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EQUIVALENCE AND ISOMORPHISM FOR GROUPOID
C*-ALGEBRAS

PAUL S. MUHLY, JEAN N. RENAULT and DANA P. WILLIAMS

1. INTRODUCTION

Motivation for this work comes from two sources. The first is a desire to
give in the second countable case a detailed, self-contained account of the relation
that exists between the notions “equivalence of groupoids™ and “strong Morita
equivalence of groupoid C*-algebras™ that was developed by the second author
and is discussed briefly in [15]*. The second is a desire to generalize to groupoid
C*-algebras some results of Phil Green [6) concerning the structure of the C*-al-
gebra of a transitive transformation group. The connection between the two
sources is that to effect our generalization of Green’s work, we need to know
that equivalent groupoids give rise to strongly Morita equivalent C*-algebras.

We elaborate. Set-theoretically, a groupoid is simply a small category in
which each morphism is invertible. A groupoid is called rransitive if given any
two objects, there is at least one morphism connecting them. It is easy to show
that if G is a transitive groupoid, then G is isomorphic to a groupoid of the
form XX HxX where X is a set and H is a group. (Two triples (x, 4, y) and
(x', k', y") are composable if and only if y = x’ and, in that case, their product
is (x, AR, y"); also, (x, h, y)~1 = (, h~%, X), by definition.) If X and H are locally
compact, then the system of measures {3, X Ag X it}ycx, Where Ag is a fixed Haar
measure on H and u is a (Radon) measure of full support on X, constitutes a
Haar system on XX Hx X in the sense of [14]. The associated groupoid C*-alge-
bra is, then, easily seen to be cononically isomorphic to C*(H)®# (L*(1)) where
C*(H) denotes the group C*-algebra of H and #(L*()) denotes the compact
operators on L*(yu). Thus the structure of transitive groupoid C*-algebras appears
to be quite straightforward. However, if G is a transitive locally compact grou-

*) We follow the notation and terminology of [14] except that we write s for the domain
map; i.e., s(y) = y~'y for an element y in a groupoid.
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poid with Haar system, 2, to begin with, then G need not be isomorphic to a
groupoid of the form XX H XX in such a way that A is carried to a system
{0, XAy X it}ze x - Nevertheless, if G is second countable, we shall see that C*(G, 4)
is always isomorphic to C*(H)®(L*u)) for an appropriate iocally compact
group I{ and a measure p on G°. When G is the groupoid of a transitive, trans-
formation group, this has been proved by Phil Green in [6].

In the general case, the group H is simply the isotropy group G at any
object or unit v € G° Since G is transitive, two different units give isomorphic
H’s. The first step in the proof of our isomorphism theorem is to observe that
G* (- r=Yu)) is an equivalence between H and G, in the sense of Definition 2.1
below, provided the restriction of s to G* is open as a map from G" onto G".
Theorem 2.8, which implies that equivalent groupoid in the sense of Definition
2.1 have strongly Morita equivalent C*-algebras, then enables us to exhibit a
very special equivalence between C*(H) and C%(G). Using a Borel section to the
map s/G* we parlay this equivalence, in Theorem 3.1, to an explicit isomorphism
between C*(G) and C*(H)®.# (L*(u)) for an essentially unique measure p on
GO, The point is, the isomorphism depends only on the unit chosen and the choice
of section. .

To help see the scope of our results, we note that while not every transitive
locally compact groupoid is (topologically) isomorphic to one of the form
Y X Hx X described above, the notion of equivalence (Definition 2.1) establishes,
essentially, a bijection between transitive locally compact groupoids and ordinary
principal group-bundles in the sense of [8]. This fact was; anticipated by Seda
{20} and we elaborate on the point in Exampie 2.2.

Pairs of equivalent groupoids appear to be ubiquitous in nature; we present
a number of examples in section two. In the past, when equivalent pairs have
appeared, the strong Morita equivalence of the associated C*-algebras was proved
in ad hoc ways. We hope that our Theorem 2.8 will prove useful in streamlining
future investigations.

We close this section with a few words about the hypotheses that we are
placing on our groupoids. Our proof of Theorem 2.8 relies heavily on a technical
result of the second author [16, Proposition 4.2] concerning the disintegration
of representations of groupoids. It is worth keeping in mind that this is the
only place in the proof of Theorem 2.8 where the assumption of second coun-
tability will be used. For this reason we start by assuming only that each of our
groupoids is locally compact and is endowed with a Haar system. We ussume
also that the unit space of each is paracompact — this! condition is not auto-
matically satisfied.

We would like to thank the referce for bringing to our attention a gap
in our original proof of Theorem 2.8.
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2. EQUIVALENCE OF GROUPOIDS

To repeat, by a groupoid we shall always mean an algebraic groupoid
equipped with a locally compact, Hausdorff topology compatible with the grou-
poid structure. If G is a groupoid, then we shall write G® for the unit space.
For y € G,r(y) and s(y) will denote the range and source of y in G® As we
will only be interested in groupoids which admit a Haar system, we shall assume
from the onset that r, and hence s, are open maps from G to G°[14, 1.2.4]. In
addition we shall always assume that the unit space is paracompact. For further
definitions and references the reader can consult [14] and [15].

The definition of a G-space X is a straightforward generalization of that
for a group action. Here we require a continuous open map from the locally
compact space X onto G° which we call p or ¢, according to the side on which
G acts. For example, a left G-space is given by a continuous map from G = X — X,
where G« X denotes, as in the rest of this work, the set of composable pairs (7, x)
with s(y) : = p(x).

