). OPERATOR THEORY i
TERATOR THEC © Copyright by INCRresT, 1986

TWISTED COBOUNDARY OPERATOR ON A TREE
AND THE SELBERG PRINCIPLE

PIERRE JULG and ALAIN VALETTE

0. INTRODUCTION

In this paper, we show that the methods of non commutative differential
geometry [4) can provide a very simple proof of the Selberg Principle for super-
cuspidal representations of split-rank 1 simple algebraic groups over non-archi-
median local fields. Namely, if G is such a group, ¢ an idempotent of the convo-
lution algebra & = CZ(G) of locally constant compactly supported functions on G
{e.g. e coeflicient of a supercuspidal representation), and if C is a hyperbolic
conjugacy class in G, then:

Se(fg)dé -0,

C

The main tool is the construction of I-summable Fredholm modules (cf. [4]) asso-
ciated to any simplicial action of a locally compact group G on a tree. In [10], [11]
we introduced such a Fredholm module y over & = C2(G) by a construction involv-
ing elementary geometry of trees. As noted in [11], p. 214, the Chern character
of yis the trace on &/ given by the central function on G which is 0 on the hyper-
bolic elements (i.e. without fixed points on the tree) and 1 on the others. In order
to reach the Selberg Principle, we clearly need more sophisticated Fredholm modules,
whose characters will involve the hyperbolic conjugacy classes as well.

To do this, we construct in § 2 a one-parameter family (7 dret ool of 1-summable
Fredholm modules over & by making use of a discrete analogue of Witten’s idea
in his proof of the Morse inequalities [18]. This idea is as follows. Let 4° (resp. 4%
be the set of vertices (resp. edges) of the tree. The orientation allows one to define
the simplicial co-boundary operator d: £%(4% — £2(4%), which commutes with the
natural representations of G on ¢ *(4° and ¢%(4Y). If the tree is uniformly locally
finite (we will assume that), d is a bounded operator, but it is not in general a Fred-
holm operator (as the example of the tree of Z already shows). However, it is possible
as in [18], to conjugate d by e'”, where p is a suitable function on 4% and ¢ is
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a non-negative parameter. We will take for p the distance to some fixed origin
Xo: We can view p as a “Morse function” on a tree, with a unique critical point
at x,. So we will work with the twisted operator d, = e~'?de’?; making ¢ big enough,
one creates a hole in the spectrum of the twisted laplacian d;*d,, and 0 becomes an
isolated eigenvalue. In particular, d, is a Fredholm operator. Of course, d, does
not commute anymore with the representations of G on £%(4°%) and /%(4?), but it
commutes modulo finite rank operators, defining a 1-summable Fredholm module
y, over .« ; letting ¢ tend to infinity, we will obtain an operatorial homotopy between
y, and y, thus defining a unique class in KKg(C, C) (cf. {12]).

In §3, we compute the Chern character of y, (in the sense of [4], I, §!1). It is
very simply given by

r () = Sa(g)e—'vw ¢ (ae )
G

where p(g) is the minimal distance between a vertex x and its image gx. The 7,’s
define the same class in the periodized cyclic cohomology group H*(sZ), hence the
same map K (&) —» Z.

More generally, one can also consider, for any central distribution ¥ on G,
the trace 1,y on &/ given by:

e (@) = S a(g)e-"y(g) dg  (a € ).
G

We show in § 4 that the class of ,y in the periodized cyclic cohomology of .7
is independent of ¢. If y is the characteristic distribution of a hyperbolic conjugacy
class in G, we have 7,y == e~"y for some n > 1. Hence x ==0 in H*(&/), which
implies the Selberg Principle.

Our § 5 has a slightly different aim. We show how our familly (y ')'El’o’”[ makes
now clear the meaning of the homotopy of [10], {11] which was the technical part
of our proof of the K-amenability of G : the idea is that the use of a family of kernels

of positive type on A4° allows us to continue the y,’s for all ¢ € [0, co].
Note that the above formula for t, clearly defines a trace on &/, not only for ¢

big enough, but for any non-negative ¢. In §5, we use one of the constructions in
[10] to show that, for any ¢, the trace t, is the Chern character of a 1-summable
Fredholm module over &7, which, for ¢ big, is very simply related to our family
¥, . In particular, any t, pairs with K, of the full C*-algebra C*(G) and they all define
the same map K (C*(G)) —» Z. Actually, it was already observed in [11] that 1,
(which corresponds to the trivial Fredholm module 1¢ = (C,0,0)) and 7, (which
corresponds to our element y) define the same pairing with K (C*(G)). However
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the proof given here is more natural, and more in the spirit of cyclic cohomology;
it was P. Baum who suggested us to look for such a direct proof.

