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THE CHARACTERIZATION OF DIFFERENTIAL OPERATORS
BY LOCALITY: C*-ALGEBRAS OF TYPE 1

OLA BRATTELI, GEORGE A. ELLIOTT and DEREK W. ROBINSON

0. INTRODUCTION

Let A be a C*-algebra and let T be a strongly continuous one-parameter
automorphism group of A with infintesimal generator 8. Let H be a linear operator
on 4 defined on the space of smooth elements for 7, and say that H is local with
respect to © if w(H(a)) = O whenever o is a pure state of 4 and w(6“(a)) =0
for all k2 0. If 4 an elementary C*-algebra, and if k is an eigenvalue of 1 for each
ke Z. then a local operator with respect to T must be a polynomial in é with
scaiar coefficients. If 4 is a postliminary C*-algebra, and if the set Xj of points
of the spectrum of A4 fixed by 7 has no interior, then a local operator with res-
pect to T must be a polynominal in é with coefficients functions on the spectrum
of A.

In [12], [1], and [7], it was shown that a linear operator H on a commutative
C#-algebra A, defined on the subalgebra A, of smooth elements with respect
to a strongly continuous action T of R on A4, and local in the sense that the support
of }f is contained in the support of f for each function f in the domain of A,
must be a polynomial in the infinitesimal generator é of 1, the coefficients of which
are functions on the spectrum of 4. The functions which can arise as coefficients
of a local operator from A into 4 were described in [7] by continuity and growth
conditions.

The purpose of this paper is to describe some analogous results for non-
commutative C*-algebras. Results of a somewhat similar nature have already been
obtained in [5], [6], [4], and [2]. These papers consider various notions of relative
locality of one linear operator on a C*-algebra with respect to another, which
imply in suitable circumstances that the local operator is a polynomial in the
reference operator, with coefficients functions on the primitive spectrum of the
C#*-algebra. Usually the reference operator is assumed to be a derivation (and in
5] both operators are).
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A common feature of these four earlier papers is that the degree of the
polynomial, or, rather, a fixed upper bound for the degree, is explicitly built into
the definition of relative locality. By contrast, in [7] the definition of locality con-
tains no such explicit information, and hence, as the domain is A, polynomials
of arbitrary degree are allowed. In fact, the property of locality in [7] has no rela-
tion to the reference derivation; it can be defined in the same way for an operator
with any domain. In other words, the only relation of a local operator H define
on Ao as in [7] to the reference derivation is through its domain. The reason that
H must be a polynomial of finite degree in J, seen from one point of view, is that
any closed operator from the Fréchet space A, into A must be continuous, with
respect to one of the C"-norms. While H was not assumed to be closed as a map
from A to A, locality implies this. (See [3], where the case that § is an abstract
derivation is considered.)

If 4 is not commutative, it is no longer clear that locality of H can be for-
mulated as an abstract property. For instance, if 4 is a primitive C*-algebra and
an element g of A is zero on an open set of pure states of A4, then by analyticity,
a - 0, so the obvious formulation of locality is vacuous.

We can however formulate a relative property of locality of A with respect
to t, when H is defined on A, , which, with some restriction on t, seems to force
H to be a polynomial in & without restricting the degree of the polynomial. We
shall say that H is local relative to 7 if, whenever w is a pure state of A anda € 4.

w(0%(@) =0 for all k =2 0 = w(H(@) - 0.

Some restriction is needed on t; as pointed out in [4] in the case n = 2, if A is the
C*-algebra of n X n matrices, and 6 =- ad i# where / = diagonal(f,,..., B, with
all 8, — B; distinct (i # j), then the transpose operation is local with respect to &,
but is not a polynomial in J unless n = 1.

THEOREM 1. Let (A, R, 1) be a C*-dynamical system with A primitive. Let
denote the infinitesimal generator of t, and suppose that ¢ is unbounded. Assume that
A contains an elementary closed two-sided ideal I, necessarily invariant under ©. Assume
that the spectrum of the restriction of t to I contains Z, and that furthermore each
k € Z is an eigenvalue of the restriction 1. Let H be a linear operator from Ag, ==
= () D(8") into A.

nzl
The following two conditions are equivalent.
1. H is local with respect to t.
2. There existn =2 0and 4y, /7y, ..., 2, € C such that

H:

3
i D x
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THEOREM 2. Let (A4, R, 1) be a C*-dynamical system, and let & denote the
infinitesimal generator of t. Set Prim A = X, and denote by X, the set of points of X
Jixed under the action of R on X determined by t. Suppose that X \X, is dense in X.
Denote by S the set of points of X \X, which are open relative to their closures in X
and closed relative to their orbits. Assume that S is dense in X. (This is the case if X
has a dense t-invariant open subset O such that every point of O is closed relative
to O, — for example, if A is postliminary.) Let H be a linear operator from A into A.

The following two conditions are equivalent. :

1. H is local with respect to .

2. There exist n > 0 and complex-valued functions Iy, 1, , ..., 1, on X such that

H= 201,,,5’” | Ao,

i.e. for any a € Ay, and y € X,

Ha + vy =Y L(y)d™a + y.

m=0

1. PROOF OF THEOREM 1

We must prove 1 = 2. (The implication 2 = 1 is immediate.)

OBSERVATION 1. Let h be an unbounded selfadjoint operator on the Hilbert
space of a faithful irreducible representation of A such that

ta=-¢ege "™ (eR, acA.

(See [9], Example 3.2.35.) For each k € Z there exist eigenvalues By, By of h such
that

ﬁk_ﬁl’c:k'

Proof. By assumption there exists 0 # a € I such that 7,0 = ei*a for all
t € R. Therefore a*a is fixed by t. Note that I is the algebra of compact operators -
Multiplying @ on the right, first by a minimal spectral projection of a*a on which
a*a is not zero, and second by the restriction of (a*a) Y2 to this projection, we may
suppose that a is a partial isometry. Then a*a and aa* are projections fixed by 7,
l.e. commuting with /. Since a*a and aa* are of finite rank there exists, by applica-
tion of the spectral theorem to a*ah, a subprojection of a*a of rank one which com-
mutes with /. Multiplying a on the right by this projection we may suppose that a
itself is of rank one. Then there exist 8, f% € R such that

haa* = Braa*, ha*a = Bra*a,
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and so f,, fi; are eigenvalues of /i. Hence
ha == fa, ah = fla,
da = i(ha — ah) == (f, — Pua = ika,

and consequently B, — Br. = k.

