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THE K-THEORY OF THE REDUCED C*-ALGEBRA
OF AN HNN-GROUP

JOEL ANDERSON and WILLIAM L. PASCHKE

1. INTRODUCTION

Let 4 denote a subgroup of a group G, and let § : A — G be a monomorphism,
We write I' = HNN(G, 4, 6) for the group derived from these ingredients by the
Higman-Neumann-Neumann construction [3}, {11]. (The group I' is generated by
a copy of G and an element s in I’ satisfing sas—' = 0(a) for each ¢ in A. It
has the following universal property : if p is a homomorphism from G into a group
K containing an element ¢ such that fp(a)t = == p(0(a)) V a in A4, then p has an exten-
sion to I' mapping s to ¢.) Our purpose in this paper is to show the existence of a
cyclic exact sequence relating the K-groups of the reduced C*-algebras of 4, G,
and I, viz.

8 - j
Ko(CHAY) =5 Ko(CHE)) — > Ko(CHD))

T l

Ky(CHI)) <— Ky (CHG) +— Ki(CH(AY),

where 7., 0,., and j, come from the injections induced at the C*-algebra level by the
the inclusion i: 4 — G, by 0 : 4 — G, and by the inclusion j:G —T.

Our assumptions are that G is countable, and that either (G, 4) or (G, 0(4))
has property A of Lance-Natsume [4], [6]. The latter hypothesis is imposed solely
so that we may exploit Natsume’s result in [6] for the amalgamated product of two
groups along a common subgroup. If his result remains valid without property 4,
then so does ours.

The basic idea of our computation is straightforward. The HNN-group I’
may be realized as a semidirect product H X Z, where

H= .. %,G1,G,Gx ...,

the amalgam of a two-way infinite line of copies of G along copies of A injected
left and right by 0 and /, respectively, and Z acts on H by shifting. To take advant-
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age of this, we establish analogues of the Natsume sequence, first for finite lines of
groups, then for infinite lines. One then has an exact sequence relating K (C*(H))
to the given data. The rest of the work, in fact the bulk of our argumecnt, consists n
*“feeding” this sequence into the Pimsner-Voiculescu sequence [9] relating K . /C¥i1'))
to K4 (CF(H)). Of course, one wants the final sequence to come from a short exact
sequence of C*-algebras. To this end, we construct a “Toeplitz extension”

0> CHAR A > 9 — CHT) -~ 0.

The algebra @ lives on a certain subspace of /2(I'), and is generated by a unitary
copy of G and an isometry S that tries to play the role of 5. There is a map from
CHG) into @ ; the goal is to show that this map induces an isomorphism on K-theory-
To this end, we realize @ as the crossed product of a subalgebra @, by an
endomorphism ¢ in the sense of [7]. This Z, is an extension of ¢(Z) ® CH(A) ® K
by CF(H). Confronting the resulting exact sequence of K-groups with the sequence
already obtained for CF(H), we show that K.(Z,) is the two-way infinite direct
sum of copies of K, (C#(G)), on which a,, acts by shifting. The desired isomorphism
of K 4(2) with K, (CXG)) then follows from [8).

There is a larger context which unites amalgamated products and HNN
groups, namely the notion, developed in Serre’s mononograph [11], of the funda-
mental group of a graph of groups. A graph of groups is simply a (connected)
graph on which are placed a group G, at each node P and a group A, on cach
edge y, with given embeddings of each edge group 4, into the G’s at the ends of .
The corresponding fundamental group may be constructed by choosing 2 maximal
tree T in the graph, amalgamating the node groups along the edge groups coming
from edges in T, and performing an HNN-construction for each edge not in 7.
(The isomorphism class of the result turns out to be independent of the choice of
T.) The simplest cases are a graph with 2 nodes and | edge, which gives the amal-
gamated product of the node groups along the edge group, and a graph with 1
node and 1 edge, which corresponds to the HNN construction. Serre’s funda-
mental groups arc intimately related to group action on trees. The fundamental
group of a graph of groups acts canonically on a tree constructed from the given
data. Conversely, any group acting without inversion on a tree may be realized in
a canonical way as the fundamental group of a certain graph of groups.

Suppose that I is constructed as above from node groups Gp and edge groups
A, . We believe that there is an exact sequence

DK (CHA) s ® Ko(CHGp) 2 K(CHDY)

Ky(CHI)) ®© Ki(CX(G,) < @ K(CHA,)),
y
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where map (2) is the sum of the maps induced by the inclusions G, —» I', and map
(1) sends each y-summand to the two P-summands at the ends of y, via 4,—Gp,
positively at one end and negatively at the other. In the final section of this paper,
we sketch a proof of this for the case of a loop of groups, assuming property A
for the subgroup inclusions either clockwise or counterclockwise around the loop.

2. THE AMALGAM OF TWO GROUPS

Consider the amalgam I' = X =, Y of two countable groups X and Y, both
of which properly contain the amalgamated subgroup A. In [6] Natsume, building
on the work of Lance [4], constructed an extension of CFf(4) ® A by C¥(I'). Let us.
begin by recalling that construction. Every element of I"™\ A4 can be written as a finite
product of x’s in X\ A alternating with y’s in Y\ A4. Let I'} be the set of all such
words ending in X\ A4, and let I'y = I'} U A. Denoting by / the left regular repre-
sentation of I' on /%I'), we observe that A(X)(¥T'y) = ¢¥Ty) and A(Y)AT%) =
= /%), For x in X and y in Y, define

w(x) = A(x)| 12y
v(y) = 2(y) | ey,

where the latter is regarded as an operator on /3(I"y). Set ¢, = u(e) — v(e), the
projection of /%(I'y) on (3(A). Write 7 for the C*-algebra of operators on /(I )}
generated by p(X) and v(Y). Let # be the closed ideal of 7 generated by ¢,.
There 1s then a short exact seqi'=nce

O—+/'—>9_—1>C,’f(l")—+0,

where mop - 4|y and nev = 2|,. Furthermore, the ideal # is isomorphic to
C¥A) ® A ; the isomorphism sends u(a)g, to 2 ,(a) ® e,, Where ae 4, 2 4(a) is its
image in C}¥(A4), and ¢, is a minimal projection in  (the algebra of compact opera-
tors). We shall refer to the above extension (resp. the C*-algebra 97) as the Toeplitz
extension (resp. Toeplitz algebra) for the amalgam X «, Y. The construction depends.
upon the choice of one of the factors in the amalgam. Our convention will be always.
to choose the lefthand factor.

We need to know what happens to the extension when one or another of the
factors is imbedded in a larger group.