We say that the action is free if y-x = x only when y is a unit. We say
that the action is proper if the map from G * X to XX X given by (y, x) = (y-x, x)
is proper. The space X is a principal G-space if the action is both free and proper.
We point out that it is a straightforward consequence of the properness that
the natural map, n:X - G\, is open, and that G\ X is locaily compact and Haus-
dorff. The basic example of a principal G-space is X == G with either left or right
multiplication.

Now suppose that X is a left principal G-space. Set X * X = {(x,y) € XXX :
p(x) == p(»)}. Then G acts on the left via the diagonal action and we have the
quotient H == G\X % X. Notice that / has a natural groupoid structure with multi-
plication

[x, ¥]-1y, 2} =[x, 2],

and unit space G\X. The range and source maps are given by
r(x, y]) = [x] and s({x, y]) == [y}

Of course, there is an obvious right action of H on X. Specifically, the map
o:X - H®(i.e. G\X)is given by o(x) = [x] and so X=H = {(z, [x, y]) € XX H : [z] =
== [x]}. The action is given by the formula z-[x, y] = gy, where g is the unique
clement of G such that z == gx. Note that this action is well defined. Indeed, if
[x’, 31 = [x, y], there is a unique 4 € G such that x’ = Ax and ¥ = hy. It follows
that {x'] :-- [z] when [x] = [z] and the unique element of G which sends x' to z
is gh~1. Consequently, z-[x,y']1= (gh~1) == gy == z.[x,y]. It is not difficult to
check that, with this action, X is a (right) principal H-space. Furthermore, both
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actions commute and p induces a homeomorphism of X/H onto G". This situation
is formalized in the following definition.

DerFmniTiON 2.1, Let G and A be locally compact groupoids. We say that
a locally compact space Z is a (G, H)-equivalence if
(i) Z is a left principal G-space,
(ii) Z is a right principal H-space,
(ili) the G and H actions commute,
(iv) the map p induces a bijection of Z/H onto G*, and
(v) the map o induces a bijection of G\ Z onto H°.

One should keep in mind that if Z is a (G, H)-equivalence, then #/ is na-
turally isomorphic to G\Z # Z and G is naturally isomorphic to Z = Z'H. Indeed,
given [x, y] € G\Z = Z, p(x) = p(y), then there is a unique y € K such that x7
the correspondence [x, 3] — 7 is the desired isomorphism between G™.Z = Z and i/.

Although we do not need this fact, we remark that the notion of equi-
valeace induces an equivalence relation on locally compact groupoids. In fact,
if Zis a (G, H)-equivalence and Y is a (H, K)-equivalence, then Z;.} Yis a (G .H)-

~equivalence. Here Z;s{: Y is the quotient of Z= Y where (z,y) is identified with
(z-hh-y)forallzeZ, ye Y, and h e .

ExampLE 2.2. Transitive Groupoids. Our objective here is to establish the
relationship between transitive groupoids and principal group bundles promised
in the introduction. Recall {8, p. 41] that if A is a locally compact group and X
is a locally compact left H-space, then (X, o, H\X) is a principal H-bundie,
where ¢ denotes the quotient map from X to £ \JX, if and only if X is a principai
F-space as defined above. The groupoid G =: H\X = X, then, is transitive with
unit space H\X. Indeed, to see that G is transitive, note that since ¥ is a group,
H°: . {e} where e is the identity. Therefore, X = X = XX X and so, given [x].
[v] € H\X, [x,y] € HNXxX is well defined and maps [x] to [y]. {The fact that
principal group bundles give rise to transitive groupoids in this way was peinted
out by Seda in §4 of [20].) Suppose, on the other hand, that G is a transitive
groupoid, let ¥ € G°, and form G* -= r~Yu), and H = G% = {y : r{y) == s{3)}. Then
H is a locally compact group acting to the left on G*. This action is free and
proper, as may be easily verified [19, Lemma 3]. Also, G acts to the right on G,
freely and properly, and the two actions commute. If ¢ == 5G* and p 7. G",
then a moment’s reflection reveals that G* is a (H, G)-equivalence precisely wnen
o is open. In general, ¢ need not be open; perhaps the simplest example is the
transformation group groupoid determined by the obvious action of the discrete
reals on the reals with the usual topology. Observe that the map @ from HNG** G*
to G defined by the formula ®([e, f]) = x~1f is a well defined, continuous, grou-
poid isomorphism from H\\G* x G* onto G, but it need not be a homeomorphism,
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as the example just given shows. However, we have the following result which
shows that @ is a homeomorphism precisely when ¢ is open.

THeOREM 2.2 A. The following are equivalent:

(i) @ is a homeomorphism.

(ii) ¢ is open.
(ili) @ : G = G*XG® is open, where n(y) = (r(y), s(y)).

Proof. First we show that (iii) implies (ii). Let U be open in G. Then o(Un
N G") == m(m(U) n n3™(u)) where m;,7i == 1, 2, is the projection of G°®x G° onto its
i factor. So, if n is open, so is o.

