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TRANSLATION SEMIGROUPS ON REPRODUCING
KERNEL HILBERT SPACES

THOMAS L. KRIETE, III and HENRY CRAWFORD RHALY, Jr.

INTRODUCTION

In this paper we study the one-parameter semigroup {S,},», of translation
operators defined by

(SHO=SC + 1

acting on Hilbert spaces # equipped with a reproducing kernel. Of course {S,},»¢
acting on L? spaces Is a familiar and useful object; the new element here is the
richness of structure that flows out of the presence of a kernel function in 4.
Our initial motivation was to understand a single fascinating example in a new
way, namely the semigroup of composition operators associated by Deddens [8]
with the discrete Cesaro operator C,. From this we were led to study a general
framework with the hope of providing a setting in which other examples with
different characteristics would appear. The last half of the paper is therefore
devoted to examples, and further examples will be considered in subsequent
articles. However, it is clear that much more remains to be done in this regard.
Throughout this paper the phenomenon that will interest us most is the potentia]
of {S},>¢ for having subnormal adjoint.

Let us consider C, and Deddens’ semigroup. Recall that C, is defined on
sequences {a,} in /2 by Co{a,} = {b,}, where b, = (n + 1)~? i a,. Hardy [16}

k=0

showed that C, is a bounded operator on ¢2; Brown, Halmos, and Shields [4]
investigated its spectral properties and showed that C, is hyponormal, while
Shiclds and Wallen [29] studied the commutant of C,. The first author and Trutt
improved ‘“hyponormal’” to ‘‘subnormal” [23] and investigated the invariant
subspace lattice {24]; the main idea of the present paper flows directly out of
those two papers. Further refinements were introduced by Klopfenstein [21]

while Deddens [8], identifying £2 with the Hardy space H?, studied a semigroup

3 - 2533



34 THOMAS L. KRIETE, IIl and HENRY CRAWFORD RHALY, Jr.

of composition operators whose infinitesimal generator is a function of C,. Cowen
[7] has recently turned the tables, using the semigroup to study C, and giving
a new proof of subnormality along the way.

It will be convenient for us to consider a representation for C, on yet
a third Hilbert space (though merely a translate of H?%). Let Q, be the open
disk {z : |z — 1] < 1} in the complex plane, and denote by P*6Q,, idz) the clo-
surc of the complex polynomials in L%(0Q,, /dz); here {dz, is arclength measure

on the circle 0Q,. Let ¢,(z) = VIZ:_ Q—2y,n=0,1,2,..., so that {¢,}3,1is
T
an orthonormal basis for P%(dQ,, {dz]). Let 4; denote the formal operator

)@ = i— FQdL

S 1

on P%0%,, |dz[). One checks that the matrix of 4; with respect to {e,}% , is

L2 13 14 L.
0 12 i3 14 ......
0 0 13 14 ...
c 0 0 14 ... |

which is precisely the matrix of C¥. Hence 4, is bounded and, in fact, unitarily
equivalent to Cg . In this setting, the semigroup studied by Deddens takes the

form
D,:fz) »fle"'2), t=0.

For our purposes it is enough to note that {e~*2D,},,, is a contractive and
strongly continuous semigroup on P20, |dzj), related to 4, by the formulas

(=]
Ay =S e~*Ddt (weak integral)
0
and
Epo(I— A4)=e""?D,, >0,
where E; is the singular inner function

41
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and E, (I - Ay) is defined by the H*™ functional calculus for contractions [31].
These formulas can be made plausible by checking them on the spanning set
12" : Reu > — 1/2}. See §4.1 for details.

It is tempting to replace P¥92,, |dz|) by a more general space of functions
on a domain more general than 2,, and we will see some examples of this in
§4.1. A more fruitful point of view emerges if we set A, = — logQ, ==
w2 {—logz 1z € Q) and define

'%0 = {e—C/Zf(e——C) :fe P2(0905 'dZ])},

a space of functions on A,. Let W : P¥0Q,, |dz|) — 8, be the map (Wf)() =
= e~*/2f(e~%); we can norm %, so as to make W a unitary operator. Then we
have W(e~'?D)W -1 = S,, where {S,},», is our translation semigroup above,
now acting contractively on %,. This suggests a generalization in which we forget
about A4, and P%0%,,|dz|) and replace A, and 4, by, respectively, a more
general domain set A and Hilbert space # of functions defined on 4. In order
for S, to make sense on %, A must be translation invariant. It will turn out to
be convenient, however, to work mainly with the formal cogenerator L of {S,},5,
rather than with {S,},5, itself; the single operator L is, in most circumstances,
easier to handle. We recall that the cogenerator always exists when {S,};»¢ is
a contraction semigroup [31]; it can be characterized as the unique contraction
L for which 1 is not an eigenvalue, such that E,(L) = S,, ¢ > 0, where E, is given
by (1).

In our example above, P(0Q,, |dz|) is spanned by {z* : Reu > —1/2}, which
is precisely the set of eigenvectors of A4, and D,. It is thus reasonable to demand
that # be spanned by the exponentials ¢ which it contains; these are exactly
the cigenvectors of L and S,. Then a well-known construction of Halmos and
Shields [15] allows us to represent S;* and L* as multiplication operators on a
second reproducing kernel Hilbert space 5. It will turn out that S* and L* are
subnormal precisely when 5 can be identified with P%*(u), the L%*(u) closure of
the polynomials, where u is a finite positive Borel measure with compact support
in the plane. The existence of u, and its form when it does exist, are encoded in
the kernel function k(w, z) for # in a way which allows their extraction, in principle
and sometimes in practice, by inverting a certain Fourier-Laplace transform.
This is the central theme of the paper. The class of operators L and {S,},5, is
delineated by placing axioms on & and {S,},>,; we will see that it is quite large.

The plan of the paper is as follows. In §l we put down our axioms and
establish preliminary results. Sections 2 and 3 are devoted in the main to mani-
festations of subnormality, while §4 presents examples. In particular, we will
return in § 4 to some variants of the operator A4, .
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1. PRELIMINARIES

We will be concerned with complex separable Hilbert spaces and operators
on them which are linear and bounded. The spectrum and point spectrum of
en operator T are denoted by o(T) and o,(T), respectively. We sometimes write
S = T to indicate that the operators S and 7 are unitarily cquivalent. Recall
that T is subnormal [6, 14] if it is the restriction to an invariant subspace of a
normal operator, and cosubnormal if 7% is subnormal. Qur semigroup {S$7},5,
is subnormal if it is the restriction of a normal semigroup; according to a theorcm
of Ito [19], this is equivalent to saying that each S} is individually subnormal.
The complex numbers are denoted C and D is the open unit disk {z € C : |z} < I].
We will consider subnormal operators of the form M, :f(z) - zf(z), acting on
£2(pr), where y is a finite (positive, Borel) measure with compact support in C.
M, has a cyclic vector (the function 1), and every cyclic subnormal is unitarily
cquivalent to some M, [2].

Let us turn to our axioms. We hypothesize a set A of complex numbesrs and
2 Hilbert space # of complex-valued functions defined on A and possessing a
reproducing kernel {k, : w € A}. Thus for each w in 4, k,, € # and f(w): - {f, k>
for every f in ¥. We use { for the independent variable in A and sometimes
write k(w, {) for k(). We make the following assumptions about A and #.

(i) The set A is invariant under right translation, contains 0, and has the
property that any two points in A can be joined by a piecewise C! arc in A on
which &({, ¢) is bounded.

(ii) If f€ # and f = 0 on [0, o), then f =: C.

(iii) Exponentials span: If I' = {u :e® € %}, then {e“:u e I'} spars #.

(iv) 4 is maximal: If v in C and % in & are such that (e*, /) = ¢ for
all win I', then v € A.

(V) {S;}i>0 is a strongly continuous semigroup on # satisfying

NSl = O(e?*) as t—o0

for cach g > 0.
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DEFINITION 1. We will indicate that axioms (i)—(v) hold by saying that
the space # or the semigroup {S,};>¢ is admissible. The set A is called the
domain set. '

It will be a standing assumption throughout §1, §2, and §3 that # and
{S:};>0 are admissible.

REMARK 1. We see by applying S, to exponentials that I' = {u : Reu < 0}.

Now let Rev > 0 and consider the operator B, defined by the integral
o0
(2) B, -=S e"S, ds,
0

taken in the weak sense. Axiom (v) implies that B, is a well-defined bounded oper-
ator on & and moreover, for every fin % and w in 4,

3) (B,f)(w) = ¢ S e~ f(s)ds;

[w, o)

the path of integration [w, co] is the horizontal half-line with left-hand endpoint
w. Further observe that

Byl we et
v—Uu

whenever ¢** lies in #. The formal cogenerator of {S:}i>0 is the operator L = I—
- - 2B,; we note that L acts formally as a backward shift on the sequence {®,}32.,,
where @,(0) = e~*L,(2{) and L, is the n't Laguerre polynomial.

We introduce the conformal mapping H(z) = -Zj;—i . We see that H

Z —

maps D onto {u:Reu <0} and C\D onto {u:Reu > 0}. Since H is its
own inverse, it also maps {# : Rew < 0} onto D and {u : Reu > 0} onto C\D.
For any w with H(w) € I' one checks that

LeHWE — wel e,
It is easy to verify the formal identity

SRR S
@ A v T

BH(Z): Izl > 1>

for cach side does the same thing to e*¢.
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PROPOSITION 1. The spectrum o(L) is contained in D. The operator L is a
contraction if and only if {8},>¢ is a contraction semigroup; in this case L is the
cogenerator of {S};>¢-

Proof. Since Re H(z) > 0 whenever |z, > |, we see from (4) that a(L) <: D.
It is easy to see from (3) that 1 is not an eigenvalue of L. Thus if L < i,
{E,(L)},s, is a strongly continuous contraction semigroup on % [31] which agrces
with {S,},>o on exponentials. Finally, if {S,},>, is contractive, it has a cogenerator
which must agree with L on exponentials. Thus |[[L|j < 1 and S, :: E(L) for
t>0. %

The proof of the following Corollary is left for the reader.

COROLLARY 1. The serigroup {SF},> is subnormal if and only if L¥ iy sub-
normal, in this case both L and {8}, are contractive.

The elements of 2 inherit some properties of analytic functions via axioms
(ii) and (iii). The remaining results in this section present several consequences of
this; the first asserts that the integral (3) expressing B,/ is in a sense independent
of path.

PROPOSITION 2. Suppose that w € A and that C(w) is a piecewise C* path
from w to oo, contained in both A and a half-strip of the form

{x +iy:x>a and Imw; <y < Imw,}

where a is real and wy , w, in A have distinct imaginary parts. Further suppose tha
k(¢, ) is bounded on each compact subset of C(w) and that

e-bRerldz| < oo

C(w)

Jor every b > 0. Then

(B,f)(w) = e S e~ Yz)dz

C(w»)

whenever Rev > 0 and f€ 4.

