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RELATIVE ENTROPY OF STATES: A VARIATIONAL
EXPRESSION

HIDEKI KOSAKI

0. INTRODUCTION

In [4], Araki introduced the notion of relative entropy S(¢,y) of states
¢, on a (not necessarily semi-finite) von Neumann algebra. (See [12] for the
semi-finite case.) In recent applications of the theory of operator algebras to quan-
tum statistical mechanics, Araki’s relative entropy has been playing an important
role. It is also crucially used in Connes’ work [5] on entropy of automorphisms.

Araki defined S(g, ¢) by using a standard form of the algebra in question,
[2], [7], and other relevant objects. (See Definition 3.1.) Due to uniqueness of a
standard form (up to a spatial isomorphism), S(¢, ¥) depends only on the states
@, Y. Yet, if so, it is certainly more desirable that one can express S(¢, ) in terms
of just ¢, y.

The main purpose of the article is to obtain certain expressions for S(g, ¢)
and other related quantities in terms of states themselves. Partly from physical
consideration, these quantities are expected to satisfy certain properties. Proving
them is not so easy, and effort has been made by several authors (4], [9], [10],
[11), [13]). Our expression is variational, and all non-trivial properties are “built-in”
in the expression. In fact, all of them can be immediately derived from our expression.

1. NOTATIONS AND PRELIMINARIES

Throughout, let M be a von Neumann algebra with a standard form (M, #,
J, #9), [2], [7). For each ¢ € M}, its unique implementing vector in the natural
cone 24 is denoted by &,. (p(x) = (x£,|¢,), x € M.) Let p,, (resp. p,) be the pro-
jection onto the closure of M’ (resp. M¢E,). Thus, p, € M, p, € M’,and p,, is exactly
the support projection of ¢.

Following {4], we introduce a relative modular operator 4, for (not necessa-
rily faithful) functionals ¢, ¥ € M. Namely, 4,,, is the positive self-adjoint operator
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on the standard Hilbert space # characterized by
| MS, @ (1 --py)A is a core for 437, the support of 4., is p,p,#,
= JAYExE, + O = py¥*E,, xeM, pL- 0.

LummA 1.1. For eacl t > 0, we have

(oot + Boy) ey | &) — infY(xx) + 17%000%); ¥ + ¥+ 1y, v e M},

Proof. Since ME, @ (1 — p,)# is a core for AL, it follows from Lemma 2.1,
[8], that the above left side is equal to

inf{ xE, + il + 1AROE, + OIF;
()]
Xy + ¥y + =8y, X, pEM, n,{e(l — py)#}.
Notice that
AGE(rEy + OIF == [IpgdyE | = lpyy™Eol, by (1)
Xy it == XG4+ iR,
xéy + 0+ 98 + L= &y = (x + Ypy =2 py and { + 57:-0.
Therefore, (2) is equal to
inf{lixg, 1 + = Vipyy*E, % (v + Ppy == py, X,y € M},
which is obviously majorized by
inf{ii xy 12 + G, x+ye=1, x,ye M}

since {ip, 37,00 < YFELNR Actually, the reversed majorization is also valid by the
following fact: If x,y € M satisfy (x + y)p, = p,, then X == xp, + (1 - p,) and
¥ = yp, satisfy

X+ y==1,

IXEG 2 + e IYHELNP = lixdy 1® + 17 Py Eli>
Q.E.D.
Throughout the article, g(2) will be used to denote an operator monotone
function on the closed half-interval [0,00). (g(a) < g(b) as operators whenever
operators a, b satisfy 0 < @ < b.) Our standard reference on this subject is [6].
The next result is classical.
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LemMA 1.2, For such a function g(%), there exist (unique) real numbers
o, B, B = 0, and a finite Radon measure u on (0,00) such that

(o)

g) =a + A + Sz(z + )71 + 0du(), A3 0.
o

Conversely, such an integral expression always gives rise to an operator monotone
Sunction on [0, co).
2. VARTIATIONAL EXPRESSIONS

Throughout the section, we assume that an operator monotone function g(/4)
on [0,c0) has the integral expression described in Lemma 1.2. At first we obtain
a certain variational expression for (g(4,,)¢, léw). (The integral expression of g(1)
guarantees that g(1) is concave so that g(0) < g(4) < al + b for some a,b > 0.

