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STABLE RANGE FOR TENSOR PRODUCTS OF EXTENSIONS
OF # BY C(X)

V. NISTOR

INTRODUCTION

In [8] G. Nagy studied the stable rank of the algebras 7, of n-dimensional
Toeplitz operators [3, 4]. For n even his results are exact, while for odd » the stable
rank is only determined up to 1. In this paper we obtain general results for the stable
rank of tensor products of Brown-Douglas-Fillmore extensions [1] of :#" (the algebra
of compact operators) by commutative C*-algebras. Our results are sharp under
some additional hypothesis which are fulfilled if the spectra of the commutative
C*-algebras involved are manifolds. In particular we complete Nagy’s results
by obtaining the exact value of the stable rank of C(X) ® 7, if X is a compact
manifold. We obtain also some estimates for M. A. Rieffel’s connected stable rank
csr(A4) and introduce an absolute connected stable rank, acsr(4), which turns out
to be quite useful and show that it equals the stable rank of 4 ® C([0, 1]).

The first section deals with preliminary material due to M. A. Rieffel and G.
Nagy. The second section contains some general results concerning the stable rank,
the connected stable rank and the absolute connected stable rank. In the third
section we generalize G. Nagy’s estimates. The last section contains some technical
lemmas and the proof of the main theorem.

I would like to express my gratitude to Professor Dan Voiculescu for suggest-
ing me this problem.

We begin by recalling some definitions and results from [9).

For a unital C*-algebra 4 and a natural number n we consider Lg,(4), the
set of n-tuples of elements of 4 which generate A as a left ideal: the topological
stable rank of A is the least integer n (if it does not exist it will be taken
by definition to be oo) such that Lg,(A4) is dense in A". According to [6] this
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number coincides with the usual Bass stable rank of A, denoted sr(A), which
is the least integer n > | such that for any (ay,..., a,,a,.,) € Lg,+,(4) there
exists by, ....b,€ A such that (a, + ba,4q, ..-5a, + b,a,.,) € Lg(4) (f ne
such n exists we take sr(4) to be c0). We denote by M, ,(4) the set of matrices
with entries in A with m rows and » columns: M,, ,(4) is also denoted by M ().
Gl.(n, 4) 1s the group of invertible elements of M, (A4) and GL%#n, A) the con-
nected component of 1 in this group. We shall denote by csr(4) the connected
stable rank of A which is the least integer n > 1 such that the action of GL%m, A)
by left multiplication on Lg,(A) is transitive for any m > n (if no such integer
exists we take csr(4) - ©0). According to Corollary 8.5 of [9] csr(A4) is also the
feast integer n such that Lg,(A) is connected for any m > n. If A is not unital we
take sr(4) (crs(A)) to be sr(A~) (csr(A~)) where A4 is the algebra obtained from A
by adjoining a unit.

We shall use the following results proved in [9] (here J is a two-sided ideal
in the C*.algebra 4):

(1.1) sr(J) < sr(A4) (Theorem 4.4}

(1.2) st(A}J) < sr(4) (Theorem 4.3)

(1.3) st(A) < max{st(J), sr(A/J). csr(A}S)] {Theorem 4.11)
1 if se(A) -1

(I.4) st(A R H) - (Theorem 6.4)

2 if siA4) = 2,

(. is standing for the algebra of compact operators on a separablc Hilbert space).

Let A -~ 1lim A4, be an iaductive limit of C%-algebras over the directed set I;
cc]
the following results are proved analogously as Theorem 5.1 of [9]:

(1.5) st(A) < liminfsr(4,)
tef

(1.6) csr(A) < liminfesr(A,).
el

The following results are simple consequences of definitions (4, B are C*¥-alge-
bras):

(1.7) st(A @ B) - max{st(4), sr(B)}

(1.8) cst(4 @ B) max{csr{4), cse( B)}.



TENSOR PRODUCTS OF EXTENSIONS 389

Lemma 2 of [8] reads:
(1.9) csr(A4) < max{csr(J), csr(4/J)}.

We shall use also the following consequence of a classical theorem in dimen-
sion theory (see [9], Theorem 1.1 and Proposition 1.7)

(1.10) sr(C(X)) = [dim(X)/2] + 1;

here X is a compact space.

