and $[1 \otimes \delta_0]_0$. Here $\chi_{[0,\alpha)}$, $\chi_{[0,\gamma_2]}$,..., $\chi_{[0,\gamma_{n(\varphi)}]}$ are characteristic functions that lie in $C(\hat{S}_{Q(\varphi)}^1)$. *Proof.* Set $A = C(\hat{S}^1_{\mathcal{Q}(\varphi)})$ and note that $K_1(A) = 0$ since A is a (commutative) AF-algebra. Now $D_{\varphi} \cong A \underset{R_{\alpha}}{\times} \mathbb{Z}$. From [18] we have the following six-term exact sequence: Here $j: A \to A \underset{R_{\alpha}}{\times} \mathbb{Z}$ is the natural embedding and ρ and ν are boundary maps described in [18] (cf. also [13]). Observe that $$K_0(A) \cong F_0 \oplus F_1 \oplus \ldots \oplus F_{n(\alpha)},$$ where F_i , $2 \le i \le n(\varphi)$, is the free abelian group generated by the projections $\{\chi_{[ma, \gamma_i + ma)} \mid m \in \mathbb{Z}\}$, F_1 is the free abelian group generated by the projections $\{\chi_{[ma, (m+1)a)} \mid m \in \mathbb{Z}\}$ and, finally, F_0 is the free abelian group generated by the identity 1, hence $F_0 \cong \mathbb{Z}$. (In fact, open-closed intervals [a, b), where a and b are in $Q(\varphi)$, form a basis for $\hat{S}^1_{Q(\varphi)}$.) Now id $-(\hat{R}_{\alpha})_*$ maps each F_i into itself. For $1 \le i \le n(\varphi)$, let $a_m = \chi_{[m\alpha, \gamma_i + m\alpha)}$ (respectively, $a_m = [m\alpha, (m+1)\alpha)$ for i = 1). Define the homomorphism $\Gamma_i : F_i \to \mathbb{Z}$ by $$\Gamma_i: \sum_{m\in\mathbb{Z}} r_m a_m \to \sum_{m\in\mathbb{Z}} r_m$$ A simple computation shows that $\operatorname{Ker} \Gamma_i = \operatorname{Im} \Lambda_i$, where $\Lambda_i \colon F_i \to F_i$ is the restriction of $\operatorname{id} - (\hat{R}_{\alpha})_{\alpha}$ to F_i . So $$\mathbf{Z} \cong F_i/\operatorname{Ker}\Gamma_i = F_i/\operatorname{Im}\Lambda_i$$. For i=0 the restriction Λ_0 of id $-(\hat{R}_{\alpha})_*$ to F_0 is the null map. Hence $\mathbf{Z} \cong F_0 = -F_0/\text{Im }\Lambda_0$. From the exact sequence (3) we get $$K_0(A \underset{\hat{R}_{\alpha}}{\times} Z) \cong K_0(A)/Im(id - (\hat{R}_{\alpha})_{\alpha}),$$ and so $K_0(D_{\varphi}) = K_0(A \underset{\widehat{R}_{\alpha}}{\times} \mathbb{Z}) \cong \bigoplus_{1}^{n(\varphi)+1} \mathbb{Z}$, with generators as asserted. Clearly the kernel of id
$-(\hat{R}_{\alpha})_*: K_0(A) \to K_0(A)$ is $F_0 \cong \mathbb{Z}$. By (3) v is injective and so $$K_1(D_{\varphi}) = K_1(A \underset{\hat{R}_{\alpha}}{\times} \mathbf{Z}) \cong \operatorname{Im}(v) = \operatorname{Ker}(\operatorname{id} - (\hat{R}_{\alpha})_*) \cong \mathbf{Z}.$$ From [18] (or [13]) we get that ν maps $[1 \otimes \delta_1]_1$ onto the generator $[1]_0$ of F_0 . This completes the proof. LEMMA 6.2. The range of $\hat{T}r$ on the projections in D_{φ} is: $$(\mathbf{Z} + \mathbf{Z}\alpha + \mathbf{Z}\gamma_2 + \ldots + \mathbf{Z}\gamma_{n(\varphi)}) \cap [0, 1].$$ **Proof.** If p is a projection in D_{φ} then $[p]_0$ can be expressed as a finite linear combination over \mathbb{Z} of the generators of $K_0(D_{\varphi})$ exhibited in Lemma 6.1. The values of the induced homomorphism $\hat{T}r_*$ on these generators are $1, \alpha, \gamma_2, \ldots, \gamma_{n(\varphi)}$, respectively. Hence $\hat{T}r(p) = \hat{T}r_*([p]_0)$ is a number in the given set. To prove the converse it will be convenient to make an ad hoc notational change and set $\gamma_1 = \alpha$. Let $m_1, m_2, \ldots, m_{n(\varphi)}$ be integers. We must find a projection p in $D_{\varphi} \cong C(\hat{S}_{Q(\varphi)}^1) \underset{R}{\triangleright_1} \mathbb{Z}$ so that $\hat{T}r(p) = \theta$, where $$\theta = m_1 \gamma_1 + m_2 \gamma_2 + \dots m_{n(\varphi)} \gamma_{n(\varphi)} \pmod{1}.