Finally, we notice that, for discrete groups, a computation of H*(%) is now
available (see [1]; also [14] for free groups); in many cases the equality [z,] = [t}
in (o) follows easily from these computations.

The origin of our paper is as follows: soon after the publication of [i0],
looking for a better understanding of the proofs in it, and for possible generali-
zations, and having in mind the analogy with Kasparov’s element y [12], we
made use of Witten’s idea to construct our y.s. Later, we computed their Chern
character and found the link with the homotopy of [10]. It is only after discussions
with A. Connes that we understood that our results implied the Selberg Principle;
he had been long aware of the link between the Selberg Principle and bivariant
cyclic cohomology. We would like to thank him for having communicated to us
these ideas, and also for having contributed, together with G. Skandalis, to the
simplifications of some proofs in §§2 and 3. We are also very grateful to P, Cartier
who pointed out to us a mistake in a preliminary version of this work.

1. NOTATIONS AND TERMINOLOGY

A tree is a connected, simply connected, oriented simplicial complex of dimen-
sion 1. The orientation allows one to define the extremity e(b) (resp. the origin
o(b)) of an edge b. The natural distance on A° will be denoted by 8(-,.). We will
assume that the tree is uniformly locally finite, meaning that the degrees of the vertices
are uniformly bounded by some integer N.

We denote by (3,)xe4® (Tesp. (05)se4?) the canonical basis of £2(4%) (resp. £2(4Y)).
For any function f on A% and any edge b, we define

Rf(b) = f(e(b))  Sf(b) = f(o(b)).

The simplicial coboundary operator d is defined by d = R — S.
LEmMMA 1. R, S and b are bounded as operators £2(4°) — £2(4%).
Proof. For fe¢¥4%, we have:

IRfIP = % Ife®)F= Y Y [fF <NIfI*

bedl xe€d0 bie(b)=x

A similar estimate holds for S.

If f (resp. £) is a function on A4° (resp. 4%), we define a function f-& on A by

(f-&)B) = f(e(8)) - £(®)-
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Functions on 4* form a discrete analogue of 1-forms on a manifold. Note the Leibniz’
rule:

a(fg)(®) = (f-dg)(b) + df(b)g(o(d)).
In particular, for any function ¢ on 4°
(1) e~ ?.d(e?f)(b) == df(b) + (1 — e~ "*®)f(o(b)) = Rf(b) — e~ ") Sf(b)

which shows that the operator e~?.d(e?-): £3(4°) — ¢%(4") jis bounded as soon
as do is bounded,
Let x, be some origin on 4°. We define.

p=10(xp,"); €=:dp.

Notice that ¢ only takes values 4 1. We denote by [x, ¥] the unique geodesic between
the vertices x and y. The operator g of integration on geodesics is defined on a function
£ on 4 by

géGy =Y, eB)ib) (xe4).

bC[xo,x]

As an operator £2(4Y) — #%(4%, g is in general unbounded; consider for instance
the tree

Xo

An elementary computation yields:

LEMMA 2. i) For any function ¢ on A': (dg)é = &.
ii) For any function f on A°, and any vertex x:

(gd) f(x) = f(x) — f(xo)-

These formulae are a discrete analogue of Poincaré’s lemma.

2. THE 1-SUMMABLE FREDHOLM MODULES »:

Let ¢ be a real, non-negative parameter. We define the twisted coboundary
operator d,.

d, = e™.d(e'"-) = R — e~ "S.
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By the remark following (1), d,:£%(4°% — £%(4Y) is a bounded operator. We also
define

q: = e—fﬂq(efﬂ,)'
Note the explicit formula on a function ¢ on A4:

¢3)] glx)= Y eb)e D) (x €A

C[xo,x]

By Lemma 2, we have
(3) dg, =1

and, for any function f on A°:

(g d)(x) = f(x) — e~ "PPf(x,)
hence
(4) , qrdt =1 — C—m<',6,‘0>.