Proof. The conclusion of the theorem is trivially true if f{{) - - e**. For an
arbitrary f in & we are thus led to select a sequence f, tending to f in norm,
where each f, is a finite linear combination of {¢** : u € I'}. The points w;, and
wy can be connected by an arc A as in axiom (i). Let N be a bound for &k(, )
on A. Let us write C(w) = C, U C, where C; is the part of C(w) from w to
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some intermediate point w, and C, is the remaining subarc of C(w) from w,
to co; we may choose w; so that Res < Rewv whenever s € 4 and u € C,. Note
that if z € C,, we have |f,(2) — f(2)| <||f, — fll k(z, 2)/2 and so f, — f uniformly
on C,. On C, something analogous happens. We choose y with 0 < y < Reuw.
If ze C,, then z =5 + ¢ for some s€ A4 and 1 > 0. For any g in & we have

lg@)] = (S < |IS,II llgl k(s, ) < MNY2e"|Jg]],

where M is a bound for e~?*||S,||. In particular, on taking g =f — f, we see
that for an appropriate B > 0,

e 1f(z) — fi(2)| < BerRes-Ret)| f— £ ]|

for all z in C, . Since the exponential factor on the right is |dz|-integrable over Cs,
we may conclude that
e~"f(z)dz = lim S ¢~ ¥f,(2) dz,

n—co
C(w) C(w)

and the conclusion follows.

The above proof shows that if C is a subset of A4 on which k({, {) is bound-
ed, then every function in £ is continuous on C.

PROPOSITION 3. The point spectrum o, (L) is exactly {w:HWw)eT}. Any
eigenvector for L with eigenvalue w is a multiple of €M%,

Proof. We already know that e#¢ ig an eigenvector for L with eigenvalue
w, hence o,(L) > {w : Hw) € I'}. Suppose, on the other hand, that Lf = wf for
some f # 0 and complex number w. Since L = I — 2B;, we may use (3) with
v -~ | to conclude (via differentiation) that

9 fx + i) = HOOfCe + 1)
0x

for every point x + iy in A. Therefore, f has the form f(x + iy) = A(y)eHMGE+ir),
where A(y) depends only on y. To complete the proof, it is enough to show that
A(y) = A(0) whenever x + iy € A. Let us fix z=x + iy in 4, and let C, be a
piecewise C* path from z to 0 as provided by axiom (i). Then the path C(z) =
==C, U [0, oo) satisfies the hypotheses of Proposition 2. We reinterpret the equation
Lf == wf using Proposition 2 (with » = 1) instead of (3). If we leté(s), 0 €t < 1
parametrize C, running backwards from 0 to z, we see that

Ed? FE@) = HWEOFER))
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wherever &'(r) exists. It follows that f(E(¢)) = aeH®™EW for some consiant @
and 0 < ¢ < 1. Therefore A(y) = a == A(0). ¥

Our last result of this section is a version of L. Shulman's Theorem [30]
about the Cesaro opecrator: The eigenvectors {(I,w,w® ...} :'w <1} of the
backward shift in £2 are all cyclic vectors for Cy. The corresponding vectors in
2 are the kernel functions {k, : w € A}. We will need only the casc w : = 0.

THeOREM 1. (Shuiman’s Theorem). The kernel function k, is a cyclic vector
Jor L%

Proof. Let fe &, f 1 {(L¥Vko)L o. If jwi > [IL],
o . 1
L= w) ko> = — ¥ f (LY kod = =

741
n -0 ‘v+

2= 0.

Since the inner product on the left is an analytic function on iwj > 1, it must
vanish there. Now f 1 k,, so f(0) = 0. If we invoke the formula (4), we see that
the above equation reduces to (B f)0) = 0, }wi> 1. In particular, for >0

0= @00 - s,

and so f = 0 on [0, o), which implies f = 0. %

If A is an open set and &4 consists of functions analytic on A, a trivial
modification of the above argument will show that each kernel function k&, w € A,
is cyclic for L*. Details are left for the reader.

REMARK 2. Suppose now that {S;*},>, is subnormal. Proposition 1 and
Corollary 1 tell us that L* is subnormal and contractive and that SF =: E(L%).
From Theorem 1| and Bram’s Theorem [2], we know that there cxists a finite
positive Borel measure z on D and a unitary operator W:#% — P¥u) with
Who=-1 and WL* = M,W. Clearly WS} == VEW where {V#},,, acts on P¥u)
by V#: f — E,f. The fact that 1 is not an eigenvalue of L implies that p({1}): : 0,

so the discontinuity of £, at 1 causes no problem. The measure u will play a
vital role in what follows.

REMARK 3. One can remove the growth condition in the semigroup axiom
(v) by the following trick. If {S,},5, is merely strongly continuous on .#, scmi-
group theory [18] tells us that ||S,]| = O(ef’) for some real number f. If we put

y = inf{B real : ||S,|| = O(e#*) as ¢ — oo},
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then —oo < y < co. We can define a new space # of functions on A by A=
=+ {e~vEf(0) : fe #} and norm # so that the operator ¥ :f({) — e~?tf(() from
% to 4 is unitary. If & satisfies (i) — (iv), so does #. Moreover, VS, = 'S, V,
where -{S’,},>0 is our translation semigroup acting on %. The definition of y tells
us that {8,},», satisfies (v) as well.

2. THE SPACE # AND SUBNORMALITY

In this section we consider the question: when are L* and {S}},», subnor-
mal? The first step is to realize L* as a multiplication operator on a reproducing
kernel Hilbert space, using a now-standard technique due to Halmos and Shields

[15]. We put 4 == {Z : H(z) € '}, so that 4 = D\{I}. For each f in &, we define
a function Uf on 4 by the formula

U2 = <f, 5 ,, ze 4

Note that Uf is not identically zero if f # 0, by axiom (iii}, and of course the
map f — Uf is linear. We define # = {Uf : fe #} and norm # so as to make
U : 4 — o a unitary operator. Let us calculate the operator S = UL*U~!. Suppose
g-:Ufesr; then

(Sg)(z) = (UL*f)(z) = {L¥, e"@%y gy =
= {fy Le"OPyg = 2(f, eHEOTY,, = 2g(2).
Further define, for each w in 4, K, = UeH™*, Then if g = Uf is in #,

g, Ky == {f; %) = g(w),

so that {K,, :w € 4} is a reproducing kernel for 5.

The preceding is the general construction of Halmos and Shields applied
to our setting. Let us add a new ingredient, the action of U on the kernels
{k, :a e A} for . First consider k,. We have

(Uko)(z) = kg, €Oy, = 1.

Now k, is cyclic for L* by Theorem 1. It follows that 1 = Uk, is cyclic for §

in # and therefore the polynomials are a dense subset of . More generally,
ifae 4,

(Uk)(2) = <k,, eH@y 4 = e2H@),
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that is, Uk, :e*#. Thus, for each @ and b in A, the unitarity of U yields the
fundamental equation

(5 kia, by - (e etHy

which is the basis for the rest of this paper.

As a first application, consider the question of circular symmetry of L
and certain functions of L. D. Trutt and the first author showed that 7. - C,
is not similar to any weighted shift [24]. If we represent C, as A¥ acting on
P¥0Q,, dz') as in the introduction, then the unitary map W: P¥0Q,, 'dz') -» 4,
described there carries 7 — A; onto (3L + I)(3 + L)~ see §4.1. One can show
that L itself, acting on %, also lacks circular symmetry in exactly the same way.
On the other hand we will see that any contractive subnormal weighted shift
can be represented as L* acting on some admissible space 4. There seem to be
three obstructions to L (or g(L) where g is a Mobius transformation of D)
having the kind of circular symmetry exhibited by weighted shifts: the presence
of non-real points in A, circular contact of I with points on the imaginary axis
and a growth rate on ‘€"¢||, for u near those points of contact. For examples,
sec Remarks 4, 6, 8, 11 and Corollaries 2 and 6.

THEOREM 2. Suppose that T is an open connected set and that €% i is bounded
on each compact subset of I'. Let g be a Mdbius transformation of D onto D and
let 7. € 0D, /. # 1. Suprose that ' contains an open disk G whose boundary is taiigent
to the imaginary axis ¢t the point iy, = H(z="ig(1))), such that jor some positive

constants ¢ and d with d < 1,

i
{6) e L cexpl - ——— |, wuedg.
i h:) p !Reu:d

Then there is no nonzero bounded operator X on A satisfying Xg(L)* : : 2g(L)*X.
In particular, g(L)* cannot be quasisimilar to a weighted shift.

R

Pioof. By our hypotheses, 4 is a connected open subset of D and KX, ;
is bounded on each compact subset of 4. Therefore any function in & is a limit
of polynomials not only in norm, but uniformiy on compacta in 4, and is con-
sequently analytic on 4.

Since L* = S, let us postulate a nonzero operator Y on J# such that
Yi(S) = i(S)Y, where h(z) = g(z). We wish to show that this is incompatible
with our hypotheses. Note that the sequence {0,}3>, of partial sums of the Taylor
scries for 1~1 converges uniformly in some disk {z: izj < 1 + ¢}. Since YQ,(i(S))::
= Q(Ah(S))Y we have YS = h=1(Ai(S))Y, and therefore Yp(S): - p(h=*(ih(S)))Y
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for any polynomial p. Thus

(Yp)z) = p(h=Y(Ah()N(Y1)(z), =ze€ 4.

We claim that 4-2(Ah(4)) = 4. First note that Y1 is not identically zero;
if it were, Y would vanish on the dense set of polynomials, implying ¥ = 0.
If we d and (Y1)(w) # 0, we see that

] R YK e
h=1 Ay = [P YT
PR =500 S (v on)

and so the evaluation functional p — p(h~*(2h(w))) is bounded on polynomials p
in the #’-norm. Even if (Y 1)(w) = 0, this functional is still bounded by an appli-
cation of the maximum modulus principle on a small disk about w. It follows
from a stardard argument [6, p. 169] that 4=*(2h(w)) € ¢,(S¥), and so by Pro-
position 3, 1-2(2(w)) € 4, as desired.

Now we can use the density of the polynomials in 5 and the claim of
the preceding paragraph to assert that our formula for (¥p)(z) is valid not only
for polynomials, but for every function in . A particular function we have
in mind is defined as follows. Let a = v + is and b == v + ir be distinct points
in A with common real part v. Consider the action of Y on

st

. _ ) H 5 —
f—:—- ebH— e"H= ZiCFHe ( - ) sin (-q—z—t“ H) N

an element of 5. Note that f is analytic on D and vanishes on a non-Blaschke
sequence 0 < r; <ry < ... < 1. Now H-*G) is an open disk in D tangent
to VD at g~*(g(l)). The disk G, = {z:ze€ H~Y(G)} is a disk in 4 tangent to
oD at g-'(g()) = h=(Jh(1)). It thus makes sense to state

) (Yf)(2) = fh AhENNY 1)), = € Gy.

It follows that Y/ vanishes on the sequence z, = h~1(1h(r,)), which is a non-
-Blaschke sequence in the disk G, (after excluding the finite number of z, which
may lie outside G,) tending nontangentially to A=2(1/(1)).

Our hypotheses tell us that there exist positive constants ¢; and d, with
d; < 1 such that

1y,
KYN@! < YK = 1Y A0 1e¥®F g < cle(l—l:‘) )
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for z in ;. We may now invoke a theorem of Shapiro-Shields [28] and Haymar-
-Korenblum [17] to conclude that Yf = 0 on G,. It follows from (7} thut Y1 = 0
on 4, and we have rcached a contradiction.

Now suppose that 2(S) = g(L)* is quasisimilar to a weigihted shift Q. There
exist one-to-one operators Z and W with dense range such that Zh(S) - OF
and A(SYW: : WQ. Given our unimodular constant 4, we can find a unitary V¥
with VQ =~ AQV. Then Y =-WVZ is nonzero and YA(S)= Ak(S)Y, a2gain a

contradiction. L4

REMARK 4. The conclusion of Theorem 2 can fail if the hypothescs are
weakened in any of three ways:

(a) If the disk G is replaced by an open triangle in [ n {u:Reu < 0}
with one vertex at iy,, then L* and AL* can be unitarily equivalent (see Corollary
6 in §4.2);

{b) if the hypotheses hold as is, except allowing ¢/ > 1, L* can be a weighted
shift (see Remark 6 in § 3):

(c) if A contains only real numbers, then L* can be a weighted shift (see
Remark 6 in §3 and §4.3).