Itisa simple observation that x = (x,,..., x;) € Lg(4) if and only if there
exists ¢ > 0 such that x¥x, + ... + x¥x, > ¢, if and only if o(x§x,) > 0 for any
ge{l,...,s} and any pure state ¢ of the C*-algebra A; this also shows that
J € C(X, A*) belongs to Lg(C(X, A)) if and only if f(x) € Lg(A4) for any point x
in the compact space X.

If A is a C*algebra and v, y€ 4° we shall denote by |[x— | =
- m;a'.x“xg — Yl for x - (xy, ..., %), y=0,..., p).

II.

In this section we prove some general results concerning the stable rank and
the connected stable rank for C*-algebras. We also introduce the notion of absolute
connected stable rank of 4 and prove that it is equal to sr(C[0, 1]) ® A4).

2.1. LeMMA. Let J be a two-sided ideal in the C*-algebra A,mn:A — AlJ
the quotient map, and suppose that s > st(A). Let ¢ > 0 and x = (x,, ..., x) € A*
be such that 'n(x) = (n(xy), ..., W(x))) € Lg(A)J). Then there exists x' € Lg(A)
such that ||x' — x|| < ¢ and n(x") = n(x). Moreover, if y = (yy, ..., y,) € A is such
that w(yyn(x) + ... + w(y)n(x,) = 1 then there exists y € A such that
X+ ...+ yxs=1and n(yy) = n(y,) for 1 < g < 5.

Proof. Denote also by n the map M, (4) — M,(4/J). The set ¥V, --
=~ {(expr(@)n(x) | llal| < 6, a € M(A)} is a neighbourhood of n(x) in Lg(4/J).
Choose x”” € = ~}(V) n Lgy(4) such that ||x"" — x|l <g/2. Then n(x"") = (expn(a))n(x)
for a suitable ae M (A) with |la|| < J. Let x' = exp(—a)x" € LgJ(4). Then
e - xl] <l — x7 ) + flx” — x| < flexp(—a) — [lIx"]| + &/2 < (&8 — D({x]| +
+ £/2) + ¢/2 < ¢ if ¢ is smali enough.

Since n(ye + ... +yx)=1 we get yx;+ ... +yx;=1—a with
a € J. Let {y;} be an approximate unit for Jand y7, ..., y{ € 4% such that px] +
+ oo+ yixs=1 Let yp = (1 —u)y, + uyy for 1 < g < 5. Then n(y;) = (y,)
for 1 € g < s and yixj + ... + yoxi =1 — (1 — u)a. Choosing c big enough we
obtain the desired conclusion.
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Let B, = {x = (%, ....,x)ER"|x} + ... + x} < 1}, 81 - 4B,. The last
lemma yields (for J: : C(B,) ® B and A := C(B,) ® B) the following corollary:

2.2. COROLLARY. Let B be a C*-algebra, s > st(C(B,) ® B) and f€ C(B,, B*)
such that f(x)e Lg(B) for any xe€ S ' Then for any ¢ >0 there existy
g & C(B,, Lg(B)) such that f | S =g |8~ and {lg — fi <&

2.3. DeriNrmiON. Let 4 be a unital C#-algebra, and » > | an integer. Then
we say that » is in the absolute connected stable range of A if for any nonempty
connected open set ¥V < 4%, V' n Lg,(A) is nonempty and connected. We shall denote
by acsr(A) the least integer n such for any m > n, m is in the absolute connected
stable range of A4; if no such integer exists we let acsr(A4) = oo.

2.4. LEMMA. Let n be an integer. Then n is in the absolute connected stable
range of the CH-algebra A if and only Iif n > st(C(I) ® A) and, consequently,
acsr(A): sr(CI) ® A) (1-=10, 1]).