To see that (ii) implies (i), note that if ¢ is open, then as remarked above,
G" defines an equivalence between H and G. So to prove that @ is a homeomor-
phism, it suffices to prove that the map (a, f) - a~1f from G*XG* to G is open.
Observe that this map is the composition (x, f) - (o, a=1f) - ¢~ carrying
G"XG" to G* # G and then to G. (Recall that G* = G = {(x, f) € G* X G: o()==r(f)}.)
The first map is easily seen to be a homeomorphism. To prove that the second
map is open, it is enlightening to appeal to the following general observation.
Suppose that X, Y, and Z are topological spaces and that f and g are continuous
maps from X and Y to Z, respectively. Let X ¥ = {(x,y) € XX Y : f(x) = g()}
and give X = Y the relative topology from X X Y. Then the diagram

X
X
X*-Y/ N‘Z
Y

is commutative, where n, and ny, are the projections of X = ¥ onto X and Y, res-
pectively. The point that we wish to make is that if f is open, so is my. Indeed,
if U and V are open in X and Y, respectively, then n,((UX¥V)n (X *Y)) =
=g fAU)] n V. Since sets of the form (Ux ¥) n (X * Y) form a basis for the topology
on X'« Y, it is clear that the openness of f implies that for ny. In our special case,
we have

and so the hypothesis that ¢ is open implies that the projection of G** G onto G
is open, as required.
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Finally, we note that (i) implies (iii). This is immediate since the obvious
map from H\G*XG* to H\G*X H\G" is open.

The map o fails to be open only in the most pathological situations; in
particular, it is always open when G is second countable as we now show.

THEOREM 2.2B. Let G be a transitive groupoid which is locally compact
and second countable. Then, with the above notation, G is isomorphic and homeo-
morphic to H\G"*X G*.

Proof. By the preceding result, we need only show that 7 is open. We shall
do this via a Baire category argument which is similar in spirit to the proof
of the open mapping theorem for separable locally compact groups. Note that
n is a groupoid homomorphism from G onto the trivial groupoid G°®xG°. The
open mapping theorem for second countable locally compact groupoids fails in
general, but there is sufficient structure in our setting to push through the
usual proof for groups.

Step 1. If U is a neighborhood of G° in G and if u € G then r(Uns~Yu))
has a nonempty interior.

To establish this, choose a neighborhood of G® with W2 <« U and assume,
without loss of generality, that W is r-compact (see [14, 2.1.9]). This means that
W is closed and Wnr-1(K) is compact for each compact set K € G° It follows
that for each compact set V< G, VW= V(W nr~(s(¥))) is also compact. Next
select a countable cover of G by compact neighborhoods ¥, so that V7V, < W.
Then s-1(u) = y (V, W)as~Yu) and so, since G is transitive, G°=:r(s~i(u)) =

s= U r(V, Wns~1)); i.e., G°is covered by a sequence of compact sets. Since

G° is locally compact, and therefore a Baire space, at least lone of [the sets,
say r(V, Wns~(u)), contains a nonempty open set 4. But then if A’ = s(V,n
0 r~Y(4)), then A’ has nonempty interior and A’ < r(V;V, Wn s~ u)) < r(Wen
n s W) r(Un s—2w)).

SteP 2. If W is a neighborhood of G° and if u € G° then there is a y in
W s—Y(u) such that (r(y), #(7)) is interior to n(W).

For this, choose a neighborhood V of G° such that ¥V = V-1 and V2 W.
From Step 1, we can choose an open set 4 in G® and a yin ¥ ns~u) such that
r(p)e A r(V ns~Hu). We have 7(V) 2 a(V ns~Y(u)) 2 Ax{u} and we have
a(Vy = (V1) 2 {u} x A. Consequently, (#(y), r(y)) € AXA = (AX {u})({1} x )&
eV = (V) < n(W).

Step 3. If U is a neighborhood of G° then n(U) is a neighborhood of the
disgonal 4 in G*XG°.
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Fix (u,u)e 4, and choose an open neighborhood W of G® such that
W=W-1 and W3< U. From Step 2, we can find a y in Wns~1(u) and an
open set A< G° such that (#(y),r(?)) € A x4 < m(W). If 4" =s(Wnr-1(4)),
then clearly 4’ is open and contains %, and since W = W =1, A'=r(W n s~1(4)).
Moreover, we see that (w,u)e A'XA = n(W? < n(U). Indeed, choose
(v,w)e A’ X A'. Then there is an a € Wns~1(4) such that r(x) = v and there
is a fin Wnr-2(4) such that s(f) = w. Since s(&), #(f) € 4, and since AxAc
< (W), there is a y € W such that n(y) = (s(), r(B)). It follows that ayf € W?
and n(ayf) = (v, w).

To complete the proof of Theorem 2.2 B, let U be an open set in G, fix
y € U and write x = r(y) and y = s(y). Also, choose a neighborhood W of y
such that (WW-H)W(W-1W)c U. Then WW-1 and W-1W are open neigh-
borhoods in G of open sets in G°. Hence by Step 3, we can find open sets 4
and B in G° such that xe 4 and AXA=sn(WW-1) while y€ B and BXBc
ca(W-w). 1t follows, then, that (x,y)e AX B a((WW-HYWW -‘W))<r(U),
and the proof is complete. %

As a consequence of this theorem, we recover the known fact that if G
is the groupoid associated to the transitive action of a locally compact group
T on a locally compact space B, then for any u € B, the map t = t-u, from T
to B, is open and B can be identified with 7/H, where H is the isotropy group
at u, provided that T and B are second countable.

We conclude Example 2.2 by noting how locally trivial transitive groupoids
[22] fit in our setting. Such a groupoid is a transitive groupoid G with the pro-
perty that any of the following three conditions is satisfied:

(1) m:G —» G°xG® has local continuous sections.

(ii) There is a unit 4 € G° such that o (-=s!G") has local continuous sections.

(iii) For every unit v € G° ¢ has local continuous sections.