OBSERVATION 2. Denote by P the set of pure states w € P, for which there
exisey a sequence (Ao of partial isometries of rank one such that for all k = 0,

hey - = oy, ah = fra;,

w(a,) # 0, and ow(a)™1: Ok + 1)?).
P is dense in P,.

Proof. Choose sequences (Ex)exo and (€ of (non zero) cigenvectors of %
such that
hé =~ Biles R == Bl

and such that if Br, = ﬁka, /31:-1 == ﬂli_ or ﬁr«l /fl’c2 then fkl m éke, 51’41 3 f;':-g >
or :,‘} == é;’. respectively.

Next éhoose the norms of the vectors in these two sequences in the following
marner. Set &) == 1€l = 1. If B, (B coincides with B, (= B5) then &Il (111D
is fixed. If not, set {|&,]] =2~ (Jié)l = 27Y). If B, (Ba) coincides with one of the
carlier eigenvalues By, By, 1 then [|&]] (J|&5]) is fixed. T not, set &Y == 32 (],&51, -

2-1), Continue in this way to fix the norms of all the &, and &;,. Thus

Jedl = (k+ D7 JEN > (k+ DT K >0,

by construction. Finally note that if repetitions are eliminated then the sequences
(i€, 1) and (JI€;]) are square summable.
Next let # be a unit vector such that for some y > 0,

el 2 v+ D74 fimell = vk + DY k20,

where #;, () denotes the component of 5 in the eigenspace corresponding to f, (B7).
It follows that the vector pure state w = w, determined by 5 belongs to P : if a;
is 2 partial isometry of rank one which is isometric on #; and takes #/ into a
positive multiple of 5, then

a(ay) = |inll Inill = »*( + D3,

so wla) # 0 and w(a)~*= O(k + 1)?), k = 0.
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Next let # be a unit vector such that all components #, and #, are non zero
and all except finitely many of them (excluding repetitions) are equal respectively
to & and ¢, constructed above. It follows that # satisfies the hypothesis of the
preceding paragraph, whence w, € P.

Let { be any unit vector. It is clear that { can be approximated arbitrarily
closely by a vector 7 satisfying the hypotheses of the immediately preceding para-
graph, and therefore such that w, € P. This shows that P is dense in P, (even in
the norm topology). But P, is dense in P, (in the weak® topology), since I is
essential in A4, so P is dense in P,.

OBSERVATION 3. For every w € P there exist n(w) = 0 and l(w), L(w),. ..
e o> hiwy(@) € C such that
n(w)

oH= Y/, (0)0d"|Aw.

m=0

Proof. Fix w € P. In order to apply Peetre’s theorem, [13], to deduce the
assertion, it is sufficient to show that every function in Cg(]— =, n[) (i.e. every
smooth function on ]— =, #[ with compact support) can be expressed as

w(a) 1] — #, a[ 3 t — o(t,a)

for some a € A, . For if a € Ay and w(1a) is zero on an open subset O of 1— =, =,
then differentiation yields that w(z6™a) is zero on O for all m, whence by Condi-
tion 1 w(tHa) is zero on O. In other words, if w(za) € CH(1 — =, nf) then also
o(tHa) € CF()— n,n[) and the map w(ra) — w(tHa) is local. By [13] a local
operator on C§(] — n, n) is a differential operator (locally of finite order). Recalling
that the derivative of w(za) is w(tda), and evaluating at 0, we obtain

(%) o(Ha) =S (@) ("a),

m. :0

with /,(w) € C, for all a € A, with w(ta) € CE(]— =, nl). Since also the map w(ta) —
~ w(tHa) is a local operator on the space of all functions in C*®(]-- &, n[) which
can be expressed as w(ta) for some a € A, it must by locality be given by the
same differential operator as on the smaller subspace C3(1 — =, n[). Hence (=) above
holds for all a€ 4.

If fe C&(]— =, ), then f can be considered as a C=-function on T (equal
to zero in a neighbourhood of — 1 & T). Therefore

[ =Y ne*, tel-mnl,

keZ

2-c, 2321
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where y, == O(jk; =) for all p > 0. Then with g, as in the statement of Observation 2
for k 2 0, and g, defined as a*, for k <0, w(a,) 'y, = O®k|[~*) for all p > 0,
so the series

Z w(ay) ~'y,a,
keZ

converges in A and defines an element a of A,. Since
o(t,a) = w(a)e™

it follows that, for all t € ]— n, n[,

w(ra) - ¥ o@) nota) =Y, ne’™ = ().
kez hez

OBSERVATION 4. The functions [, and n on P are constant.
Proof. 1t is sufficient to prove this in restriction to a dense subset of P:

if wh Y y,w0" A for fixed Zo,4,,...,4, and a dense set of w € P,, then

m 0
this holds for all we P,.

In order to select a suitable dense subset of P, we shall first modify the
choice of the eigenvalues f, and f; of h with B, — B, =k, ke Z+. This may
change P, but as pointed out above this is immaterial.