The vector ¢, being in the domain of A%}, the expression (g(AW)Zj,,,]@) always
makes sense as a form.)

LemMA 2.1. Let N be a subspace of M containing 1. If N is dense in M
with respect to the strong™ operator topology, then for any ¢, € My we have

(8(44)Ey | ) = a¥(py) + Boalpy) +
(>0
-+ S inf{y(x*x) + 1=2p(yy*); x + y =1, x,y € M}(1 + H)du().
1)
o]
Proof. Let 4, =S Ade; be the spectral decomposition. Since the support
(1]
of 4,, is pyp,# (1)), we get
Sadwﬁuwzawqulg)nawmp.
0
Also, because of AL2¢, = Jp,&, (1), we get

SNMM@W=ﬁM%@W=M@$NZBMW)
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We thus get

(&) | E)) =S gDl =
0

(
(

- o) + oy +\ ({2 + n=yt + t)dﬂ(t)) dlleé e =

°L,_\8
Sl g

= oaf(p,) + Belpy) + Mt + ).)Jdileléwlf) (L + Ndu(®) =

LA ¥
Sl g

(by the Fubini-Tonelli theorem)

- ap(p,) + Bolpy) + S Aoyl + Ao, |2, (1 + 1) du(0).

Now the result follows from Lemma 1.1 and the density of N. Q.E.D.

The above result is implicit in [10], and closely related to [1]. But now we go
further. Namely, we will try to switch the order of the integral sign and the
inf sign.

Following an idea in [10], (fixing ¢, y € M) we introduce the following two
positive sesquilinear forms on the algebra M:

o (x5, 3V € MXM — @(x, y) = o(xy*) € C,
Y O p) € MXM - @ (x, p) == Y(y*x) € C.

Setting L« - {x € M; @g(x, x) + (X, x) == 0}, we consider the pre-Hilbert space
M/L equipped with the inner product

Cx + Ly + L) == @plx, y) + ¥ (x, p).

(L is a subspace, and (-|-> is well-defined due to the Cauchy-Schwarz inequality.)
Let A be the Hilbert space completion (the inner product is still denoted by { - i )
and /: M — K is the canonical map. If a subspace N (containing 1) of M is s*-dense,
then

(3) i(N) is dense in K
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from the construction. Since ¥ (x, x) < {i(x) | i(x)), x € M, there exists a unique
positive operator k,0 < £ < 1, on K satisfying

4 Y(y*x) = <ki(x) | i), x,ye M.
Obviously we get
(5) @(xy*) = (1 — K)i(x) | i(y)>, x,y€ M.

The right side of the equality in Lemma 2.1 is equal to
() + Bolpy) + S inf{ChiCx) [ i) +
0
+ 7K = LI i)y x + y=1,x,y€ N}1 + t)du(r) =
= ay(p,) + Bo(p,) + Sinf{(zki(x) | i(x)> +
0

+ (1 — k)i(y) |i(y)>; X+ pr=1,x73€NHl 4+ ) du).

Due to (3) and Lemma 3.2, [8], this is equal to
(6) oa(p,) + Bolpy) + S k(1 — k) {tke + (1 — k)} (1) | (D)X + )¢~ du(r).

The following two remarks are in order:

@) t€(0,00) = tk{tk + (1 — k)}Yi(1) e K
is continuous,

® itk + (1 — k)] < max(l,¢), >0
Tn fact, (7) is obvious while (8) follows from

!k—i—(l——k)::1 if 0 <t <,

th + (1 — k) < .
itk + (1 —k)y==11 iftz=1

Now we can prove:

THEOREM 2.2. Let N be a subspace of M containing 1 which is dense in M
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with respect to the strong®-operator topology. For any @, € M}, we have

(g(A(pu/)‘:q, ICU,) = Oﬂﬂ(l’q)) + ol Pw) +

* me W = XY — x(1) + 17 plxOx()} A+ £) duch),

0

where the infimum is taken over all N-valued step functions x on (0, 00).