$$ (We may assume $0 < \theta < 1$). In fact, we will construct a projection p of the form $p = \chi_V \otimes \delta_0$, where V is a finite union of disjoint open-closed intervals [a, b), a and b in $Q(\varphi)$, of total (Lebesgue-) length θ . Let $\delta > 0$ be the smallest distance between the points $\{s\alpha\}$ (= $s\alpha$ (mod 1)), $s = 1, 2, \ldots, \sum_{i=1}^{n(\varphi)} |m_i|$, on $\hat{S}^1_{Q(\varphi)}$. For each $1 \le i \le n(\varphi)$ choose $n_i \in \mathbb{Z}$ so that $\{\gamma_i + n_i\alpha\}$ has distance from 0 less than $\delta/2$. If $m_i \ge 0$ ($m_i < 0$), we choose n_i so that $\{\gamma_i + n_i\alpha\}$ lies to the "right" of 0, i.e. in the in- terval (0, 1/2) (to the "left" of 0, i.e. in the interval (1/2, 0)). For $m_i \ge 0$ the length of the open-closed interval $[0, \{\gamma_i + n_i\alpha\})$ is $\gamma_i + \{n_i\alpha\} - 1$. For $m_i < 0$ the length of the open-closed interval $[\{\gamma_i + n_i\alpha\}, 0)$ is $1 - \gamma_i - \{n_i\alpha\}$. We now rotate m_i of the intervals $[0, \{\gamma_i + n_i\alpha\})$ (respectively, $|m_i|$ of the intervals $[\{\gamma_i + n_i\alpha\}, 0\}$ if $m_i < 0$) for each $i = 1, 2, \ldots, n(\varphi)$, so that we get altogether $\sum_{i=1}^{n(\varphi)} |m_i|$ disjoint open-closed intervals in $\hat{S}^1_{Q(\varphi)}$, each with one end-point in the set $\{s\alpha\}$, $s=1,2,\ldots,\sum_{i=1}^{n(\varphi)}m_i$. If $m_i \geq 0$, $\{s\alpha\}$ shall be a "left" end-point of the corresponding rotated intervals, while if $m_i < 0$, $\{s\alpha\}$ shall be a "right" end-point of the corresponding rotated intervals. The total length of these intervals is (i) $$\beta = \sum_{i \in \mathcal{I}} m_i (\gamma_i + \{n_i \alpha\} - 1) + \sum_{i \in \mathcal{I}} |m_i| (1 - \gamma_i - \{n_i \alpha\}),$$ where $\mathscr{S} = \{i \mid m_i \ge 0\}$, $\mathscr{T} = \{i \mid m_i < 0\}$. Observe that $\beta = \{\sum_{i=1}^{n(\varphi)} m_i \gamma_i + \sum_{i=1}^{n(\varphi)} m_i n_i \alpha \}$. This is an easy consequence of the elementary relations: $\{-a\} = 1 - \{a\}$, $\{a+b\} = \{\{a\} + \{b\}\}$ and $\{a+l\} = \{a\}$ if $l \in \mathbb{Z}$. So if we can show (ii) $$\left\{-\sum_{i=1}^{n(\varphi)}m_in_i\alpha\right\}<1-\beta,$$ then we may place a finite set of disjoint open-closed intervals, with both end-points at $\{n\alpha\}$'s, $n \in \mathbb{Z}$, in the complement of the original $\sum_{i=1}^{n(\varphi)} |m_i|$ intervals and with total length $\left\{-\sum_{i=1}^{n(\varphi)} m_i n_i \alpha\right\}$. Then the open-closed set V that will do the job will be the union of the intervals considered. Now let $k \in \mathbb{Z}$ so that (iii) $$k < \sum_{i \in \mathcal{I}} m_i \gamma_i + \sum_{i \in \mathcal{I}} |m_i| (1 - \gamma_i) < k + 1.$$ (Note that we will have strict inequality in (iii) since $0 < \theta < 1$.) By choosing the previous n_i 's so that $\{n_i\alpha\}$ is sufficiently close to $1 - \gamma_i$ for every i, we may assume that (iv) $$k < \sum_{i \in \mathcal{L}} m_i (1 - \{n_i \alpha\}) + \sum_{i \in \mathcal{F}} |m_i| \{n_i \alpha\} < k + 1.$$ Now (iv) implies that $$\left\{-\sum_{i=0}^{n(\varphi)}m_in_i\alpha\right\}=\sum_{i\in\mathscr{S}}m_i(1-\{n_i\alpha\})+\sum_{i\in\mathscr{T}}|m_i|\{n_i\alpha\}-k.$$ By (i) and (v), to prove the inequality (ii) we must show (vi) $$1 - (\sum_{i \in \mathscr{C}} m_i \gamma_i + \sum_{i \in \mathscr{T}} |m_i|(1 - \gamma_i)) + k > 0.$$ However, (vi) is implied by (iii). This completes the proof. Proof of Theorem 5.3. By Lemma 6.1 the value of $\hat{T}r_*$ on the generators of $K_0(D_{\varphi}) \cong \bigoplus_{i=1}^{n(\varphi)+1} \mathbf{Z}$ is 1, α , $\gamma_2, \ldots, \gamma_{n(\varphi)}$, respectively. So the range of $\hat{T}r_*$ is $\mathbf{Z} + \mathbf{Z}\alpha + \mathbf{Z}\gamma_2 \ldots + \mathbf{Z}\gamma_{\varphi(n)}$. If 1, α , $\gamma_2, \ldots, \gamma_{\varphi(n)}$ are linearly independent over the rational numbers then $\mathbf{T}r_*$ is a group isomorphism between $K_0(D_{\varphi})$ and $\mathbf{Z} + \mathbf{Z}\alpha + \mathbf{Z}\gamma_2 + \ldots + \mathbf{Z}\gamma_{\varphi(n)}$. By Lemma 6.2 we conclude that $\hat{T}r_*$ also is an order-isomorphism. Proof of Proposition 5.4. Recall that for $1 \le k \le n(\varphi) - 1$ we have $B_k = C(\hat{S}_{C_k}^1) \underset{\hat{R}_g}{\times} \mathbf{Z}$, where $C_k = \bigcup_{i=1}^k Q_i$ and $Q(\varphi) = \bigcup_{i=1}^{n(\varphi)} Q_i$. There is a natural embedding $$C(\hat{S}^1) \subsetneq C^1(\hat{S}^1_{B_1}) \subsetneq \cdots \subsetneq C^1(\hat{S}^1_{B_{n(\varphi)-1}}) \subsetneq C(\hat{S}^1_{\mathcal{Q}(\varphi)}).