We have an immediate improvement of our knowledge of the Cesaro oper-
ator:

COROLLARY 2. I — C,, is not quasisimilar to any weighted shift.

Proof. Recall that I — C, = g(L)* where L acts on the space 4, in the intro-
duction and g(z) =< (3z + I)3 + z)~%. The axioms for #, are casy to check;
the reader might consult §4.1.1 for particulars. We have

roduc et € By)) =
1
..( .2.)

Given any open disk G < I' tangent to the imaginary axis at a point iy,, we see
that there exists ¢ > 0 so that

~={us € PUQ,, dz)} - {u:Reu < Q}.

I I
4 dz) < --, UueQaG.

Thecorem 2 now applies. 2

We turn to the problem of subnormality for L¥. A central role will be played
by the functions

E2) = e"HO, ze C\{l},
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where w is any complex number. We have seen that E, € # whenever w € A.
Note that if w > 0, £, is an ‘“‘atomic’ inner function.

REMARK 5. If p is a measure on D with p({1}) == 0, then P*(u) contains
L, whenever w > 0. Indeed, if we let p, denote the n't Fejér polynomial of E,,,
then p, — £, boundedly and pointwise on ]_)\{]} as n — oo, hence p, —» E,, in
LA(u).

For a finite measurc p with compact support in C, let us write A{u) for
the set of complex numbers 4 for which the map p — p(1) is a bounded linear
functional on polynomials with respect to the P*(u) norm.

THEOREM 3. The semigroup {S}},5, is subnormal if and only if there is a
measure @ on D with p({1}) == 0 such that

(8) k(s, t) = SE,.E, du

Joralls, t > 0. In this case the measure i is unique; moreover L* = M, and {S}}»¢ =
= {50

Proof. Suppose that L*, hence S, is subnormal. Since 1 is cyclic for §,
Bram’s Theorem [2] tells us that there exist a measure g on D and a unitary
operator Z: P(u) » # with Z1 =1 and ZM, =- SZ. If p({1}) > 0, then S,
hence L*, would have 1 as a normal eigenvalue, hence 1 € g, (L), in contradiction
to Proposition 3. Therefore u({1}) = 0.

We may invoke [6, p. 169] to conclude that

AQ) = {w W e o ,(MF)} = {w:Wwe o (L)} = 4.

Further, Zp =: p for every polynomial p, and so approximation by polynomials
yields (Zf)(w) == f(w), w € A, whenever f is in P¥u). We know that E, € P*(u)
whenever ¢ > 0, and so (ZE,)(w) = E(w), w € 4. The unitarity of Z and equation
(5) imply

SEE du = (B, Edw = k(s, 1), 5,130,

as desired.
For the converse we neéd a lemma.

LEMMA 1. [23, p. 220]. {E,: ¢t > 0} spans P*u).
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We assume that (8) holds and apply this as follows. We define an operator
Z on finite linear combinations of {£,:¢ > 0} in P¥u) to s# by ZE,: - E,,;
this Z will turn out to be the same Z as above. We see from (5) and (8) that

(ZE,, ZE>w = kis, 1) -~ Q E.Edy,

-

hence Z extends to an isometry of P%(u) into . Moreover Uk,:  E, for ¢ > 0,
tk, 1t > 0} spans # by axiom (ii), and U is unitary, so {E, :7 > 0} spans
and Z is unitary. One sees as in [23, p. 222] that Zp == p for every polynomial
p with p(1) = 0; since Z1 =1 (take t:-0 in ZE, = E,), we see that Zp: : p
for every polynomial p. It follows that ZM, =~ SZ and S is subnormal.

Now consider uniqueness. Let u’ be another measure satisfying (8). As
above, we produce a unitary Z’ : P¥u’) —» # with Z'p = p for every polynomial
p. Then Z-1Z": P(u') — P2(u) is unitary and Z-*Z’p -= p for every polynomial

p. It follows that Sz"}z"” dy’ == Sz”;:"" du for m,m = 0, and so the Stone-Weier-

strass Theorem implies that u' -= u. The statement about V} follows from the
relation V¥ - E(M).

DEFINITION 2. We will say that p is the measure associated with %4, {S};>¢
or L.

We will shortly give a positive-definiteness criterion for the existence of p,
but often the easiest way to check subnormality of L* is to try to find pu directly.
This becomes easier if we change variables. The map — H carries DN\ 1} onto the

half-plane {u: Reu > 0}, and so we can replace the integral over D in (8) by
an integral over this half-plane with respect to y == ps(— H)~*. Thus, L* is sub-
normal if and only if there exists a measure y on {u:Reu > 0} such that

9) k(s, t) = e~e-**dy(w), s,t = 0.
{Rew>0}
Let us disintegrate the measure y with respect to the projection x + iy — x [26],

and write dy(x + iy) = dy(y)dm(x) where dy, is a probability measure in R?!
and m(E)=: y({w:Rewe E}). On writing v =5+t and v=:5 — ¢ we have

(10) (555) ———~S e ,(6) dm),

a formula valid for ¥ > 0 and —u < v < w, where ¥y, is the Fourier transform
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of y,:
Fuv) = 5 e~ "dyp(y).

Thus, to find y one simply inverts the Laplace transform (with v fixed) to capture
the measure y,(v)dm(x). The value » =0 gives dm, whereupon we have the
Fourier transform ¥, inversion of which yields y, and thus y! This iffy-sounding
procedure can work nicely, and is illustrated in §4.1.1 (where m is discrete) and
§ 4.2 (where m is continuous).

THEOREM 4. The semigroup {S;¥}is¢ is subnormal if and only if k(s, t), consi-
dered as being defined for s, t > 0, has a continuous extension k to {(s, 1) :s,t € R
and s + t > 0} satisfying

Zk ciCk(u; + v, we + v) =0
v

for all finite sets of complex numbers c; and real numbers w; and v; withu; + v;20.

Proof. 1f L* is subnormal, equation (9) holds and the right side is defined
for any real s and ¢ with s + ¢z > 0; we can use the right side then to define

the extension k(s, #). The positive definiteness condition is immediate. The other
direction of the proof follows the argument of Theorem 3 in [23], using
Devinatz’s Theorem [9] and axiom (V). %

The alert reader will have noticed a resemblance to the Bram-Halmos cri-
terion for subnormality [2]. Indeed, we have Sf*k,, = k,, ., and therefore the condi-
tion of the Theorem becomes

b * *
3 ety ks Sikud 20

provided u;, v; = 0. However, a proof of Theorem 4 using this has eluded us.

3. SUBNORMALITY AND THE SHAPE OF 4

In this section we will be concerned with how subnormality of {S#},5, is
reflected in the geometry of A, and with the related question of which cyclic sub-
normals can be represented as L*. Our main results require the associated measure
u to belong to a class we call the special measures. We do not know whether this
class includes all possible associated measures.
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LiMMA 2. Let yu be a measure on D with p({1}) = 0. Let w, and w, be
complex numbers with distinct imaginary parts and let 'V be an open trapezoid
bounded on the left by the segment from w, to w,, and on the top and bottom

-

by horizontal segments. If E, and E, lie in L*p), then so does E, for every
w in V. Moreover, if € L¥u), the fimction F defined on V by

~

F(w) = - Swa du

is continuous on 'V and analytic on V.

Proof. Suppose that z is on the segment [wy, ws] connecting wy to w,. We
can write = swy + twy for s,z = 0 and s + 1=+ 1. Now E. lllle:w“ and

E2 . 25 F 8
{E. %= |Ey [*E, ¥ <

z. Howy . .

Ey * + |Ey 2

so E, € L*u). Now any w in ¥ can be written as w == z + r where z € [, 1y}
and » = 0. For this w we have

E wiB s ;l;rl2 iE.:[2 < iEwn 32 + !Ewnig,

hence E,, € L3u). Furthermore, the last inequality allows us to invoke the Domi-

nated Convergence Theorem to give the continuity of F on V. The analyticity
foilows from the thcorems of Fubini and Morera. Z]

For any measure g on D with p({1})y == 0, let
Q) =: {w : E, € P(u)}.

We know from Remark 5 that [0, co) < @(u).
ProrosITION 4, The ser ®(u) is right-tronslation invariant and convex.

Proof. Each E,,t > 0, multipliecs P3*(u) into itself. If we &(u) and ¢ > 0,
Lie = EE, € PXu), and translation invariance follows.

To verify convexity, assume that w, and w, lie in @(u). We may assume
that w, and w, lie on distinct horizontal lines. By Lemma 2, E, € L*(u) for all w
in [wy, wy]. Choose f in L) © P*(u); to compleie the proof it is enough to
argue that E, 1 f for all w in [w,, w,]. Consider a trapezoid V as in Lemma 2,

and put F(w) = S fE, Gu. Since &(u) is translation invariant and contains w, and

1y, F(w) == 0 for all w on the top and bottom edges of V. Since F is analytic
in ¥ and continuous on ¥, we conclude that £ = 0 on ¥ and thus on [wy, wsl.
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Given any measure p with compact support and any A in A(y), there exists
a kernel function J, in P2(u) with

p()*) = <[], JJ>

for every polynomial p. Moreover, for any f in P2(u), (1) = {f,J,)> p-a.e. on
A(w); let us agree to always pick a representative for f for which this equation
holds for every A in A(u). We will say that A(u) is a set of uniqueness for P2(u)
provided that the only f in P%(u) with f(2) = 0 on A(x) is f = 0. Equivalently,
{J,:2 € A(n)} spans P2(u). Recall that if u is the measure associated with some
admissible cosubnormal {S,},5,, then 4(u) == 4. Thus, every associated p satisfies

1n u{1}) =o,
12 A(y) is a set of uniqueness for P2(u).

DeFiNtTioN 3. A measure p satisfying (11) and (12) is special if in addition
it has this property: if fe P%*u) and w is a complex number such that f(z) =
=: E, (z) for z in A(u), then /= E,, p-a.e.

We know of no measure p on D satisfying (11) and (12) which is not
special. However, lacking knowledge that all associated measures are special, we
find the following criteria useful.

PrOPOSITION 5. Let {S,};»o be cosubnormal with associated measure p. In
order for u to be special, it is sufficient that ' = {u : Reu < 0} and either of the
following hold:

(A) k(t,t) - 0 as t - +oo,
or

(B) there exist positive numbers C and o such that

k(t,t) == C + O(e~%) as t— +co.

Proof. Under our hypothesis on I, we have A(u) == 4 == H~XI') == D. By
(9) we have
k(t, 1) = \ e **dy(x, y).
=30}
If (A) holds, then y({x =0}) =0 and so u(9D) = 0. If (B) holds, then y({(x, »):0<
< x < 0/2}) =0, and so u(J) = 0 where J is an open crescent of which oD is
the outer boundary circle. In the first case, pu is special because u(C\d(w)) =0,

and in the second, specialness follows from a theorem of Trent [32] on boundary
values in P2(u). »

4 — 2533
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THEOREM 5. Let {S,},>o be cosubnormal with associated measure u. If u
is special, then A == ®(u), hence A is convex.

Proof. Recall the unitary operator U: 4 — #; for L€ A, Uk, - E,. Let
Z: P¥u) —» # be the unitary operator from the proof of Theorem 3: (Zf)(z) =
-~ flz) for z in A. By the specialness of yu, Z-'E, =« E, p-a.e. for each A in 4,
hence A < &(u).

