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COCYCLES ON THE CIRCLE

HENRY HELSON

1. INTRODUCTION

T is the circle group, and I a countable dense subgroup of T. T will be written
additively, so that its elements are real numbers added modulo 2r. A cocycle on
I' x T is a measurable function from this product to a group, which satisfics a

certain identity. We are interested in multiplicative cocycles, taking values in T
and satisfying

(1.1 AQ. + 1, x) = A(A, )A(T, x -+ 2)

almost everywhere on T for all A, = in I'; and in additive cocycles, with values
in the real number system R and satisfying

(1.2) oA+ 1, x) - u(4, \) + v(t, x 4 2)

almost everywhere for each 2, 1.

If v is an additive cocycle, obviously expiv is a multiplicative cocycle.
A coboundary is a cocycle of the form

(1.3) AQLx) = glx 4+ Djg(), o X = w(x + 2) — w(x)

respectively, a.e. on T for each A, where ¢ is a measurable function on T of
modulus 1 and w is a measurable real function on T. Two cocycles are cohomo-
logous if their ratio, or difference, respectively, is a coboundary.

If v is an additive coboundary, then obviously expiv is a multiplicative
coboundary. . _

A: cocycle of either kind is called zrivial if itis in the smallest group containing
all coboundaries and all cocycles that are constant in x for each 1. Two cocycles
are called equivalent if their ratio, or their difference, is trivial.

The translation group 7 in L¥T) is defined by

(1.4) T ) =fx+4 (. inT).
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{T,) is a unitary representation of I'. Given a multiplicative cocycle 4, a new
representation is obtained by setting

(1.5) S, (0 = AQ, ) fix + A).

The spectral theorem represents (S,) as the Fourier transform of a spectral
measure on the compact abelian group K dual to I. Our objective is to know
more about spectral measures that are obtained from cocycles in this way. We shall
sec that their spectral properties are connected with problems of Diophantine

approximation.
Some proofs of statements below have been omitted because they are simple,

or like proofs of analogous results in [2].

2. THE COMMUTATION RELATION

Denote by y the function on T whose values are exp ix, and by M the opera-
tion of multiplication by x. Then it is easy to see that

@.1) S,M = e*MS, (% in I).

This is the Weyl commutation relation for these groups. In particular, the translation
group T (corresponding to the cocycle whose values are 1) satisfies the relation.

THEOREM 1. A representation (S,) of I satisfies the commutation relation
If and only if it is obtained from a cocycle by (1.5).

The easy proof is omitted. From this point, (S;) will always denote a repre-
sentation of I' satisfying the commutation relation.

THEOREM 2. Only the trivial subspaces of L¥T) are invariant under the
groups (M") and (S)).

Let f be any element of L%T), and g an element of the space that is orthogona
to the smallest subspace containing f and invariant under all the unitary operators:

2.2) KA(A, X)f(x 4+ Dg(x) e dx = 0

o

for all integers n and all A in I'. (Integrals are from 0 to 2rn.) The relation for
all n implies that the integrand vanishes a.e. for each A. Since A is a unitary function,

2.3) f(x+ Ag(x) =0 ae. (all Ain I').

From this it follows that one of f and g must vanish identically, and the theorem is
proved.
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THEOREM 3. The spectral measure P of a representation (S,) is either purely

Lebesgue, purely singular-continuous, or purely discrete with respect to Haar
measure o on K.

Let H; (j=1,2,3) be the subspaces of LXT) in which P is, respectively,
absolutely continuous, singular-continuous, and discrete. These subspaces are
invariant under the projections of P and hence also under all §;; if we show
that they are invariant under M and M~ then they must be trivial, and this will
prove that P has spectrum of pure type.

Let f belong to H;. The commutation relation gives
(2.4) (S:Mf, Mf) = eX(S., f).

Now (S, 1, f) is a function on I' that is the Fourier-Stieltjes transform of a measure
on K of pure type j. The measure is merely translated when its transform is multi-
plied by exp ik, and remains of the same pure type. Thus Mf belongs to the same
subspace H; as f. It follows that also M ~'f is in that subspace, and this completes
the proof that P has spectrum of pure type.