$$ All the C^* -subalgebras of $C(\hat{S}_{Q(\varphi)}^1)$ above are \hat{R}_{α} -invariant. Hence we have a natural embedding of the B_k 's as claimed, according to [14; 7.7.9]. We are now going to calculate the K-groups of $A_{\varphi}=C(S^1)\underset{\varphi}{\times}|\mathbf{Z}$, thereby proving Theorem 5.2. We will do this working with A_{φ} directly and not using the results on D_{φ} we have already obtained. We state two elementary K-theory facts that we shall need in the sequel: $$K_0(C(S^1)) \cong \mathbb{Z}$$ and is generated by $[1]_0$. $$K_1(C(S^1)) \cong \mathbb{Z}$$ and is generated by $[f]_1$, where $f(t) = e^{2\pi i t}, t \in [0, 1)$. N.B. For the rest of this section f will always denote the function $f(t) = e^{2\pi i}$, $t \in [0, 1)$. We are again going to invoke the six-term exact sequence of [18]: $$(4) \qquad K_{0}(C(S^{1})) \xrightarrow{\operatorname{id} - \varphi_{*}} K_{0}(C(S^{1})) \xrightarrow{j_{*}} K_{0}(C(S^{1}) \nearrow Z)$$ $$\downarrow \rho \qquad \downarrow \downarrow$$ Since $\varphi(1) = 1$, and using our description of $K_0(C(S^1))$, id $-\varphi_* = 0$ on the top row. On the bottom row, id $-\varphi_* = 0$ since φ is orientation-preserving. Thus (4) splits into two short exact sequences: $$(4)' \qquad 0 \longrightarrow K_0(C(S^1)) \xrightarrow{J_s} K_0(A_{\varphi}) \xrightarrow{\rho} K_1(C(S^1)) \longrightarrow 0$$ $$(4)^{\prime\prime} \qquad \qquad 0 \longrightarrow \mathrm{K}_{1}(C(S^{1})) \stackrel{j_{\circ}}{\longrightarrow} \mathrm{K}_{1}(A_{\varphi}) \stackrel{r}{\longrightarrow} \mathrm{K}_{0}(C(S^{1})) \longrightarrow 0.$$ Lemma 6.3. $K_1(A_{\varphi}) \cong \mathbb{Z} \oplus \mathbb{Z}$ and is generated by $[f \otimes \delta_0]_1$ and $[1 \otimes \delta_1]_1$. *Proof.* Immediate consequence of (4)" by noting that $j_*([f]_1) = [f \otimes \delta_0]_1$ and $\nu([1 \otimes \delta_1]_1) = [1]_0$. Lemma 6.4. $K_0(A_{\varphi}) \cong \mathbb{Z} \oplus \mathbb{Z}$ and (assuming $\alpha \in (0, 1/2)$) is generated by $[1 \otimes \delta_0]_0$ and $[p]_0$, where p is a (self-adjoint) projection in A_{φ} of the form $p = \varphi^{-1}(f_1) \otimes \otimes \delta_{-1} + f_0 \otimes \delta_0 + f_1 \otimes \delta_1$ (p is a so-called Rieffel projection) such that $\operatorname{Tr}(p) = \alpha$. Here f_0 and f_1 are particular functions in $C(S^1)$ to be described in the proof. *Proof.* We may assume that $\rho(\varphi) = \alpha \in (0, 1/2)$. (In fact, if $\rho(\varphi) \in (1/2, 1)$, replace φ by φ^{-1} and notice that $A_{\varphi} \cong A_{\varphi^{-1}}$ and $\rho(\varphi^{-1}) = 1 - \rho(\varphi)$.) By Theorem 3.1 we conclude that $\varphi^2(0)$ does not lie between 0 and $\varphi(0)$. Define $f_0 \in C(S^1)$ as follows: $$f_0(t) = \begin{cases} t/\varphi(0) & \text{for } 0 \leqslant t \leqslant \varphi(0) \\ 1 - \varphi^{-1}(t)/\varphi(0) & \text{for } \varphi(0) \leqslant t \leqslant \varphi^2(0) \\ 0 & \text{otherwise} \end{cases}$$ i.e. Define $f_1 \in C(S^1)$ as follows: $$f_{1}(t) = \begin{cases} \sqrt{f_{0}(t) - f_{0}(t^{2})} & \text{for } \varphi(0) \leqslant t \leqslant \varphi^{2}(0) \\ 0 & \text{otherwise} \end{cases}$$ i.e. It is easily seen that: (i) $$f_0 = f_0^2 + \varphi^{-1}(\bar{f_1} \cdot f_1) + f_1 \cdot f_1$$ (ii) $$f_1 = f_0 \cdot f_1 + \varphi(f_0) \cdot f_1$$ (iii) $$0 = f_1 \cdot \varphi^{-1}(f_1).$$ (i) — (iii) imply that $p = \varphi^{-1}(f_1) \otimes \delta_{-1} + f_0 \otimes \delta_0 + f_1 \otimes \delta_1$ is a self-adjoint projection in A_{φ} . As in the appendix of [18], $\rho([\rho]_0) = [f]_1$. Clearly, $j_*([1]_0) = [1 \otimes \delta_0]_0$. So by (4)' we get that $K_0(A_{\varphi}) \cong \mathbb{Z} \oplus \mathbb{Z}$ with generators $[1 \otimes \delta_0]_0$ and $[\rho]_0$. It remains to prove that $Tr(\rho) = \alpha$. But: $$\operatorname{Tr}(\rho) = \int_{S^1} f_0 d\mu = \int_{[0, \varphi(0)]} t/\varphi(0) \, d\mu(t) + \int_{[\varphi(0),