Our aim now is to prove that, for ¢ big enough, d, is a Fredholm operator
of index 1. Assume we know that g, is bounded for ¢ big enough; then formulae
(3) and (4) show that ¢, is a parametrix for d,, and that d, has the right index.
We first make sure that e™*” is a /2-function for ¢ big enough.

1 +ef
LemMMA 3. Define C(t) = s for t>log(N — 1), one has
l1—e"(N—1)
Y, e= < C1).
xer
Proof.
R D
x€d ne=1 x: p(X)=n

Since there are at most N(N — 1)*~! vertices at distance »n from x,, this is bounded
above by

1+ 3 NN — 1y-tet
n=1

and this geometric series converges to C(z) for ¢t > log(N — 1). This proof was
inspired by Corollary 3.2 in [8].

PRrOPOSITION 1. For t > log(N — 1), the operator d,:¢%(4% — ¢*(4Y) is Fred-
holm with index 1.
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Proof. The remarks preceding Lemma 3 show that the point is to prove that,
for t > log(N — 1), the operator ¢, is bounded. Now g, is given by a kernel
k(-,) on A°x 4%, with

K(x. B) = E(b)e-—u)‘(x.e(b)) .if‘ b < [Xo, X]
0 if not.
Then
sup Y. k(x,b) == sup 3 e~ 1olr.e(b)
xed peat xed® bcixo.x]
— e-tp(x)
< sup e (I —e H 1

xea" I — e_t

This shows that g,:£°(4") = £%°(4% is a bounded operator. Moreover:

sup Y, k(x,b) <sup ) e~ 1% £ (] —— e~ t (N — 1)!?

beas* xea® ved x: bCLxgx)

as in Lemma 3.

So q,:£1(4") - £Y(4% is also a bounded operator. Applying the Riesz-Thorin
interpolation theorem (see [15], Theorem IX. 17), we see that g, is bounded as an
operator £2(4") — £%(A%), with explicit bound:

lg.ll < [ — e — e~ (N — 1)~

COROLLARY 1. Let G be a locally compact group acting simplicially on the tree.
For t > 1og(N — 1), the element y, = (£%(4%), £%(4%), d,) is a 1-summable Fredholm
module on .

Proof. Let R, (resp. R,) be the natural representation of G on £%(4% (resp.
7%(4"Y). For fin £(4%, g in G, b in 4", we have by (1):
(5) (d,Ro(g) — Rig)d)f(b) = (=160 — e=®))f(0(g~'b)).

But Lemma 1.4 in [11] shows that g(g~b) = &(b) unless b lies on [xp, g%]. So

d.Ry(g) — Ry(g)d, has rank at most p(gx,). On the other hand, it is clear that the
map '

g = Tr(Ry(g) — 9.Ry(2)d))

is locally constant, hence continuous on G. So, for a € &, the operator Ry(@) —
— ¢,R,(a)d, is trace class. This concludes the proof.
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Since t — d, is a norm continuous map, all y,’s are operatorially homotopic;
$0 it is tempting to let ¢ tend to co. However, we have in general

lim {|d,|| == oo
t—co

but it is possible to modify d, by some operator D*: £2(4") — £2(A") behaving appro-
ximately like (d,d¥)"? (positive square root of the twisted Laplacian on 4%); then
D~'d, will tend to the I-summable Fredholm module y of [10], [11].

First of all, we recall the definition of y. A bijection f: A"\ {x,} — 4" is defined
by mapping a vertex x to the unique edge through x lying on [x,, x]. We define
U:£3(4% - 734" by: '

US, = e(B(x)3peey  if x # X

Us, =0,

0

For a function f in £%(4°), this amounts to:

fle®)  if &®) ==
— flo(d)y if e(b) == --1.

By Corollary 1.5 in [L1], U is a coisometry of index 1, and y = (£%(4°), £%(4Y), U)
is a l-summable Fredholm module over .. Define now a strictly positive diagonal
operator D:£%(4Y) — £2(4Y) by

Ufis) = {

14

SEL O
DiB)=¢e " (b).
Lemma 4. lim ||D-'d, — U|} = 0.
{00

Proof. Fix some f in £2(4"). Using (1), we have:

t ¢

ID~d, — U= B e TR e T SFE) — YO =
bea'
= Z e~ | SFB)R + S e~ | RAD)® <
b: {B)=1 _ b: ey~ —1

< e H(IRSIP + IISFI?) < 2Ne=||f?

by the proof of Lemma 1. This concludes the proof.