The additional property of the sequences (f;) and (f;) that we require is that
there should exist a sequence (k,) in Z* such that all Bk' are distinct and all /3"‘;
are distinct. Note that with the initial choice of B, and S, all §, might have been
identical. To choose f;, and f3, with this property, we introduce an equivalence relation
on the set of all eigenvalues of i as follows: B is equivalent to g’ if f—f' is
an integer. If all equivalence classes are finite, then any choice of f, and f; will
do; since there must be infinitely many equivalence classes which for at least one &
contain the chosen pair {f,, .}, we can choose one &, for each one, and then all
B, and all ﬂ,’c’ are distinct (even taken together, if no k, is zero). Suppose that
there exists an infinite equivalence class of eigenvalues of /. Then for any k, there
is an arbitrarily large pair of eigenvalues with difference at least k. This allows
us to choose a sequence (k,) and sequences (B,,.r), (ﬁ;:r) of distinct eigenvalues with

ﬁkr - B;:r = k,, and we then as before make any choice of 8, and f; with f§, -—

— Bi. - k for values of k& not among the %,.
Now fix @, € P, and define a subset Q of P as follows: w; € Q if w; € P
and for almost all r the components of ¢ in the eigenspaces of & corresponding

to ﬁk’ and ﬂ,:’ are equal to the components of {. Tt is not difficult to see that @

is dense in P.
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Let w, =+ w; and w, = w, be distinct pure states in Q and denote by ¢,, ¢
and n,, y; the components of ¢ and # in the eigenspaces of 4 corresponding to
the eigenvalues B, and B, k€ Z+. (Recall that these components are non zero.)

Then for almost all r, & = and g,'( :11,'c

We shall now use an 1dea from [4]. Let p and ¢ be non zero complex numbers
such that p + ¢ # 0 and ||p{ + on|| = 1. Thus the pure state w; = W, 4,y IS
distinct from w, and w,. Assume that w; € P. Recall that the set of pure states
of My(C) is a two sphere (see, for example, [9], Example 4.2.7), and so the real
affine span of three distinct pure states of M,(C) intersects the set of pure states
of MZ(C) in a circle. Let py, py, and pu, be real numbers with sum one such that

Z J;w; is a pure state. Assume that o belongs to P. By Observation 3,

w;H =Y, L, (0,)w;0"| A,

mz0

ol =Y 1, (0)wd"Ax

mz0

3
Substituting w ==} ww; yields

i

2 ( ZJ (I"'(w) - lm(wj))lr‘jwj )(Sm = 0.

mz0\j=1
Applying this to a, such that da, = ika, then yields
) ( Y, () — /.,.(wj»u,w,-(ak))(ik)"' -0
mz0\ j=
By the choice of w,, w,, and w,, for almost any » there exist ak, with 5(akr) =
= ik,akr and Yk, > 0 such that

wiar) = vk, j=1,2,3,

where oy = o, - : l and oy = |p + 6|2 > 0. (With r such that fk =1y and ék = 11k

we may take a = ( Iékr)gkr and Vi, = ka,ﬂznfk,,”z-) Substituting this into the
preceding equation yields

Z (Z (/,,.((.0) -— 1,,,((Dj)) 0 )(ikr)m —0

mz0

for almost all r. Choosing a number of r for which this holds equal to the number
of m appearing (which is finite — at most max(n(w,), n(®)) ), and noting that the
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coefficient matrix ((ik,)"), m is a Vandermonde matrix and therefore invertible,
we have

3
Z(lm(w) - ]ﬂl(wj))l"llaJ - 03 s 09 1’ 23' L
j=1

3
Of course, we still have to ensure that w, Opergy and @ == Y ujw; belong to P,
j-1
so that /,(w,) and [, {w) exist.

The strategy of our proof that /,,(w,) = - /,(w,) for all m can be briefly described
as follows. Fix o, - w;e Q. We shall show that for a dense set of w,: o,
in @ it is possible to choose p and o, and p,, iy, s, so that w, and o belong
to P, and so that, furthermore, the vector (;;%;) in R® is orthogonal to (1,1, 1),
but not to (/,(w;)) unless /,(w,) = I,(w,). This together with the result of the preced-
ing paragraph, that (;%;) is orthogonal to the vectors

L)1, 1,1) — (I(wy)), m: 0, 1,2]...,

yields /,(w,) =+ I, {w,) for all m. This shows that the functions /,, are constant on
a dense subset of @, and in particular on a dense subset of P, as desired.
Fix w; € Q. By writing w, € Q for a unit vector #, let us understand that 5
itself, not just up to a phase, has the property that », - {, and g, =-{; for
r v r 13

almost all r. Let w, be an arbitrary vector state in P, distinct from ©;, and choose
2 unit vector ¢ such that w, ~ w, and (¢ (&) > 0. (¢ is unique if (¢ |¢) # 0.) Approxi-
mate ¢ by a unit vector g, having the same projection as ¢ orthogonal to the eigen-
spaces of /i, such that w,: - w, € Q. Changing the components of 5 in finitely
many eigenspaces of /1, we may suppose that (i7]¢) == (¢ |€), and that still 5 is
a unit vector close to ¢ and w, € Q.

Next, note that if a finite number of pairs of complex numbers (p,, o). ..
... (p,,0,) are given, such that p, + o, # 0 and llp, & + omli- -1, a property
depending only on (5 &) which is now fixed, then we can choose n so that, ir
addition, each of the pure states Wp, &= belongs to P. To make this simpler,
we shall suppose that the reference state w, for the definition of @ is such that
Gl Tl= Ok + D), LN = Ok + 1), (See the proof of Cbservation 2. In general,
;€ P just means that [[{|i=1 /¢~ = Ok + 1)®).) We shall also suppose that
1Ok + 1), [[¢/!17+=- O(k + 1), and that [l ]=* = Otk + 1), /i = =
O(k + 1), as we can do without loss of generality. To ensure that Wp & - € P,

[

first change n by a small amount, as described below, so that the components
(p,¢ + o) and (p,& + o). are non zero, and the inverses of their norms are
Otk + 1). Second, make slight changes to finitely many components of #, such that
this property is not destroyed, and so that again [j7]] =1 and (7]&) = (¢ !{) as

efore. Since p, + o, # 0 it is not necessary to change the components M s rigp
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which are equal to ékr, é’,‘,’ and preserving these components one still has w, € Q.
The way to change n in the first step is to break the components 7, #; with
ke{k,;r--1,2,...} into finitely many groups in an appropriate way and then
multiply each group by an appropriate positive scalar close to 1. This is done
as follows.