2.1. PROPOSITION. Suppose that X, }’, and A are as above, and that X is a sub-
group of a larger group X'. Form I'" = X', Y and the associated Toeplitz algebra
T = C*u' (X)), v'(Y)) on £3(I'y’). There is a =-monomorphism ¢ from I to I~
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sending p(x) to w'(x) (x in X ), and v(y) to v'(y) (v in Y) and such that the following
diagram commutes .

e T s CUI)
P

|
I ——>T —— CYI).

Proof. We may regard I' as a subgroup of I'’. Under this identification, the
set I'y becomes a subset of I'yr. Let # be the C#-subalgebra of ' generated by
(X)) and v (Y), so/%(I'y) reduces 4. Notice also that I'y"\I'y is invariant under
left multiplication by I'. Decompose I'y"\I'y into I'-orbits :

Ii\Ty = J{To :0eQ},

where Q is a set of orbit representatives. Restriction to/*I'y) givesamapyy : 4 —.7.
Restriction to each #3(I'w), on which v'(y) acts unitarily for y in Y, just gives the
left regular representation of I, i.e. meyy. This means that the identity representation
of £ on /%Iy is the direct sum of i with several copies of moyf. It follows that
is an isomorphism. The desired mapis ¢ =y~ 1: T > B < T, %

There is an analogous result for the factor Y.

2.2. PROPOSITION. Suppose that X, Y, and A are as above, and that Y is a sub-
group of a larger group Y''. Form I'"" = X =, Y'" and the associated Toeplitz algebra
T = CH( (X)), v'(Y")) on (3I""). Then there is a =-homomorphism from 7 to
T sending u(x) = u’'(x) (xin X), and v(3)+ v'"'(¥) (¥ in Y) and an analogous

commutative diagram.

Proof. This is proved in the same manner as 2.1, after one notes that I'y\I"y is
invariant under left multiplication by I. %

The maps x and v of X and Yinto 7 are direct sums of copies of the left regular
representations of these two groups, so they extend to C¥(X) and C7(Y). There
are also injections iy, iy : CF(A) = CF(X), CH(Y). Asin [6], we have a commutative
diagram

Kq(H) K

I A

K4 (CHA) — Ky (CF(X)) @ K4(CH(Y)).

T)

The map on top comes from inclusion. The lefthand map comes from the isomor-
phism of ¢ with C}¥(4) ® #". The map on the bottom is ((iy),, — (iy)y); instead of
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giving it a symbolic designation, we will refer to it (and to its analogues to be
encountered later on) as the subgroup map. The righthand map is u, on the first
summand, v, on the second. We will call this map (and its subsequent analogues)
the group map.

When the pair (X, 4) has property A (roughly, there is a well-behaved homo-
topy joining the left regular representation of X on £2(X/4) to a representation with
a non-zero fixed vector), it is shown in [6] that the group map is an isomorphism,
This is the main step in obtaining the K-theoretic exact sequence of [6].

3. AMALGAM OF A LINE OF GROUPS

Let Gy, ..., G, be countable groups (2 > 2), and for k=1,...,n —1,
let A, be a proper subgroup of G, and G..,. Let I' denote the amalgam
Gy#a Gox. .. A, G,. We can “break” I' at any one of the subgroups 4, and write

I = (Gl *A102 * ... *Ak—le) *Ak(Gk.{_]_* e *An-—lG")
as the amalgam of two groups along 4, . Let

i3

0 Fx > T, > C¥I') 0

2
Crd) @

be the corresponding Toeplitz extension, as in Section 2. Borrowing a technique
from [10], we let (7, n) be the pullback of (74, ®,), ..., (7 -1, T,—y1). That is,

T = {(11, ey rn—-l) € g_l @®... f,,_l : ”1(’1) = nz(tz) TR el nn—l(tn—l)}

and n:J — C¥TI') is the map to the common value. Plainly, kern = #; @ ...
... @ #,-1. Each breaking of I' as a 2-fold amalgam gives rise to a commuting
diagram of maps between K-groups as at the end of Section 2. The maps involved
can be put together to produce a single commuting diagram

k@ K(f) —— > Ko(7)

! I

n—1 n
k@lK #(CHAY) —— ®1 K +(CE(G))).

The subgroup map on the bottom sends the 4, component positively to the G
component, and negatively to the Gy, component. When restricted to the G; com-
ponent, the group map on the right has the form (v, ..., Vjo1, s - o) Bymve-
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We are now ready to prove thé following corollary of Natsume’s result.

3.1. THEOREM. In the situation described above, suppose that the pairs
(G, 4),. .-, (G,_1, A,_y) all have property A. Then group map from é K4(CHG;)
to K4(9) is an isomorphism. T

Proof. We use induction on n. The initial case n = 2 is of course taken care

of in [6]. Take n > 3, and assume that 3.1 is true for the amalgam of a line of n — 1
groups. Consider I'"™ = Gy4, Gg* .. .*4 _ G,. Breaking I' at A, for k=2, ...
..,n— 1 yields n; : 7 — C¥I' ™) with pullback =~ : 7~ — C¥#I"'™). The induc-

1z
tion hypothesis says that @ K4(CH(G))) is isomorphic to K4(7 ) via the group
=2

map for '™,

Wedefineamap« 1.9~ —J asfollows. Use 2.1 to obtain maps «; : 7, — 7,
for k=2,...,n— 1. Let v, : C¥XI"") - 7, be as in Section 2 for the amalgam
I = Gy #4, I'" ;recall that 7, comes from breaking I at 4; . For (t7) = (fy ,.. .,t,_1)
in 7, write

a(t”™) = (v (t7), agts), - - -, %y-q(fa 1)),

which liesin7, @ 9,@ ... ® 9 ,_,. Since n, v, is the natural injectionj: C¥I'™) —
— C¥(I), and since w0, == jm;, fork = 2, ...,n — 1, it follows that &« maps 7~ to
Z . We obtain a map between short exact sequences of C*#-algebras

n--1
O— @ f—>9 —> 7, —0
ke2

Lo

n--1
0 — @4, g- CxT")——0,
k=2

where ¢, = ker n; . Passing to K-theory, we have

L KT — © K(CHA) — KP) — Ko(T) —> ...

I [

a—1

. —K(CFTT) — D Ko(CF(4,) ——>Ky(7 ") —K(CFT™) — ... .

The sequences on top and bottom are exact. The squares commute because of func-
toriality of the cyclic exact sequence of K-theory. It is straightforward to check
that the map between the “A’° terms is the identity map.
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Let m : K4(CF(Gp) » K4(7) be the restriction to the first component of the
group map for I'. We obtain another commuting “ladder”” of K-groups

n—1
v Ky(Ty) — (‘?Ko(Cr*(Ak)) ——> KT ) —— Ky(T ) — ...