Evidently, for such a groupoid, ¢ is an open map for each unit ¥ € G° and so,
by Theorem 2.2 A, G is isomorphic and homeomorphic to H\G°xG® where H
is the isotropy group at u. Moreover, as a principal H-space, G° is locally trivial.
Conversely, if X is a principal H-space that is locally trivial, then the groupoid
ANXx X is locally trivial.

We will return to this example in the next section.

ExampLE 2.3. The fundamental groupoid of a space. If we specialize the
preceding example a bit, we discover that if X is a locally compact Hausdor{f
space that is connected, locally arcwise connected, and semilocally simply connect-
ed, then its fundamental groupoid [(X) is transitive and equivalent (Definition
2.1) to the fundamental group m,(X, x,) based at any point x, € X; the equiva-
lence is implemented by the universal covering space of X. For details on this,
see Proposition 2.37 on page 133 of [13].
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ExampeLe 2.4, (cf. [17). Bi-transformation groups. Suppose that H and K
are groups acting freely and properly on a locally compact Hausdorff space P
and assume that the actions commute. As noted above, the properness assumption
implies that the orbit spaces P/H and PIK are locally compact Hausdorff spaces
and the commutivity assumption implies that P/H carries a K action while P/K
carries a f action. The space P, then, implements an equivalence between the
transformation group groupoids (H, P/ K) and (K, PjH).

ExampLE 2.5. Equivalenice relations. Let R be an open equivalence relation
of a focally compact Hausdorff space X, and suppose that as a subset of X< X, R
18 closed. Then X implements an equivalence between R and X/R.

ExaMpLE 2.6. Foliations. Suppose that G is the holonomy groupoid of a
foliated space (¥, F) and suppose that G is Hausdorfl. If N is a transverse sub-
manifold which meets every leaf (& need not be connected), then Gy=-{y ] s(y) N}
is o (G, G¥)-equivalence where Gy == {y € G :iy), s(y) € N}.

ExampLE 2.7. Abstract transversals. Quite generally, let G be a locally com-
pact Hausdorft groupoid and let N be a closed subset of G" that meets each
orbit in G Then, as is easy to see, Gy is a principal left G-space and a principal
right GX-space and the actions commute. The maps ¢ = s|Gy and p == r;G, satisfy
{iv) and (v) of Definition 2.1. So, if they are open, then Gy is a (G, G¥)-equivalence.

Of course Examples 2.2 and 2.6 are special cases of Example 2.7.

We turn now to the main theorem of this section, Theorem 2.8, which
asserts that a groupoid equivalence between two groupoids induces a strong Morita
cquivalence between their C*-algebras. We fix two groupoids, G and A, and Haar
systems {2“}.eq® and {f7}.c n*. We shall write C*(G, 2) and C*(H, ) for the grou-
poid C*-algebras formed with respect to the universal C*#-norm (cf. [14] or [15)).

THEOREM 2.8. Suppose that (G, ) and (H, ) are second countable locally
compact groupoids with Haor systems A and B. Then for any (G, H)-equivalence Z,
C(Z) con naturally be completed into a C*(G, 2)-C*(H, ) imprimitivity bimodule.
In particular, C*(G, %) and C*(H, f§) are strongly Morita equivalent.

Before beginning the proof, we require several preliminary results. First a
technical lemma.

LEmMA 2.9. Let Q be @ principal left G-space.
a) If Fe C(2xG), then

o(w, 1) = S Flo, 1)d7(y)
G

defines an element of C (> G°).
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b) If f€ C(Q), then

2] ~ Sf(/i‘l w)d2)(y)

G
defines a surjection of C (Q) onto C_(G\Q).

Proof. For part a), it suffices to consider functions F of the form F(w, y) =
== flw)g(y) with fe C (Q) and g € C(G). The assertion is now immediate since
{X}uec® is a Haar system.

For part b), view A(f) as a function on Q. 1t is constant on orbits, by left
invariance. Since the statement about supports is obvious, it will suffice to show
that A(f) is continuous at w € Q. However by using the properness of the G-action,
there is an Fe C (G X Q) such that F(z, y) = f(y~'-z) near w. The result follows
from part a). 12

As usual, we work with the pre-C*-algebras 4 — C (G, 2) and B = C(H, f§).
We define the left A-action and the right B-action as follows:

Jol) = Sf(y)w(y‘l-Z)dif"”(v),
G
and

0-¢(2) = S o(z-mgln=1)dpe (),

where ¢ € C (Z),f € A, and y € B. Note that /¢ and ¢-.g are in C_(Z) by virtue
of Lemma 2.9 a). Now Z » Z = {(z, w) : p(z) == p(w)} is a principal G-space when

G is given the diagonal action. Thus if ¢ and y are in C (Z),

Pz, W) = S PG DL W e(y)
G
defines an clement of C (G\Z = Z).
On the other hand,

Ben) = S SO TGz E(y)
G
is independent of choice of z with a(z) == r(y), and clearly has compact support

in H. Now if 5, — % in H, then since ¢ and r are open, we can find z, — z (passing
to a subnet if necessary) so that o(z,) = r(y,). Thus, B(y,) = 9(z,, z,-n,) con-
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verges to f(n). In short
ot sl) - Sa(v"-l—-z)‘m-l-z-n)dzw)(v),

G

where 6(z) - : r(n), defines a B-valued inner-product on C (7).
Similarly

(o) — S o1z UG- A n),
H

where p(z) - r(y), defines an A-valued inner-product.
The verification of the following identities is straightforward.