Proof. Aisa quotient of C(I) ® Ajand thus (1.2) shows thata - : sr(C(/) ® A) >
> sr(d). Let n 2 a, V< A" be an open connected nonempty set. We shall
show that V' nLg,(4) is connected and we conclude that n is in the absolute
connected stable range of A. Let x,, x; € ¥ n Lg,(A4); there exists a continuous
function f: I - ¥V such that f(0) = x,, f(1) == x;. Let ¢ > 0 be less than the distance
between the compact set f([0, 1]) and the closed set A”™\V. By the last corollary
there exists a continuous function g: I — Lg,(4) such that g(0) == f(0) -= x,, g(1)

- fUy  xand ||g - fll <e. Then g takes its values in {y | d(y, f([0, 1])) < ¢} < V.

Conversely, let n be in the absolute connected stable range of A. it is then
obvious that # = sr(4). Let ¢ € C(I, A™), ¢ > 0, and choose m big enough such
that () — o(t)il < &/3 for any 1, t,€ 1, 15 — t5 < 2/m. Since n > sr(A4) we
can choose y, € Lg,(4) such that [y, — f(g/m)i: < &3 for 0 < g < m. By assump-
tion each of the sets V¥, == {y e Lg,(4) | i1y — o(g/m)]| < £-2/3} is open and con-
nected containing y,_; and y, for I € g < m. Thus we may find y € C(Z, Lg,(A)),
Y(glm)y: -y, and yY(t)eV; for te[(j— fm, jim]; then {Y(e) — o(t))
< i@ — oUim)l + lloGilm) — @)l < 2¢/3 + ¢/3 = ¢ proving that =
= s1(C() ® 4).

2.5. CoROLLARY. 1° csi(A'® ) < 2 for any C*-algebra A.

2° est(C(X)) < [(m + 1)/2] + 1 if X is a compact space of dimension .

Let 4, 4,, ..., 4, be unital C*-algebras, and n,: 4, — A morfisms of unital
C“-algebras. Consider the following C#-subalgebra of the C*-algebra 4, ® ...

...BDA4,:
B={x=(x,...,%) €4, ® ...® 4,| m(x) = mxp) =.. .= 7m,(x,)}

s
~
~,
=

and denote it by JJ 4, (it is the usual fiber product); denote also r% m(A,) by A'.
A

J=1
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2.6. PROPOSITION. Suppose that s > st(A,) for | < g <nands > st (mng(Ag)) ;
g=1
then s > sr(J] 4,).
A
Proof. Denote [[ 4; by B. Let x =(x;, ...,x) € B% ¢ >0, x; = (x;;,
A
X)) EA @ ... DA, 1 <j< s, such that my(x,) = ... = m(x,,) =t,. Let
t=i(ty, ..., t) € (m ng(Ag)) = A and 1 € Lg(4’) such that [¢ — t < e
i=1

Then there exists [|xg — Xg |l < & such that m,(xg) == t; and (xix,. .., xg) € Lg(4,).

An obvious application of Lemma 2.1 shows that x" == (xj,...,x;) € Lg(B) if
Xjo Xy e ey Xpa)
2.7. CorROLLARY. Let Jy,.. ., J, = A be closed two-sided ideals in the C*-algebra

A. Then st(A]J) < max {st(4/J})}, where J = Jin ... NnJ,.
1<k<gn

Proof. Using induction on n we may suppose that n =2. Let n;: A/J; »
- A/(J, + J,) = B. Then A/(J; n J;) is isomorphic with T] 4/J;.
B

Let A and B be two unital C*-algebras, and ¢, ¥ € End(4, B). We say that
¢ and y are homotopic if there exists n: I — End(4, B) such that #(0) = ¢, 5(1) =
and the map n,:I = B, n.(t) = n(t, x), is continuous for any xe A. We say
that B homotopically dominates A if there exists ¢ € End(4, B), ¥ € End(B, 4)
such that { o ¢ and id, are homotopic.

2.8. LEMMA. Let A and B be unital C*-algebras such that B homotopically
dominates A. Then csr(A) < cst(B).

Proof. Let ¢ and ¥ as above, x = (x;, ... x,) € Lg(4), and suppose that
s = csr(B). Then x can be joined to Y (e(x)) by an arc in Lg(4) and ¢(x) can
be joined by an arc in Lgy(B) to (1,0, ..., 0). This shows that x can be joined to
(1,0, ...,0) by an arc in Lg(4) proving that s > csr(4) and hence that csr(4) <
< csr(B).