I () I Tm T(ul),,l

-~ Ky(CHGY) 0 Ko(CHGY) —> Ko(CHGD) —> - .

0

When this is superimposed on the previous ladder, the top sequence is unchanged,
the bottom sequence remains exact, the rectangles still commute, and the vertical
maps

K4(CHG)) @ K4 (CHI™)) » Ky(T)

are isomorphisms, since they are just the group maps corresponding to the decompo-

sition I' = G, 4, T". Applying the five lemma to the combined Jadder, we conclude

that the vertical maps from K4(C¥(G)) @ K4 (™) to K4(9) are isomorphisms.
n—1

When we use the inductive hypothesis to identify K(7 ™) with @ K.(CXG)))
2

these vertical maps are seen to be the group maps for the n-fold amalgam I". This

proves the theorem. %

As an immediate consequence we have
3.2. COROLLARY. Under the hypotheses of the theorem above, there is an exact

sequence

n-1 n

B Ko CHAY) — & Ki(CH(G)) » Ko(CHD))
T n n—ll N
Ky(CrI) ® Ky(CHG)) < & Ki(CHA).

The maps across the top (and likewise across the bottom) are the subgroup map
discussed at the beginning of this section, and the sum of the maps induced by the
natural injections C*(G;) — CH(I).

3.3. ReMmarks. (a) The cyclic exact sequence of K-groups produced by
n: T - CXI') maps to that produced by =, : 7, —» C¥I)(1 < k < n— 1) when
we project 7 on . Using functoriality, it is easy to see that the kth component
of each vertical map in 3.2 is the boundary map to K,(#,) = K.(C¥4,)) that
comes from =, : 7, = C¥TI).
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(b) The apparatus we have introduced in this section behaves well when the
groups G; arc lumped segmentally along the line. For example, fix a subgroup 4,
and write I'. < X =4 Y. The pair (X, A,) might not have property A4, but the result
in [6] for two groups is still valid provided (G,, 4,), . . ., (G, -, A,-1) have property A.
To see this, form the (k — 1)-fold pullback 7y for X, and likewise .7y for Y. Use
2.1 and 2.2 to define maps ¥y : .7y = J, iy : 7, — 7 making the following dia-
grams commute:

T

T — T,

N

> k

o4l |
— C¥X) Ty —— CHY).

1t follows readily from 3.1 that (Y y)s. + (W1)e ' Ke(T ) @ Ku(7,) » Ky(F)isan
isomorphism. Superimpose the ladders of K-groups that come from the diagrams
and apply the five-lemma to show the group map K (CHXNBK (CHY)) - K4(T))
is an isomorphism.

By taking inductive limits in 3.2, we obtain an exact sequence for the case of
an infinite line of groups.

3.4. THEOREM. Ler T = CEa, Gy = “4, Gisiq & - .., where the line of groups
extends infinitely to the left, or to the tht or in bmh dli ections. Assume that all of
the pairs (G, A,) have property A. There is an exact sequence exactly like that of
3.2. except that the direct sums are infinite. The boundary maps are as in 3.3(a),
that is, their A,-component comes from m,: 5, - CHI), the Toeplitz extension
defined in Section 2 for the amalgam I' = X =4 R

Proof. The inductive system one needs to look at is indexed by finite segments
of the set of integers that indexes the G’s. Given such a segment I - {m, m - 1,...,n)},
onc has the amalgam I') =: G, = A, % A G, and the Toeplitz extension
T, - CHTI ). which is the pullback of n—m extensions of the sort discussed in
Section 2. From this comes the exact sequence of K-groups in 3.2. If J is a larger
segment, we can use 2.1 and 2.2 to obtain a well-behaved map from 77 ;to 7,
This gives a map between the corresponding sequences of X-groups. The point of
these observations is that the boundary maps cohere in the proper fashion as we
move through the inductive system. Now one reaily can just pass to the limit. %

4. TOEPLITZ EXTENSION FOR THE REDUCED
C*-ALGEBRA OF AN HNN-GRCUP

Let G be a countable group, let 4 be a subgroup of G, and let 0 : 4 - G be a
monomorphism. Let I’ = HNN(G, 4, 0} as in Section 1, so I' is the universal
group generated by G and an outside element s satisfying sas—! = 6(a) (a in 4).
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Words in I" are reduced so that no element of A (resp. 0(A4)) lies between s and s~
{resp. s~ and s); see Section 5 of [11]. Let I'; be the set of reduced words in I
ending in s4. Notice that #%(I',) reduces A(G) and is invariant for A(s), where 2 isthe
left regular representation of I" on ¢%(I"). Let .S and fi(g) (g in G) denote respecti-
vely the restrictions of A(s) and i(g) to /%(I'y), and consider the C*-algebra & on
£2(I"y) generated by S and f(G). This is our Toeplitz algebra. We must map it onto
C*') and identify the kernel of the map.

The arguments here are similar to those in [10], so we shall proceed briskly.
Let R be the unitary on £%I') corresponding to multiplication on the right by s.
Observe thatforany x in I', we have xs" € I, for sufficiently large »#. 1If we momen-
tarily think of @ asacting on #%(I") this means that R~"SR" — A(s) and R-"f(g)R" -
— A(g), (g in G) in the strong operator topology. Thus we obtain a =-homo-
morphism 7 : @ — CHI') such that n(S) == A(s) and noff = A;. Let ¢ - 1 — S8,
the projection of /%(I';) onto £%(sA). As in [10], it is not difficult to see that the
kernel of = is the closed ideal of @ generated by g¢. Call this ideal . We claim
that ( is isomorphic to CHA) ® A4 .

For this, let {g, g1,. ..} (resp. {/y, I,...}) be coset representatives for G/A
{resp. G/0(A)), with g, == e = hy. Each element of I'; can be written uniquely in
the form

h i\ h i)S h i$

-1 -1 o ¢-1
&S5 ) 850 g; 3

where n 2 0, a € 4, and g, (resp. /) is not allowed to lie between s and s~ (resp.
s71 and s). We denote by Q, the set of products of this form in which a = e.
Let Q- Qu~* = G_J {words ending in sG}{_J {words ending in s Y(G\O(A))} =-
=: I'\\{words ending in s~10(4)}. We have I'; = | J{wsA :w e Q}. For w in &,
let ¥V, be the corresponding product in & of S’s, S$*’s, f(g;)’s and p(h,)’s.
The desired isomorphism of C¥A4) ® & with (), where ¥ is the algebra of
compact operators on £2(Q2), is implemented spatially by identifying /2(4) ® (% Q)
with £2(I'y) via the bijection (@, w) — wsa from 4 X Q to I';. It sends /. (a) ®
® E, , to Vi, B0(a))gVE, where a € A and 4, is the left regular representation
of A. (Notice that p(0(4)) commutes with ¢.)