Finally it is asserted that if the spectrum is absolutely continuous, then it is
Lebesgue. The commutation relation implies that the null sets of P are invariant

under translations from I'. It is easy to see that every P-null set must have Lebesgue
measure 0.

THEOREM 4. The cocycle A is trivial if and only if P is of discrete type.

Let exp ir be an eigenvalue of the group S, with eigenfunction ¢:
2.5) A4, x)q(x 4 1) == eiig(x).

The translation group is ergodic; it follows that |g| is constant, and can be taken
equalto 1 a.e.. Now expird is a cocycle, constant in x for each A, and thus (2.5)
shows that A is trivial.

If A is a coboundary, then S; = ¢T,q (an equality of operators), so that §
is unitarily equivalent to 7. Since T has discrete spectrum the same is true of S.
Finally, a cocycle that is constantin x for each A is a character of I'; multiplying A
by this character merely translates the spectral measure, so that every trivial cocycle
also leads to discrete spectrum.

THEOREM 5. The multiplicity of P is uniform.

The argument, using the commutation relation, is familiar.
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3. EXTENSIONS OF COCYCLES

Let I be a countable dense subgroup of T, and I'" another such group contain-
ing I'. Given a cocycle A on I', what kind of extensions can A have to I''? Sur-
prisingly, in some circumstances extensions are essentially unique if they exist at all.

THEOREM 6. Every extension of a singular cocycle is singular; every restriction
of a Lebesgue cocycle is Lebesgue. Both extensions and restrictions of trivial cocycles
are trivial.

Suppose that A4 is a cocycle on I'" of Lebesgue type. There is a non-null
function f in L¥T) such that (S,f, f) is square-summable over I'". The restriction
of this inner product to I' is square-summable a fortiori. This shows that the
absolutely continuous part of the spectrum of S, restricted to I', is non-trivial,
and therefore S on I is also of Lebesgue type.

It is obvious that the restriction of a I'’-coboundary to [ is a coboundary
(with the same cobounding function). It follows that the restriction of a trivial
cocycle is trivial. Hence every extension of a singular cocycle is singular (for it
is not discrete or Lebesgue).

The last assertion to be proved is that every extension of a trivial cocycle is
trivial. A coboundary has an extension that is a coboundary; thus a trivial cocycle
has an extension that is trivial. Dividing cocycles on I'', we have to prove this
proposition: if A4 is a cocycle on I’ such that A(2, x) = 1 for all 2 in I", then A
is trivial on I,

For any A and 7 the cocycle identity shows that

3.1) AL, X)A(T, x -4 2) == Alr, x)A(4, x + 1) a.e.
Hence for 2 in I' we have

(3.2) A(t,x + A): A(r, x) ae.

That is, the unitary function A, is invariant under tran‘slations'from r. Since I
is dense, A, is constant. Thus A4 is a trivial cocycle, and the theorem is proved.

COROLLARY. A cocycle on I is trivial if its restriction to any dense subgroup
of I' is trivial.
THEOREM 7. Suppose that I is a subgroup of I'" with index r, and that A

is a cocycle of Lebesgue type on I'" with multiplicity n. Then the restriciion of A
to I' has multiplicity vn. (Either or both of r, i may be infinite.)

The hypotheses imply that we can find » functions /; in LX(T) such that the
functions (S, 1)), for all j and all A in I, constitute an orthonormal basis for L(T).
Let (%) be r elements of I’ that are in distinct cosets of I'. For each J and k
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set gy, == Sz, f;. Then (S;g;), for A in I', is an orthonormal I'-cycle; as j and &
vary we see that rn of these orthogonal cycles span L¥T).

The theorem does not obviously hold when A has singular spectrum, but it
is easy to see at any rate that restriction cannot decrease multiplicity.

CoOROLLARY. If A has simple Lebesgue spectrum, then every proper restriction
of A has multiple Lebesgue spectrum.

It is also obvious that 4 cannot have an extension with Lebesgue spectrum;
but we shall get a better result.

CoOROLLARY. For each group I there is a cocycle with Lebesgue spectrum of
infinite multiplicity.