Unless otherwise is stated, by a step function we will always mean a step
function with finitely many values.

Proof. Thanks to Lemma 2.1 and (6), it suffices to show

S k(1 — B){th 4+ (1 — )4 DY + e~ 'du(r) ==
i .

&)

: :infS {p(x (X)) + np((1 — x()Y(1 — x(ONHL + ) 1dp(e).

Q

Elementary computation shows that, for any x(1) € M, r € (0, 00), one gets
Ctk(L — K){th + (1 -= K} =) [iD)) + {{ak + (1= K@) | &)«
s (1 — KY Ux(@)) i)y + <tk il = x()) | it — x())

with (1) = tk{tk + (1 -~ R} 7N (1) — i(x(1)).

By (4) and (5), in (9) the second term is equal or greater than the first. To
show (9), we have to show that the (positive) error term {{rk + (1 - K)}<(7) :' Fa)
(after integrated with respect to the measure (1 + #)r~'du(r)) can be arbitrarily
small for an appropriate choice of a step function x(z).

Choose and fix ¢ > 0. For 7 > ny : - n,(¢) large enough and to be fixed later.,

we set x(z) — 1 (€ N). Then

) tk{tk + (1 = k)Yt —- i) - -

(b — k) tk + (1 — K} -N(), > ng.
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‘We thus get

S ek + (1 — KYEN | EDYA + - 1du(r) =

::S (= (1 — K)i(1) | —(1 — k){tk + (1 — R} + )-'du(t) <

110

< S I — &I — Rk + (1 — 0} IR+ - 1du(r) <

< ni(l)n‘-’g U+ e-du(e).

Since (1 + 0)t=t ~ 1 (for ¢ large) and u((n,, 00)) < u((0,00)) < + oo, it is possible
to choose n, such that

S ek + (L — YW | €@ (L + O~ du(r) < ¢f3.
nO
Next, for 0 < ¢t < ny = n,(¢), small enough and to be fixed later, we set
x(#) =0 (e N). In this case, we get
E@) = tk{tk + (1 — k)} (1) — i(0) =
= tk{tk + (1 — k)}-%(l). O <t <u,,

and estimate

)

S ke + (A — Y@ | @YU + 0t du(e) <=

0

= S Ltk i(ly | th{tk + (1 — )} ~4(D) (I + e~ dp) <
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o
< S 1lkeli 1(tk) {the + (1 — R)}HI HaDIECL + 0)r~*dp() <
0
<P \ (1 + )

Since 1 + ¢t ~ 1 (for ¢ small) and ;((0, 1)) < 1((0,00)) < +00, it is possible to
choose #, such that

Ty

S ke + (1 = K} SO | €D + Dr-dp(r) < ef3.

0

It remains to show that one can choose a finitely many valued step function
x(z) on the compact interval [, , np]. Thanks to (3) and (7), we can choose such an
x(#) such that

e(3u((0, o))~ t(1 + 1)1 if +€(0,1] A [, Aol

JEOIE < { RS
eBu((0,00))~11 + )"t if re(l,00) N 1, 1ol

Then it follows from (8) that

n
0

ke + (0 — K)} &) [E@)) (1 + DHr~dp(r) <

7
(]

< S max(1, )i + De~1du(r) < &/3.

1]0

Q.E.D.

From the above proof, it is obvious that a step function x(¢) can be further
assumed x(z) == 0 for 7 small enough and x(¢) = 1 for ¢ large enough.
3. RELATIVE ENTROPY

We will;obtain variational expressions of S(¢, ¥), ¢, ¥ € M. For a moment
(sec Remark 3.3), we assume p, > p,. Hence, by (1), the unique implementing
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vector &, in 28 is in the support of 4,,. Keeping this fact in mind, we introduce:
[>e]

DeFINITION 3.1 ([4]). Using the spectral decomposition 4, ::S Ade;, we set

0

S(@, ¥) = —\ logid|le;&yl

°(_I‘\8

the relative entropy of ¢ relative to .