First let ¢, > 0 and break the components (p,& + o17),, (0. + oy7)f into two
groups according as they are greater than, or strictly less than the corresponding
components of &#n in norm. Multiplying the components of # in the latter group
by any positive number larger than 1 + 2¢|o,|~! makes this group disappear;
that is, one then has the first inequality (=) everywhere. Next let &, > 0 and perform
a similar operation to render all (relevant) components of p,¢ + 0,1 greater in
norm than the corresponding components of . Since this involves multiplying
certain components of n by | + 2&]a,]~1, or by a larger number 7, it follows
that if ¢, is sufficiently small relative to ¢,, and if y is not much larger than 1 +
4+ 2e,l0,| 71, then the components of p,¢ + 6,7 are still greater in norm than those
of /2. Continuing in this way, after performing a similar operation p times,
we have ensured that all relevant components of all p & + o, are greater in norm
than the corresponding components of yn for some y > 0. Since ||, ||~ = O(k + 1)
and [[n{|| =t == O(k + 1), the vectors p,& + o, now have the same property.

We shall now apply the preceding remark to the three pairs (p;, 6y), (pa, 05),
and (pg, o5) of complex numbers defined as follows. First,

e

Note that Wp &+aym Wy and o, lie on a circle of pure states — a circle on the two
sphere {w, ; ¥ € C& + Cr}. Since (&) is real, this circle is equal to {w, ;¥ € R +
+ Ry}, which, again since (n|&) is real (so that the orthogonal complement of ¢
in the real Hilbert space RZ + Ry is also orthogonal to ¢ in C& + Cp), is a
great circle on the two sphere {w, ; ¥ € C& + Cy}. Furthermore, the angle between
we and o, on this circle is bisected by w, ¢4, : the cosine of the angle between
Wp £404n and w; or w, is (7]£), which is positive. Choose p,, g, and ps, g5 so that
Wp,-t-oy and Wp &0y ATE the points on the circle through w,, w,, and Wp &+a,n that
lie on the line parallel to the line through w, and w, and at distance 2]/_2/5 from
Dp &-ton- (Recall that the diameter of the great circle is two.) The pairs (p;, g;),
j=:1,2,3, depend only on (7|&), which is fixed. Trivially, p, + o; # 0, and it
is not difficult to check that p, + 05 % 0 and p; + g5 # 0.

Now consider the plane in R?® through the points (1,0,0), (0,1,0), and
0,0, &), where oy = lp; + y}%. In this plane consider the ellipse

{(a0ty , potty, sty 5 g0y + Ho®Ws + Hzd3 € P4},
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where 2 =% - 1, w; = w;, Wy = w,, and w; = Wp ¢apn- The intersection of
this ellipse with the orthogonal complement of (1, 1, 1) consists of two points which
are ]/2/3' of the way along the length of the ellipse from (0, 0, o), i.e. the points
corresponding to Wp &ty and Wp ¢ia.n in the affine correspondence which takes
w,, w,, and wy to (1,0,0), (0,1,0), and (0,0, z;). The line through these two
points is the intersection of the plane of the ellipse with the orthogonal complement
of (1, I, 1). Fix m—=0,1,2,....1f [ (w,) # {,(w,) then the orthogonal complement
of (/,,(w;)) is a plane through (0, 0, 0) which is different from the orthogonal comple-
ment of (1, 1, 1), and therefore the intersection of this plane with the plane of the
ellipse is a line different from the above. Since these two lines can therefore intersect
in at most one point, not both the points in the intersection of the first line and the
ellipse can lie on the second line. Thus, either the point corresponding to w, ¢. ayn

or that corresponding to Wp &t is not orthogonal to (/,(®;)), assuming that /,(e,) #

# 1,(w,). Choosing

3
w =Y o;
J 1

to be one of these states, then we have (y;x;) orthogonal to (i, 1, 1), but not to
(Im(wj))a UHICSS lm(wl) = lrw:(w2)'

Condition 2 of the theorem follows immediately from Observation 4 and
the density of P.

2. PROOF OF THEOREM 2

2.1. LEMMA. Let (A, G, 1) be a C*-dynamical system. Then (Prim A, G, 1)
is a topological dynamical system.

Proof. We must show that the map
G X Prim A >(g, y) =1,y € Prim 4
is continuous. This follows from 3.4.11 of [10] and the fact that the map

G XPyia(gw)y—>wr,ePy
1s continuous.

2.2. LemMA. Let X be a topological space (not necessarily Hausdorff)
and let (X, R, 1) be a topological dynamical system (ie. X X Ro(y,)>1,7€ X
is continuous, T, is the identity, and vy, , = t;1,). Let y be a point of X which is
open (i.e. isolated) in its closure, and let ¢ > 0.

If v is relatively closed in its orbit in X, or if ¢ is sufficiently small, then
the compact subset t(-.y of X is relatively open in its closure.
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Proof. Let us first show that if K is a compact subset of R then the closure
of 7y is the union of the closures of its points. Let ' € X be such that there is
a net (y;) in X converging to y" with y; € {r,‘,y} - where 1; € K. Passing to a subnet
of (y;), we may suppose that the net (¢;,) is convergent in K, say to . Since Ty, is
a homeomorphism, T_17; € {y}-. By continuity, T_4,y; converges to T_,y’. Hence
-y efy}-, ie vy e {ry}-.