Let I'" be a countable group containing I” with infinite index. A remarkable
result of Mathew and Nadkarni [4] asserts that I'" has a cocycle with Lebesgue
spectrum. Our theorem now says that its restriction to I' has infinite lLebesgue
spectrum.

THEOREM 8. A cocycle with simple Lebesgue spectrum has no proper extension.

The spectral theorem, with our assumption of simple Lebesgue spectrum,
implies that the group S acting in L*T) is isomorphic to a group S’ acting in
LX(K) (the Lebesgue space on K based.on Haar measure o), where S} is multipli-
cation by the character A of K. The operator M in L% T) becomes a new operator M,
which satisfies the commutation relation still with S’. We must determine the form
of M’.

Let e be the character of I' that maps each element on itself. With I' written
additively, this means e(1) == expil. Define translation for functions on K: Tf(x) =
=: f(x — ¢). Then T satisfies the commutation relation with S’:

3.3) S;T=¢e*TS, (Lin IN).
If ¢ is any unitary function on 'K, qT also satisfies the relation, and these are the
only operators that do. Therefore M = qT for some unitary function g.

We are to prove that S’, a unitary representation of I" in LK) satisfying the
commutation relation with M’, has no extension to a unitary representation of a
larger group I'" that still satisfies the commutation relation with A’. If such an
extension exists, let 7 be an element of I'" notin I', and S; the corresponding oper-

ator. Then S; commutes with all §;, (4 in I'), and therefere-is multiplication by a
unitary function p. The commutation relation gives

(3.49) pqT :Vei’qu.
Interpreted, this equality of operators means that

(3.5) P()g(x) = eg(x)p(x — e).
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The factors ¢ cancel, leaving

(3.6) p(x) = e"p(x — e).

In other words, the exponential factor is a coboundary for the action of 7 on K.
p has a Fourier series:

(3.7) p(x) ~ Y a(HMx) (4 in T).
From (3.6) we obtain
(3.8) a(2)y = elt=dg(l) (4 in T).

Hence a(X) = 0 unless A =: 7. Now some coefficient a(4) is not 0 because p is not
null; hence t belongs to I". This contradicts our choice of r, and shows that the
representation of I' could not be extended.

THEOREM 9. Suppose that S is a Lebesgue representation of I', and that I
contains T' with finite index. If' S has an extension to I'', then the extension has
Lebesgue spectrum also.

We omit the proof.

4. DIOPHANTINE APPROXIMATION

After these general theorems, we specialize to the group I' in T generated by
a single element & of infinite order. Define Tf(x) = f(x 4 «). For ¢ a unitary func-
tion, let S = ¢7. The powers of S determine a multiplicative cocycle, but mainly
we deal with ¢ itself. We say that ¢ is a coboundary if ¢ = Tp/p for some uni-
tary function p; this is necessary and sufficient for the cocycle generated by g to be a
coboundary in the full sense.

THEOREM 10. Let p be an inner function. Then S = pT has Lebesgue spec-
trum. If p is a finite Blaschke product then S has multiplicity equal to the number
of zeros in p; otherwise its multiplicity is infinite.

This result is due to Bagchi, Mathew and Nadkarni [1].

In particular, if p is a Blaschke factor with a single zero, then S has simple
Lebesgue spectrum. It is an interesting question whether all these Blaschke factors
are cohomologous. For some a at least they are.

THEOREM 11. The Blaschke factor

4.1 —9/—3s0 Ust<1)
is cohomologous to y if

n 2
* s

4.2) —_— | <oo.
T | n(l — expnia)
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Dividing by x, and replacing s by its conjugate, we want to show that the
function

(4.3) (1 — 50/ — sp) == exp(— 2i) arg(l — s7)

is a coboundary. If we show that
(4.4) —log(l — sx(x)) = w(x + @) — w(x)

for some function w, then by taking the imaginary part we see that —2arg (1 — sy)
is an additive coboundary, and the assertion is proved.

The left side of (4.4) is a power series in y. We shall find w in H*T) with
Fourier cocflicients (a,). By (4.4) these coeficients should satisfy

{4.5) s"n = a(e"— 1) (n > 0).