PROPOSITION 2. The 1-summable Fredholm module y, (t > log(N — 1)) is
operatorially homotopic to 7.
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Proof. The almost-G-invariance of ¢ (already used in the proof of Corollary 1)
shows that D~‘d, defines a I-summable Fredholm module over ., which is oper-
atorially homotopic to y, by s - D~ %d,(s € [0,1]). Then Lemma 4 shows that
(£%(4°,£%(4"), D~'d)) is operatorially homotopic to 7.

3. COMPUTATION OF TRACES

In this section we compute the Chern character (in the sense of [4], §1) of the
{-summable Fredholm module y, (r > log(N — 1)). It is defined by

(@) = Tr(Re(a) — q.Ry(a)d))
where Tr denotes the usual trace. Let us introduce the measurable function on G:

Tt(g) = TI‘(RO(g) - qtRl(g)dx)
{which is well-defined since Ry(g) — ¢,R,(g)d, has finite rank). Clearly

(@) = Sa(g)r,(g) dg.
G

Now the functional 7, on & is a trace ([4], Lemma 1), meaning that the function
7, on G is central. This shows that t,, which a priori depends on the choice of the

origin, does not change when x, is replaced by gx,. Actually much more is true,
as the following lemma indicates :

LEMMA 5. 1, does not depend on the choice of the origin x,.

Proof. Choose another vertex xo, and denote by d;, g; the analogues of d,,
q., defined with respect to x;. We have to show that, for a € &:

Tr(q;R,(@)d; — q.R,(a})d,) = 0.
Introduce the operators
X=di—d,, Y=¢9:—q,.
As in §2, Corollary 1, we show that X is finite rank. Indeed, for f € £%(4°), one has

Xf(b) = (e™"® — e~ O)f(o(b)).
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Then by (3) and (4) one has dyg, = d,q, = 1 and q,d, — 1, qid; — 1 are rank one.
From that we see that Y = g, — ¢, is also finite rank and that one has:

dY + Xq, + XY =0,
On the other hand:
q:R(a)d{ — q,R(a)d, = YR(a)d, + q,R,(a)X + YR,(a)X.

Then by the trace property (since X and Y are trace class)

Tr(q,Ry(a)d; — qRy(@)d,) = Tr((d,Y + Xq, + XY)R\(@)) = 0.
This concludes the proof.

It remains to compute the function g — t(g). Remember that we defined
p(g) = inf 8(x, gx).
xgdo

Obviously p is a central function on G, moreover it is a locally constant
function; indeed, for g € G, let x € 4° be such that
p(g) = &(x, gx).

Let H be the stabilizer of the geodesic [x, gx]; it is an open subgroup of G; then,
for e H : p(gh) = p(g). We say that g € G is hyperbolic if p(g) # 0.

PROPOSITION 3. For any g € G, we have 1(g) = e~ '#®,

Proof. Let P be set of vertices x such that é(x, gx) == p(g). If p(g) = 0, then P
is the fixed point set of g. If g is hiperbolic, by [16], Proposition 24, P is a subtree
isomorphic to the tree of Z, and g acts by translation of p(g) along P; in this
case we shall say that P is the axis of g. In any case, we may assume, by Lemma 5,
that x, belongs to P. By formula (4), we have:

Ry(g) — q Ry(g)d, = (e_'/'< *s ‘Sx(,))Ro(g) + g {d,Ry(g) — R(g)d)
so that

Tr(Ry(g) — q.Ri(g)d,) = e™""® + Tr(q(d,Ro(g) — Ry(g)d))

and we have to show that the final term is zero. But, by (5) and the proof of Corollary
1, we have for any x € A°:

(d,Rog) — Ry()d)d, = ¥ (e ' — e O3,

bC[xo.gxol
gx: :0(b)
hence
q,(d,Ro(g) - Rl(g)dr)‘sx = E 2 g(b)(e_"e(g—]b) — e—-ls(b))e—m(e(b),y) By-

bClxyugx,] y: bClx,y]
gx=0(b)
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So, for the scalar product {(q,(d,Ry(g) — R\(g)d,)d,,d,> to be non-zero, we must
have simultaneously b < [x,, gx} N [x,, ] and gx = o(b). Since x, belongs to P,
this is impossible, and we get the desiredJconclusion.