\varphi^2(0)]} (1 - \varphi^{-1}(t)/\varphi(0)) \, d\mu(t) =$$ $$= \int_{[0, \varphi(0)]} t/\varphi(0) d\mu(t) + \int_{[0, \varphi(0)]} (1 - t/\varphi(0)) \, d\mu(t) =$$ $$= \int_{[0, \varphi(0)]} 1 \, d\mu = \mu([0, \varphi(0)]) = h(\varphi(0)) - h(0) = \alpha.$$ We have used the φ -invariance of $\mu = dh$ and the properties of h as outlined in Corollary 3.2. This completes the proof. REMARK. We could alternatively have constructed the generator p in the above lemma by using the natural embedding of A_{α} into A_{φ} (cf. proof of Theorem 5.2 below) and then find a Rieffel projection in A_{α} with the desired properties. This would correspond to choosing the functions f_0 and f_1 above to be constant on each of the intervals of the complement of the invariant Cantor set of φ . However, the above proof is direct and shows the freedom we have in choosing f_0 . Proof of Theorem 5.2. Let D be the functions in $C(S^1)$ that are constant on each of the intervals $\{I_n\}$ of the complement of the invariant Cantor set Σ of φ . Alternative description: D consists of the continuous functions on $S^1_{Q(\varphi)}$ that are constant on each of the attached arcs of the "doubled" circle, cf. Figure 1. Then D is a C° -subalgebra of $C(S^1_{Q(\varphi)})$ that is invariant under the action \hat{R}_{α} . There is a natural isomorphism of $D \times_{|\hat{R}_{\alpha}|} \mathbf{Z}$ with $C(S^1) \times_{|\hat{R}_{\alpha}|} \mathbf{Z} = A_{\alpha}$. By [14; 7.7.9] we have $D \times_{|\hat{R}_{\alpha}|} \mathbf{Z} \subseteq C(S^1_{Q(\varphi)}) \times_{|\hat{R}_{\alpha}|} \mathbf{Z} \cong A_{\varphi}$. So A_{α} is embedded in a natural way as a C° -subalgebra of A_{φ} . By Lemma 6.3 and Lemma 6.4 we know $K_0(A_{\varphi})$ and $K_1(A_{\varphi})$ as abstract groups. What remains to show is that $\mathrm{Tr}_* \colon K_0(A_{\varphi}) \to \mathbf{Z} + \mathbf{Z}\alpha$ is an order-isomorphism between $K_0(A_{\varphi})$ as an ordered group, and $\mathbf{Z} + \mathbf{Z}\alpha$, with the inherited ordering from \mathbf{R} . By Lemma 6.4 we know that the range of Tr_* is $\mathbf{Z} + \mathbf{Z}\alpha$. It will be sufficient to show that if $0 < m + n\alpha < 1$ for some $m, n \in \mathbf{Z}$, then there is a projection q in A_{φ} so that $\mathrm{Tr}(q) = m + n\alpha$. However, we know that A_{α} is a C° -subalgebra of A_{φ} . By [22] we can find a projection q in A_{α} with the desired property. So the proof is complete. Remark. Pimsner [16; Proposition 6] has by a different approach showed that the range of Tr_* is $\mathbf{Z} + \mathbf{Z}\alpha$. We now turn to the proof of Theorem 5.1. Let us fix φ throughout to be a Denjoy homeomorphism with rotation number $\rho(\varphi) = \alpha$ and invariant Cantor set Σ . Set $Y = S^1 \setminus \Sigma = \bigcup_{n=1}^{\infty} I_n$, where $\{I_n\}$ are the components of Y. As in Proposition 4.4 we assume that we have enumerated $\{I_n\}$ so that $I_1, I_2, \ldots, I_{n(\varphi)}$ are representatives from each of the $n(\varphi)$ disjoint "orbits" of φ "permuting" the I_n 's, and we set $Y_0 = \bigcup_{i=1}^{n(\varphi)} I_i$. Recall the fundamental semiconjugation (1): $$h \circ \varphi = R_{\alpha} \circ h.$$ Set $\gamma_i = h(I_i)$, $i = 1, 2, ..., n(\varphi)$. As before we assume we have chosen an h so that $\gamma_1 = 0$. Now the invariant $Q(\varphi)$ of φ is $Q(\varphi) = \bigcup_{i=1}^{n(\varphi)} Q_i$, where $Q_i = \{\gamma_i + n\alpha \pmod{1} \mid n \in \mathbb{Z}\}$. By Theorem 5.2 we can recover $\{\rho(\varphi) = \alpha \pmod{1}\}$ A_{φ} . To prove Theorem 5.1 we need to recover $Q(\varphi)$ from A_{φ} . Before we start the rigorous development, let us give a rough description of our procedure to recover $Q(\varphi)$, thereby pointing out the basic idea. Recall the fundamental extension (2): $$0 \longrightarrow \mathscr{I}_{\varphi} \stackrel{i}{\longrightarrow} A_{\varphi} \stackrel{q}{\longrightarrow} D_{\varphi} \longrightarrow 0.$$ Consider the following function g_k (1 < $k \le n(\varphi)$): Observe the following: - (i) g_k restricted to Σ is always zero or one. That is, $q(g_k \otimes \delta_0) = \chi_{[0, \, \gamma_k)} \otimes \delta_0$ is a projection in D_{ω} . - (ii) $\exp(2\pi i g_k)$ is identically 1, except on I_1 , where it winds once, and on I_k , where it winds once in the opposite direction. (iii) $$\operatorname{Tr}(g_k \otimes \delta_0) = \operatorname{\hat{T}r}(\chi_{[0,\gamma_L)} \otimes \delta_0) = \gamma_k$$. $Q(\varphi)$ will appear as the trace of certain elements of $K_0(D_{\varphi})$, whose images under exp are specific elements in $K_1(\mathscr{I}_{\varphi})$, cf. (5) below. We now begin a rigorous development, starting