Notice that

— 00 < — S logZdjle;¢,lI* <O
1

because of 0 < logd < 4, 4 > 1, and the fact that &, is in the domain of Al}.
Thus the integral in the above definition always make sense (S(g, y) € (—o0, co]).
Furthermore, when ¢(1) = (1), 1 — 2 € —log/, A > 0, implies S(gp, ¥) € [0. co).

Because of limlog A == —oo we cannot directly apply the result in §2 to togl
a0

(although log 4 is operator monotone on (0, c0)). Instead, we set
&)= —logA +n7Y), A1=0,
for n::1,2, ..., and observe
g 1T —logh asnutoo

for each 4 > 0. Using the monotone convergence theorem on (0, 1) and Lebesgue’s
dominated convergence theorem on {[1,co), we get

(10) S guDdlled, It 1 S, ¥) asn oo,

We also notice that

—g,(A) = log(A + n~Y) = —logn + S At + A)~ -,

a2
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Thus, each g, is operator monotone on [0,00). (In Lemma 1.2, we choose o - :
c—-logn, p=:0, and (1 + )du(r) = X, )(t)t—ldt.) Theorem 2.2 shows that

co

((Bo)Ey |5 = SUpW(py)logn — S (1 — X)L — x(1) +

al

+ 1= p(x(1)x(t)*)}¢~ds,

where the sup is taken over all N-valued step functions x on (771, 00). Because of
the assumption p, > p,, we get

Y(py) = y(1)

(see Remark 3.3). Therefore, by (10) we have:

THEOREM 3.2. Assume that N is a subspace of a von Neumann algebra M and
thar 1 is included in N. If N is dense in the strong®-operator topology, then for any
o, € M} we get

S(¢, ¥) - supsuply(1)logn — S W — X)L — %) +

neNt
—1
n

+ 7 lp(x()x(2)*)} ¢ 1d1],
wheve the second supremumn is taken over all (finitely many) N-valued step functions
x on (r1, 00).

ReMARK 3.3. When p,, ® p,, Araki, [4], set S(p, ) == +co. We claim that
our variational expression, that is, the right side of the equation in the above
theorem, also gives +oco in this case. In fact, for example set x(¢z)—1--p,,
0 <7< 1, and x(¢) == 1, ¢ > 1. Then the inside of the double sup sign is equal to

Y(l — pylogn — o(1)
by straightforward computation. Since p, % p,, we get Y(1 — p,) ;‘ 0 and

sup {¥(1 — pyllogn — ¢(1)} = + oo.
neN+

In the proof of Theorem 3.2, we approximated log’ by operator monotone
functions log(A + »~Y) on [0, 00) from above. Notice that there are many other
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ways to approximate logA. For example,

and

n(l"_l — 1 | logh asn T co.
In this case,

n(/l"'l—— D= —n+ S At + ).)‘1nn‘1sin(n"17t)t"_l_ldt.
0

Therefore, the same argument as the proof of Theorem 2.2 gives rise to another
similar expression of S(@, ).

Also it is possible to avoid a double supsign (as shown below). Instead we
have to take the sup over all countably many N-valued step functions. Recall
the integral expression:

— logi =S {(¢ + D= — 2t + H)~}e-1dr, 2>0.
0

Based on this, we can prove:

oo

S(p, ¥) <= sup S (G + D01 — P — 2O — x(1)) —

0

— t~lp(x()x(e)*)} e~ 1ds,

where the supremum is taken over all countably many N-valued step functions x
on (0, c0) which are bounded and x(z) = 1 for ¢ large enough. This expression is
less powerful than the previous ones, and will not be used later. Full details are
left to the reader. The estimate for ¢ small enough in the proof of Theorem 2.2
fails for the, integral expression of —logA. This is the reason why we have to look
at countably many valued step functions.