REMARK. The Chern character of the [-summable Fredholm module (#2(4°;,
£Y4"), D-'d)) is equal to 7, . Indeed, by (3), we have

Tr(Ry(g) — ¢, D'R(g)D~'d,) = Tr(Ry(g) — q,Ri(g)d,) + Tr(R(g) — D'Ry(g)D"")

but since
. ~ 5 (elgby=e(b))
(Ry(g) -~ D'R(g)D~")0, = (1 —— ¢ )0
it is clear that

Tr(R\(g) — D'R\(g)D~*) == 0.

This remark and Lemma 4 show that the Chern character 1, of the 1-summable
Fredholm module y is given on a € of by the formula:

tola) = Tr(Ro(a) — UR(@)U) - S a(g)dg .

PO}

This can also be checked by direct computation (cf. [11]).

COROLLARY 2. The family of traces 1, (1 € Jlog(N — 1),00]) defines a unigue
pairing with the K-theory group K(f). This pairing maps K(f) to the integeiSe

Proof. Since 7, is the Chern character of y,, the pairing of ©, with Ky(s7) maps
K(s7) to the integers ([4], § 1, Lemma 1). Moreover, since the family (£2(4%),/%(4%),
D~'d}) is norm continuous, it defines the same class in the cyclic cohomology group
H% ), hence the same map K,(=#) — C (see [4], § 5, Corollary 3). A more direct
but less general argument is the following one: if e] is the K-theory class of some
idempotent in some matrix algebra over .o, the map ¢ — t}[e] is integer-valued and
continuous in f; so it is constant.

4. THE SELBERG PRINCIPLE
In order to reach the Selberg principle, we will need to treat 7, not only as

a trace on &7, but also as a locally constant central function on G, acting by multi-
plication on central distributions. If y is a central distribution on G (i.e. a linear
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functional on & invariant under conjugacy or, to put it more simply, a trace on
&), we define another central distribution 7,y by

ea) = Sr,(g)a(g)x(g) de (ae ).
G

A central distribution y defines an element [¥] in the cyclic cohomology group
H°(.sz£7) Our aim in this section is to prove the following

THEOREM. The family [t,x] (t > log(N — 1)) defines a constant element in
the periodized cyclic cohomology HX) = lim H(sf) (where S is Connes’ suspen-
K

sion operator {4], Chapter I, §4).

The idea underlying the proof of this result is that the central function t,
defines an element of the bivariant cyclic cohomology Ext%(s7h, o#5) (in the sense
of Connes [4]); moreover, 1, should be the “bivariant Chern character” of the
Kasparov element y, € KKg(C, C) or, more precisely, of the element j;(v,) €
e KK(C*(G), C*#(G)) (see [12] for definitions and notations); this idea will appear
clearly in Lemma 6.

Before embarking upon the proof, we give corollaries of our theorem.

COROLLARY 3. Assume that the support of y is contained in the set of hyperbolic
elements of G. Then [y} =+ 0 in HXsZ).

Proof. For n € N, denote by y, the central distribution on G defined by

M®:St@M@®

)
Since

Xme

n=1l

it suffices to show that {3,] =0 for » > 1. But

_I"

Tikn = Xn

and its cohomology class is constant, by the theorem. The result follows.

Since the pairing with K (&) is left unchanged by S ([4], Chapter I, Corollary
17) we immediately get the following result, which deserves to be called the abstract
Selberg principle:
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COROLLARY 4. Let ¥ be a central distribution on G, supported in the hyperbolic
elements, and let e be an idempotent in o£. Then

Se(’g)z(g) dg= 0.
G

Now, let G be (the group of rational points of) a split-rank 1 simple alge-
braic group defined over some non-archimedean local field F (e.g. G = SLy(F)).
We recall from [17] that G acts on a certain tree, special case of Bruhat-Tits build-
ing, such that the stabilizers of the vertices are precisely the maximal compact
subgroups of G. In particular, a conjugacy class C is hyperbolic if and only if
it meets no compact subgroup. Now, orbital integrals over such a C do converge

({91, Lemma 19), hence a — Sa(g) dg defines a central distribution on 7. On the

C
other hand, coefficient-functions of supercuspidal representations of G define

idempotents in &/, up to a multiplicative constant ([2], Theorem 1.1). From Co-
rollary 4, we get the Selberg principle for G:

COROLLARY 5. Let G,C be as above, and let R be a supercuspidal repre-
sentation of G. For any ¢ € Vg, E € VE (the dual of Vg):

S(R(é)éf, Eydg - 0.
C

To the best of our knowledge, the first proof of the Selberg principle for
general reductive p-adic groups was given by Harish-Chandra ([9], Lemma 45).