with the unique decomposition $\mathscr{I}_{\varphi}=\bigoplus\sum_{k=1}^{n(\varphi)}\mathscr{I}_{k}$ of \mathscr{I}_{φ} , where $\mathscr{I}_{k}=\beta(C_{0}(I_{k})\otimes\mathscr{K}(\ell^{2}(\mathbf{Z})))$, β being the isomorphism $$\beta \colon C_0(Y_0) \otimes \mathcal{K}(\ell^2(\mathbf{Z})) \to \mathcal{I}_{\varphi}$$ introduced in Section 4. We refer to Section 4 for the details. Let i and i_k denote the natural inclusion maps $i \colon \mathscr{I}_{\varphi} \to A_{\varphi}$ and $i_k \colon \mathscr{I}_k \to A_{\varphi}$. As before, f will denote the function $f(t) = \mathrm{e}^{2\pi\mathrm{i}t}, \ t \in [0, 1)$. LEMMA 6.5. $K_1(\mathcal{I}_k) \cong \mathbb{Z}$ for each $k = 1, 2, ..., n(\varphi)$. If x_k is a generator of $K_1(\mathcal{I}_k)$, then $(i_k)_*(x_k) = [f \otimes \delta_0]_1$ or $(i_k)_*(x_k) = -[f \otimes \delta_0]_1$. *Proof.* $K_1(\mathscr{I}_k) \cong K_1(C_0(I_k) \otimes \mathscr{K}(\ell^2(\mathbf{Z}))) \cong K_1(C_0(I_k)) \cong \mathbf{Z}$, since I_k is an open interval. Now choose $g \in C(S^1)$ such that $[g]_1 = [f]_1$ in $K_1(C(S^1))$, i.e. g has winding number $1, \{$ and such that g is identically 1 off of I_k , i.e. $g-1 \in C_0(I_k)$. Then $y := [1 \otimes I + (g-1) \otimes k_{00}]_1$ is a generator for $K_1(C_0(I_k) \otimes \mathscr{K}(\ell^2(\mathbf{Z})))$. Hence $\beta_*(y)$ is a generator for $K_1(\mathscr{I}_k)$ and so it must be either x_k or $x_k \in \mathcal{I}_k$. Now $$\beta(1\otimes I+(g-1)\otimes k_{00})=1\otimes \delta_0+\beta((g-1)\otimes k_{00})=$$ $$=1\otimes \delta_0+(g-1)\otimes \delta_0,$$ and so $$(i_k)_*(x_k)=\pm (i_k)_*\circ \beta_*(y)=\pm [i_k(1\otimes \delta_0+(g-1)\otimes \delta_0)]_1=$$ $$=\pm [g\otimes \delta_0]_1=\pm [f\otimes \delta_0]_1$$ by the choice of g. So the proof is complete. Let us assess the situation: \mathscr{I}_{φ} decomposes naturally into $n(\varphi)$ summands \mathscr{I}_k , each corresponding to an orbit of a Cantor gap I_k . By (ii) of the general discussion above we need to know when functions over different I_k 's are winding in the same directions or opposite ones. By Lemma 6.5 $[K_1(\mathscr{I}_k)]$ measures the winding number, and we may control the orientation as follows: (†) Choose a generator x_1 for $K_1(\mathscr{I}_1)$ arbitrarily. Then for each $k \ge 2$, choose a generator x_k for $K_1(\mathscr{I}_k)$ such that $(i_k)_*(x_k) = (i_1)_*(x_1)$ in $K_1(A_{\varphi})$. REMARK 1. We have a choice of a plus or a minus in selecting x_1 . This really corresponds to the fact that we do not recover $Q(\varphi)$ but either $Q(\varphi)$ or $1 - Q(\varphi)$. REMARK 2. We will also denote by $x_1, \ldots, x_{n(\varphi)}$ the classes in $K_1(\mathscr{I}_{\varphi})$ under the natural maps $\mathscr{I}_k \hookrightarrow \mathscr{I}_{\varphi}$. Clearly $K_1(\mathscr{I}_{\varphi}) \cong \bigoplus_{1}^{n(\varphi)} \mathbf{Z}$, with generators $x_1, \ldots, x_{n(\varphi)}$. Also $i_*(x_k) = (i_k)_*(x_k)$. By (2) we get the following fundamental exact sequence of K-theory (cf. [23]): Define, for each $k = 1, 2, ..., n(\varphi)$, a subset of $K_0(D_{\varphi})$ by $$(\dagger\dagger) X_k = \{ y \in K_0(D_\varphi) \mid \exp(y) = x_1 - x_k \}.$$ Our goal is to show that $Q(\varphi) = \hat{T}r_* \left(\bigcup_{k=1}^{n(\varphi)} X_k \right)$ up to a sign, everything taken mod 1. (If we had not normalized so that $\gamma_1 = h(I_1) = 0$, we would get $Q(\varphi) \equiv \hat{T}r_* \left(\bigcup_{k=1}^{n(\varphi)} X_k \right)$. (Cf. Theorem 3.6 for notation.).) LEMMA 6.6. Let g_k $(k=2,\ldots,n(\varphi))$ be the functions with graphs shown in Figure 3, and set $g_1=0$. Then $$[q(g_k \otimes \delta_0)]_0 \in X_k$$ for all k , or else $$-[q(g_k \otimes \delta_0)]_0 \in X_k$$ for all k . *Proof.* If k=1 we get $[q(g_1 \otimes \delta_0)]_0 = -[q(g_1 \otimes \delta_0)]_0 = 0 \in X_1 = \text{Ker}(\exp)$. So we only have to show the result for $k \ge 2$. Now $$e^{2\pi i g_k} = 1 + h_1 + h_k$$ where $h_1 \in C_0(I_1)$, $h_k \in C_0(I_k)$ and $h_1 \cdot h_k = 0$. (h_1 is the same function for all k.) $h_1 + 1$ and $h_k + 1$ have winding number 1 and -1, respectively. Thus $[(h_1 + 1) \otimes \delta_0]_1$ is a generator for $K_1(\mathscr{I}_1)$, so it must be either x_1 or $-x_1$. Assume, for now, that it is x_1 . Analogously, $[(h_k + 1) \otimes \delta_0]_1$ is either x_k or $-x_k$. Now $$\exp[q(g_k \otimes \delta_0)]_0 = [e^{2\pi i g_k} \otimes \delta_0]_1 = [(1 + h_1 + h_k) \otimes \delta_0]_1 =$$ $$= [(1 + h_1)(1 + h_k) \otimes \delta_0]_1 = [(1 + h_1) \otimes \delta_0]_1 + [(1 + h_k) \otimes \delta_0]_1 =$$ $$= x_1 + [(1 + h_k) \otimes \delta_0]_1.