‘The sequence (a,) defined by this formula is square-summable by (4.2), the function
w with these coefficients satisfies (4.4), and the theorem is proved.

The criterion (4.2) is satisfied for all s, 0 < |s| < 1, for certain « (with «/2n
irrational), and for no such s for other a. The failure of (4.2) does not obviously
imply that the conclusion of the theorem is wrong; we do not know the truth in
general. :
Nevertheless one naive possibility can be disposed of easily: not all cocycles
with simple Lebesgue spectrum are equivalent. For y and j both have simple
Lebesgue spectrum ; but they are not equivalent, because their quotient, ¥2, is not
trivial (on the contrary it has Lebesgue spectrum).

Next we want to discuss an interesting theorem of K. Petersen [6], related
to a result of H. Kesten [3]. As before, « is a fixed real number such that o/2n is irra-
tional; T is the translation by o in L¥T).

THEOREM 12. Let B be any real number. In order to have

o 2

expniff — 1 <
— 0

(4.6)

1 | n(expniot — 1).

it is necessary and sufficient that B have the form 2nk + nx (k and n integers).

The fact that (4.6) holds if § has the given form is elementary and we omit
the proof.

Before proving the opposite assertion, we make some remarks. Let v(x) = x
on (0, 2n). Then v is not additively trivial; that is, there are no real measurable
periodic function w and constant ¢ such that

4.7) v(x) = w(x + a) — w(x) + ¢ a.e.



196 HENRY HELSON

For if there were, then #(x) = expir(x) == kexpin(x -i- a)/expiw(x) would be
multiplicatively trivial. But the obvious argument with Fourier series shows that no
function ¢ in LXT) except 0 can satisfy

(4.8) kg(x 4 o) = e¥g(x) a.e.

Denote by D, the ditference operator: D, f(x) = flx -+ f) — f(x). If fis an
additive coboundary with cobounding function w, then D,f is a coboundary with
cobounding function D,w. The converse, however, is not obvious and undoubted!y
often false. (See Theorem 13 below). However, for the given function v we have

LemMA. Dyv is not an additive coboundary unless f§ has the special form of
the theorem.

This is the crucial point of Petersen’s proof. Dy is constant on (0, 27) except
for jumps of magnitude exactly 2n. Therefore expiDyv -+ ¢, a constant. I Dy is
an additive coboundary, then ¢ is a multiplicative coboundary, whick means that ¢
is an eigenvalue of the translation operator 7 in L¥T). These eigenvalues are the
numbers expnix, a an integer. Thus v(x 4+ f) — v(x) = no (mod2x) a.e., for o
certain fixed #. But the difference is f (mod 2x), so that f = nz {mod 2n), proving
the lemma.

We finish the proof. Suppose that (4.6) holds. Except for a constant factos.
the Fourier coefficients of Dyv are a, =: (expniff — n(n # C). Set b,
= a{exprin — 1)1, a sequence that is square-summable by (4.6). If w is the
function with Fourier coefficients (b,), then Tw — w = Dyr, contradicting the
lemma. Therefore (4.6) cannot hold except in the special cases mentioned.

The lemma has another proof based on Theorem 8. We know that §: - 7
has simple Lebesgue spectrum in LXT). (For an immediate direct proof, note that
(S71) 1s a complete orthonormal system in L*T).) Therefore the cocycle 4 on the
group (na) such that A(x, x) == exp ix has no exiension to any larger group. We
derive a condition for 4 to have an extension to S with A(f, x) = ¢. Expanding
Al + B, x) in two ways gives

4.9 x(g(x 4+ o) = q(x)x(x + B).

Conversely, if this relation holds, then there is a cocycle 4 on the group generated
by a and f with y and ¢ as its values at «, f respectively.

Thus (4.9) cannot hold for any unitary function ¢ uniess 8 belongs to the group
generated by . That is, y(x -+ B)/x(x) = exp iDyv(x) is not a muitiplicative coboun-
dary, and so Do is not an additive coboundary, except for such 8.
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This example is very simple ; we only want to make the point that Theorem §
provides a way 10 show that functions are not coboundaries.