We now turn to the proof of the theorem. Let G be a locally compact
group acting on a tree, let y be a central distribution on G, and let # be a Hilbert
space. We consider the right o/-module

E =HRA

(algebraic tensor product) which we endow with the .#/-valued scalar product

<&, my(h) = S<5(g), ey dg (& 1€ b)

G

(in this way & becomes a pre-C*-module over the pre-C*-algebra o). The rank 1
operators 6, , ({,n € &) are defined by

0 (%) = &n, x> (x€8)
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and finite rank operators are linear combinations of rank 1 operators. We define
the trace Tr, 0, , by

Tr, 0, , = S <, EX(e)u(e) dg

G

and we extend by linearity to finite-rank operators (it is easy to check that this is
well-defined). Since x is central, Tr, is a trace on the algebra of finite rank operators
on &' Note that, if S is a finite rank operator on # and a€ o/, then S®a
is a finite rank operator on & and

@) , Tr(S®a) = Tr S-y(a).

We will apply this with & = £2(A)®s/ (i = 0,1). We have a diagonal action of G
(on the left) on & and, by integration, we get a representation R; of & on &'.
We also have operators

de =d,®1:6° > &%,

g = q,®1: 6 > &°.
~LEMMA 6.~For~a € &, the operator ﬁo(a) — q,RNI(a)a?, has finite rank, and
Tr(Ry(a) — g, Ry(@)d ) = (T, )(@).

Proof. We may assume that a is the characteristic function 1, of some left
coset gK of a compact open subgroup K stabilizing %, Let L be the intersec-
tion of K with the subgroup of G leaving the ball {xeA4°:p(x) < p(gxo)}
pointwise fixed; L is compact open. It follows from (4), (5) that, for k€K,
le [, we have

Ro(gkl) — q,R\(gkl)d, = Ry(gk) — q.R\(gk) d,.

So, ifk,, ..., k, is a set of representatives for the left cosets of L in K, we have

i=1
L

Ro@) — 3.R@d, = ¥, S[(Ro(gkil) — g R(gk)d)@gkl1dl =

= Y, (Ro(gk:) — q,Ri(gk)d )Rl 1.

i=1

This is a finite rank operator and, by (7) and the definition of t,, itstrace is given by:

i==1

Tr (Ry(@) — 2.8 d) = ¥, 7.(gkd) Slgk,.L(h)x(h) dh = Sa(h)(nx)(h) dh.
G

7 - 2321
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This proves the lemma.

To proceed, we have to adopt the formalism of [4], Chapter I. Let # be
the Z/2-graded Hilbert space whose even part is £%(4°), and odd part is £%4Y) & C

where C carries the zero action of G. On #, we have the degree 1 operator F,
defined by

Fof == (d.f,{f, 0x) (fetX(4%),
F(& 2 =:q8 + 77" (£ W) es¥(4") @ C).

Then, for ¢t > log(N-I), F, is bounded and F? = 1. Moreover
I .
— TreF[F,, a] = Tr(Ry(@) — ¢,R(a)d,)

where ¢ is the grading operator. Similarly, if we define 6§ = # @</, F,= F, ® 1,
we have:

- TroFIF, al = Trho@ — . R.@0) = Sa(g)(r,x)(g) de
G

so that our Lemma 6 generalizes Lemma 1 in [4]). Define now a trilinear form
on & by

oa’, @', &) = — Tr ea"lF,, @] [F,, a?].

LeMMA 7. 1) @, is a cyclic 2-cocycle on o4, hence defines an element [¢ ] in Hi(.o7).
i) One has [S(z,0)] = [@,] in HX(sf).