Since TI'y is the disjoint union of right translates of G, the map f8 extends to
a =-menomorphism, which we will also cali #, from C¥(G) into 2. Likewise extending
) : A - G and the inclusion i : 4 - G to x-monomorphisms C¥(4) — CXG), we
claim that the diagram

Ky(Q) —— Ku(2)

'f |-

Ko(CHA) ——> Ko(CHG)
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commutes. To see this, consider the map a — B(6(a)) of C¥(4) into Z. It is the
sum of a — f(6(a))g and a— B(0(a))(1 — g). Because B(0(@))(1 — q) = SP(a)S*,
the second map induces the same map from K,(C¥(4)) to K.(2) that a — (a)
induces.

5. THE TOEPLITZ ALGEBRA % AS A CROSSED
PRODUCT BY AN ENDOMORPHISM

(We will assume in this section that 4 and 0(A4) are both proper subgroups
of G. The case of our final result in which one or the other is equal to G will be
dealt with in a separate argument.)

By the universal property of our HNN-group I, there is a homomorphism
¢ : I = Z annihilating G with @(s) = 1. For ¢ in T (the unit circle in C), we
obtain a unitary operator U, on #%(I';) multiplying the basis element corresponding
to yin I'; by ¢#®. Conjugation by the U,'s gives a continuous action a : T — Aut(%)
fixing B(G) and spinning S. Let 9, be the subalgebra of @ fixed by this action.
Define 0 : Zy = (1 — 9)2,(1 — q) S D, by g,(x) = SxS*.

5.1 PROPOSITION. & is the crossed product (as in [7]) of D, by the endo-
morphism o, .

Proof. Let @~ be the veritable crossed product of &, by 6,, so @~ is gener-
ated by 2, and an outside isometry S~ with S7x(S™)* = g4(x) (x in %), and
2~ has the obvious universal property with respect to this arrangement. Because of
the universal property, there is an actiona”™ of T on £~ fixing %, and spinning S~
and there is a map ¥ : @~ — 2 sending S~ to S whose restriction to %, is the
identity map. Clearly ou; = azoff for each ¢ € T. Integrating «~ and z yiclds
faithful conditional expectations £~ : @~ — @, and E: 9 — 9,. We have YoE~ :=
<= Eof. If y e @7 and Y(») = 0, then Yy(E~(3*y)) = EW(»*y)) = 0. But E7(»%y)
lies in 2, , where ¥ is the identity, so E~(y*y) == 0. As E~ is faithful, y == 0. Thus
is an isomorphism. 2

Let H denote the kernel of ¢ : I' - Z. Using ¢, we obtain an action of T
on CF(I') spinning Ai(s) whose fixed algebra is C}(H), regarded as a subalgebra
of CH#(I'). This action is intertwined by n : & — C*(I') with the action % on @
defined above. We thus have n(9,) = CF¥(H). Consider now ker(nlgo) =0QNY,-
Recall from Section 4 that we may regard ( as acting on £2(4) ® £%(Q). Break Q
into blocks Q, = @ n ¢~ k) (kin Z). The Q.’s are all non-empty because of our
assumptions that 4 # G # 0(4). Ifj # k, the Q, X @, piece of Q meets Z,, trivially.
Hence Q n @, consists of the Q, X @, pieces only. For each Q, let (, be the
closed subalgebra of &, generated by

{(VoBO0@)gVE : 0w, 0" € 2, a € A}.
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This is an ideal of 2, isomorphic to C¥(A) ® A4 (£*(2,)). Wehave QN Dy ~ @ Q>

and thus an exact sequence of K-groups :

- = Ky(CH(H) —'é Ko(CHRD = Ko(Dy) = Ko(CEH) - ... .

Call this sequence 1.

We will confront sequence 1 with another sequence, obtained as follows.
The group H may be realized as the amalgam of a two-way infinite line of copies
of G along copies of A, viz.

H= ... *G;1*A0G0*A101*---’

where G, == s*Gs—* and 4, = s¥As~* = s5~10(A)s*—*. (See [3], [11], [5].) If we assume
that (G, 0(4)) has property A, then Theorem 3.4 above gives us an exact sequence

. > K(CHH) — @ Ko(CHAY) ~ © K(CHGI) - Ko(CHE) ~ ...

which we call sequence 2.

>4
In the next section, we will define a map from @ K .(CHG)) to K.(2,) which

will be shown to be an isomorphism when (G, 0(4)) has property A.

6. MAPPING SEQUENCE 2 TO SEQUENCE 1

We continue to assume that 4 # G # 0(4).
For k 2 0, define &,: CHG) » 9, by b,(g) = SKB(g)(S*)*. Since S is an
isometry, @, is a *-monomorphism. We need a similar map for k < 0 also.

6.1. LEMMA. Given j = 1, there exist x; and y; in D, such that
X;S(S*Yx}F 4 y; SI(S*¥YyF = 1.

Proof. Notice that 1 — S/(S*)/ is the projection of £2(I';) on £2(sANs2A U ...

. Us/A4). Take g in G\O(A). Then 1 — B(g)S/(S*)B(g~*) is the projection on
1Y(gsA U gstA U ... gs’4), and hence is orthogonal to 1 — S/(S*)/. It follows that
Si(S*Y + B(g)S/(S*)B(g~Y) = 2 — p, where p is a projection in &,. We may
take x; = (2 — p)~V% and y; = x;f(g). Z

6.2. ReEMARK. With j == 1, the lemma shows that (1 — ¢)Z,(1 — ¢) is a full
corner of Z,.
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We define @_; : CF(G) - Py ® M, for j > | as follows. Let x; and y; be
X, ./
as in 6.1 and let R; = (JOS

Write d)_j(g) _ R;‘e(ﬁ(g’)

v, §F
i) in 2y ® M,. Notice that RiRF = 1 °).
0 2 T ‘
0 \0 0

0 . .
)Rj for g in CF(G), so ¢_; is a =-monomorphism
into 2, ® M,.