J Lo >4~ f- 0, 0>, fEA 0,y €C(2)
P, ¥d5 8 =<0, ¥ 8)p, g€ B, ¢,y €C(2)
(fxf)o=[f(i-0), fified oeC(2)
P (g+8)=(0'8) &, &8 €B 9eC(2)
o, Y% =<¥, @4
o, Y35 = <Y, 975,

<(P: lp>,4 ’ 5: =" <(.//’ é>B ’ (P7 ll/’ and &-’ € Cc(Z)'

It is important to realize that arguments similar to those of Lemma 2.9 show
that these operations are continuous with respect to the inductive limit topology.
The crucial point is the following result (cf. [17]).

ProrosITION 2.10. There is a net e, in C (G) of elements of the form
liz
€, = Z <(p'z ’ (p;x>4 *
1

with each ¢f € C(Z), which is an approximate identity with respect to the inductive
{imit topology for both the left action of C(G) on itself and on C(Z). A similar
Statement holds for H.

This proposition answers a question raised in [14, 2.1.9).

CoRrRoOLLARY 2.11. For any locally compact groupoid with paracompact unit
space end Haar system /., the =-algebra C (G, 1) has a two-sided approximaie iden-
tity with respect to the inductive limit topology.
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Before proving the proposition we require three lemmas. First recall from
[14] and the proof of Theorem 2.2 B that a subset, L, of G is called r-relatively
compact if L0 r=(K) is relatively compact for every compact K < G. It follows
from the proof of [14,2.1.9], that if G® is paracompact, then G° has a funda-
mental system of r-relagively compact neighborhoods in G. The next lemma is
@ trivial modification of [14, 2.1.9], so we omit the proof.

LemMMA 2.12. Suppose that for each triple (K, U, g) consisting of a compact
subset K < G° an open r-relatively compact neighborhood, U, of G°® in G, and a
posiiive number ¢ > 0, we have ¢ = ex,y,. € CH(G) such that

(i) supp(e) < U, and

.
(ii) ISO()’)d).”(y) — l,| < ¢ for ue K.

Then the net ex,y,. directed by increasing K and decreasing U and ¢ is an appro-
ximate identity for the left action of C (G) on C(Z).

The next two lemmas are also routine, so we omit their proofs as well.

Lemma 2.13. Let X and Y be locally compact spaces and n:X - Y a
continuous, open surjection. Let A’ be a family of measures on X such that the
support of )2 is exactly n=Y(y), and which defines a map 2 from C (X) onto C (Y).
Then for any open set U = X and any b € CI(Y) with supp(b) < n(U), there is a
g € CH(X) with supp(g) = U and X(g) = b.

Lemma 2140 Let X, Y, n, and 2 be as above. For any U open in X, any
g € CHX) with supp(g) < U, and any £>0, there is an fe C{(X) with supp(f)cU
andl
Ig(x) — fC)Af)eo n(x)} < &

for cvery x.

Proof of Proposition 2.10. We will consider only the G-action, the proof for
C_(H) being analogous. Furthermore, it will suffice to consider only the action
of C(G) on C(Z), as G always implements an equivalence of G with itself.

Let (K, U,¢) be given. By the properness of the G-action on Z, we can
find open, relatively compact sets V;,7=:1,...,n in Z such that {p(V)}}-,
cover K, and such that (y.-z,z) € V; XV, implies y € U.

Let {b;}7..; be a partition of unity subordinate to {p(V)}. Hence, we may
assume that
‘ b, € CHGY), .

supp(;) € p(V),
and

8, b(u) =1 for each u e K.
1=1 ‘
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Lemma 2.9 implies that the hypotheses of Lemma 2.13 are satisfied and, there-
fore, that there exist ; € C¥(z) with supp(y;) € ¥, and

S Uiz ) dBO) = bi(p(2)

H

for all z e Z. By Lemma 2.14, there exist ¢; € C}(Z) with supp(e;) < V; and
. " ) : e
I Vi(z) — @i(2) S @,(y~ 1 2)dire)(y) | < —]T{.’
I

where

M == sup i S lV,-(Z -17) dBeG)(n).

We claim that e == ¥ {(@;, ¢;>, satisfies the hypothesis of Lemma 2.12. In fact,
i-1

e(y) =— 0 off U by construction, and if p(z) € K, then

Se@) A (y) — 1 } i 5 SS 0zne(y2n) dBFO() d2PD — ¥ b, (p(2)
! i=1 i

G G

B

< &

= ‘ ﬁ S { @i(zn) S @i(y~tzn) dA)(y) — tlfi(zn)} dpet (n)
G

%

7|

End of the proof of Theorem 2.8. In order to show that C (Z) is a C (G, 2)-
-C (H, p)-imprimitivity bimodule with respect to the usual C*-norms we have
left to check only the following:

(1) the positivity of the inner products,

(2) the density of the range of the inner products,
and

(3) the boundedness of the actions.
However, since the inductive limit topology is finer than the C*-norm topology,
(1) and (2) follow from Proposition 2.10 by what are now standard means
(cf. [4] remarks following Lemma 2 or [17]).

Thus, it remains to show

(*) 0. 008 < Ile6){e, 9D,
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and
D) (08 0-8>4 < |glleruni® ¢D4>

where fe C(G), g e C,(H), and ¢ € C (Z). To establish (x), we take a state {
on C*(H). Then, C(Z) becomes a pre-Hilbert space with respect to the inner
product

<','>5=C(<';'>3)-

Let D be the (dense) image of € (Z) in the (Hausdorff) completion, V,, of C,(Z)
with respect to (-, >,. Of course, the left action of C (G) on C.(Z) defines a
x-representation, L, of C (G) by operators on D. Moreover, by Proposition 2.10
and the fact that the module actions as well as the inner products are continuous
with respect to the inductive limit topologies, we have the following facts.

a) L is non-degenerate in the sense that elements of the form L(f)¢ are
dense in V,, where fe C(G) and & € D.

b) L is continuous in the sense that for all &, 5 € D the linear functional

Ly, (f) = <& 1 n);

is continuous with respect to the inductive limit topology on C (G).