Proof. 1) is proved exactly like Proposition 1 in [4], Chapter II.
ii) is proved like Theorem 1 in [4], Chapter I: if

(@, oY) = % Tr,e F(@(F,, & — &'[F, a])

then the Hochschild boundary of ¢ is S(z,X) — ¢,

LEMMA 8. For s,5' > log(N — 1), there exists a Hochschild cocycle y such
that ¢y — @, = By (where B is Connes’ operator [4], Chapter II, §3).

Proof. We imitate the proof of [4], Chapter I, § 5. Notice that one has

@a @', a®) = — Tryep (a)F, p (@I F, p(a?)]
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where the graded module is now two copies of &+ = # +* @47, the representation
p, is unchanged on the even part, and transported from &~ by F, on the odd part,

~ 0 17
d F- : f. [4], p. 65).
an [1 Oj(c 4], p. 65

Let 6,(a) = di p(a) for a € o, which makes sense since a — FaF, is finite
t

rank with fixed range.
Define

Ve, ah @, @) = Y, (= DT (@F, p @) .. 54 .. F, p (@]

k=21

Then as in [4], p. 64 one checks that b, = 0 and that
d‘ 0 ¥ o 1 o 1 1 0
d (pt(a ’ali a2) = ‘/"(],a ,a 902) :Bolllt(a ,a ,a2) :"‘;Blpt(a :ala az)'
t ,

We get the lemma by integration over [s, s').

Let us now complete the proof of the theorem: by Lemma 8, the cyclic cocycle
o, - ¢,.€ H{) belongs to ImB = KerS (cf. [4], Chapter II, §4). Thus by
Lemma 7,

SZ(TSX - Ts’x) = S((p.s - (ps’) =0 in Hg(ﬂ)'

5. 7, AS A CHERN CHARACTER

In one previous section, we showed that the Chern character z, of y, was
given by

(8) T (@) = Sa(g)e-'“@dg (ac ).
G

Of course, this formula defines a trace on ./ not only for ¢ > log(¥ — 1), but
for any non-negative f. So a patural question arises: is it possible to realize this
trace as a Chern character for any value of 7? We will see that this question has
a positive answer; for that, we have to appeal to the constructions of [10], [11].
There we obtained an homotopy (in Kasparov’s sense [12]) between y and the
trivial Fredholm module 1;. More precisely, we constructed a family (5%, ,£%(4°),
U):icroo) Of 1-summable Fredholm modules such that:

) # o =1¢%4"), U, =1 (so the Fredholm module (5#,,,£%4°%, U,) is
degenerate, hence trivially homotopic to zero).
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ii) #, = C @ (*(4Y), and for } € C, &€ 2(4Y):
Up(2, &) = 48, + U*¢

(4 ,£%(4%, Uy) corresponds to the 1-summable Fredholm module 1, — 7.
iii} For ¢ € ]0,00[, #'; is a Hilbert space topologically spanned by vectors
& (v € 4% such that

G- R
and carrying a unitary representation p, of G such that
P8 = Equ -
Moreover, U, is a unitary operator defined by

Ul = e 8s)s, + (1 — ey e=60w05

YEy£gx]

The technical part of [11] shows that this family of triples actually satisfies
the definition of [12] for an homotopy. In particular, defining V, = UU,, we see
that the family (5 ,,£2(4%). V )ieqo,00 is still an homotopy, where this time we get
v for r =00, and for ¢ - 0, we get the triple (CH£%(4Y),0 @ £%(4Y), 0@ 1) which
is 1, up to a trivial homotopy. (The homotopy obtained in this way is more direct,
and perhaps simpler, than those of [10], [11], but the authors confess with some
remorse that they did not think of it at the time.) We shall see that this homo-
topy, which could seem rather mysterious, can in fact be understood as a conti-
nuation to all £’s of the family d,.

Our purpose is to show that the Chern character of (# ¢ £HAY), V) is given
by (8) for any ¢. We begin by relating this family of 1-summable Fredholm modules
to our family y,. For any 7in ]0, 0of , we define a densely defined operator W,: 3, —
—£%(4°) by

WeE =35, (xe4°.

LemMA 9. W, extends linearly and continuously to a bounded operator
5, = £4A%),; moreover:

W, = (1 — e=*)"2dFD-V, + (-, E4555, .