Conversely, letve ®(u), so E, € P(u). We see that E, = ZE, € #, so
E, - Uhfor some / in %. Let €*° be any exponential in . We can write u : = H(3)
for some z in 4 ~= A(u), and so

<(,u(:’ /l>£‘j = <UeH(-")§, Uh>3?’:‘ <K: ’ Ev)«#’ =

'._‘E

@) — e

Axiom (iv) now implies ¢ € A, and we have shown that (i) < A. Z]

THEOREM 6. Let p be a special measure on D. Then u is the measure asso-
ciated with some admissible cosubnormal {S,},»,, hence M, = L*.

Proof. We define A = &(u) and construct the space # on which {S,};>¢
acts with A as domain set. For each f in P*u) we define a function Yf on A by

(YNG) = S fEdu, i€ A

Now recall that {E, :x > 0} spans P%u), and so if (Yf)(x)--0 for x >0,
J must be the zero function. In particular, the linear map Y : f — Y/ is one-to-one.
We set & = {Yf:fe€ P¥u)} and norm £ so as to make Y : P¥(u) —» 4 a unitary
operator.

We define k, == YE, for 2 e A. If g = Yf€e 4,

(8. k;>z~=Lf, E;) = g(4),

hence {k; : 1€ A} is a reproducing kernel for #. We know that A is convex
and right-translation invariant by Proposition 4. Moreover, k(Z,4): : "E;:* is
uniformly bounded on the line segment connecting any two points of A; this
by the proof of Lemma 2. Hence axiom (i) holds for 4. We have already verified

axiom (ii). For any w in A(u), we see that

(YT )2 - = SJWE‘A.du o= eHMA - e g,

By assumption (12) on u we see that {e#¢":w e 4(u)} spans .4 and (iii) holds.
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Next we check the maximality of A. Suppose that for some % in &, some
complex v, and every exponential e** in 8, we have (e, h)4 = €**. This is, in parti-
cular, true for all u = H(w) with w in A(u). For such u we have

) = Chy €Ny = (Y, 0,3 o = (YR)W), e AQw),

hence Y*h = E, u-a.e. by specialness, and v € ®(u) = A as desired.
It remains to check (v). The translation operators (S,/)({) = f({ + t) make
sense formally since A is translation invariant. If Yfe &,

(S YA = (XA + 1) = {f, Eas.> = {f, EE> = (Y(VEYf)(D.

We therefore have S,Y = Y(V#)*, hence S, is bounded with ||S,| = |[V¥| <
< ||Ello = 1. That u is the measure associated with % now follows from the
identity

k(s, 1) = (YE,, YE) = SESE',d,u, st > 0. %

Note that the operator Y coincides with U-'Z from the proof of Theorem 3.

*  REMARK 6. We return to Theorem 2 and circular symmetry with two

examples.
(a) Let du = dA, area measure on D. Then M, is a weighted shift and

Theorem 6 implies that M, = L* for some L. Now d(u)=D and so
I' = {u: Reu < 0}; from the proof of Theorem 6 we know that (Y7, )({) = e#®%
and so

_ , 1
e g = S () = — —=—,
“ (1 — [wj?)?
which implies that
s <=, ueg,
{Reu|

for G as in Theorem 2. The reason that Theorem 2 does not apply is that A4 =
== [0, 00).
(b) In another direction, let

1

du@z) = ¢ " da(z) on D.

In this case A contains many nonreal points and I' = {u : Reu < 0}. However,
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the relation [je?™%| ~. J, (w) and elementary estimates on the kernel function
J.(2) for P*(u) imply that (6) fails for d < 1 though it holds for all d > 1. More-
over, L* = M,, which is a weighted shift.

THEOREM 7. Let —oco < a< b < oo and suppose g is a piccewise Ct
Sunction defined on (a, b) such that the domain

A= {x +iy:a<y < b and x > g(n)}

is convex and contains [0,00). Then there exists an admissible cosubnormal semi-
group {S,},»o Whose associated measure p is special and whose domain sct is A.

Proof. Let us construct the space . We claim that it is enocugh to find
a special measure p such that

(13) A={w:E, e L¥w},

for suppose that we have done so. If f is any element of L), Lemma 2 tells
us that the function F(w) = Swadp is analytic on A. If f/ | P3*u). we see that

F(x):= 0 for x = 0, s0 F = 0 on A. It follows that £, € PXu) for each v: in 4,
and therefore @(u) -— A. This fact, when combined with Theorems 5 and 6,
yields Theorem 7.

It remains to construct p satisfying (13). The hypothesis on g means that
(a. b) is a finite or countable union of closed bounded intervals J,., k = 1. any
two of which share at most an endpoint, such that g is of class C! on each J;.
Of course g'(y) is a one-sided derivative if y is an endpoint of some J,, and
g'(y) will have two meanings if y belongs to two J,,. Let J be one of the intervals
Ji, and let T {g(3) + iy : y € J} be the corresponding arc of JA. For ¢ in J,
let x :d + sy be the equation of the line tangent to T at g(r) + iz. We have
§:=5(r) = g'(¢) and d == d(t) = g(t) — tg'(t), both continuous functions of ¢ on J.
The convexity of A tells us that

(i4) g(») = d(t) + s(t)y

for all t in Jand a<y <b. For § >0, letl{y,8) =J n[y— 4, y + 3], and
let w(5) be a positive function of § which strictly decreases to 0 as ¢ | 0, such
that
(@) > sup d@z) —d)| + [yl is@) — ().

tel(y,5)

red
Choose a sequence J; | 0 and a function analytic on D with a simple zero at
0 and having value k/6, at e %% | On replacing the Taylor coefficients of this
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o«
function by their absolute values, we get a new function A(z) = ¥} ¢,z" analytic

n=1
on D with ¢, > 0 and
e Y > kjo,, k=1,2,3,....
Now for each n = 1,2, ... define a measure y, on the line {u +iv:u=

-+ nf2} by the formula

Sfd')’n — cngend(f)f(-g‘ a—- is(t))) ds

J

and put % == Y V- We recall that —H maps D onto {u + iv:u > 0}; we
ne=l

define v = ¥o(—H), a measure on D. The total mass of v is

S
S Se”"(' )ds.
n=1

J

However, d(t) < g(0) < 0 by (14) and so the total mass of v does not exceed

|J1h(e¥®) < co, where |J| is the length of J. We are using here the fact that A
is increasing on [0,1). -

Cramm 1. If a < y < b and x > g(), then E,,,, € L*(v) and

) | S [Eeviylidy < ] A=) < co.

To see this, let us write —H = u + iv so that [E,.; | =e ®*) We
have

n=1

S,Ex-f-iylzdv = Z Se_(2"x+2vy)dyn(ua U) =

(=]
{5 e

n=1

If x > g(»), we see from (14) that d(t) + s(t)y — x < g(y) — x < 0, which yields
(15).

Craim 2. If y € J and x < g(»), then E 4, ¢ L¥(v).
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To see this, fix y in J, x < g(»), and suppose ¢ € I(y, §,), for some k > I.
By the definition of w(5) and the identity g(y) - d(y) + ys(y) we have

d@) + sy — x = d(t) + s(t)y - g(y) = --w().

Thus for any positive integer N,

” .
S'Ex+iyl2dv = S Z Cn(ed(‘)"'s(‘)Y"X)n dt >

Resl
J

N — (6, )
= Y e Fde

n="0
I()’n‘sk)
On letting N — oo, we find

SiEx+iy|2dV > 0" ™) > k,

and because k is arbitrary, the claim is proved.

Return now to our collection {J,} of intervals. For each k, associate
and v, to J, as & and v were associated to J/ above. We may choose positive
numbers g, so that ¥ &/ converges uniformly on compact subsets of D. Further,

choose a finite positive measure m on R* such thats e”¥*dm(r) < co exactly when

¢ <y < b, and define a measure g, on the line {1 + iy : y € R} by the formula
Sfdxo - Sf(l + ip) dm(y).

We put vy == Xeo(—H) and note that E.,, € L*(v) exactly when a <y <b.
We easily see from Claims 1 and 2 that

&y,
vp + Vg
I§1 (3

is a (finite positive) measure on D such that

&
Ecriy € Lz( Yo + Y “‘l“ "k)

k>l lel
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if and only if x + iy € A. Finally, let i be this measure on D:

dip = exp(—exp ! )dA.
1 — |z}

The measure y we want is

~ g
u=u+v0+z—¥‘—vk.
K> |
Note that 4(z) = D, hence i is special. Moreover, y is carried by D and u > [,

so A(u) = D and p is special also. Since every E,, belongs to L%(j1), we see that
(13) holds, as desired.

When A is an open set, analyticity of 04 is sometimes another conse-

quence of subnormality of {S*},5,. Consider the situation where the kernel function
for 4 has the form

(16) k(w, 0) = uwyu(0)e’ WY o’ (O°h(@(w)e (L)),

where u is analytic on A, & is analyticon D, ¢ : 4 - D is a conformal mapping
and & > 0. This will be true of all of our examples, except §4.3.

THEOREM 8. Suppose that % is admissible with open domain set A such
that 0A is a simple arc. Suppose that the kernel function k for B has the form
(16), where u is analytic across and nonvanishing on 0A, h is analytic across D
except for a pole at 1, and h is never zero on OD\{1}. Suppose also that ¢ is
real on A n R and that py = infA n R > —oco. If {S¥)i5¢ is subnormal, then
each component of {A:Reld > po} n 04 is an analytic arc.

ReMARK 7. This theorem applies to the Hardy and Bergman spaces in
Sections 4.1.1, 4.1.2, and 4.2. Theorem 14 shows that d4 can fail to be analytic
at points A with Red = p,.

LemMA 3. Let {S,};»0 be cosubnormal with associated measure u and
domain set A. Then

M&ﬂ=8&§¢t

Sor all real s and t in A.

Proof. We know this already for s, ¢ > 0. By equation (5),

k(Sa t) == <Ess EI>)?’
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for s,te A n R. Let #+ <0 be in A and suppose that Z : P¥u) - 3 is as in
the proof of Theorem 3. We have the operator V4, on P*u), and we know that
ZE,: : E, for x > 0, and that {E, : x > 0} spans P2(u). It follows that ZV% f: -
2 E_ Zf for every f in P¥(u); in particular, ZV#,Z-'E, =: E_,ZZ-'E, 1. Since
Z1:-1, we see that V#,Z-1E, = 1 y-a.e. Therefore, Z-'E, =.: E, p-a.e. for 0 >
> t € A, a fact we already know for ¢ > 0. Thus for any real s, ¢in A, E, and E,
lie in P%(u) and

CE, Ey = S EEdp. 7

Proof of Theorem 8. Let { € dA with Re{, > p,. Our object is to show
that ¢ has an analytic continuation to a neighborhood of {,. Clearly, ¢ maps
A n R onto (—1,1); we may assume that ¢(co) =1 and o(py) = - —1. We see
that @(0) == ¢({) and so A is symmetric about the real axis. With the notation

#(A) == u(X) we have

k(T O~=w(QuQe (O®h(e(0, (e 4;

this function gives an analytic continuation of k(¢, ¢) from A n R to all of A.
Lemma 3 gives another analytic continuation of k(z, t), namely

S e ReH
to the region {{ : Re{ > p,}, which contains {,, and so the function

o' (OR(p(O2)V2® = [ﬂg,—g]lm

u (Ou(l)

continues to a neighborhood of {,. We select an antiderivative F({) of this
continuation.