In short, we see that the conditions a), b), and c) of [16, Proposition 4.2]
are satisfied and we conclude (with the help of [14, 2.1.7]) that L is bounded
with respect to the C*-norm on C,(G). That is

(LS @.f 0>5) < e Ko, ¢D5)

for all states { on C*(H). The inequality (x) follows. The proof of (x*) is analogous.
2

We remark in passing that when the equivalent pairs of groupoids in Exam-
ples 2.2—2.7 have Haar systems and are second countable, then by Theorem 2.8
they yield strongly Morita equivalent C*-algebras.

It should be pointed out that Rieffel [18] showed that the C*-algebras,
C*(H, P/K) and C*(K, P/H), associated with the transformation groups in Example
2.4 are strongly Morita equivalent. His proof is similar in certain respect to
ours. A different proof may be found in [2]. If, in Example 2.5, R is the orbit
equivalence relation determined by the free action on X of a locally compact
group, and if X and G are second countable, then Green [4] showed that C*(G, X)
is strongly Morita equivalent to C%X/G) if and only if the action of G is proper;
i.e., if and only if R satisfies the hypotheses of Example 2.5. Of course, as we
just noted, Theorem 2.8 implies that if R is an arbitrary equivalence relation
on X that satisfies the hypotheses of Example 2.5, and if A is a Haar system
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on R, then C*(R, /) is strongly Morita equivalent to Cy(X/R). We expect the
converse assertion to be true, but we do not have a proof at this time. Finally,
we note that in [11], the authors associate a certain groupoid to the C*-algebra
generated by a family of Wiener-Hopf operators. The groupoid is obtained from
a certain transformation group groupoid by cutting down to a closed set that
meets every orbit, as in Example 2.7. In this situation, the hypotheses of Example
2.7 are not difficult to verify and we conclude from Theorem 2.8 that the C%-alge-
bras of Wiener-Hopf operators described in [11] are strongly Morita equivalent
to the corresponding transformation group C¥-algebras.

3. TRANSITIVE GROUPOIDS

In this section, we apply the equivalence theorem of the preceding section,
Theorem 2.8, to show that the C*-algebra of a transitive groupoid has a special
form. This is our generalization of Green’s result [6] mentioned in the introduction.
As before (G, A) will be a fixed second countablie groupoid with Haar system AZ.
In the main theorem of this section, we assume G is transitive.

THEOREM 3.1. Let G be a second countable, transitive groupoid, let u € G°,
and set H -~ G%. Then there is a positive measure p on G® such that C*(G) is iso-
morphic to C*(H)®# (LYGO, n)) where # (L¥(G, 1)) denotes the algebra of compact
operators on L*G® p).

The proof is broken into a series of lemmas. The first is a general state-
ment about strongly Morita equivalent C*-algebras. The proof is straightforward
and, therefore, we will omit it.

Lemma 3.2, Let A be a C*#-algebra and for i = 1,2 let X; be a left A-rigged
speee with A-valued inner product denoted (., »;. Denote the imprimitivity algebra
of Xy by E;. If W : X, » X, is an A-linear map such that {Wx, Wy, == (x, 1,
for all x,y € Xy, then W implements a C*-isomorphism from E; onto E, via the
Jformula

WThioW ™ - Turaaary
wheie Tygy is the element of E; such that
Tegys — L& X)) -

By Theorem 2.8, we kuow that C*(H) snd C*G) are strongly Morita
equivalent via the C*(H) module X, which is the completion of C,(G¥) in the
C#(f])-valued inner product

$x, Yeman() = § () A G)
C‘;x
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for x,y e C (GY); i.e.,, C*(G) is the imprimitivity algebra of this C*(H)-rigged
space, X;. Thus, by Lemma 3.2, all we need to do is to produce another C*(H)-
-rigged space X, such that the imprimitivity algebra of X, is C*(H)®.4 (L G°, 1)),
for a suitable measure p, and a C*(H)-module map W:X; - X, such that
Wx, Wy, - {x,y», for all x,y€ X;. (From now on, we call such a W a
C*(H)-isometry.) :

To form X,, consider the spaces B,(H)® B,(G°) where, for any locally compact
space M, B, (M) stands for the space of all bounded, compactly supported Borel
functions on M and B (H)® B.(G") denotes the linear span of the functions ¢ ®¢&
on HXG® defined on HXG® by the formula ¢ ®E&(7, w) = @(t)é(w). Of course
C (#) acts on B,(H)® B.(G®) by left convolution in the first variable: y - (p ® &) =
= (Y = @)®&. For each (Radon) measure u on G° we obtain a C*(H)-valued inner
product on B (H)® B.(G° according to the formula

(@1, 0@ Exderun(t) = ( S MO0 d@(s))(S £ (@)Ex(@) du(w) )

H G°

where 7y is Haar measure on H — which we fix, once and for all. Observe that

the function of ¢, S¢1(ts)¢2(s) d2g(s), belongs to C (H) for each pair of functions
H

@1, o3 € B.(H) and that this is a bonafide C*(H)-inner product yielding, upon

completion, a C*(H)-rigged space X,(u). It is evident that X,(u) is the so-called

Hilbert space over C*(H) in the sense of [9, p. 136]; i.e., X,(u) is the completion

of the algebraic tensor product C*(H)® L¥G", u) in the norm determined by the

C*(H)-inner product

{1®¢&, Qs @ Eodenny = (1395 (&1, fg)LZ(GD, 0’
According to [9, Lemma 4], then, the imprimitivity algebra of X,(u) is
CHH)Q@A (LX(G", ).