Now choose an open neighbourhood O of y in X such that O n {y}~ =: {y}.
If {y} is not relatively closed in the orbit of y, restrict ¢ to be small enough that
Ti_2e,29Y S O. Let us show that 7(_. 7y is open in its closure. In view of the above
description of the closure, what we must show is that if y" € X and (y,) is a net
in X \T(—eqy converging to y" with y, € {t,y}~, where f, €[—¢,¢], then y €
€ X\T[A &5])-

As above, we may suppose that the net (¢,) converges in [— ¢, ¢], say to ¢.
We have 7_.7;,€{y}", and t.qy; S X \{y}, whence 7_y,€{y}-\{y}. By
continuity, T_y; converges to 7_y". Since {y} “\{y} is closed in X, it follows that

o € \{r}

In the case that {y} is relatively closed in the orbit of y, it follows that t_,y" does
not belong to the orbit of y; equivalently, y’ does not belong to the orbit of y.
In the opposite case, by the choice of &, Tj—s. 2y & O. As t € [— ¢, &], we have
T_T—eq? € O, and since t_,y" € {y} "\{y} = X\O it follows that, also in this
case, 7' € X \T[—e1y> as desired.

2.3. LEMMA. Let (X, R, 1) be a topological dynamical system. Suppose
that v is transitive, i.e. X consists of a single orbit. Suppose that X is not a point,
and that distinct points have distinct closures.

1. = is periodic if, and only if, X is a circle.

2. If each point of X is closed then t(-.«y is closed, compact, and Hausdorff
for any y€ X and € > 0.

Proof. Ad 1. If t is periodic, with period p, then by Lemma 17.2 of [12],
with G the compact group R/Zp and K the subgroup {0}, X is a circle.

Let X be a circle. To show that ¢ is periodic we must show that the map
1+ 1, is not injective, ie., for fixed y € X the map ¢+~ 7,y is not injective. Note

that X = |_J T(—nny, and each 7(_, .y is connected. Since the circle is not the
n>1

union of an increasing sequence of connected proper subsets, X = t[—,ny for
some n. For such an n, the map ¢ — 1,y is not injective on [— n, n].

Ad 2. By continuity of ¢+ 7,y, the set 7j—.qy is compact in X. Let us show
that it is Hausdorff. Suppose that (r,iy) converges in T, say to 1.y, and let

us show that the limit is unique. We use the argument of Lemma 17.2 of [12].
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We may assume that (£;) converges in [— ¢,¢], say to f. Then by continuity,

-1
Yooty

-1
T’iy > Ty TY.
Since {y} is closed, y =3ty ie 1,9 =1,
It remains to show that t;_.y is closed. Let 0 € (7[—¢,qy)~. Choose ¢ > ¢
such that 0 € t(_q}y. Since t(_,r)y is Hausdorff and t(_.qy is a compact
subset of 7[_cs,.1Y, Tpo-e,p7 15 relatively closed in 1(—es .jy. In particular, é € t(_.,qy.

2.4. Proof of Theorem 2. We must prove 1 = 2. (The implication 2 = | is
immediate.)

OBSERVATION [. For every y € S there exist unique I(y), 1,(7),.. ., Liy(y) e C
such that

n(y)
Ha+y: Y Il.(N0"a+y, a€Ad,.

m- .0

Proof. Fix y € S. Since {7} is open in its closure, there is a simple subquotient
B of A with primitive spectrum {y}. We shall show, using Condition 1 and Peetre’s
theorem, [13], that for each w € Py (i.e. for each pure state w of A4/y not zero
on the ideal B of A/y) there exist /y(w), L(w),. .., Lw(w) € C such that

» n{w)
w(Ha) : - Z L (0)w(d™a), ae€ Ay.

m—0

Hence by the proof of Theorem 3.1 of [4] (that part which uses Lemma 3.2 of [4]),
1,{w) is independent of w € Py. In other words, there exist n(y) = 0 and /(y), 4(7),. . .
- > Liy(y) € C such that

a(y)

Ha + 7y = Z L.(y)67"a + 7y, acA,.
m: 0

Fix we Py. In order to apply Peetre’s theorem to deduce that wH ==

n(w)

=Yy L (@)wd"| A, it is sufficient to show that every function in CE(J— 1, 1[)
m=0

(i.e. every smooth function on ]— 1, 1{ with compact support) can be expressed as

w(te) :]— 1, 1 3t~ w(r,0)

for some a € 4,,. For if a e A, and w(za)is zero on an open subset O of ]— I, 1f,
then differentiating yields that w(t6™a) is zero on O for all m, whence by Condi-
tion 1 w(zHa) is zero on O. In other words, if w(rta) e CHI— 1, 1)) then also
w(zHa) € CH(— 1, 1[) and the map w(ra) — w(tHa)is local. By [13] a local operator
on C§(d— 1,1]) is a differential operator (locally, of finite order). Recalling that
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the derivative of w(ta) is w(tda), and evaluating at 0, we obtain

() w(Ha) = i’ I (Yo (5"a),

m==0

with /,(w) € C, for all a € A, with w(za) € CH(1— 1, 1[). Since also the map w(ta) —
+ w(tHa) is a local operator on the space of all functions in C®(J— 1, 1]) which
can be expressed as w(za) for some a € A, it must by locality be given by the
same differential operator as on the smaller subspace C&(]— I, 1[). Hence (x) above
holds for all ae A4,.

Of course, the orbit of y in X may be periodic, but as y € § = X\Xg, the
period p of y is not zero, so we may change the scale so that 1 <p < + oo.
Fix z 2 0 with | + ¢ < p, and let us show that the subset 7;—y,1—,iy of the closure of
T—-1-r1y N X is open relative to this closed set. By Lemma 2.2, combined with
l.emma 2.1, 7( -1—,,1;y is open relative to its closure (as y € S). By Lemma 2.3 applied
to the orbit of y (each point of which is relatively closed, as y € S), 71 .13y I8
Hausdorff; hence the map

[—l—sl]asmryer 1

is a homeomorphism. It follows first that the subset 7,134y is open relative to
the set 7(. 1--,,157, and hence that it is open relative to the closure of this set.