6.3. LEMMA. For all ke Z, we have

(0'0)*(‘15;;):;: == (¢k+1):x: : K#(C?(G)) i K#(@0)~
Proof. Thisisobviousfork = 0. Fork -= — I, we have

B

Go®_, = (S ® 1,)R¥ (0 g) R(S* @ 1,).

Notice that (S ® 1,)Rf e 2, ® M,, and

, 0
R(S* ® 1)000 (S ® 1R} (ﬁ 0) ,

which is the same on K, as @,. Since (S ® 1,)Rf is a partial isometry with the
correct initial and final projections, we have (&), = (0¢)u(P_;),. For k< —1,
the argument is similar, except that the equivalence between o,®_;_, and @_; is
implemented by the partial isometry (S ® 1,)R¥,R;, which lies in 2, ® M,.

6.4. LeMMA. The diagram below commutes for every k in Z.

Ku(Qy) ——> K#(@o)

T /fbka(])m—(mk_l'\i)t

K4 (CH4)

{The horizontal arrow comes from inclusion, the vertical arrow from the isomorphism
of C*¥(4) ® o with Q, described in Section 5.)

Proof. First consider the case k == — j, where j > 2. Decompose @_;:0 as
¥, + Y14, Where

. pr B0 O\p
l//q‘ RJ( 0 0) J

and similarly for ¥, _,. Recalling that f(a) = S*B(8(a))S for a in C¥(A4), one checks
that the partial isometry R¥(S @ 1,)R;_,, which lies in Z, @ M;, conjugates @ _;,,oi
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to Yy_y, SO (P_jiyei)y == (Y1 - ). The map from K (Ci(A)) to K4(Z,) obtained
by moving up and then right in the diagram is induced by

Vo(B-O)gVs 0
7570

where w € Q_;. This map is equivalent to y, via the 9, ® M,-partial isometry
(Vg ® 1,)R;. The lemma is thus proved for k < — 2.

The case k = — 1 follows similarly after replacing ¢, by (ﬁ (0)) The argu-

ment for k > 0 is easy, like that at the end of Section 4. i

oo
We define @ : @ K.(CFG) - Ky(Z,) to be the map obtained by summing
the maps (&,),., after identifying each G, with G.

6.5. REMARK. We have the following commuting diagram, linking part of
scquence 2 with part of sequence I.

® Ky(Q) ——— Ky(9)
! I
® Ky(CPAD) —> @ Ko(CHGY).

The bottom arrow maps K, (CF(A4,)) via (0,,, —iy) to Ko (CHG, _ N KLHCHG,)),
while the lefthand arrow maps K (C¥(A4,)) isomorphically to K (Q,_,)-
Our project in this section will be finished once we show that the diagram

Ko(C2(H) —— @ K(Q)

N

@ K, (CHAY)

commutes (and likewise with indices reversed). For this, we need to relate the extension
2, — C¥(H) to the Toeplitz extension for C*(H) that results from realizing H as
a 2-fold amalgam X, *4, Y, (k in Z). Here,

k-1

12—c. 2110
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-and as in Section 2 we have the associated Toeplitz algebra 7 x, on £%(Hx), generated
by the images of the maps hx, Xy > T x, and py, : Y, > I x . We proceed
to define =-homomorphisms from 9, to each 7, .

For k in Z, write I'{"> = I', n ¢ ~%(k), where ¢ : I' — Z is as at the beginning
of Section 5. Notice that each subspace /*(I'®)) of /X(I';) reduces @,. For T € 9>
let p,(T') denote the restriction of T to £2(I'{")). Now we must get from I'®) to Hy &.
The lemma that accomplishes this is obvious at the experimental level, but we feel
obliged to give a compiete proof.

6.6. LEMMA.  Regarding H as a subgroup of I', we have Hxs* - T'®) fo,
k=1

Proof. Tt will bc convenient to concentrate on the case k == 1 for most of
the argument. To simplify notation, write

X:' X1: . *G"‘l *A_l(;—l *A() GO
and
Y = Y1 = G a4,Gy *A:)G:}* cees

so H = X =, Y. Write H as the disjoint union HF U 4, U H¥, where, as in Section 2
H% (resp. H¥) consists of reduced words in X and Yendingin X\ 4, (resp. Y\ A4,),
and Hx =z Hf U A4,. We observe that 4,5 = sA. To show that Hys = I'{", it will
suffice to prove that His< ¢~*(1) and Hisn I, = 0. (Notice that Hs < ¢~(1)
and I'Vs-1 < H)

For w in H, we can write w (in many ways) as a product of conjugates of
-elements of G by powers of 5. We define

size(w) = min{k 4 ¥ 1!t = (s"gsT Y L (skgsTR), gy,. ... 8. € Gl

Claim 1. H¥s = I'y. [Suppose not. Let w be an element of minimal size in
{ve HY : vs ¢ I'y}, with size-realizing factorization

w == ("1™ ... (sThgsT TR

‘Set @ = 5'g7 % "w. If r, > 0, then o’ € H%, since YHY € H¥. By minimality,
w’seTy,. We have s''g;s” "w's = ws ¢ I',. Since r, > 0, this forces s "w's ¢ I';,
so wseM\sT, =sAU...Us 4. Since ¢(w’s) = 1, we have 's = sa, where
a € A. Thus w = s"g;s” "0(a), which lies in H} U A4,, contradicting w € H§. We
must therefore have r, < 0, and w' € XHi € Hy=Hj U A4,. If ©' €4,, then
.ws = s"1g,s" "a e I',, which is not allowed. If on the other hand ' € H§, thenw's € I';
by minimality. Also ws = s"¢,s” ‘w’s ¢ I';, which forces r; < 0 and g;5 w's €
€s4AU ... Us "4, which is impossible because ¢(g;s w's)=1—~r > —r.
‘We have proved Claim 1.]
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Claim 2. H¥s n Iy = . [Suppose not. Let @ be an element of minimal size in

{ve H§ : vs eI}, with size-realizing factorization as in the proof of Claim 1.
Set 0" = s"1g7 % . If r; > 0, then w’ € H¥ U 4;. If 0’ € 4, then ws =5"g;5' " a
(where a € A4), which can’t belong to I';. (Here notice that minimality forces g, ¢ A4,

so the case r, — | causes no trouble, and for larger r,, the g, can’t move past s* %)
If w' € Hf, then minimality forces w’s ¢ I',. The only way left multiplication by

s"1g7s™ " can move ws out of I'y is if ws € 54, so we have w € s4s~1 = A4, , contradict-
ingwe H¥. Ifr; €0, then o’ € H¥, and minimality forces w’'s ¢ I'. Since however

ws € I'y, we must have r, <0 and g7%s "wsesA Uy ... Us "4, which is impos-
sible because (g% "ws) = 1 — r,. We have proved Claim 2.]