2.9. CorROLLARY. csr{(C(B,) ® A) = cst(4).

2.10. PROPOSITION. cst(M,(A4)) < {(cst(4) — 1)/m} + 1 (here {x} denotes the
least integer greater than x).

Proof. Let x € M,(A). We may view x as an element of M, ,(4):x=
(@), 1<ig<ms, 1 <g<m Then x € Lg(M,(A4)) means that the equation

1) Y buai; = O

i=1
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has a solution. This shows that the first column is in Lg,,(4). If ms = csr(4) there
exists B, € GLY(ms, A) such that

1 x
10

Byx = %,
0

where x; stands for ((Bx)yy, (BX)s, ..., (BX);,,). A straightforward’' computation
shows that the first column in the matrix x, is in Lg,,..,(4). By induction we get
that there exists B e GL%ns, A) such that

i i
0 1
Bv--1. 0 I
) 0
0----0

whenever ms - m + 1 = csr(4) and this matrix can be joined with the matrix
((Sij)l’\<5<§rns_1<j<3m in Lg.s(Mn(A))

2.11. CorROLLARY. Let 4 be an AF-C%-algebra and B a C#-algebra. Then
st(A ® B) < st(B), csr{A ® B) < cst(B), with equalizies if A is commutative.

Proof. By Theorem 6.1 of [9] we know that sr(M,(4)) = {(st(4) — )/m} +
+ 1 < sr(A). The last proposition shows that csr(M,(4)) < csr(4). Using (1.5),
(1.6), (1.7) and (1.8) we get the desired inequalities. The rest is obvious.

2.12. CorOLLARY. Let A be a C#-algebra. Then cst(4) =1 implies
est(ARIA) == 1.

L.

In this section we obtain some technical results using mainly the inequality (1.3).

Let us fix some notations to be used from now on. We shall denote by X
(X - .., X,) a compact space of dimension m (my, ..., m,), X =X, X ... XX,.

Let 4,, ..., 4, be BDF-extensions of 7" by C(X); they satisfy exact sequences:

(3.1) 0> Ko A »CX) >0, 1<j<q
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Let A= C(X)) ®A4,® ... ®A,, B; = C(Xp)® ... QC(X)®A4;11® ... ®A,,
for0 < j < n (thus By = A, B, = C(X)), C;-; = CXP)®... ®C(X;_,)®4; 1., ® ...
... ®4,. Then from (3.1) we get the following exact sequences:

3.2) 0->#4Q®C;_y »B_,->B-0 1</j<n

Let us denote by ¢; == csr(By),s; == st(B;),0 < j < n. From (1.3) and (1.9}
we get
¢j-1 < max{c;, csr(A ®C;_)} < max{c;, csr(C;_,)}
(3.3)

i < 8- < max{c;, s, st(ARC;_)}.

So we obtain ¢, < max {c,, s (A ®C;_,)}, s, < 5o < max {s,, ¢,, SHA®
1<j<n 1<jgn

®Cj-y), est(A ®C;_)}. But 5, =[m2] + 1, ¢, <[(m + 1)/2] + 1. If m =0 we
can prove by induction on # (using (3.3), (2.5) and (2.12)) that csr(A'®C;-,) = 1.
sr(# ®C;..,) -+ 1 and thus 54 = ¢, = 1. (This also follows from a theorem of L.G.
Brown which implies that 4 is an AF-C*-algebra.)

3.4. PROPOSITION. Let m # 1, then
[m/2] + 1 € sr(4) < max{[m/2] + 1, csi(C(X))},
csr(A4) < csr(C(X)).

For m = |, we have that st(A4) and csr(4) € {1,2}.

Proof. We have proved everything except csr(4) < csr(C(X)). But this follows
from (3.3) by induction on # since C;_, has at most » — | extension terms in the
tensor product.

3.5. CoroLLARY. [m/2] + 1 < st(A) < [(m + 1)/2] + 1.

3.6. REMark. This corollary is the analogue of Theorem 6 of [8]. Its proof
is inspired by that in [8].

To improve the last corollary we shall make from now on the following
assumptions: X; is the inverse limit of my-dimensional finite CW-complexes,
dim(Xj) = m; for 0 < j < » and dim(X) == dim(Xy) + dim(X;) + ... + dim(X}) =
= .