The map ¢ extends to a homeomorphism of A onto D\{1}, 50 zo= o({,) ¢
¢ {—1, 1}. It follows that A(z2)V/?% continues to a neighborhood of z,, with corres-
ponding antiderivative G(z). We see that G- ¢ and F have the same derivative,
and so we may adjust a coastant of integration to give Go¢ == F at all points
near {,. Since A(z3)Y*® # 0, G has a local inverse at G(z,) and G~1-F gives the
desired continuation of ¢ at Z,. %
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4. EXAMPLES AND APPLICATIONS

4.1. DILATION SEMIGROUPS. We pursue an idea from the introduction and
generalize the semigroup {D,},5, and the operator A, acting on P%9%,, |dz|).
Let us suppose that  is a simply connected domain in C with 0 € 3Q and with
Qu {0} starlike about 0. Suppose that &/ is a reproducing kernel Hilbert space
of functions on Q. We will study the situation in which, for appropriate « > 0,
the collection

a7 B={c *flet) :fe o)

is a space of functions on A4 = —logQ satisfying our axioms. Here it is under-
o
-=t
stood that 4 is normed so that the map W:f(z) > e * f(e=%) is a unitary oper-
ator from &/ to . The role of the operators B, on & will be played by the oper-
ators 4, on & defined formally for Rev > /2 by

1

v

(A f)2) = — \fOw)w*~1dw,

z

SN

where the path of integration is the segment from 0 to z. Note that

A,z - z* if Re(v + u) > 0.
v+ u .

Let us agree to define z¥, z € Q, by requiring argz = 0 if z > 0.

We impose some axioms on &, analogous to those for 4; they could be
made more general, but these will suffice for our examples.

(i)’ Q contains (0,1].

(ii) Every f in &/ is analytic on Q.

(iii)’ If T == {u:2"€ o}, then {z* :uel} spans .

@iv)" If vis a complex number and / is an element of & such that {z*, A ==
= e“? for all u in f, then e’ € Q.

(v) The dilation semigroup {D,},5, is strongly continuous on .« and sa-
tisfies

ID, |2 = O(e) as t oo

for all f exceeding a fixed positive number «.
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Of course, the strong continuity of {D,},», implies the existence of many
x’s; let us understand that we will choose a particular «, which we call the
parameter of & or {D,},s,. In practice we always take & to be as small as pos-
sible. We will indicate that (i) —(v)’ hold by saying that .7 or {D,},¢ is admissible.

Let us see how this meshes with our theory of %, L and {S,},>,. Given .o/
satisfying (i)’ — (v), define & by (17) using, of course, the x from (v), with
corresponding unitary operator W :.o/ — #. The reader will readily verify that
4 satisfies (i)--(v). In particular, we note a few useful facts. First, z¢ - e~ @25
so that I + «/2 - —TI. Moreover, e~ @'WD,-: SW and WA, -: B,_,». W for
Rerv > af2. Thus we have, via W, 1 — 24342 = L.

In our example < == P%0Q,, dz|), the appropriate choice of = is I, and
Ajqn = Ay, Whereas we were considering 4, as the “natural” operator on
that space. To see how to switch the emphasis from A4;,,, to A, in general,
recall the assertion from §2 that in this example,

1 1 .\!
I—Alg(L+—3-)(1+-3-L) .

/

This is a special instance of the general fact, valid for any admissible space .3,
that if 'w < 1 and g, is the M&bius transformation

2u(2) - (1 :_‘TL) oW

l—w/) 1l —wz
then
g.(L) = I — 2(Rev)B,,
where v:  —H(w); this is an immediate consequence of (3). Thus, in general,

I— %A, = I — aBys = (L --w){I — wL)~*

where w - (2 - - 2) (o + 2)~ %

Since L is the cogencrator of {S,},5¢, we see that /- 24;,,. is the
cogenerator of {e~@3!D,},. ,, at least when this semigroup is contractive. However,
the perhaps more natural operator / —- a4, plays a similar role, namely

e (zlz)tD, s E(l‘,';})t(l .- O(Aa),

a formula valid whenever {e-@3D},,, is contractive, or equivalently, whenever
A
‘7~ 2d,)l < 1. To verify this, one checks that both sides agree on {z* :u € I'}.
We may summarize our main conclusions as follows.
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ProvositioN 6. If o/ is admissible with parameter o, then the space £
defined by (17) is admissible in the sense of Definition 1. In this case, e~ @D,
and A, are unitarily equivalent, via W, 10 S, and B,_ s , respectively.

We turn to subnormality of {D}},,,, or equivalently, of A%. First observe
that the kernel functions k for .« and k for 4 are related by

A, - .
ke=v,e ) == cD D k(w (), w,{e A

On putting this together with Theorem 3 as interpreted in equation (9), we
immediately deduce the following:

PrOPOSITION 7. Let of be admissible with parameter o. In order that A¥
and {Df},5, be subnormal, it is necessary and sufficient that there exist a measure
fon {w:Rew = —af2} such that

k(a, b) — Sawzﬁdﬁ(w), 0<abc<l.

In this case {e=@®'D¥}o o and I—aA¥ are unitarily equivalent to {Vi}ys, and

— — -1
(Mu X —2)(1 — ( Ex———g)MM) respectively, where u=fo¢ and ®(z)=

o+ 2 o+ 2
- _]; +i R
1 —2z 2

In some cases that will interest us fc(i, z), which is defined and analytic on

@ n {Z :ze Q}, extends to be meromorphic at z = 0. Proposition 7 can then

be cast in a very useful form.

ProPOSITION 8. Suppose that < is admissible and that the parameter o

A
is a positive integer. Suppose that k(Z, z) has a meromorphic extension with pole
of order @ at z = 0. Then A¥ and {D}} are subnormal if and only if there exists
a sequence {B, V2. _, of finite positive Borel measures on R such that

ket ret) = 37 B

PR

whenever 0 < r £ 1 and 2logr < v < —2logr, where

Bu(o) = S e, ).

- 00
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In this case

Bx + 1) = 3] dB,()d6,(x)

n-—-o

where 8,4 Is @ unit point maoss ar nj2; consequently p is supported on a sequence

of circles in D which are tangent to D at the point 1.

Proof. Suppose that A¥ is subnormal, and that 2’(‘5, z) has a Laurent series
expansion

I:'\(E, z)=Y, b:z"

n:—g

for z near 0. From Proposition 7 we see that
(13) I’::(re"’/a, revl?) = Se_iw r**dp

for 0 <r <1, 2logr £ v < — 2logr. If we set v==0 and compare with the
Laurent expansion, we see that § is supported on the union of the lines {x +
iy i2x:an),n-c—a,—a+ 1, ..., and the f-measure of the »t® line is b,.
The Proposition now follows from (18). %

4.1.1. WEIGHTED HARDY SPACES ON Q. Let Q be a Jordan domain containing
(0, 1] whose boundary is rectifiable and contains 0. Further assume that Qu {0}
is starlike about 0 and that Q is analytic at 0. Let 7 : D - Q be a conformal
map with (1) =0, and denote by ¢ : Q — D the inverse map. Since 08 is
rectifiable we have 7" € H! [10]. Lemmas 5 and 6 in §4.2 applied to ¢ = - -logz
show that 1’ is an outer function, i.e., that Q@ is a Smirnov domain. Let ¢ be
an outer function in P%*0Q, |dz|), which means that ¢ o7 is outer on D; see [10]
for a treatment of these spaces. We will consider the spaces =/ = P(0Q, jgi*dz)).
The Smirnov condition guarantees that a function f analytic on Q lies in &7 if
and only if

(19 (goD)(for)(@ )

liess in H*= P2( oD, 21- l(ﬂzl) , the classical Hardy space on D. Here we are
\ i

simultaneously thinking of o/ as a space of functions analytic on @ and as the

subspace of L2(0Q, [gi2dz!) spanned by the polynomials; the connection is of
course via boundary values. The kernel function k for o is

(20) I:'(w, z) = L ll]lt‘_v)_m'//(z)m _1- .
2n qw)g(z) 1 — YW (z)
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Throughout this section we will assume that the above requirements on Q
are in force.

THEOREM 9. Suppose that, in addition to the above requirements on , there
exist ¢,, ¢y > 0 with

@n QW< |gi® < iy’ on Q.

Then PX0Q, |qi*dz]) is admissible with o = |.

Proof. We have a natural unitary operator P: ./ — H? such that (2r)~/2P
maps f in & to the H? function given by (19). That this operator is onto follows
from the facts that (go 7)(z')'* is outer and that {t"}%° , spans H?, the latter being
a consequence of a theorem of Carathéodory and Walsh [33]. It foliows that
axiom (iii)’ holds. Axiom (iv)’ we leave for the reader; an argument as in Pro-
position 11 below (but easier) will do the trick. Axioms (i)’ and (ii)’ are, of course,
automatic.

Tt remains to verify (v)’. We readily compute that PD,P~* = ORC,, where
CQ’ is the composition operator on H? given by C@,'f:fo @, with ¢{2) = Y(c~'1(2)),
and Q and R, are the multiplication operators defined on H* by

V@

q(x(2)) . ‘R 1
_._qG@) d z) =
(Qf)2) TN fz) and (R, f)=) g(e-'7(2))

The hypothesis (21) implies that ||Q]|? < ¢, and |R,||* < 1/¢,. Moreover, a theo-
rem of Ryf [27] implies that {|C, [[* < 2(1 — |¢,(0)])~*. Since y’'(0) exists and is
nonzero {by the analyticity of Q2 at 0), we see that 1 — |@(0)] behaves like a
positive multiple of e~* as ¢t — oo. It follows that HC,,‘H2 < ae' for appropriate a > 0
and all ¢; thus ||D,]|? € cyeylae and the proof is complete.

REMARK 8. (a) One checks that [ = {u : Reu > —1/2}, which implies that
I' ={u:Reu <0}, whence 4 =D and o,(L)-= D. It follows that o(L)= D
and, since 7 — A, is a Mobius transformation of L, that o(I — A,) = D.

(b) Theorem 2 and the argument in Corollary 2 show that I — A4, acting
on P¥0Q, |¢l*ldz]), cannot be quasisimilar to a weighted shift.

(c) If g is analytic at 0 and ¢(0) # 0, then k3, z) has a simple pole at
z =0 and Proposition 8 applies. In addition Proposition 5(B) is in effect: If
{D¥},5>o is subnormal, then the measure p associated with the corresponding
space 4 is special, and therefore log 2 is convex, by Theorem 5.

(d) If {Df};», is subnormal, if Q is symmetric about the real axis, and if
g is analytic on an open set containing £, then Theorem 8 implies that 9Q n
n {z:|z| < R} is a single analytic arc, where R = max{|z| : z € 0}.
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We consider a subclass of examples. Suppose that |g%ldz; = dw,, harmenic
measure at some point 2 in €, so that

L1 1 — Yy
2.2 z 2oy :,-. D
(22) @R W@

is the Poisson kernel at . Note that ¢ satisfies (21).

ProPosITION 9. Suppose that for i -- 1, 2, the domains Q; satisfy the hypocic-
ses of Theorem 9. Suppose that ; € Q, and dw;,i is harmonic measure on 0Q, jor
the point %;. Then A, acting on P*09,, d(u;_l) is unitarily equivalent to A, acting on
PAIQ,, dw; ) if and only if 2,9, = 2,Q,.

Proof. First suppose that the map n(z) : : (4,/25)z carries Q, onto ©,. Let us
associate |g;{> with Q; and 7; as '¢ 2 is associated with Q and Z in (22). A change
of variable will show that for any polynomial f,

\ 11 (’) l9a(2)Pidz] = S Sr (2] e
AN A . :

U.Ql

2

and it is easy to check that

Cig ! Y] 2

;'/.~1“u 41/

Thus the map X:f — f* 4 is a unitary operator from &7, == PH0€2,. dw; ) to .y « -
Pz(agzﬁdw;,s). One checks that the operators XA, and A,X agree on powers
of z, and so the desired unitary equivalence is established.