Thus Hxs=TI{". To prove the lemma for k > 1, we observe that
Hy, == s*"'Hxs'~*. Hence Hy,s"= SlHy s = sKTUMD = (sFUr)n TP =
(FNGAU ... us 2N TR = .

D

For k > 1, the lemma gives us a unitary U, : £%('{) —»t"z(HXk) corresponding
to the map y — ys~—% of I'®) onto Hx, . We define §(T) on /*(Hx,) for T in 9, by
Y (T) = Up(T)U}. Routine checking establishes the following formulas, with r
in Z+*, g in G, and a in A.

ve (s'gs™") 2k

Yi(STB(g)(S*)) =
;(Xk(s’gs") C<r<k

V(ST B(g)s") = uy (s788")

Vi (Q) =0 forj+#k—1
Yu(S* T 1B(0(a)g(S*Y ) = qXA;th(s"as*").

{Here, U, = 1 — ,uXk(e).) We have observed earlier that = maps 9, onto C*(H);

from this, it follows readily that 2, is generated by operators of the type appearing
in the first two formulas above, together with the ideals Q;. The essential features
of this situation are summarized in our next remark.

6.7. ReMark. For k > 1, we have a map between exact sequences of C*-
-algebras, namely

0 ®Q; Py ——> CHH) 0

- 00

i

Vi

0 ——CHA) ® K —— I X, >CHH)=——0.
¢
k
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The map on the left annihilates all summands except Q;_, , which is sent isomorphi~
cally to C*4,) @ .

We also wish to define y_; : 2, — Tx for j > 0. Write V; :/%(Hx) —
- /2(”,\'_1.) for the unitary corresponding to conjugation by s=/ -1, and for T in s,
define y_(T) on /2(17’x__j) by

Yo [(T) = V(S HT(S¥Y )V E.
It is easily seen that

V-(STBRS?)) = vx_(s7gs™") for r 3 0

vy (s—7gs") forjzr=0

W _(S¥YB(g)ST) = |
(0 — gy Jy, (5778 WL —gqy, ) forr>j-+1
- -J ..

J
for g in G, and further that ¥ annihilates Q, for i # — j — 1, and maps Q..;_;
isomorphically to the kernel of n_; : ‘7“'—1 — C¥(H).
6.8. RrmarRK. The previous remark is valid for all & in Z. The following
diagram commutes:

KO(C;*(H)) NN 5 K(CHA))

N

Ko CHAY

(and likewise with indices reversed.) Here d is the boundary map on K-theory arising
from Ty — C#(H), 8, is the boundary map from 7 x, — CF(H), and the vertical
arrow is projection on the (k — 1)* summand.

Before proceeding on to the main result, we pause for the treatment of a
special case.

7. THE CASE 0(4)- G

The arguments and apparatus of the two preceding sections are for the situation
in which 4 # G # 0(A). When 0(A4) = G, we can proceed more directly to show
that f# : C¥G) — 2 induces an isomorphism on K-theory. What follows is our
modification of W. Arveson’s version of the proof of the crucial step in [9]. (See
also [2].) We thank Professor Arveson for permitting us to use his unpublished
lecture material.
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Throughout this section, # will denote a unital C*-algebra and p a unital
sx-monomorphism of # into itself. (For instance, in case 8(4) = G, we could have
p =071 CHG) - CHA) = CHG).) We call an isometry V a (4, p)-isometry
if V acts on a Hilbert space on which & is faithfully represented and satisfies
DV = Vp(b) for all b in B. Notice that this condition forces VV* to commute
with 4. We say that V is faithful if b+ b(1 — V'V¥) is injective on 4.

Let g =: 7 (/XZ+))and define 4 : # — .4 (B ®.4) (the multiplier algebra) by

Ab)y=b @ p(h) ® p*H) D ...

Lzt v be the forward shift on/2(Z*),s0 1,4 ® ve (4 ® .4). When we identify 8
with A(#), we see that 14 ® v is a faithful (4, p)-isometry.

7.1. LEMMA. Lei V be a faithful (B, p)-isometry. For any (8, p)-isometry
W, there is a x-homomorphism @ : C*RB, V) - CHAB, W) such that ¢(b) = b for
all b in B and (V)= W.

Proof. Let & and V act on the Hilbert space #. Let 3£, = (1 — VV*)#.
Then the subspaces #,, Vi#,, V>5#,,... are pairwise orthogonal, and their direct
sum reduces C*(#, V). (Each one of them reduces # because bV* = VEph(p) for b
in #.) Since we are seeking a homomorphism from C*(%, V), there is'no loss of
generality in assuming that #° =, @ Vo, ® V2K, ® ..., ie. that V is com-
pletely non-unitary. It follows from the faithfulness of ¥ that C*(#, V) is isomorphic
to the C*-subalgebra of .#(# ® ') generated by A(#) and 15 ® v. Consider now
CHBR1, WV < CB,W)® C*v). The (4, p)isometry W ® v is faithful
because its defect projection majorizes 1 ; ® (1 — vt*) and completely non-unitary
because (W* @ v*)” tends strongly to 0 as # — co. We thus have a *-isomorphism
Y CHB, V) > CHB 1, W ® v), via C*A(H), 1 , ® v), sendingb in Btob® 1
and V to W ® v. Let f: C*(v) — C be the multiplicative linear functional with
(v) = 1. We have a =-homomorphism id ® f: C*(#, W) ® C*#(v) - C*(H, W).
Following ¥ by the restriction of id ® /" to C*(# ® 1,W ® v) yields the desired
map . %

7.2. THEOREM. If V is a faithful (B, p)-isometry, then the inclusion j:# —
J— C¥(R, V) induces an isomorphism on 2 -theory.

Proof. This is well known when p is an automorphism of #. Gur argument
really consists in noticing that the proof for the automorphism case does not require
the existence of p~1. We will work in the setting of quasihomomorphisms as described
in [2].

Let J = C*(4, V). Using 7.1, we obtain =-homomorphisms ¢, ¢ : I —
— M (B @A) such that @) = A(b) and @(b) = A(D)1lyz ® vo*) for b in 4,
P¥V)=15® v, and P(V) = 1p ® v?**. Since (¢ — o)T) = B @A, the pair
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=
0
(3%

¢, p) induces a map (¢, @).. : Ku(7) = K4 (P). It is clear that (¢, @)/, is the identity
map on K.(#). To analyze j«(¢, @)y, use 7.1 to defme} 1 CH*A(B), 1, @ v) —
~ (T @A) by j(A(b)) = A~ (b), where the latter is the same infinite matrix as A(b}
but now regarded as a multiplier of 7 ® A, andf(lgy ® v) == 1, ® v. Notice that
@(7) and @(J") are both contained in C*(4(#4), 1, ® v), so ](p and j@ are maps
from 7 to /(T ® ). They differ by 7 @, and we have (jo, [¢)s = jul@s @) -
{See the product construction in [2].)