$$ Since this is in the image of exp, it is in the kernel of i_* according to (5). But $$i_*(x_1 + [(1+h_k) \otimes \delta_0]_1) = i_*(x_1 \pm x_k) = i_*(x_1) \pm i_*(x_k) = i_*(x_1) \pm i_*(x_1),$$ by the choice of x_k (cf. (†)). Thus, in order to get 0, we must have a minus sign, so that $[(1+h_k)\otimes\delta_0]_1=-x_k$. This is true for each $k\geqslant 2$. So $[q(g_k\otimes\delta_0)]_0\in X_k$ for all k
(cf. (††)). If $[(1+h_1)\otimes\delta_0]_1=-x_1$, the same argument shows $[(1+h_k)\otimes\delta_0]_1=x_k$ for $k\geqslant 2$. So in this case we have $-[q(g_k\otimes\delta_0)]_0\in X_k$ for all k. This completes the proof. By Lemma 6.6 and (5) we get $$X_k = [q(g_k \otimes \delta_0)]_0 + \text{Ker}(\exp) = [q(g_k \otimes \delta_0)]_0 + \text{Im}(q_*),$$ or alternatively, $$X_k = -[q(g_k \otimes \delta_0)]_0 + \operatorname{Im}(q_k).$$ We are now in a position to prove the crucial lemma: Lemma 6.7. $Q(\varphi) = \bigcup_{k=1}^{n(\varphi)} \hat{T}r_*(X_k)$ or $Q(\varphi) = 1 - \bigcup_{k=1}^{n(\varphi)} \hat{T}r_*(X_k)$, everything taken mod 1. *Proof.* Case 1: $[q(g_k \otimes \delta_0)]_0 \in X_k$ for all k. Recall that $$Q(\varphi) = h(Y) = \bigcup_{k=1}^{n(\varphi)} \{h(I_k) + n\alpha \pmod{1} \mid n \in \mathbf{Z}\} =$$ $$= \bigcup_{k=1}^{n(\varphi)} \{\gamma_k + n\alpha \pmod{1} \mid n \in \mathbf{Z}\}.$$ Now $$\widehat{\mathrm{Tr}}(q(g_k \otimes \delta_0)) = \mathrm{Tr}(g_k \otimes \delta_0) = \int_{S^1} g_k \, \mathrm{d}\mu =$$ $$=h(I_k)-h(I_1)=\gamma_k-\gamma_1=\gamma_k.$$ Hence we get: $$\begin{split} \mathbf{\hat{T}r}_*(X_k) &= \mathbf{\hat{T}r}_*([q(g_k \otimes \delta_0)]_0 + q_*(\mathbf{K}_0(A_\varphi))) = \\ &= \mathbf{\hat{T}r}(q(g_k \otimes \delta_0)) + (\mathbf{\hat{T}r} \circ q)_*(\mathbf{K}_0(A_\varphi)) = \gamma_k + \mathbf{Tr}_*(\mathbf{K}_0(A_\varphi)) = \\ &= \gamma_k + \mathbf{Z} + \mathbf{Z}\alpha, \end{split}$$ by Theorem 5.2. Thus $Q(\varphi) = \bigcup_{k=1}^{n(\varphi)} \hat{T}r_*(X_k)$, everything taken mod 1. Case 2: $-[q(g_k \otimes \delta_0)]_0 \in X_k$ for all k. By the same calculation we get: $$\hat{\mathrm{Tr}}_{\bullet}(X_k) = -\gamma_k + \mathbf{Z} + \mathbf{Z}\alpha.$$ Thus $Q(\varphi) = 1 - \bigcup_{k=1}^{n(\varphi)} \hat{T}r_*(X_k)$, everything taken mod 1. So the proof is complete. REMARK. We emphasize again that the \mathscr{I}_k 's, the x_k 's and the X_k 's have all been defined independently of the choice of β , the I_k 's, etc., and without using the embedding $j: C(S^1) \to A_{\varphi}$. So we may conclude by Lemma 6.7 that $Q(\varphi)$ (or $1 - Q(\varphi)$) is, up to a rigid rotation, an isomorphism invariant of A_{φ} . Proof of Theorem 5.1. By Theorem 5.2 we get that $A_{\varphi} \cong A_{\psi}$ implies $\rho(\varphi) = \rho(\psi)$ or $\rho(\varphi) = 1 - \rho(\psi)$. By Lemma 6.7 we get that $A_{\varphi} \cong A_{\psi}$ implies $Q(\varphi) \equiv Q(\psi)$ or $Q(\varphi) \equiv 1 - Q(\psi)$. In general, if θ is a Denjoy homeomorphism we note that $\rho(\theta^{-1}) = 1 - \rho(\theta)$ and $Q(\theta^{-1}) \equiv Q(\theta)$. (This is a simple consequence of the fundamental semiconjugation (1).) The proof of the theorem is now an immediate consequence of Theorem 3.6. # 7. CONCLUDING REMARKS AND OPEN PROBLEMS As pointed out in Section 6 we proved Theorem 5.3 and Proposition 5.4 directly from D_{φ} without invoking A_{φ} . We conjecture it is possible to recover $\rho(\varphi)$ and $Q(\varphi)$ from D_{φ} directly. Let us put this conjecture in its right perspective: As pointed out in Remark 3 of Section 3, (Σ, φ) has the same conjugacy invariants as (S^1, φ) , where φ is a Denjoy homeomorphism with minimal Cantor set Σ . So if φ_1 and φ_2 are two Denjoy homeomorphism with invariant Cantor sets Σ_1 and Σ_2 , respectively, the conjecture would entail the following theorem: $D_{\varphi_1} = C(\Sigma_1) \underset{\varphi_1}{\times} | \mathbf{Z} \text{ is isomorphic to } D_{\varphi_2} = C(\Sigma_2) \underset{\varphi_2}{\times} | \mathbf{Z} \text{ if and only if } \varphi_1 | \Sigma_1 \text{ is conjugate to } \varphi_2 | \Sigma_2 \text{ or to } \varphi_2^{-1} | \Sigma_2.