4. PROPERTIES

As mentioned in §0, all non-trivial properties of the relative entropy are
“built in” in the expression of Theorem 3.2. Although these properties have been
already known ([3], [4], [9], [11], [13]), for the sake of completeness we will derive
them from Theorem 3.2.

102321
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THeOREM 4.1. (i) (Lower semi-continuity). The map: (@, ¥) € M XMI —
- S(@, ¥) € (—o0, 0] is jointly lower semi-continuous with respect to the o(M .., M)-
~topology.

(i) (Joint convexity). The map in (i) is jointly convex.

(i) If @1 < @, then S(@1,¥) 2 S(@s, ¥).

(iv) If' M, is a von Neumann subalgebra of M, then S(@,, ) < S(@, ¥). where
©1, Y, are the restrictions of @,y to M,. In particular, with M, == C1, we ‘have the
Peierls-Bogolubov inequality :

—§(1) log(e()iY(1)) < S(o, ¥).

(As explained in [3], when Lo < ¥ < l,o for some 1,1, > 0, this means that
o(1) =2 y(Dexp YUY with the relative Hamiltonian operator h - :h% -
=i g (Do ; DY), )
dr 0

(v) (Effect of a strongly positive map). Let M, be another von Neumann alge-
bra, and y:M — M, be a unit preserving strongly positive {y(x*x) = p(x)*y(x)) normal
linear map. Then for ¢, € (M})% we have S(¢ -y, ¥ oy) < S(o, ¥).

(vi) (Martingale convergence). Let {M,},c; be an increasing net of von Newmann
subalgebras of M with (\UJ M)’ =~ M. Then the increasing ((iv)) net {S(o|M,,

el
W|M)}er converges to S(o. ).

Proof. (i) ~ (v) immediately follow from Theorem 2.2 (with N: - M).
(vi) We assume S(p, ) < +00. (The case S(¢,¥)=: +oco can be handled

similarly.) Choose N == \_J M, in Theorem 2.2. For any ¢ > 0, there exist 1, € N,
el

and an N-valued step function x, on (ry 1, co) such that

o0

St ) — & < YU1) logny — S W0~ x)*(0 — xo(1) +

-1
Bo

+ 17 Yp(xo(D)xo(1)*) ) ~2dr.

Since x, takes only finitely many values in {_} M, and {M,},c, is increasing, all
el

the values of x, occur in some M,o. Thus we have

S((P’ ‘p) —&< S((pIMto’ ll/lﬂllo)
Q.E.D.

Now we make some comments on the C*-algebra case. So let us assume that
9 is a unital C*-algebra and that ¢,  are elements in A} . Let M =UA** be the uni-
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versal enveloping von Neumann algebra of U and @,y € M} be the normal exten-
sions of ¢, Y. Then S(¢, ¥) is defined as S(@, ). Let B be a (norm) dense subspace
(containing 1) of A. Then B is s*-dense in the von Neumann algebra M. Therefore,
in the C*-algebra set-up, Theorem 3.2 is also valid if N is replaced by B. Conse-
quently, all the properties in Theorem 4.1 remain valid under suitable, modifications-

Expressions such as [[4%2x¢, |2, 0 < 0 <1, x€ M (which corresponds to
Tr(x*h’xk*~9), h, k being positive trace class operators) appear in many contexts
(information, Rényi entropy, and Wigner-Yanase-Dyson-Lieb concavity). Since

= S At + )~ in~lsin{0n)1*~1ds,
; .
Theorem 2.2 (actually, its easy generalization to (g(d,,)x¢, ]xéw)) implies
4yt = infS (e — x()*x — X)) +
[}

+ 1 p(x(1)x(t)*)}n~sin(Om)r*~*de.

In particular, with 0 = 1/2, x = 1, we get

Vo VI (= ¢l =
= infS {Y(Q — x()*(A — x(1))) + 17 2p(x()x(t)*)}n~1t-12ds.
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