Note next that an automorphism o of a C*%-algebra R, even if it does not
take a closed two-sided ideal I of R onto itself, or even into itself, does induce
an isomorphism between two closed two-sided ideals of R/I, which may be different
from zero — namely, the images in R/I of the ideals J and oJ where

J={a€R;a@ Y +1)catIni}

To check that the isomorphism «|J :J — a/ induces a homomorphism between
(J + I)/I and (aJ + I)/1, suppose that a € J and a € I. From aa € al we deduce
that «f contains a right approximate unit for wa. From oa € aJ we deduce that
(ea)(el) = I It follows from these two properties of aa that wa € I, and so one
has a homomorphism. A similar argument shows that this homomorphism is injective.
1t is clearly surjective.

Note now that each subset of X which is open relative to its closure is the
primitive spectrum of a subquotient of A, i.e. of an ideal of a quotient of A.
Apply the preceding result with R == 4, ¢ =1, where 0 < ¢ < p — 1, and [ the
closed two-sided ideal of A4 with primitive spectrum the complement of the closure
of 1y—1,1py in X, to conclude that 7, induces an isomorphism between the sub-
quotients of 4 with primitive spectra 73_31—s;y and 73_,.3y. The action of T,
on these primitive spectra may be identified with translation of the interval
J— 1,1 — ¢ onto ]— 1 + ¢, 1] inside ]— 1, 1[.
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If follows that the subquotient of A with primitive spectrum 7;_1(y is iso-
morphic to Cy(]-- 1, 1[) ® B, and in such a way that for each 0 <t < p — 1 the
isomorphism induced by 7, is just translation from the ideal Cy(]— 1,1 — ) ® B
onto the ideal Cy(]— 1 + ¢, I[) ® B. We deduce from this that, with w € Py as
above, for any f'€ Cyo(]— 1, 1{) there exists a € A such that w(ta) = f. Let us now
show that if /'€ C§(]— 1, 1]} then a can be chosen in A,,. Extend f to a function
in C5p(R) with support contained in [-— p, p]. By [11], Théoréme 3.2, 1 is a finite
sum Y g;+h; whereg; , h; € CRH(R) and supp g; is sufficiently small that

(— L N\suppg; < [— (1 + p)2,(1 + p)/2].
Choose b, € A as before such that w(z,b;) = h(t) for all re]— (1 + p)/2, (I +
+ p) 2. (Work with this interval instead of ]— 1, 1[.) Set Z Sdsg,-(s)hsb,- = a.

1t follows that a € A, and for all re]— 1, 1],

w@a ¥ Sdsgi(s)w(r,-sb.-) -y Sdsg;(s)hia — )= fi1),

as desired.

Uniqueness of the numbers y(y), L(),.. -, Ly(y) (or, rather, uniqueness of
the numbers /y(w), [{(w),. . ., Lw)(w) for any w € Py) holds for example by Lemma 3.2
of [4].

OBSERVATION 2. There exists n 2 0 such that H : Ay, — A is bounded with
respect to the norm aw> ||all, = sup {|0*a|| on A, (and the norm |||l on A).

O0<kgn

Proof. Tt is sufficient to show that H : A, — A is closed. This follows from
Observation 1 and the hypothesis that S is dense in X. (If 4, -0 in 4, and
Ha, - b in A then by Observation 1, for each y€ S, Ha, + 7= ¥, /[(7)0"a, +
+ y — 0 and hence b + 7y = 0; since S is dense this implies b = 0.)

OBSERVATION 3. n(y) < n for all ye S.

n(y)
Proof. Fix y€ §. By Observation 1, Ha +y= Y, l(y)d™a + 7, a € Ay.

m=0
We must show that /,(y) == 0 if m > n, where n is as in Observation 2, i.e. such
that H : A, — A is bounded with respect to the norm ||-{|, on Ae.
Denote by I the largest t-invariant closed two-sided ideal of A4 contained
in y : I = (M) 1,y. Note that the image of 4, in A/I is equal to all of (4/I), (by
teR

[11], Théoréme 3.2, any x €(4/I),, is a finite sum ¥; Sds fi(s)r,y; where f; € CR(R)

and y; € A/I). Let us show that H induces an operator from (4/I), to 4/I. We
must show that if ae 4, N7 then Hae Il If a€ A, NI then d*ae [ for all k =
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£.0,1,2,..., so if we Py, then w(d*a)==0 for all k=0,1,2,..., whence
by locality of H with respect to 1, w(Ha) =0. This proves that Hael if ae
€ A, n I. Clearly the induced operator H :(A/I),, — A/l is local with respect to .
(In this paragraph we have used only that [ is t-invariant.)

Since y € X\X;, 0 is not bounded in A/I. Therefore, there exists arbitrarily
large € R such that, for all ¢ > 0, (A/D*([f — ¢, B + ¢]) # 0. Hence, for arbi-
trarily large f € R, there exists a; € 4, such that |la; + I|| =1 and [|6"a, -
- (f)"a; + I|| is arbitrarily small for 0 < m < max(n, n(y)). (See [8], Proposi-
tion 1.1.) Replacing a; by 7,4, for suitable 7 € R (note that gy is dense in the
primitive spectrum of A/I), we may suppose that |ja; + y{l is arbitrarily close to
ilag + I|| = 1. We now have

(i) liag + Tl = O(B",
(i) {1y + 71| = () B0 + O(F")-1),

for arbitrarily large f (assuming that f§ is at least one, say).

If we knew that H is continuous with respect to the norm ||-|j, in A/, then
the desired inequality n(y) < » would follow immediately from these estimates.
It is not clear, however, how to deduce this from continuity of H with respect
to the norm | ‘|, in 4, as it is not clear how to lift an element a from (A4/I),,
1o A, without substantially increasing the norm ||a||,. Nevertheless, the estimate (i)
was obtained in a rather special way, namely, by choosing a; + I of norm one
in (A/D*([B — &, B + ¢&]) for ¢ sufficiently small, and it is possible, as we shall
now show, to choose a; in such a way that, in addition,

()" llagll, = O(B").

The desired inequality n(y) < n follows from (i)’ and (ii).
Choose fe LY(R) such that f” is equal to 1 on [— 1,1] and to O outside
[--2,2]. For each f€ R and ¢ > 0, define f, , € L'(R) by

Sp.(2) = e¥Peflet).