3.7. LEMMA. Suppose that my > 0, then st(4) = [m/2] + 1.

Proof. Using (1.5) we may suppose that X is a finite CW-complex of dimen-
sion my > 0. Let Xy = Xju Uy u ... U U, where X is a CW-complex of dime nsion

13 - 2321
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css than my and U; are disjoint open sets such that there exist functions @ B,,,“ -
- U ; verifying (p,(aBn,o) < X§ and (pj]ﬁ,,,o is 2 homeomorphism of ]i,,,o onto U; (1<
€j<k) and XgnU;= O. Then st(CX)®@A® ...QA4,) <[m/2) +1::5 by
Corollary 3.5. Let fe CX,(4:®4,® ... ®A,)), and ¢ > 0. There exists ge
€ O, (A® ... ®4,)), g(x)€Lg(4h® ... ® 4,), llg —f|X3ll <¢/2. Extend
& to X, such that the last inequality be fulfilled. Using the functions ¢; we pullback
& to a function g;: :gecp; € C(B,,,o, (4,:® ... ®4,)°). But csr(C(B,,,0)®A1®
. ®A,) - osr(4; ®... ®A4,) by Corollary 2.9, thus csti(C(By YO A® ... ®A,) <
« [m)2) + 1 :=5 by Corollary 2.5. By Corollary 2.2 there exists /; € C(B,, ,

(1]
Le(dy ® ... @A), | — gill < &/2, hy|S™0™" =g;[S™"". Then the function
h:Xo — Lg(A1® ... ®A4,) given by h(x) == g(x) for x € Xj and h(x) - = hlp7()
X € Uj satisfies [ih — f.f < & and h[X;g, hop; are continuous. This shows that / is
¢ ontinuous.

Iv.

This section contains results concerning the irreducibie representations of A
and the proof of the main theorem.

We know that there exists a unique class of irreducible representations of .7
and hence a unique class of irreducible representations of 4; not vanishing on J°
(see [2}); denote by p; an element of this class. Let m; : 4; — C(X)) the quotient map
and g; == m;®1; here 1 stands for the identity map on 4,® ... ® 4;-1®4;:1.®
R...QA,.

4.1. LemMA. Ler m be an irreducible representation of A = A, @ ... ® 4,,.
Then one of the following statements is true :
1° misunitarily equivaienttop; @ ... @p, = ps
2° 7 factors through o; (i.e. there exists je€ {1, ...,n}{and n, such that n: -
TyeG;j ).

Proof. Let J; ==kero;. There are exactly two possibilities (see [2D:7°
ﬁ|.llJ2 ... J, is irreducible, and hence unitarily equivalent to p;® ... ®p,/Jy ... J,
since J; ... J, = o ; this shows ([2]) that n and p are unitarily equivalent; 2° there
exists j, 1 € j < n such that nle = 0; but this means that = factors through o;.

Let us observe that p(J)=H (J=JJ5... J,).
The following lemma shows why the case m =1 is an exceptional one. Let
p=p,® ... ®p,,and # == H#, (see [2] for notation).

4.2. LEMMA. Let ¢ >0, and x,ye A=A, ® ... ®A,. Then there exists
X1, 1 € A such that ||x — x| <&, |y — nll <& and ker p(x,) n ker p(x) = {0}.
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Proof. We shall denote by [.#] the ortogonal projection onto the closed
subspace .# of a Hilbert space #.

Suppose first that at least one of the operators p(x) and p(y), say p(x), has
the property that dim #/p(x)3# == co. Then there exists a compact operator T,

| T|| < &/2, such that dima#|(p(x) + T)# = co, (see [7]). There exists also a com-
pact operator Ty, ||T3l| < &/2, with right support r(7}) - - ker(p(x) + T) n ker p(y)
and left support (Ty) < | — [Ran(p(x) + T)]. If we let y, =y and x; such that
|*; — x|} < ¢ and p(x; — x) = T + T, we obtain the desired conclusion.