$ This leads to the more general conjecture: Let $\theta_i\colon X_i\to X_i$ (i=1,2) be a minimal homeomorphism of the Cantor set X_i (in other words, X_i is a compact Hausdorff space without isolated points and with a countable basis of open-closed sets) and assume θ_i is uniquely ergodic, i.e. there exists a unique θ_i -invariant probability measure μ_i on X_i . So $B_{\theta_i}=C(X_i)\underset{\theta_i}{\times} \mathbf{Z}$ is a simple C^* -algebra with a unique normalized (and faithful) trace Tr_i . Then $B_1\cong B_2$ if and only if θ_1 is conjugate to θ_2 or to θ_2^{-1} . Let us exhibit a concrete example to support the conjecture: Let (X_i, θ_i) , for i=1, 2, be an odometer (also known as "adding-machines") with (natural number) parameters d_0^i , d_1^i , ..., d_n^i , That is, $X_i = \prod_{k=0}^{\infty} \{0, 1, ..., d_k^i - 1\}$ with product topology and θ_i : $X_i \to X_i$ is "addition of 1 with carry-over" (cf. [10]). Now X_i is naturally organized to a compact abelian group which is monothetic, i.e. it has a dense subgroup which is the homomorphic image of \mathbf{Z} . (X_i becomes the group A_n of a-adic integers, where $\mathbf{a} = (d_0^i, d_1^i, ..., d_n^i, ...)$, cf. [8; § 10 and § 25]. In fact, these are precisely the 0-dimensional monothetic compact groups [8]. Then (X_i, θ_i) , i = 1, 2, satisfies the conditions of the above conjecture, the unique θ_i -invariant measure being the Haar-measure. Also, it is known that $B_1 = C(X_1) \underset{\theta_1}{\vee} \mathbf{Z}$ is isomorphic to $B_2 = C(X_2) \underset{\theta_2}{\vee} \mathbf{Z}$ if and only if θ_1 is conjugate to θ_2 or to θ_2^{-1} . In fact, θ_i (i = 1, 2) is a minimal rotation R_{ρ_i} of the compact abelian group X_i , where $\rho_i = (1, 0, 0, \ldots, 0, \ldots)$. So the result follows from [21]. It turns out that in this case the range of the trace on projections in the lcrossed-product is a complete conjugacy invariant, the range being $\left\{ \frac{s}{d_0^i d_1^i \ldots d_n^i} \middle| 0 \leqslant s \leqslant 1 \right\}$ $\leq d_0^i d_1^i \dots d_n^i, \ n=0, \ 1, \ \dots$, $i=1, \ 2$. (We mention as an aside that $K_0(B_i)$ and $K_1(B_i)$ can be computed using the six-term exact sequence (3) and proceeding as in the proof of Lemma 6.1. We can also construct an embedding of B_i in the UHF-algebra A_{∞}^i of rank $\{d_k^i \mid k=0,1,2,\ldots\}$. By Glimm's theorem $B_1 \cong B_2$ if and only if $A_{\infty}^1 \cong A_{\infty}^2$, cf. [11; 6.4].) Finally, let us return to the first conjecture about the D_{φ} 's. By Proposition 5.4 (respectively, Theorem 5.2) we know that the irrational rotation algebra A_{α} is a C^* -subalgebra of D_{φ} (respectively, A_{φ}), where $\alpha = \rho(\varphi)$. We conjecture that if A_{β} is a C^* -subalgebra of D_{φ} (respectively, A_{φ}) then $\beta = \{n\alpha\}$ for some $n \in \mathbb{Z}$. This result would imply that we can recover the rotation number $\rho(\varphi)$ from D_{φ} . However, a word of warning is in order: If φ_1 and φ_2 are two Denjoy homeomorphisms with the same rotation number and $K_0(D_{\varphi_1})$ is order-isomorphic to $K_0(D_{\varphi_2})$, this in itself is not enough to conclude that φ_1 is conjugate to φ_2 or to φ_2^{-1} . EXAMPLE. Let 1, α , γ_2 , γ_3 lie in [0,1] and be linearly independent over the rational numbers. Let φ_1 be a Denjoy homeomorphism such that: $$\rho(\varphi_1) = \alpha \quad \text{and} \quad Q(\varphi_1) = \{n\alpha \pmod{1} \mid n \in \mathbf{Z}\} \cup \{\gamma_2 + n\alpha \pmod{1} \mid n \in \mathbf{Z}\} \cup \{\gamma_3 + n\alpha \pmod{1} \mid n \in \mathbf{Z}\}.$$ Let φ_2 be a Denjoy homeomorphism such that: $$\rho(\varphi_2) = \alpha \quad \text{and} \quad Q(\varphi_2) = \{n\alpha \pmod{1} \mid n \in \mathbf{Z}\} \cup \{-\gamma_2 + n\alpha \pmod{1} \mid n \in \mathbf{Z}\} \cup \{\gamma_3 + n\alpha \pmod{1} \mid n \in \mathbf{Z}\}.