Then Slf,,’el = Slfl, and (f,,'g)“ isequal to 1 on [f — ¢, B + &} and to O outside

[B—2¢ B + 2. Let byeA be such that ||bglj =:|lbg + Ill=-1 and by + I€
e (A/D([B — &, B + ¢€]), where ¢ > 0 will be specified later. Set

S ds f3 (s)tsbp=ay.
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Then a, € A*([B — 26,8 + 2¢]), lagi < \.f, and 4y + I =b, + I. Hence, if ¢

is sufficiently small, not only do we have as before the estimates (i) and (ii), bul
we also have (i1)'. (See {8], Proposition 1.1.)

OBSERVATION 4. For every y € X such that the spectrum of 1 in the quotient

Al (M) T,y consists of at least n + 1 points, there exists a neighbourhood ' of +
teR
in X such that the functions Iy, 1y, ..., 1, defined on S are bounded on Sn O.

Proof. Choose distinct points By, B, .. ., B, in the spectrum of 7 in the quoticnt
All, where [::- (Yt,y. Thus, (A/D)([B, — &, P + €]) # 0, for all ¢ > 0. Herce

teR
as shown in the proof of Observation 3, A*([f; -- 2¢, p, + 2¢]) & 7y, for all ¢ > (..
Choose 0 < ¢ < 1 such that the intervals [f5, —- 3¢, f, + 3¢] are mutually disjoint.
(The distance between [f3; -~ 2¢, f8; + 2¢] and [B, — 2¢, B, + 2¢] is then at leust
(38, — B
Denote by O the set of y" € X such that A*([f, — 2¢, B, + 28)) & y', for
all k. O is open and y € O.

Fix y€e OnS. Set (Mz,y - [I'. Since the image of AY([B, — 2, f, + 2:I
feR
in A/I' is contained in (A/I'Y([B. - 2&, B + 2¢]), this subspace of A/I' is non zero.
Hence there exists 8] € [, — 2¢, B, + 2¢] such that

(AIIY(BL -- €. Bl +€]) #0 for all & > 0.
Note that by the choice of ¢, B} -~ Bi. = (1/3).B; — Bi.. Choose 4, € A such that
lag + 1" =1, a+1'eAI)({B —¢, B+ &),

where &’ > 0 is to be specified. If ¢’ is small, then 6"(g, + I') is close in norm o
(iBya. + I'), m==0,1,...,n (see [8], Proposition 1.1). Replace a, by 1,a, for
a suitable ¢ in R so that e, + | is close to e, + I’|| = 1.

As in the proof of Observation 3, change «,, without changing a, + I', so that

a € A([B— 26/, 8" + 2¢]),  layd| < glfl

where f is as in the proof of Observation 3 (and independent of all data). If &
is sufficiently small, ||a,!|, is then approximately less than max(i, {84|™) S I
By Observation 2, there exists C > 0 such that [|Hal| € Clla|}, for all a € 4.,

n
Since y' € S, Hae, + 7' is equal to Y 1.(y")0"a, + y' and is therefore close in norm

m=0
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to (Y L.(y) B (@, + ") (provided &' is small -~ see [8], Proposition 1.1).

Since |la, + y']| is close to |,

Y () (iﬁ,@)’”‘ is close to [|Ha, + 7'|] and therefore

m=0

approximately less than Cmax(l, |[f,’c\")§1f,?. Since & > 0 is arbitrary, this proves
J

Y ()80

m- 0

<Cmumww@vL

Since [y < max(|ff, + 2|, |8, — 21), and the entries of the inverse of the (n + 1) X
< (n + 1) matrix ((ifz)") are bounded in absolute value by T IB; -~ B~ times a
Jk
polynomial in By, B;,..., B, (independently of 7' € Sn 0), it follows from these
inequalities for k == 0, 1,.. ., n that [,(y"), L(¥), .. ., [,(v") are majorized by a function
of By, Py,..., B, which is independent of y' € Sn O.

OBSERVATION 5. For every y € X there exist I(y), [,(y), .. ., [,(y) € C such that

Ha + Y= 2 /m(.y)éma + Y ae Aoo

m=0

Proof. Let us prove first that for each « € A, and each w € P,
wle) = 0, w(a) =0, ..., w(d"a): 0 = w(Ha) = 0.

Iet aed,, and w e Py, be such that w(é”a) 0 for m-=0,1,...,n. Consider
first the case that the spectrum of 7 in the quotient 4/(™7,y consists of at most »
teR
points. Then for all m =0,1,2,..., a + v is a linear combination of 8% + 7,
ota + y,..., 8" + y, whence w(6™a)+-=0. Hence in this case, by locality of H
with respect to 1, w(Ha) - 0.
Now consider the case that the spectrum of 7 in the quotient A/(™y 7,y consists
1ER
of at least n + 1 points. By 3.4.11 of {10], the canonical map P, — Prim A is
both continuous and open. Because it is open, and S is dense in X, UPA/V, is
Y ESs
dense in P, . Because it is continuous, there is by Observation 4 a ncighbourhood U
of » in P, such that /,,/,,...,/, are bounded on | J P,y N U, say by M > 0.
y'ES
Fix ¢ > 0. Shrink U so that, for each ' € U,

lo'(6"a)| < g/(n + DM, m~=:0,1,...,n,

(o — o) Ha)| <.
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It follows first that for each w' € | J P,y N U,
v'ES

.w'(Ha)| < e&.
By density of |_JP s in P, such an @’ exists. It follows hence that w(Ha)! < 2e.
Y ES
Since & > 0 is arbitrary, w(Ha) === 0.
We shall now deduce the conclusion of the theorem using Theorems 2.1 and 3.1
of [4]. Suppose first that the spectrum of 7 in the quotient A/Mz,y is infinite.

teR
in other words, that the compositions of d°, J%, §2,... with the canonical quotient
map A — A/y are independent. The existence of suitable scalars /o(y), ,(7),. . ., /,,(;’)

follows in this case immediately from Theorem 3.1 of [4].