THEOREM 13. Let f be a real function such that D,f is a coboundary for each
real 8. Then fis additively trivial.

This result is less elementary than might appear. Let v(n, X) be the additive
cocycle with v(1, x) = . Then exp iDyv is a multiplicative coboundary for each f:
for each f

(4.10) e = g(B, x + na)/q(B, x) a.e.

for same unitary function ¢ that is measurable in x for each f. Our first objective
is to show that g can be chosen measurable on the product space so that the equality
holds for almost all pairs (f8, x).

If we take the mean value in n, the numerator on the right has for limit the
mean value of g,, by the crgodic theorem. We call this limit L(f). Since the left
side is measurable in (B, x), L(f)/g(B, x) is measurable. On the set where L({f) is
not 0 we replace ¢ in (4.10) by ¢(B, x)/L(f8), so that equality still holds and the
new function g is measurable in both variables. If we divide by its modulus, it is a
unitary function.

On the set where L = 0, we have to modify this argument. Replace ¢ by xgq,
introducing a factor expina on the left side. Now the mean value is different from
0 on a new set, and it is easy to patch together a measurable unitary function to
satisfy (4.10) on the set where at least one limit is not 0. Using thé same argument
with all powers of ¥ provides a function on the whole product space.

Now in (4.10) replace ff# by f—x, and then change ffto y:

@.11) eiletm -1 = g(y — x, x 4+ na)/g(y -- x, X).

On the right side, the numerator is the same as the denominator with both x and ¥
increased by na. In other words, on the dynamical system T X T with the transfor-
mation

“.12) (%, ) = (x + @y + o),

the cocycle expi[v(n, ¥) — v(n, x)] is a coboundary.

It follows that v(n, x) is a trivial cocycle. (I believe that this fact was first
proved by K. Schmidt, but never published.) The translation operator in L¥T X T)
defined by (4.12) has discrete spectrum; it follows, as in Theorem 4, that coboun-
daries lead to unitary groups with discrete spectrum. Therefore the inner product

{4.13) Sg ellet. N =vn. 0] g(x -+ na, y -+ no)g(x, ¥) dxdy

o
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is an almost periodic function of n, for every g in L¥T XT). Take for g a product

h(x)h(y). For some h in L*(T) the double integral is not identically 0 in n, and it
equals

(4.14) igeim h(y + no)h(y) dy .

If the operator e*7 in L%T) had singular or Lebesgue spectrum, the mean value
of (4.14) would be 0, which is not the case for a non-trivial almost pzriodic sequenve.
Thus exp iv(n, x) is trivial.

This argument applies to all real scalar multiples of f, with the result that
exp ito(n, x) is multiplicatively trivial for all real . Now a beautiful thcorem of
C. C. Moore and K. Schmidt [5) (originally proved using the result of Schmidt just
above) asserts that v is additively trivial, which is what was to be proved.

5. QUESTIONS

Petersen’s theorem should have an extension to more general sums. Let f
and y be distinct real numbers such that

[=e] . _ . . 9
(5.1) 3 (expnifs 1.)(expmy DI
T (expnia — 1)n

0.

Can we conclude that one of §, y at least has the form 2nk -+ na?

Exactly as before, (5.1) implies that DyD,v is a coboundary, where v(x) == x
on (0,2n); we could hopc that this is the case only if Dyv or D.v is a coboundary,
which indeed implies (5.1). This would be true if we could prove the assertion: unless f§
has the special form of Theorem 12, the multiplicative cocycle based on
g = expiuD,v has simple Lebesgue spectrum for some real u. We have no idea
whether this is right.

Let o« and B be independent in T; and I' the group they generate. We do not
know whether any cocycle on I' has simple Lebesgue spectrum. If we allow M to
have infinite multiplicity, then it is easy to find such a cocycle. That is, we can find
an operator-valued cocycle Q (in an infinite-dimensional Hilbert space) such that
(Q,T;) is a unitary representation of I" in the space L%T) of vector-valued functions,
which has simple Lebesgue spectrum.

In this connection, let us mention that Theorem 8 remains true for operator-
-valued cocycles, because the multiplicity of M is not referred to in the proof.
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