Suppose now that 3/p(x)# and J#/p(y)s# are finite dimensional. Then there
exists an & > 0 such that (0, 6) N o(p(x)p(x)*) = @. Let f{0) =1 and f{r) =0
for 7 = §; then f{p(x)p(x)*) == 1 — [p(x)#] and f(p(x)*p(x)) == [ker p(x)). By assump-
tion there exists a € J such that p(a) = p(f(xx*)). Since A/(J; + ... + J,) is com-
mutative we get that f(xx*) — f(x*x)e J; + ... + J, thus obtaining that there
exists beJ, + ... +J, such that p(b) = [ker p(x)]. We want to show that
Ran p(y)|ker p(x) == Ran p(yb) has infinite codimension to conclude the proof as
above. Suppose the contrary. Then the same will be true for any T close enough
to p(xb) and we may find such a T of the following particular type 7T =

= Z( { A; ® Fj, ® Bj;,) with F, a finite rank operator on Jf,,j and 4; and B;

Jema\ Kzl
bounded operators. Let & 1 Ran Fj (1 <j<an, 1 <k<m); then &:=4 ®
® ... ®¢&, is ortogonal to Ran T and these vectors span an infinite dimen-

sional vector space, a contradiction.

4.3. REMARK. Suppose that m, = dim(X,) - - 1; then sr(4,) € {1, 2} by Pro-
position 3.4. Let x € 4,,, ¢ > 0; there exists x, € 4, such that ||x;, — x|| < ¢/2 and
(¥ € Lg(C(X,)) = GL(1, C(X,)). This shows that p,(x,) is a Fredholm operator
which will be left-invertible if and only if kerp,(x)) =0. If ind(p,(x,) =
= dim ker(p,(x,))—dim Kker(p,(x,)*) € 0 we can find a finite rank operator F such
that ||F|| < &/2 and ker(p,(x))+ F) == {0} thus finding x, = x;, + a (p,(a) = F)
such that p,(x,) is left invertible. Lemma 4.1 shows that x, € Lg;(4,). We obtain that
sr(4,) == 1 if and only if any Fredholm operator in A4, has index 0, if and only
if the composed map H(X,) — K (C(X,)) = Ko(A") = Z is trivial (see [10]).

Suppose that X, X,, ..., X, satisfy the assumptions preceding Lemma 3.7,
A= CX)@A® ... ®A4,, mj=dim(X)), 0 <j< n

4.4. THEOREM. Let m # 1, then st(A) =-{mj2} + 1. If m==1, let m; < ...
... < m,; then st(A4) = sr(4,).

Proof. Let s = [m/2] + 1. For m == 0 the theorem has already been proved.
For m == | there are two possibilities: 1° dim(Xy) == 1, dim(Xy) = ... == dim(X,) = 0;
then sr(4d) =1 =sr(4,) by Lemma 3.7. 2° dim(Xy) = .., = dim(X,_,) =0,
dim(X,) = 1; then C(Xp)®4;® ... ®4,-, is an AF-C*-algebra (see [5]) and
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thus, by Corollary 2.11, sr(A4) < sr(4,). The reverse inequality follows from the
fact that A, is a quotient of A.

Suppose now that » > 2. We shall use induction on n; for n - 0 there is
nothing to prove. Let x = (xy, ..., x,) € 4% ¢ > 0. If my > 0 the theorem follows
from Lemma 3.7. If m, . 0, C(X,) is an AF-C*-algebra and thus sr(4) ~ sr(4;®
® ... ®4,) by Corollary 2.11; we may suppose then that 4 -+ A/® ... ®A,. Bs
the induction hypothesis there exists x’ - (x7, ..., X;) € A° such that x - <
< /2 and o)(x") € LgdA4,® ... ®4;,_,®CX)® ... ®A4,). We may also find =~
such that the last condition be fulfilled, |x"" — x'! < ¢/2 and ker p(x7) -
nkerp(x))  [0}: then by Lemma 4.1, x”’ € Lg(A).

4.5. REMARK. It is obvious that if 4 and B are C¥-algebras as in Theorem
4.4 then sr(A® B) < sr(A) + sr(B) (this answers a question from [9] in a parti-
cular case).
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