Suppose, finally, that the spectrum of t in the quotient A/(Myt,y is finite.
reR

In particular it follows that y is t-invariant, i.e. (T\t,y:=y. Furthermore,
reR

(A]V)o == Ay, so the local operator induced by H in the quotient Ajy, as in the
proof of Observation 3, is everywhere defined and continuous in the C*-algebra norm.
Let us show that H leaves spectral subspaces of A4 with respect to 7 invariant.

Suppose that ae A, fe LYR), and Sdsf(s)rsw 0, and let us show that

gds fisyt,Ha ==0. From &dsf(s)rsa =: 0 of course follows Sds S5yt d7a -0, m —=

== 0,1,2,... . Hence by Observation 1, Sdsf(s)rsHa + =0 for every ye S.

r

Since S is dense in X, \dsf(s)tsHa ~=0. It follows from the definition that &

leaves spectral subspaces invariant.

It follows that H leaves spectral subspaces of the quotient A4/y with respect
to t invariant. Here we shall use that the spectrum of 7 in A/y isfinite. Let a € A
be such that a + y € (4/y)({B}), and let ¢ > 0 be such that (4/y)*([8 — 2¢, f +
+ 2¢]) = (A/y)"({B}). As in the proof of Observation 3, we may change a. without
changing a + y, so that a & A*([ff — 2¢, B + 2¢]). Hence by the result of the
preceding paragraph, Hua € A*([f — 2¢, B + 2¢)), from which follows

Ha + y € (A)y)([F — 2, B + 2¢]) = (A]p)*({B}).

Now let us pass to the quotient 4/y. We have that H is a bounded operator
Aly = A]y leaving the (finitely many) spectral subspaces of § invariant, and if
w € P4, and a € A]y are such that w(a) =: w(da) ~ ... = w(d"a), then w(Ha): O.
To establish the existence of scalars /y(y), /,(y).. . ., /,(y) as required in the conclusion
of the theorem we shall first show that the restriction of H to each spectral subspace
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of §in Afyis a scalar multiple of the identity. If the spectral subspace is of dimen-
sion one this follows from its invariance under H. If the spectral subspace is of
dimension two or more then this follows from the locality of H with respect to d,
by Theorem 2.1 of [4] applied to the restrictions of H and of the identity map
to the image of the spectral subspace in a faithful irreducible representation of A/fy.
(Note that in the case that the spectral subspace is of dimension two or more
we do not need to use that it is invariant under H.)

We have shown that H is a polynomial in é in the quotient 4/y. We must
now show that this polynomial is of degree at most »#, modulo the minimal poly-
nomial of § in A/y. Since wH is a linear combination of w, @J,. .., wé” for each
w € P,,,, it is sufficient to find w € P ,,, such that w, wd,. .., ®6" 1 are independent
where r is the degree of the minimal polynomial of §in A/y. (Of course, ifr < n + 1
we don’t have to do anything.) For w we may take the vector state in any faithful
irreducible representation of A/y defined by the sum of one eigenvector from each
eigenspace of a selfadjoint operator /i such that § =:ad ih in A/y.

Observation 5 affirms Condition 2.

2.5. REMARK. The question of characterizing the finite sequences of functions
lo,l,,..., 1, on X that determine a linear operator H : A, — A as in Condition 2
of Theorem 2, in terms of continuity and growth conditions, as was done in
the commutative case in [7], — or even the question of whether such a characteri-
zation is possible — would seem to be quite interesting.

Analysis of the arguments above reveals the following necessary conditions.
(Here A may be any C%-algebra.) The functions /,,/;, ..., /, must be continuous
at each y € X such that the spectrum of 7 in A/ 1,y has at least n + ] points.

/eR
The scalars /,(y), L,(y), ..., L,(y) must have absolute values less than the product
of the bound of A with respect to the norm |-}, on A, and a certain number
which depends only on the spectrum of 1 in the quotient A4/(™ t,y. Furthermore,
teR
the function /, must be bounded, by a (universal) constant times the above bound
of H. Finally, if y is r-invariant and the spectrum of 7 in A/y has at most » points,
then the coefficients of the remainder after the polynomial /y + /,x + ... + [x"
is divided by the minimal polynomial of § in 4/y must be bounded on a neigh-
bourhood of y in X. Itis a natural question whether the coefficients of this remain-
der must in fact be continuous at y. This is the case if the functions /, ..., /,
(as well as /,) are bounded on a neighbourhood of y, or on a net in X converging

to y, — for example if the spectrum of 7 in A/ 1,y is all of R, or not too
teR
sparse, for a dense set of y" in X.

Whether or not for each y € X the coefficients of the above remainder must
always be continuous at y, if this is the case for given functions /y,/,...,/,, and
if these functions also satisfy the continuity and growth conditions which are known
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n

to be necessary, it seems reasonable to ask whether the expression Z 1,.0" defines
m-0

an operator from A, to A.

2.6. ReMark. If v is not fixed in X, and if y € S, as defined in Theorem 2,

then it is not difficult to compute the spectrum of 7 in the quotient A/(M)7,y,
teR
using the techniques of the proof of Observation 1. 1f y is periodic, so that for

some minimal £, > 0, TV then the spectrum of 7 in the quotient A/ 1,y
teR

is determined by the spectrum of T, in the quotient A/y —-it is the set of ali

B € R such that ¢*o belongs to the spectrum of T, in Ajy. If v is not periodic,

the spectrum of ¢ in A/ 1,7 is equal to R.
teR

Presumably this description of the spectrum of t at a point 7 € X not fixed
by 7 also holds withoul the assumption y € S. We note that for such a point 7,
cither the orbit of y is periodic or 7,7 # y for all + # 0. (The stability group of »
is closed: if 7,y ==y and f; >t then 7,7 2 7, and similarly t_.,y 2 7, s0 7,7 7.
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