$$ So $n(\varphi_1) = n(\varphi_2) = 3$, and by Theorem 5.3 we know that $K_0(D_{\varphi_1}) \cong K_0(D_{\varphi_2}) \cong \mathbb{Z} + \mathbb{Z}\alpha + \mathbb{Z}\gamma_2 + \mathbb{Z}\gamma_3$ as ordered groups. (Moreover, by Lemma 6.2 the ranges of the traces on the projections in D_{φ_1} and D_{φ_2} coincide.) However, $Q(\varphi_1) \not\equiv Q(\varphi_2)$ and $Q(\varphi_1) \not\equiv 1 - Q(\varphi_2)$, i.e. there is no β_1 so that $Q(\varphi_2) = R_{\beta_1}(Q(\varphi_1))$, or β_2 so that $1 - Q(\varphi_2) = R_{\beta_2}(Q(\varphi_1))$. This is shown by a simple computation. So by Theorem 3.6 (and Remark 3 in Section 3) φ_1 is not conjugate to φ_2 or to φ_2^{-1} . So to prove the conjecture about the D_{φ} 's, just a recovery of the rotation number $\rho(\varphi)$ is not sufficient. #### REFERENCES - ARNOLD, V. I., Small denominators. I: On the mapping of a circle into itself (Russian), Izv. Acad. Nauk. Sci. SSSR Ser. Mat., 25: 1(1961), 21 -86; Transl. Amer. Math. Soc. 46, 213-284. - 2. CORNEELD, I. P.; FOMIN, S. V.; SINAI, YA. G., Ergodic theory, Grundlehren der Math. Wiss., 245, Springer-Verlag, Berlin Heidelberg New York, 1982. - 3. Cuntz, J., K-theory for certain C*-algebras. II, J. Operator Theory, 5(1981), 101-108. - 4. Denjoy, A., Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11(1932), 333-375. - 5. Effros, E. G.; Hahn, F., Locally compact transformation groups and C*-algebras, Mem. Amer. Math. Soc., 75(1967). - Green, P., C*-algebras of transformation groups with smooth orbit space, Pacific J. Math., 72(1977), 71-97. - 7. HERMAN, M., Sur la conjugation différentiable des difféomorphismes du cercle à des rotations, *Publ. Math. I.H.E.S.*, **49**(1979), 5-233. - 8. Hewitt, E.; Ross, K.A., Abstract harmonic analysis. I, Grundlehren der Math. Wiss., 115, Springer-Verlag, Berlin—Göttingen—Heidelberg, 1963. - KATZNELSON, Y., Sigma-finite invariant measures for smooth
mappings of the circle, J. Analyse Math., 31(1977), 1-18. - 10. KATZNELSON, Y., The action of diffeomorphism of the circle on the Lebesgue measure, J. Analyse Math., 36(1979), 156-166. - 11. Markley, N. G., Homeomorphisms of the circle without periodic points, *Proc. London Math. Soc.* (3), 20(1970), 688-698. - 12. O'Donovan, D. P., A tale of three C*-algebras, preprint. - 13. PASCHKE, W. L., On the mapping torus of an automorphism, *Proc. Amer. Math. Soc.*, 88(1983), 481-485. - PEDERSEN, G. K., C*-algebras and their automorphism groups, London Math. Soc. Monographs, Academic Press, London New York San Francisco, 1979. - 15. PIMSNER, M. V., Embedding some transformation group C*-algebras into AF-algebras, Ergodic Theory Dynamical Systems, 3(1983), 613-626. - 16. PIMSNER, M. V., Range of traces on K₀ of reduced crossed products by groups, INCREST Preprint Series in Mathematics, 53, 1984. - 17. PIMSNER, M. V.; VOICULESCU, D., Imbedding the irrational rotation C*-algebra into an AF-algebra, J. Operator Theory, 4(1980), 201—210. - 18. PIMSNER, M. V.; VOICULESCU, D., Exact sequences for K-groups and Ext-groups of certain cross-product C*-algebras, J. Operator Theory, 4(1980), 93-118. - 19. Poincaré, H., Sur les courbes définiés par les équations différentielles, J. Math. Pures Appl. (4), 1(1885), 167-244. - 20. Power, S. C., Simplicity of C*-algebras of minimal dynamical systems, *J. London Math. Soc.* (2), 18(1978), 534-538. - 21. Riedel, N., Classification of the C*-algebras associated with minimal rotations, Parific J. Math., 101(1982), 153-161. - 22. RIEFFEL, M. A., C*-algebras associated with irrational rotations, *Pacific J. Math.*, 93(1981), 415-429. - 23. TAYLOR, J. L., Banach algebras and topology, in *Algebras in Analysis*, edited by J. H. Williamson, Academic Press, 1975. pp. 118—186. - 24. Zeller-Meier, G., Produits croisés d'une C*-algèbre par un groupe d'automorphismes, J. Math. Pures Appl., 47(1968), 101-239. ## IAN PUTNAM Department of Mathematicss University of Pennsylvania, Philadelphia, PA 19104--6395, U.S.A. KLAUS SCHMIDT Department of Mathematics, University of Warwick, Coventry, England. CHRISTIAN SKAU Department of Mathematics, University of Trondheim, 7055 Trondheim, Norway. Received September 23, 1985.