. . . g T V::: . —
Consider now the self-adjoint unitary U, = (]J VV I;) m My(7 ),

which commutes with the C#-subalgebra (id @ p)(B) of M,(7). There is a path {U,}
of unitaries in M,(7) joining U, to U, = 1, ® 1, such that each U, commutes
with (id @ p)(48). Define U; in M(ZJ ® #°) to be the infinite matrix obtained by
replacing the upper left 2 x 2 block of 1 , @ 1 by U,. Then U; commutes with 47 (4),
and when we identify 4 with 47 (%), we see that U, (1, ® v) is a (%, p)-isometry.
For each ¢, Lemma 7.1 yields a map ¢, : 7 —.#(7 ® ) such that ¢(b) ==
- A™(b) for b in B and ¢ (V) = U7 (1, ® v). Notice that W, = jp. Since U —
—1ly;®1€7 @4, we have (¢, —1(7))(,7) c 7 @« for all t. The quasihomo-
morphisms (je Jjo, j(p) and (¢, ](pl) are thus homotopic. To conclude the proof observe
that ¢, : - v @ jo, where v(x) =x® (I — vv¥) for x in J, so (](p, ](p)k R U
which is the identity map on J# (7). %

7.3. COROLLARY. With reference to Section 4 above, the map B : C¥G) —» T
induces an isomorphism on K-theory whenever G = 6(A).

Proof. The isometry S is a (C¥(G), p)-isometry, where p : C¥(G) —» CF(G)
comes from §-1: G - 4 < G. The defect space of S is /*(s4) = /%Gs), on which
P(CH(G)) acts faithfully. 7

8. THE MAIN RESULT FOR HNN-GROUPS

Tt is at this point that we shall need to impose property A.

8.1. LEMMA. Suppose that A # G # HA) and (G, 6(4)) has property A.
Then the map @ : % K4(CHG)) — K4(D,) defined in Section 6 is an isomorphisn:
intertwining the for;z:;'d shift on the direct sum with (64)y. on X 4(2,).

Proof. Consider

> Ke(CHE) —> & Ko(CHA) ———K (@) —— Ko(CHH)) —> ...
|
R T

. —> K{(CH(H)) — _é; Ko(CF(A4)) —> ngKO(C:‘(G)) —> K(CHH)) —> ... .
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The top and bottom sequences are exact. The one on top comes from %, St CHH),
after identifying the kernel of this map with @ C¥(4) ® 2 as in Section 5. The

sequence on the bottom comes from Theorem 3.4. The vertical map between the
A-terms is the backward shift. Rectangle (1) commutes because of Remark 6.8 and the
description of the boundary maps given in Theorem 3.4. Rectangle (2) commutes
by Remark 6.5. The commutativity of rectangle (3) is checked componentwise by
referring to the definition of the C*-algebra maps @, at the beginning of Section 6.

(For negative indices, notice that (77:(;,-) n(gj)) in C¥(H) ® M, conjugates.

ne®_; to (ad(A(s~%))eig) @ 0, where j = 1 and ig : CXG) — C¥(H) is the natural
injection.) The desired isomorphism now follows from the five-lemma, and the
intertwining is a consequence of Lemma 6.3. 7

8.2. THEOREM. Let A be a subgroup of a countable group G, and let 0 : 4 —
— G be a monomorphism. Let I' == HNN(G, 4, 0) be the corresponding HNN-
-group. If at least one of the pairs (G, A), (G, 0(A)) has Natsume’s relative property A
[6], there is an exact sequence

0 —i j
Ko(CHA)) — K(CHG)) —— K (CEI))

I l

Ky(CHI)) «m Ky (CHE)) <2 K, (CHAY),

where iy, j,., and 0, come from the maps induced on C*-algebras by the inclusions
i:A->G,j:G-T,and 8:4—-G.

Proof. We begin with the case in which 4 # G # 0(4) and (G, 6(4)) has
property A. Our Toeplitz algebra 2 is the crossed product of 2, by the endo-
morphism o, : Z, - (1 — 9)D,(1 — ¢), whose range is a full corner of 2, (Propo-
sition 5.1 and Remark 6.2). By [8], we have an exact sequence

(o )*—id
> Ky (D) —— Ko(Do) —— 5 Ko(Dy) > Ko(2) > ...

oo
When we identify K ,(Z,) with @ K (C#(G)) asin Lemma 8.1, (d,),. becomes the
)

forward shift. Hence (6,)y — id has trivial kernel, and moreover the image of
K 4 (CXG)) in K 4(2,) under (P,),, is mapped isomorphically onto K ,(2). This means
that B, : K4(CHG)) — K 4(2) is an isomorphism. Using observations made in Sec-
tion 4, the sequence in the statement of the theorem is now seen to be the exact.
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sequence of K-groups produced by
0-0Q -2 —>CHI) - 0.

If G - - 0(A), in which case property A is superfluous, . is again an isomor-
phism by Corollary 7.3. The remaining cases of the theorem are obtained by inter-
changing the roles of A and 6(A). 2]

9. FUNDAMENTAL GROUP OF A L.OOP OF GROUPS

In this final section, we indicate how our methods and results can be extended
to ireat a construction in combinatorial group theory that generalizes the HNN-
-construction,

Consider first two (countable) groups X and Y. Suppose A and B are
subgroups of both X and ¥, via imbeddingsi,: 4 - Y, 0,: A - X, iz: B> X, and
0y:B — Y. We may regard 4 as a subgroup of the amalgamated product X =, Y
via i,, and think of 0, as an imbedding of this subgroup into X =5 Y; let
A HNN(X =, Y, 4, 0,) be the resulting HNN-group, so 4 is generated by X #5 ¥
and an additional element s with si (a)s—! = 0,(a) (a in A).

9.1. REMARK. (cf. § S, Proposition 20 of [11]). By appealing to the universal
properties of the groups involved, it is straightforward to show that there is an
isomorphism ¥ : HNN(X =, ¥, B, 05) > 4 such that y(x) = x, Y(y)=sys™?
{(vin X, y in Y), and y(t) == s, where ¢ is the canonical 0implementing element
of HNN(X =, Y, B, 6,).