Thus, we are left with the problem of pinning down u and finding a C#*(H)-iso-
metry from X; onto Xy(w).

Let X and Y be locally compact spaces and letw : X — ¥ be a continuous
surjection. We will call a Borel map p : Y - X a regular cross section for n if
nop(y) = y for all y € ¥, and p(K) has compact closure in X for each compact
set K in Y. The following lemma was proved by Mackey, [10, Lemma 1.1].

LemMma 3.3. If X and Y are second countable, locally compact spaces, then
each continuous surjection m : X — Y has a regular cross section.

2-—2533
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Recall that ¢ = §{G* is a continuous map on G* that is onto G° since G is
transitive, Consequently, by our separability assumption and Lemma 3.3, there
is a regular cross section p : G®* — G* for ¢. The following proposition will complete
the proof of Theorem 3.1.

PROPOSITION 3.4. For each regular cross section p for o, there is measure
uon G° and a C*(H)-isomeiry from X, onto X,(u).

Proof. Extend p to a map, keeping the same name, from G* onto G* by the
formula p(y) = p(o(y)), and define the map ¥ : G* - G by the formula ¥(;): -
== yp(y)~L Observe that i is well defined and maps G* into H. Indeed, since
a(p(y)) = a(y) and r(p(y)™") = a(y) = s(v), (v, p(»)) € G® for all ye G*; but
W) = r(y) ~: u, by assumption, and sW(y)) = s(o(y)~") — r(p(7)) = u; there-
fore, Y(y) € G4 = H for all y € G*. Now define ¢ mapping G* to HxG® by the
formula () = W(y), (7)), y € G, and let H act on HXG® by translation in
the first coordinate.

ASSERTION. ¢ is an H-equivariant, Borel isomorphism from G* onto H X G°.

For re€ H, 7€ G*, we have o(ty) = s(y) and p(ty) -~ o(y). So @(ty) -
= (Y(t7), a(t7)) = ((t)p(E) ™, a(ty)) = t(yp(¥)~, 6(¥)), and ¢ is equivariant. An
easy calculation shows that ¢ (¢, w) = tp(®), so ¢ is a Borel isomorphism.

Next observe that since p is a regular cross section for o, f-¢ € B,(G") for
each f € B.(HXG%. Also, ¢./* is a Radon measure on HXG® where, for a Borel
set E€ HX GO, (@ A" WE) = (o~ (E)).

ASSERTION. There is a positive Radon measure p on G® such that ¢ /" iy Xpu.

Since ¢ is equivariant, and 4“ is an H-invariant measure on G* ¢.4" is an
H-invariant measure on H X G° By Theorem 5.4 in [20], there is a measurable
family of measures {v,},ec* on HXG°(i.c., w—v,(E) is a Borel function on G°
for each Borel set £ = H < (G®), and a measure i on G° such that v, is supported

on HX{w}, each v, is H-invariant, and ¢, A*(E) :va(E) dii. By the uniqueness
GO

of Haar measure, there is, for each w € G° a positive constant C(w) so that
v, =C(w)(Ay X J,,). Since {3y X, }uec® and {v,}, e are both measurable famitics,
it follows that C is measurable. Thus we simply set u = Cp to obtain a positive
Borel measure x on G° such that ¢.2%= 7 xyp. Finally, to see that i is a Radon
measure, let K, = G° be compact and choose a compact set Ky & H so that
Ag(K) = 1. Then p(K,)=:74y X u(Ky X Kp) = (¢~ Ky X Ky)) < oo because
@ ~*(Ky X K,) has compact closure and 2* is a Radon measure,

Next we observe that B.(G¥) and B,(H X G° may be viewed as (dense) sub-
spaces of X, and X,(u), respectively. We show this for B.(HXG®% and X,(u). The
argument for -B,(G*) and X, is similar and will be omitted. Let ¢ € B {H X% G and
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choose a sequence {¢,}2., in B,(H)®B.(G having common compact support
that converges pointwise boundedly to &. It suffices to show that {,}:>; is Cauchy
in X,(u)-norm. But

1w — &) = S ( S £.(15, 0)5s @) dz,,(s)) du(w) —

GO H

— 2Re { S ( S £ (15, 0)En(s, @) d@(s)) du (w)} +

& H

¥ S ( S £t IE,05, ) 416 ) @),
¢* H

The hypotheses on the convergence of {£,}%., and Fubini’s theorem imply that
1€ = Emliesan(:) is arbitrarily small in L*(H)-norm when n and m are sufficiently
large; and since the L-norm dominates the C*-norm, {£,}%., is Cauchy in X,(u).

Finally, we define W, : B,(G*) —» B.(Hx G by the formula (W) = Lop~.
As we noted earlier, W, maps B (G*) isomorphically onto B,(H X G°). It therefore
suffices to check that W (i -€) = y(W &) for all Y € C(H) and ¢ € B(G*) and
that W ¢llx,qo=II¢|lx for all { € B(G"). Thefirstis a straightforward calculation;
and so is the second, once it is realized that the functions (W ¢, W,,ﬁ)xz(u)(t) and
(&, 6>xl(t) are the same. This completes the proof of Proposition 3.4 and, with it,
the proof of Theorem 3.1.