Conversely, suppose that A, defines unitarily equivalent operators on the
two spaces, with the equivalence implemented by a unitary X: &7, - «7,. If Reu >
> — 1/2, we know that z¥ is an eigenvector for 4, on &7, with eigenvalue
(I =~ u)~% Thus Xz is an cigenvector for A, on s/, with the same eigenvalue;
by Proposition 3, we have Xz*:- g,z* for some complex a,. We therefore have

@G, <2, 2 gy = (X XD g o (2 25

Now observe that for any f in <7,

o

Dy = Sfd(% = G,

v,
i
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so if we set v = 0 in our above equation, we find @,a,4% = 7§ . Putting u = 0 yields.
[@g|® == 1, and so

a, = agliiz" = age®r ™",

where v; = logi;. Let w be in Q, and write ¢ == logw. We have
et = (X2 2D = 2 XY,

where 7(‘,“:, is the kernel function for &7, at w. On applying axiom (iv) with /2 =
== a,X*k2 , we see that 4,27 w = 1% lies in Q,. This yields the inclusion
LQ, = 4,9,; the reverse inclusion follows by symmetry. Z)

Let us return to general ¢ and consider subnormality. For the remainder
of this section we suppose that the hypotheses of Theorem 9 are in force, and
that ¢ is analytic at 0 with Taylor expansion g¢(z) = ¢, + ¢,z + ..., where

go # 0. In this CasCAk(f, z) has a simple pole at z =- 0 and we may invoke Pro-
position 8, with a =

ProPOSITION 10. Suppose that 09 is normal to the real axis at 0. If {D,} >,
acting on P¥0Q, |q|*|dz|) is cosubnormal, then q¢,/q, < O and the measures B_, and
Bo are given by

2

[ YAS T
df_.(y) = ——- I‘(»—+1y) dy
B_.(y 47'52[6[olzt 5
and
dBe(y) == —- L (i’?-) d6,(») +- = D + iy)ady,
27niqol% \ g0 4n2|g,|?

where 8, is a unit point mass at 0 and x is the curvature of 02 at 0.

Proof. We assume that {D}},., is subnormal. From our hypotheses we see
that Y(z) =: | + ¢,z + ¢p22 + ... with ¢; < 0. We want to recover fi_,(v) and

/Aio(v) from the expansion for k(re="/2, re%/?) in Proposition 8. Let us abbreviate

e/t t + 171 == A and Aﬁ,,(v) == ﬁ,,. On plugging in our formula for l':', we see
that this expansion becomes

@3) T (rt Y = 2mq 10U = T 3 B

n-==1

We calculate

Y (@M = iley V2 - ey "MPepz + ..
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and so
WD M = ey + {eat + et ™ + O(F).
Furthermore, we have
L= YOG = —[e(r + 171 + (cat® + (3 + et~ + O(r¥).

We may temporarily assume (without affecting '¢;2) that g, > 0. We now multiply
oul low order terms in the right side of (23) and equate constant terms and r-terms
on the left and right to find B_,l and [;‘\0. If weput ¢o-:a +ib and g, = d + ie,
the result is /?.4 = (2rgir) * and

A | 2 -~ 5] 1 d ie [t 11
B LT SRRTEIEE SR DA | ¥
2rngi L 2 /2 qo go Lt + 17

By [13.p. 39] we have

‘ 1 1 ¢ Y o A
(24) T U ( -+ 1y); dy
A 2mtk - 1) | \2 |
-0

for k=:1,2,3, ..., which tells the form of f}_; and part of f,.

Now consider the function S, defined by S(v) = —1 for v < 0, S(0)- : 0
T
.

and S(z) :1 for v > 0. Then S(r) — tanh ( ) € L*—oo0,00) and so /?0 can

be written as

fio(v) . C + DS{r) + f(v)

where C and D are constants and f € L*(—o0, co0). It follows that iio is the Fourier
transform of the distribution

Cddyy) + Ly + 0y,
Ty

where # € LY(—o00,00) and the middle term is taken in the principal value sense.
This distribution is a finite measure only if D=0, and thus e == 0. It follows
from (24) that /f:, is the Fourier transform of the real measure

dBu(r) — 21 {— L 4,y) + ;n [-2—51?;—] T+ ,-y);edy} .

2
nqo 9o ‘G
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The positivity of f, implies that d/g, <0. Furthermore, (2a — c?)c;! is exactly ,
the curvature of Q at 0, which is automatically nonnegative. Indeed the standard
formula for the curvature of a parametric curve yields

_ | Rey”(0) — y'(0)
¥'(0)

2a—c|

|3
o |

we may remove the absolute value signs as follows: for z near 1, t(z) has a Taylor
series expansion from which we find, for ¢z small and real,

Rer”(l)

Rez(e) = /(1) (cost — 1) + (cos(2t) — 2cost + 1) +

+ _ImrT(l)_ (2sint — sin(27)) + .

= — %(t’(l) + Ret"(1)r* + O(¥).

Since Q y {0} is starlike about 0, Q lies in the right half-plane. It follows that
(1) + Ret”’(1) < 0, that is,

Rey(0) =y |

¥'(0)
as desired.
Finally, we may relax our assumption that g, > 0, which replaces g2 by
{901%, d/q, by Re(qy/q,), and the condition e = 0 by Im(g/g;) = O. %

As in the introduction we let Q, = {z:|z — 1| < 1}. We conclude this
section with a characterization of those measures |g{2|dz| for which {D,},s,, acting
on PX0%,, |q/?/dz]), is cosubnormal. Note that our hypotheses on ¢ take the form:
lg(2)I? is bounded above and below in Q,, and ¢ is analytic at 0.

THEOREM 10. If g is as above, then {D}},», and AT are subnormal on P08,
,qlﬁldzl) if and only if |q(2)?|dz| is a multiple of harmonic measure dw, on 02,
for some point p with 0 < p < 1.

Proof. First suppose that |g{*|dz| = dw, for some p,0 < p < 1;if p=1,
then |g|? == 51— and we know that then A} =~ C,, which is subnormal. If we
T

require g, > 0, we have

_ [pQ2 —p)72 1 )
q(z)—[ 2n ] p+ (1 —p)

5 - 2533
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We may take ¥(z) = 1 — z, and therefore by (20)

[p + (t — p)wllp + (1 —p)z]
w4+ z—wz

lt'(w, z)=C

for appropriate C > 0. For the purpose of this calculation, let us take C : -1
which multiplies |gj2ldz| by a constant. With f = ¢%® and 2 = ¢ + ! we have

pt + p(L — pir + (1 — p)r®
ir— r®

IAc(r/t, rt) =
= ﬂi-‘:ﬁ + P(l - p)l + (l - p)‘lr] i n+1

Pt PPl &l 1—p7 .
Lo 2] B[22

Therefore we read off

A L [ Y & 1—p
By = Pk ﬁo"'P(l‘—P)‘f‘"}:zw Bn"':;l_;z_ - }"' » 2zl

That these are truly Fourier transforms of positive measures g, is immediate
from (24). It follows that A¥ is subnormal on P%09,, dw,).

Conversely, let us suppose that AF is subnormal on P20Q,, gi*dzi). We
may assume that g, > 0, and then Proposition 10 telis us that g, £ 0. Our
equation (23) becomes

(25) 1 = 25 qGIaeOC — ) Y, B

n=-1

We will see that merely the boundedness of each ﬁ,,, for n 2 1, is enough to
determine the form of g.
We may write

20 G = Y, O™

n:=0

where

Qm = 21 Z quT—_,-ty ~m

j=0
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Furthermore,

Gr—r) Y B =¥ D

ne—1

where D, := A[?_l and D, = Aﬁ,,_l — /?,,_,2 for n > 1. Let us now agree to nor-
malize g so that 2mgj == 1, that is, Qp = 1. Equation (25) becomes

Z (E DyQ,- k) ;

n:- -0

forn > 1 the coefficient of r” is of course zero, 'ahd by our formulas for D,, D, , /?_1
and f, (from Proposition 10) we have

]nl

Bn—l = ﬁn 3 Z DkQu—k -

1 A A A n-1 A A
= /1‘ {ﬁn—z — Q@ — (B — 1001 — 2 (APr-1 — ﬂk—z)Qn—k} :

k—g
Now

O = 27g,90t™ + O("™7)

as v — +o00, and so forn > 2,
Bu-1 = 21(g, —1qy — gudo)t”~t 4+ O@"?)

as v > +oco. Since f,_, must be bounded we have g,_,9, = ¢,4,, or

¢ V't
q,,=(-'—-) g, n=273,4,...
qo

Let us put p = gy(g9o — ¢1)~*; we have 0 < p <1 since ¢, < 0. Moreover,
@/q0 = (p — 1)/p, so0

GoP

n—-1
g(z) = qo + g1z + ( ) @' = ———,
2 9 p+(1—p)2z

X

and |g/®|dz| is a constant multiple of dw, as desired.

Suppose that in Theorem 10, |g(z)]*|dz] =dw, with 0 <p < 1.
Then {e-"?D}},», and I — AF¥ are unitarily equivalent to {V¥};5, and
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(M, + 1/3) (I + (1/3)M,)~* respectively, where  is as described in Propositions 7
and 8 with

2
dy,

dp-_u(y) = pﬁf;’ I (—i + iy)|

2 C N : [
dfo(y) == Cp(l ~ p)d%(y) + p* " II'(A + ip)dy.
AT

C P it R n A
2 — + 3* — (. - 1dy,
96:0) 2n(n — 1)! [n(n+1)(4 " )-‘-([ p)]l (2 ! i})‘ «

for n > 1, where C is a positive constant. This follows from the expression for
?c(r/t, rt) in the proof together with (24).
4.1.2. THE BERGMAN SPACE ON Q. Let Q be a Jordan domain containing (0, 1]

and with 0 € Q. We let 4%(Q) denote the Bergman space of all functions f
analytic on 2 with

A = sz dA < oo,

o

where d4 denotes area measure.

THEOREM 11. If @ U {0} is starlike about O, then A*(Q) is admissibie with
@::2. In this case {€~'D,},», defines a contraction semigroup on AXQ) whose
cogenerator is I — 2A4;.

Proof. Since Q is a Jordan domain, the polynomials span A*Q) and no
point outside of ©Q defines a bounded point evaluation on the polynomials in
A%Q), see [3]. Thus axioms (i)’—(iv)’ hold. A simple change of variables yiclds
the inequality ||D,fll < e*||f]], valid for every f in A%(Q), so axiom (v)’ holds as
well. The assertion about the cogenerator follows from Proposition 1 and general
remarks beginning §4.1. %

We will see in the next section that A and {D}},, are subnormal on A*(Q,).
where Q, = {z : |z — 1| < 1}. A characterization of all Q which yield subnormal
{D}#},>o will be the subject of a separate article [22]. The associated space

B = {e~{f(e~") . f € AQ)

is also of interest; it is precisely A2(4), where 4 = —logQ. Of course ¢~*D,
on AL) corresponds to S, on 42(4).; In §4.2 we will study 42(4) for domain
sets A which do not necessarily arise as —log .
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4.1.3. WEIGHTED BERGMAN SPACES ON £, AND OPERATORS OF KAy, Soulr,
AND TrUTT. For a > 0 we consider the Hilbert space &/, of functions analytic
on Q- {z:]z— 1| <1} whose reproducing kernel is

1

A“ ’ _
kv, 2) @+ z— w2

The change of variables z — 1 — z will take us to the more usual version of this
space, based on the disk D, where the kernel function has the form (1 — wz)~®.