Form the Toeplitz algebra @ == C*(B(X =5 Y), S) for the HNN-group 4 as
in Section 4. Write I' == X =, ¥, and let 7~ = C*(u(X), v(Y)) be its Toeplitz algebra
as in Section 2.

9.2. LEMMA. There is a +-monomorphism T — @ sending u(x) > B(x),
v(p) > SP(Y)S* (x in X, vy in Y).

Proof. Recall that g~ acts on £%(I'y), where I'y = A {words in I' ending
in X\4}, and 2 acts on £%(4,), where A, = {words in 4 ending in s4}. The
map ¥ in 9.1 gives an imbedding of I' in 4, and one checks that Y(I'y)s < 4,.
Let & be the C*-subalgebra of @ generated by S(X) and SH(Y)S*. Then £2()(Iy)s)
reduces &, and the map y+> Y(y)s induces a spatial isomorphism of J with

é)“-lz(u(f'x)s)' We thus have a x-homomorphism t: &8 — F sending B(x) — u(x),

SH(y)S* > v(y). Furthermore, it is not hard to see that 4, \y/(I'y)s is invariant under
{eft multiplication b,);fm,/’/(l“ ). As in the proof of Proposition 2.1, we conclude that
the identity reprgsentation of & on £%(4,} is unitarily equivalent to the direct sum
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of 7 with several copies of motr, where 7 is the Toeplitz map from 7 to C¥TI').
Thus 7 is an isomorphism. '

The situation so far is that of a length 2 loop of groups. For the length n
case, suppose we have (countable) groups G,, G,..., G,, and 4,, A4,,..., A, with
imbeddings i;: A; - G;,0;,: A; - G, forj=1,..., n Indices are treated circularly
here; n is identified with 0, so 6, maps A, into G,. For each j, break the loop
at A; and form I'; = G| i Gy * ... ¥4, Gj-y. Thus A; is a subgroup of I';
(via i;: A; — G;), and we have 0,: A; —» I'; (via G;_,). Let 4; = HNN(T;, 4;, 0;).
The groups 4; are all isomorphic. To see this, take j > 1 and write

Fj = (Gj *Aj,u GJ'+1 oo K4 G,) *a4, (G, *4, Gy = ... *Aj_l Gj—l)
Fy=1(Gy%,,Gy* ... *"_,-_1@'—1) *Aj(Gj A, Gjorx ... 54 G).

Remark 9.1 now gives an isomorphism of 4; with A4,. in this way we identify 4,
forj=1,..., n with a single group which we will call simply A. In the terminology
of [11], 4 is the fundamental group of the given loop of groups.

9.3. THEOREM. Let (G, Ay, Gy, Ay,. .., Ay, G,, A1, G) be a loop of groups
as above, with fundamental group A. Assume that each G, is countable and that the
pairs (G, A3),(Gy, A3), ..., (G,, Ay) all have property A. Then there is an exact
sequence

C;J’r) Ko(CH(4))) — (4:3 Ko(CHG)) — K(CF(4))

T l

Ky(CHd)) «—— ea K,(C¥G,) «—— 6:9 K(CHA,)).

The map from @ K4 (C¥(4)) to @ K, (CHG))) takes the summand K ,(C¥(A4))) to
1 1 :

K4 (CH(G;_)) ® K (CHGY) via (— (0))x, (ip)y). The map from C]-BK#(C;"(G,-)) to
K 4 (CH(4)) sums the maps induced on K-theory by the natural injections C¥(G;)— C¥(4)-

Proof. (sketch). For j=1, ..., n, we identify 4 with 4; = HNN(T';, 4;, 0))
and form 7; : @; - C¥(4) as in Section 4. Let (n, 2) be the pullback of the (n;, Z,)’s.
Our strategy is to obtain the sequence in the theorem as the exact sequence of K-
-groups produced by n: & — C¥(4). The main thing, as usual, is to exhibit an iso-
morphism of K4(2) with @ K4(CHG))).
1

Focus now on I'y = Gy %4 Gy ... * 4, G,. Breaking this amalgam at A;
(j=:2,...,n) gives us Toeplitz extensions J ) — C*(I',) as in Section 2. These
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pull back as in Section 3 to give 7, —» CXI',). We note that @ K (C*(G))) is
j=1

isomorphic via what we call the ‘“‘group map” to K4(J,), by Theorem 3.1. We
proceed to construct a map from 7, to @ which will turn out to induce an iso-
morphism on K-theory.

For the time being, fix j between 2 and n. Let X = G, TR LR a4 G
and Y == G; A, Giyg o ... = 4, G,. We are in the situation of Lemma 9.2 and
the discussion preceding it, with A — A4;, B=A,, I =T} =X *a; YA =4;=
= HNN(X =4, Y, 4;, 0)). Leta; : 7 > @, be the map whose existence is asserted

in 9.2. Let g; : 7, —» { be the natural projection. (Recall that 7, is a subalgebra
of (-z) F{).) Thus a;q; maps .7, to @;. We further have B, : CXI',) — 2, as in Sec-
tion 4. Preceding f; by the map from 7, t?) CKIy) yields B~ : 9, - 2,. Set
o (BT, UG,y %G,) L T > 6,;) 9;. Chasing through the definitions, one checks

hat m,f” - mq; (j= 2,...,n), so a(F,) = 2. It now follows easily that the
map p, : 9 — 2, coming from projection on the first summand is surjective.

The maps 7, - CMTI')) and p,: Z — 2, give rise to exact sequences of
diagram

. —> K(CH(y) —> éz) Ko(C;k(Aj)) — Ko(7,) — K(CHTY) — ...

l“t l(ﬂl)t

L Ki(@) —> @ KCHA) —> Ko@) —> Ko@) —> ..

W,

We claim that (§,), is an isomorphism. This would follow (as in the proof of
Theorem. 8.2) from Lemma 8.1 if we knew that the pair (I,, 0(4;)) had pro-
perty A. But all 8.1 really needs is Theorem 3.4 for the two-way infinite amalgam
... %54G %G ... . The extension of this result to the present situation (G' = I, ,
A -~ A)) is readily accomplished by appealing to Remark 3.3(b).

Thus «, is an isomorphism by the five-lemma. We have already observed

the isomorphism of @ K4 (CH(G))) with K4(7;), so from the short exact sequence

0 - @ kern; » 2 — C¥(A) - 0 we obtain an exact sequence of K-groups whose
1

terms are as in the sequence announced in the theorem. We omit the routine but
somewhat tedious verification that the statement of the theorem also correctly
identifies the maps in the sequence. %
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