It should be emphasized, that in Theorem 3.1, once the unit © € G° is fixed,
the isomorphism constructed depends only on the section to o. Takesaki has
remarked to us that it is known to the cognoscenti that the C*-algebra of the
fundamental groupoid I'(X) of a space X (cf. Example 2.3) is isomorphic to
C*(my (X, x0)) ® A and that the isomorphism depends upon the choice of the
base point x, and section to the covering map.

We conclude with a rather long remark which is intended to put Theorem
3.1 into a broader context. We omit most of the details because the hypotheses
are somewhat technical and there does not seem to be a global setting in which
they are all satisfied. Rather they must be checked, in an ad hoc fashion, in each
situation. As before, G is a locally compact groupoid with left Haar system
A A cg?- We suppose, too, that X is a locally compact, proper (left) G-space
and that « == {0} _-o is a continuous equivariant system of measures on X. This
means that supp(e) = p~*(u), that

a(f) = Sf(x) d(x)

X
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defines a map from C_(X) onto C_(G"), and that
Sf (7x) dor@(x) - Sf (x) dr®(x),

feC(X)and y € G (cf. Lemma 2.11). Finally, we suppose that H is a G-Hilbert
bundle over X. As with group actions, this means that = : ¥ — X is an ordinary
Hilbert bundle over X in the sense of Fell [3] and that G acts continuously on H
in such a way that the following conditions are satisfied :

a) (y, h) € G=H if and only if (y, n(h)) € G=X;

b) for (y, x) € G=X, yH(x) == H(yx), where H(x) - =~ (x);
and

c) for (y, x) € G=X, the map from H(x) to H(yx) determined by 7 is a
Hilbert space isomorphism.

The data, (X, «, H), give rise to a C*(G, /) module in the following way. Let
I'.(H) denote the compactly supported, continuous sections of H. For fe C (G)
and ¢ e I' (H), we define

S#é(x) = Sf(v)vé(v“x) d/e(y),

and for ¢, n e I' (H), we define

<& sy () = S CEO), NN ey A ().

Parts of the proof of Theorem 2.8 apply mutatis mutandis to show that these
definitions do give rise to a C*#(G, 2)-module, which we denote by C*(X, x, H).
(The reader is urged to consult [21] where some useful and related results are
presented.) Observe, in particular, that when X = G, a -: 4, and H is the one
dimensional trivial bundle, C*(X, a, H) == C*(G, 1) as a module over C*G. /).
We will denote this module by C#(G, 1) also.

For another example, which is germane for our purposes, suppose that X
is a principal G-space, that ¢ is a regular cross section for the quotient map
X — X/G, and that there is a continuous family of measures, r-—t{r"}uec.. defining

a map from C_(X/G) onto C_(G%, as in Lemma 2.11, such that for fe C (X)),
G.1) Sfdoc"(X) - ng(w(i')) de () d(y),

where x denotes the image of x in X/G. Thus the map (y, ) —» ya(x) sets up
a2 Borel isomorphism between GXX/G and X that transforms « to At .=

= { A X T}, o In general, it seems to be. difficult to decide if a continuous family
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T exists given o and o. In the special case when G is a group, this is covered by
the argument in Proposition 3.4. The family © defines, in a natural way, a Hilbert
bundle over G° denoted L3(X/G, t). The fibres are the spaces L X/G, 1), u € G°,
and the basic fields which go to define the bundle structure on L2(X/G, 1) are
simply the continuous, compactly supported functions on X/G. If C*(X, «) denotes
the C*(G, A)-module determined by X, o, and the trivial, one-dimensional bundle
over X, then the equation (3.1) shows that C*(X, &) is isomorphic to C*(G, 4,
S*(LA(X]G, 7)) where s*(L3*(X/G, 1)) denotes the pull-back to G of L2(X/G, 1) deter-
mined by the source map s. This latter module is easily seen to be isomorphic
to C*(G, H® CO(GO)FO(IP(X /G, 1)), where T'y(L¥X/G, 1)) is the space of continuoug

scction of L3(X/G, ©) that vanish at infinity. (Recall that Co(G®) acts as right mul-
tipliers on C*(G, 2), and I, (L¥X/G, 1)) is a left Cy(G®-module; so tensoring
over Co{G") makes perfectly good sense.) If it happens that L3*(X/G, t) is trivial,
so that we may view I'o(L%(X/G, 1)) as Co(G® H) for a suitable Hilbert space H,
then we conclude that our original module C*(X, a) is isomorphic to C*(G, )®
® H, a Hilbert space over C*(G) in the sense of [9]. Of course the imprimitivity
algebra of this module is C*(G)®# (H). It is now quite easy to see how Theorem
3.1 fits into this set up. In that case, the groupoid is H, and its unit space consists
of one point, X is G%, a is /%, A is Haar measure on H, and 7 is u. On the
other hand the stability of the C*-algebra of a foliation established by Hilsum
and Skandalis [7] can be recovered along these lines. Let I' be the holonomy
groupoid of the foliation and T the transversal they construct in Lemma 2. If
G - I'F and X = I'7, then the principal G-space X carries a continuous equi-
variant system of measures {u*} eG? (G*=T) that decomposes as A x 1 for a certain

cross section to the quotient map X — X/G and continuous system t on X/G.
This yields a direct proof of the triviality of the C*-module associated with X.

This work was supported in part by grants from the N.S.F.
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