We can write any f in &7, as f(z) = Y, a,e,(z), where e,(z)=(1 — 2)", n=0, 1,2,
0

. . One checks that ¥, a,e, lies in &, if and only if
Ifll =Y, pila,l* < oo,
.0

where pg =1 and

g= (=1 ") = n! >1.
? ( )( ") ol + 1)... (¢ +n—1) »n>1

The inner product in &7, is of course given by
{f,8) =Y, Pia,b,
n=0

where /= Y, a,e,, g = Y, b,e,. We have the expansion

/Ac"’(w, z) = g ——I——énme,,(z).
n--0 Pp

1
We see that o, = P2 (890, 2— Idz]) , the translate of H? from D to Q,, while
T

for o« > 1,

o —1

Il =

S @A — |1 — z|%)2~2dA(z).

2y

Of course s, = A%£2;) with norm divided by n. When 0 < a < 1,]||f]l, and
(/) + 1If'l242)"/* define equivalent (but not equal) norms on «/,. Clearly the
space <7, satisfies (i)’ —(iv)". It also satisfies the semigroup axiom (v)’ (with para-
meter a); for & > 1 this can be seen by applying the proof of Proposition 3.4 of
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MacCluer and Shapiro [25]. However, we will establish this, and more, viz the
following identity:

* (s ¢ ki
1+ e e F(—s, 2
ng_(k)(k) ax + 1) ... @+ 4k -1 (= =2 )

_ T@l@ + s+ )
I'e + (= + 1)

where F denotes the hypergeometric function, « > 0 and 5,7 > 0, see p. 56 and
104 of [12]. For s = 0 we have

. . x, s .
2l —(l—2)F =¥ (-1 ( )e,.(z).
] k
Thus, if i and 7 are nonnegative integers and

1"(516)1’21"(-({C g L + n)

a, =: -

" T + n)

we have

moaN — m ) 4; — ,I_‘(_G(;)_F_gg__-"‘: ”1. + Il_) ==
@20 3 ( k) (k)""' T(x + MU + n)

(o750 ).

Uy —= e e T

= a

K1 +m+ ﬁ——“—-lz)f‘(ﬂ +n+T l~)
.2 2

% -1 i L e-1 -1
m+-— || n+ SO SR e
Qg dy Z 2 2 P = aman(z E s
k0 .

k k

m

. . . o 1
Now z~12 js an outer function in &7, == P~(GQO,:2—— [dzl) and there-
' n

fore {zn*(~DRI® , spans of,. We thus have a unitary operator Y:.o7, -» o7, de-
termined by the action

Y:z8 = a,z"t D2 p==0,1,2,...

What about the operators D, and 4,7 We calculate that e~ @YD, - = e~"*D,Y
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and YA, = Ayyq-ay2 Y, Rev > «/2, by checking these equations on {z"};2,. On
putting this together with our knowledge of 4, and D, acting on </, , we may state:

THEOREM 12. For o > 0, the space o, is admissible with parameter
moreover, {e=®'D} ., is a cosubnormal contraction semigroup on <, uni-
tarily equivalent to {e-'*D,},5, acting on P¥0Q,, |dz]). A, acting on o, is unitarily
equivalent to A, q_qp on P¥0%y, |dz]); in particular A, acting on o, is
unitarily equivalent to Cg.

In [20], Kay, Soul, and Trutt introduced the weighted averaging operators
%, on (* defined by %,{a,} = {b,}, where

Pk + 1)
Pl + &)

b

A Z ad, with di = ;

(n + l)c

here 0 < a< 1. They showed that || %,|/<2, computed the point spectrum and
found that ¥, is subnormal. The choice o == 1 yields C,. A comparison of our
work and their setup shows that €, is unitarily equivalent to a linear fractional
map of 4F acting on &,. Though Kay, Soul, and Trutt never introduce the space

s/, , they do use the kernel 7(“, and their proof of subnormality involves producing

the measure that goes with k= as in Proposition 7. Using our unitary map Y and
the discussion at the beginning of §4.1, we can go further.

COROLLARY 3. For each o,0 < a < 1, there is a linear fractional map g, such
that €, = g(C,).

4.2, TRANSLATION INVARIANT BERGMAN SPACES. Let A be a right-translation
invariant domain in C containing [0, co). In this section we investigate the Bergman
space 4 = A¥A), on which {S,},5, acts as a contraction semigroup. The
Bergman spaces A%(2) of § 4.1.2 can, of course, be put in this form: if 4 = —log®,
then W:f(z) > e~%f(e~%) is a unitary operator from A%Q) onto A%A4) with
c'WD, = SW. However, we will be interested in examples for which A4 does not
arise as —logQ.

The study of A4%(A4) and {S,},», for general A seems to us of great interest.
For the moment we will see what can be said when we impose a few additiona-
conditions on A to bring A%(A) within the purview of our theory. We assume:

(A) 04 is a simple curve.

(B) A is contained in some sector & of the form

F = {reil --c:—y< 6 <yandr>0}

where ¢ > 0 and 0 < y < 7/2.
(C) There is a conformal map ¢: 4 - D such that ¢(x) - 1 nontangen
tially as x tends to +co along [0, co).
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We note for future reference that the kernel function for 4%*A) has the form

S 1
k(w, z) = - o' W)0'(2) ——————.
(w, 2) - o' )(p()(l_(p(w)(p(z»2
Our axioms are trivially satisfied except for (iii) and (vi). We therefore need
only show that A4*(A) is spanned by the exponentials it contains and that the
maximal set of bounded point evaluations for those exponentials is exactly A.
We proceed via several lemmas. Our condition (B) implies that A42(A) contains
¢~* whenever ¢ > 0. Let us write ¢ = ¢~ : D — A; o extends to a homeomor-
phism of D\{1} onto 4. Note that there is a natural unitary operator Q: A%4) —
— A¥D) given by Qf = (f+0)a’, with 0~'g = (g 9)¢".

LEMMA 4. Suppose that Rew < —c, n = 0 and g € AYD). Then t"e~"("~¥)g'g
is integrable over [1,00) XD with respect to dt xdA.

Proof. We may write g = (fo o)a’ for some f in A%(A) and restate the asser-
tion as: 1"e "¢~ is dr x dA-integrable over [1,00)x A. We have

12 12
S |e-t(§-w)fldA < [S ie—t(c—-w)lsz] [S |f|2d/1} <
1 4 4

i 12 .. {tan v V2 gt(Rew--c)
< I!'fli[Se"“’"""’“”?dydx] i (e,
t

7
Now multiply by ¢”, integrate over [1, co) and apply Tonelli’s Theorem. Z

ProOPOSITION 11. If v in C and h in AXA) are such that {e*°,h) - e*’ for
all exponentials €*° in A%(A), then v e A.

Proof. Suppose that he€ A*(A4) and v is a complex number such that
e~ = (e, h) for all # > 0. We want to show that v € A. Let us write the inner
product as an integral over D, via Q:

e == Se""h o0 0'|*dA.
D

Now choose ¢ with ¢ > ¢ and ¢ > —Rew. If # > 1, we may multiply by
(r — 1)"-e~** and employ Lemma 4 and Fubini’s theorem to integrate over [1, c0),
yielding

(26) e~ (J) = S (_»-1—-) e~iro o |o'|"dA
v+ o +e
D
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1
for n=:0,1,2,... . Now the function ¥ = - maps D onto a Jordan

o+ &

domain G and extends to a homeomorphism of D onto G. Given any m = 0,
1, ... we may choose, by the theorem of Carathéodory and Walsh [33], a

sequence of polynomials p, with p, — (¥ ~1)" uniformly on G; if v ¢ A (so that

-1——¢ G) , we may simultaneously arrange that pk(

V+ &
we see that

)= 1. From (26)
v+e

e (— ) =S(pko W)e=r s olo’ 2 A;
v+ &
D .

note that e~ olo’[? € LX(D, dA). Now we define 2 in D by this: ¥(1) = —L—
v+ &

if v €4 and otherwise 2 = 1. In either case letting k — 0o in our equation yields

e~ " = S z"e~" N glo’|PdA

D

form =0,1,2, ... . On letting m — oo, we see that |i| < I, that is v € A. %
LeEMMA 5. €79 is a bounded outer function on D.

Proof. The function e~ is bounded since A = &. If e-¢ has an inner factor,
it must have the form E; for some s > 0 since 1 is the only point in dD which
¢ maps to oco. Let ¥ denote the image of [0,c0) under ¢. Then for z in € we
have

11712
Pinttih

e < e e P

since ¢ tends to 1 nontangentially,
o(z) 2 0(1 — 12D, ze¥

for some 6 > 0. Now (¢ + ¢)* has positive real part in D, and since ¢ is real
on ¥, there exists D > 0 with

(o(z) + c)é; < DU — |z, zed¥.

Since 5 >1, this is incompatible with our lower bound on a(z), a contradiction. @
Y
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Lemma 6. o' is an outer function lving in H? whenever 0 < p < /3.

Proof. Since A is translation invariant, C\A is a union of closed half-lines
whose relative interiors are disjoint. It follows from a theorem of Lewandowski
{I1] that o is a close-to-convex univalent function, that is, there exists a conformal
map g of D onto a convex region such that Re q_,_((z; > 0 on D. Now a theo-

g'(z
rem of Clunie, Duren, and Leung [I11] implies that ¢' € H” for any p < 1/3;
we need to argue that ¢’ has no inner factor. Since g is convex, a theorem of
Alexander [11] implies that zg’ is univalent. However, a theorem of Lohwater
and Ryan [10] then implies that g’ (which lies in H? for the same reason as ¢')
has no inner factor. It follows that /4 = ¢’/g’ lies in the Smirnov class N+ [10];
since Re /i > 0, A itself is outer, hence ¢’ = hg’ is outer as well.

THEOREM 13. A*(A) is spanned by those exponentials which it contains.

Proof. Tt will be enough to show that {e~*:t > 1} spans A4%(A), or equi-
valently, that Qe~" = e~'"¢’, 1 > 1, spans A%D). Suppose then that f'€ A%D)
and

0 ::Se""o"fdA, t =2 1.

D

As in the proof of Proposition 11, we choose ¢ > ¢, multiply by (r — 1) e~
integrate over [1,00), and use the Carathéodory-Walsh theorem in the same way
to conclude that

0 :v-:Sz"'e-“a’f_'dA, m=:0,1,2, ... .
D

Now Lemmas 5 and 6 imply that e~9¢’ is an outer function in N* n A%D),

and therefore, by recent results of Berman, Brown, and Cohn [1], {z"e¢~°¢"}3 0
spans A%D). It follows that f=: 0, as desired. 2]

COROLLARY 4. The space A*A) is admissible.

We turn to an example. Fix an integer # > 2, a real number & with ) <
< 7 and let A be the sector

2n

N An-{rei‘-—]:()——ﬂ<t<0+1c~andr>0}.
2 2n
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We will study 4 =: 4%(4). One easily checks that

Ir = s+ir:s<0,—1-s<t<.1__s
p o

where o - tan (0 — i—t—) and f == tan (0 + ;) , and therefore 4 = {Z: H(z) e I'}
n n

is the intersection of two disks with centers on the imaginary axis (one below
—i and one above i) whose boundary circles pass through —1 and 1.