Proof. Since the right hand side of this formula defines a bounded operator
for any ¢, it suffices to check the equality on any &!. Since Vrif;o =: 0, this is clear
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for x = x4, SO we may assume x # x,. Then

Vide = —e 2P 31 e(B(y)e™ "%,

YE Jxyx]

and

(I = e=2) s D=1V &, =

- 2 s( ﬂ( y))e —18(x, ) — (1/2)(1 = e(B( .v)))((ﬁe By — € —lz(ﬂ()’))éo(p(y»)'

ye ]xo,x]

Evaluate this function on 4° at a vertex z; it yields

Y e(By)e e DA FOMS (e(B(y))) — e FONS (o(B(y)))] =

Y€ )xpx]

=3 b)eT G o) — o5 (o)) =
Clx,,x]
' by an easy check

={qdb;, 8 = (0;, 0,) — e¥X5,, 6, > by formula (4).

Consequently
(1 — e~2)"VAFD =1V £L = 5, — e~

which 1is the desired result,

LemMMA 10. For t > log(N — 1), the operator W, is invertible and
Wit = (1 — e ®)PVrDIgE + (- e & .

Proof. The algebraic verification of the equality is routine, and is left to
the reader. By the proof of Proposition 1, the right hand side is a bounded operator
for t > log(N — 1), so the result follows. An explicit bound for the norm of W;1
can be obtained via Lemma 3 and the interpolation argument used in Proposition 1;
one gets || W < C@)V2

PROPOSITION 4. For any t € ]0,c0[, the Chern character of the 1-summable
Fredholm module (%A, V) is given by formula (8).

Proof. For any g € G, the operator p,(g) — V*R,(g)V, has finite rank, by
formula (+) in [11]. So it is enough to prove that

®) Tr(p(g) — VF*R\(g)V,) = e 7@,
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First assume that ¢ > log(N¥N — 1); then by Lemmas 9 and 10
(1 —e-2)22Y Wr - D-'d,
(1 — e 2 V(W hyVE = q,D'.
Since W;* intertwines R, and p,, by its very definition, we have
Tr(p.(g) — Vi Ri(2)V.) = Tr(Ry(g) — ¢, D'R,(g)D~'d)

and this equals e~'7® by Proposition 3 and the remark following it. To get (9)
for a general ¢, one simply notices that the left hand side of (9) depends analy-
tically on f; so the result follows by analytic continuation.

From this, one obtains a generalization of Corollary 2, with & replaced
by the full group C#-algebra C*(G).

COROLLARY 6. There exists a unique map ¢: K(C*(G)) = Z such that, for
any t in [0,00], and any idempotent e in M (Domt,):

ple]l = (z, ® Tr)e).
Proof. Define

B, = {a € CXG) : pa) — VFR(a)V, is trace-class}.

By the results of [4], Appendix 3, ¥4, is a dense subalgebra of C*(G) and the
inclusion #, < C*(G) induces isomorphisms in K-theory. By Proposition 4, the
tracc 7, on &/ extends to a trace on #,, so-we get a map ¢, : K(C™(G)) - VA
such that, for any idempotent e in M, (4,):

@ lel = (r, ® Tr)e).

The fact that this map ¢, does not depend on 7 can be proved as in Corollary 2.

REMARK. In our papers [10], [11], the main consequence of the existence
of an homotopy between y and 1; was the K-amenability of G (in the sense of
Cuntz [6]), provided the action of G on the tree is proper. Connes has commu-
nicated to us the following conjecture: if a locally compact group G admits a
continuous function ¢ of negative type such that e~'? belongs to LY(G) for ¢
big enough, then G is K-amenable. Because of the results in [7], this conjecture
would imply the K-amenability of SO(n, 1) amd SU(n, 1). (Kasparov [12] has
proved the K-amenability of SO(n, 1) by a different method.)
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On the other hand, Chiswell studied in [3] a very peculiar class of functions
of negative type, called integer-valued length functions. One result in [3] is that ¢
is an integer-valued length function on G if and only if there exists a tree on
which G acts, such that for some vertex Xx,:

@(g) = d(gxo, Xp)-

Bearing Connes’ conjecture in mind, we may rephrase the main corollary of [11]:
if a group G admits an integer-valued length function ¢ such that e~'? belongs
to LYG) for ¢ big enough, then G is K-amenable. The fact that ¢ has negative
type was of fundamental importance for the proof of this result, but the I»-
-condition on e~*® was not really needed. The present paper shows how this L'

-condition can be used to construct a family of 1-summable Fredholm modules
over .
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