THEOREM 14. If A is given by (27), then {S;¥};5¢ and L* are subnormal and
the associated measure 1t is

where each C, is a positive number and dsy is arclength measure on a circular
arc (or line segment) X, with endpoints —1 and 1, and passing through the ima-
ginary axis at

The top and bottom arcs, X, and X, respectively, together comprise 0A.

Proof. We will use Theorem 3 as expressed in equation (10) to find u.
If we put i - e our conformal map ¢ : D — A takes the form

= 1/n
o(z):/l(i—j»«) —1, zeD,

—z
and so

€+ 1y —a

() = Cr

e

From the form of the kernel function for 42(A) we readily compute

2 W n-1 n—1
Ie(w, z) = ——. @+ D4z + 1)

T [}."(w + l)" +7~"(Z + 1)"]2 )
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We want to use equation (10), so we calculate that

L (}4_—{- v ou :g) A o+ 2 Mu— v+ 2y

(v 5 s 9 n [)."(u + v+ 2)n +_;in(ll —_v + 2);3]3 .

We will find 7.(v)dm(x) in the right side of (10). If we make the change of va-
riable p = u + 2, equation (10) becomes

4n° (1,2 . l.‘l)n-l

n [(p + o + 2 — oy

(28) == S e~ "=y (v)er¥dm(x).

The denominator, as a function of p, has double roots at those p for which
o+ 0o)p-—v)r= 2w, k—=1,2,...,n where w,, ..., w, are the n™" roots of
--1. In other words, the roots are the imaginary numbers ivr,, k- 1,2, ...,2
where

. w; + A%
iry = H(2wy) = -+— =
W, — A2
gy .o .. . n
Note that w, — 4% # 0, for if /?:: w,, then 2% == —1, contradicting (! <-—.

2n
Factoring the denominator in (28) yields

nﬁ (p2 _— U‘Z)n— 1

—_— — =\ e~y (v)ex*dm(x).
n(cos nf)? I (p — ivr))? 5
i

Since 7,(0): : 1, we have

( ' - ) _1 - S e~ e dm(x)
n{cos n0)® | p?
0

from which we find

e nt
e¥dm(x) = —— x dx.
n(cosnf)?

Now let v # 0. For each & --1,2,...,n we put

(p‘.l — UZ)n—l
F(p) LTI o— . - ;___—.
' II(p- ier)?

j#lk
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From Laplace transform tables we find that

(29) Hx = § (Blior)x + Fiior)e" .
k=1

One checks that
1+ rfy?

A, = Ffivr) =
_II ("j — )
j+k

H

a quantity both positive and independent of v. Logarithmic differentiation yields

Filivry) = Ay —z—i[(l —n) - Y ! -].
v rk

L jFkr—r;

We wish to show that this quantity vanishes, which is trivially equivalent to the
following statement about {w,, ..., w,}; we are indebted to Doug Costa for
supplying the proof.

CoSTA’S LEMMA. For each k ==1,2,...,n,

1= Po; (7 ~ 1;) L+ T

jFk O — O; 2 Dy,

2mi
Proof. We put w =e¢" and observe that for k fixed, {w,, ..., w,} =
= {wpw’:j =0, ...,n— 1}. Thus we must prove

n—-1 1 —_ ZCOj

1
— = (n— 1z + 1),
AT 2( X )

where z = 12w, . Since ®" = 1, the sum on the left can be rewritten as

n—lwi _ n-1 1
=D+ G-y ——,
joiow/ —1 Jj=1 l —

s0 our task reduces to showing that

This, however, follows from the identity (1 — ¢)=* + (I — {)~1 =1, valid for
-1, {# 1 %
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Returning to the theorem, we have F/(ivr,) = 0 by the Lemma, and putting
t, - —r, we see from (29) that

I‘Z)kal'

(30) 20 = 3 AT, vz
k-1

We need to know that this formula agrees with 7,(0) =1 when v: : 0. But we
now know that

oo
2 . 2ye—1 n —-i
,n(.’.’_.-, PP Se-”-‘( Y, Ae i ) xdx
ko1

for v # 0. Both sides are clearly continuous functions of ¢, so we may take
v—+0 to get

_,; (Z Ak)°§ e M*xdx.

Hence ), 4, =1 and the formula (30) holds for all v. It follows that ¥, is the

S 4
Fourier transform of the measure
d7,() = ¥, Axdd. e (3)
k=1

where 5,;,1‘ is a unit point mass at x#,. Thus the measure y exists and

dy(x + iy) = dy(y) dm(x) =

il [g Aed. (y)] e-2x dx =

- n{cosnl)®

== (Rez)e"*Re? ¥ B, d§,(2)
k1

where B, is a positive number and d5, is arclength measure on the ray L;:=
= {(1 4+ ir)x : x > 0}. Since y == po (—H)~?!, we see that p has the stated form
-1 .
and X, is the image of L, under the map (—H) (z) = —- —i- One easily checks
z+
that X, is a circular arc (or line segment) with endpoints —1 and 1, lying



TRANSLATION SEMIGROUPS 79

in the closed disk D, and passing through the imaginary axis at it,((1 +r2)V2+1)"".

If t, # 0, the center of the corresponding circle is —i/t; if 7, =0, then
 2k~1
it s

%= [—1, 1]. We label our roots w, so that w,=e¢ " , k=1,2,...,n and

2k — 1 2k—1
compute 7, = cot(-~ -—— g — 0] where 0 < 21, n — 0 < 7. Therefore Z,
2n 2n
intersects the imaginary axis at the claimed point. Since ¢, decreases as k increases
from 1 to n, we see that X, lies below X, for each k. We therefore have 94
=X U X,.

N

COROLLARY 5. If' A is given by (27), then the invariant subspace lattice of
{S)e>o acting on A¥A) is isomorphic to the lattice of the simple unilateral back-
ward shift on H®.

REMARK 9. This corollary is in marked contrast to the case A%(A,) where
Ay = —logQ, and @, = {z:|z— 1] < 1}. For that space L* is unitarily equi-
valent to a linear fractional map of the Cesaro operator C, (by Theorem 12)
and therefore the lattice of {S,} on A%*(A,) is the lattice of Cg , which is known to
be much more complicated that the shift lattice [24].

Proof of Corollary 5. The map n = (—H)™, ie, z) =z — D)z + D,
carries the open sector bounded by the rays L, and L, onto 4 =« D. We can
thus construct a conformal map ¥(z) = n(w(—H(z))’) from D to 4 for appro-
priate w and 6, |w/=1 and 0 < 6 < 1. Let v = puo¥ be the transplant of u

from 4 to D. Then the map defined on polynomials by p —» po ¥ extends to a
unitary operator Y : P*(u) — P%(v) satisfying YM, = ¥(M,)Y. One checks that
dv == wdf + dv, where logw € L*0D, df) and v, is carried by D. A theorem of
Clary [5] implies that the invariant subspace lattice of M, , which is the same as
the lattice of ¥(M,), is isomorphic to the shift lattice. %

Let us consider some examples which shed light on Theorem 2. If we
let A be given by (27) with @ = 0 and let L act on 4%(4), then o(L*) = 4 admits
precisely one circular symmetry, the map z — —z. However, Theorem 2 does
not apply because although I' touches the imaginary axis at iy, = H(—1) =0,
it touches there too sharply. In fact, the conclusion of Theorem 2 fails specta-
cularly.

COROLLARY 6. Let A be given by (27) with 0 =0 and n = 2. Then there
exists a unitary operator X on A¥A) such that XL* = —L*X.

Proof. We know that L* = M, where pis as in Theorem 14. Sincen = 2, u
is supported on X, U I, = 04, hence du(z) = h(z)|dz| where |dz| is arclength
measure on 04 and 0 < A& € LY(04, |dz]). As in the proof of Corollary 5, M, =
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=~ ¥(M,), but now dv -== wdf has no mass in D. We may write w == ig:* for some
outer function g in H*? and define a unitary operator R: P(v) - H®by Rf - : Var of:
Clearly, RY(M,): - TR where T acts on H2 by T:f — ¥f.

So far we have L* ¢ T. To conclude the proof we will construct a unitary
Q on H?® with QT :.: --TQ. Our conformal map ¥ is

¥P(z) = (1 + 22 — (1 — Z)\2 |
(I + Z)l."2 + (1 . 2)1/2

since ¥(--z) .- —¥(z2), we take (Qf)z) - f(- z). &)

REMARK 10. An examination of the above proof shows that if 0- 0 and
n= 2, {8}, acting on A%A) is unitarily equivalent to the semigroup {X,},>¢
of multiplication operators on H? given by

1--zy1/2
t - &

X, fz) > e (’T) f(z), fe H-

REMARK 11. What happens to circular symmetry when we restrict the rate
at which A “opens up”? If

@31 A {x +iy:—o0 <y <oo, x>g()},

then the requirement that g(p)/|yl » + 00 as |yl > oo will imply that
I - {u:Reu < 0}. Indeed, if s > 0 and —o0 < ¢ < 00, then

oo
ie(-s +ine )% — R e—262(n "1 dy < oo.
2s
-0

Suppose g(y) = |y® — ¢ for some 2 > | and ¢ > 0. Then the above integral is
dominated by s~*(4M + 1), where [4, o0) is the subinterval of [0, c0) where

2(j¢tly — sy®) < —y and M is the maximum value of & ¢ "= on [0,00). The

result is
Loa et [ 2] 4 1 \YEe-D [tjele=D)
(-s+inlh> g - e e D —
lle la <~ {( Py ) xp[ D } +1

where D depends only on x. Now ¢%/s remains bounded if —s + iz is in a disk
G < I' which touches the imaginary axis at iy, =0, and thus the hypothesis
{6) of Theorem 2 (with g(z) == z) holds for A== —1. Theorem 2 thus implies
that when « > 1, there is no nonzero bounded operator X on A(A) satisfying
XL% == —L*X. If o > 2, Theorem 2 applies to all 2 in 8D with A 5£ 1.
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REMARK 12. Let us reconsider special measures. Suppose that {S*},», acting
on A*(A) is subnormal with associated measure u. If A arises as —log®@, where
Q is as in §4.1.2, and if 09 is analytic at 0, then k(¢, ) satisfies the hypotheses

of Proposition 9(B) because I:(Z, z) has a pole at z = 0, hence u is special. On
the other hand, the measure y associated with a sector A as in Theorem 14
is special by a theorem of Trent [32]. Between these two extremes is the situa-
tion where A is given by (31) with g(3)/|y] - +o0 as |y} »co. In this case,
too, p (if it exists) is special — this time by Proposition 9(A). Indeed, I'={v : Reu <0}
1
R(x)?
where R(x) is the radius of the largest open disk in A with center x. Pro-
position 9(A) applies since R(x) — co as x — oo,

and if x > 0, the area mean value theorem implies that k(x, x) <

4.3. REPRESENTING THE SHIFT As L*. In all of our examples so far, 4 is an
open set. Here we start with du = (1/2r)d0 on 6D, so that P*(u) = H? and M,
is the simple unilateral shift. We construct Y: P%(u) - # as in Theorem 6.
Since p is special, A = &(u) = [0,00). We have

1

2

(Yf)x) = S SENEP)do,

-7

and the kernel function for A is
1 - )
k(t,x) = — S EE 40 = e~ 15~
2n

The space £ is then the unique Hilbert space of functions on [0,00) with this
reproducing kernel; the reader can easily verify that £ consists of all bounded
absolutely continuous functions f such that f* — f'e L*0,c0). The norm is given
by

o0

S 1776 — f(ldx.

0

2 _ 1
1fllz = 5

Waork of the first-named author was supported in part by the National Science Foundation.
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