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'SHIFTS ON THE HYPERFINITE II,.-FACTOR

MARIE CHODA

INTRODUCTION

In [3], Powers dlscussed the identity preserving *-endomorphisms of B(H)
and of the hyperfinite IIl-factor R. He called such an endomorphism ¢ of R a
shift of R if ¢-has the property that the intersection of the ranges of ¢" for n =
=1,2, ... consists only of scalar multiples of the identity and defined the index
of a shift ¢ of R by the Jones index [R : ¢(R)]. He studied a class of shifts of R
with the index 2, which are called binary shifts. He showed the existence of
uncountably many pairwise non-conjugate binary shifts of R and that there are
at least a countable infinity of binary shifts which are pairwise not outer conjugate.

In this paper, we shall study shifts of the hyperfinite II;-factor R.

By Jones’ result, the set of indices of all shifts of R is contained.in the set

I(R) = {4 cos¥(n/n) ;n = 3,4, ...} U[4,00).

In Section 2 it is shown that, for a given A € I(R), there are at least a countable
infinity ‘of shifts of R with the index A which ‘are pairwise not outer conjugate.
These shifts are obtalned from sequences of projections in R satlsfymg some con-
ditions. ' : :

In Section 3, we shall discuss shifts of R with an integer index n. These
shifts are given by sequences of unitaries in R with certain conditions, which are
a modification of binary shifts of Powers. In the case where n =2, our result
coincides with his result. The key point which Powers used in order to deﬁne
the conjugacy invariant is a result of Jones index theory that the relative com-
mutant of a subfactor with index < 4 is trivial. First, we shall show that if ¢
is a binary shift of R then the trivialness of the relative commutant of ¢(R) in
R follows from the property of the integer 2, i.e., 2 is a prime number. Next,
a class of shifts of R with a given integer index n are studied. We shall call such shifts
n-unitary shifts and we show that if ¢ is an n-unitary shift of R then there is an
orthonormal basis of unitaries with respect to ¢ in R. As an application : of it,
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we show that, for an integer n, there are uncountably many rn-unitary shifts
of R which are pairwise non-conjugate.

This work was motivated by Powers’ talk at the closing workshop in MSRI
in Berkeley in June 1985. The author would like to express her hearty thankss
to MSRI, and to R. T. Powers for sending her his preprint and also to the members
of the seminar in Osaka Kyoiku University for a number of discussions on this

subject.

1. PRELIMINARIES

Throughout this paper, R will denote the hyperfinite I, factor and tr is

the canonical trace of R.
In this section, we describe the terminology of Powers. A =-endomorphism

¢ of R is a shift of R if o(1)=1 and (M} ¢"(R) == Cl, where 1 is the identity

n=1

of R and C denotes the complex numbers. If ¢ is a shift of R, then o(R) is a
subfactor of R. Then the Jones index [R:o(R)] of 6(R) in R is defined. The
index of o is defined as [R:¢(R)]. By Jones’ index theory, if [R:6(R)] < oo, then
o(RY n R is finite dimensional. If the index of a shift ¢ is finite, we call the dimen-
sion of o(RY n R the multiplicity of 6. Two shifts 6, and o, of R are conjugate
if there is a s-automorphism 0 of R such that 8o, = 0.0 and outer conjugate
if there are a s-automorphism 6 of R and a unitary v€ R such that (o,Ad v

= 6.0, where Ad u(x) -= uxu” for all xe R.

2. NON OUTER CONJUGATE SHIFTS

If two shifts ¢, and o, of R are outer conjugate, then the index of o,
equals the one of o,. In this section, we shall show for a given index . that
there are at least a countably infinity of shifts of R with the index 2 which are

pairwise not outer conjugate.
Let us consider a A € {4 cos*(n/n) ;n = 3,4, ...} U[4,00).

DEFINITION 2.1. A shift o of R is called a A-projection shift if there are a pro-
jection p€ R and a positive integer k satisfying the following:

(1) R is generated by {p, a(p), 6*(p), ...};
(i) o'(p)e’(p) = o/(p)o’(p), if |i—ji#k
o' (p)al(p)a’(p) = (1/2)o'(p) if |i—jl=k
for all i,j=:0,1,2,...;
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(i) tr(wa’(p)) = (1 )te(w) if w is an associative word on {1,p,do(p), ...,
.. 6Pt

ExAMPLE 2.2. For a given 4 € {4cos’(n/n) ;n=3,4,...}U[4,00) and a
positive integer k, we shall show the existence of a A-projection shift 6 of R. In
[1], Jones gives a family {¢; ;i = 1,2, ...} of projections satisfying the following:

(a) ee; =ee; for |i—jl =2,
ee.q¢;=(/A)e; foralli=1,2,...;

(b) the von Neumann algebra generated by {e; ; i = 1, 2, ...} is a hyperfinite
II, factor P;
(©) tr(we;) = (1)/)tr(w) if w is a word on {1, e,, ..., €; 1}

Forh=1,2,...,k, we put P, = P and e(h;i) = ¢;. Let R be the tensor product
of P, P,,...,and P,. The trace of R is the tensor product of the traces of the
P.’s. Then we have a x-endomorphism ¢ of R such that ¢"(p) = e(j; i) for the
positive integer m = (i — Dk + (fj— 1). It is clear that ¢ satisfies the condition
in Definition 2.1 for the projection p = e(1;1) and the number k.

LeEMMA 2.3. Suppose o is a A-projection shift of R. Let a projection p € R
and a positive integer k satisfy the conditions (i), (i) and (iii). Then the index of &
is A and k depends only on the shift o. In the case where ). > 4,

k + 1 = min{j; a/(R)Y n R is non commutative}.
In the case where ) < 4,
k + 1= min{j; ¢/(R)Y n R is non trivial}.

Proof. For j=1,2,...,k,andi=1,2, ..., we put e(j; i) = ol -D*+i-1(p)
Then the sequence {e(j;7);i=1,2,...} satisfies the properties (a), (b) and (c)
forj=1,2, ...,k The factor R is generated by the family {P; ;j=1,2,... k}
of factors which are pairwise commutative, where P; is the hyperfinite II, factor
generated by {e(j;7) ;i =1,2,...}. Let Q; be the von Neumann algebra generated
by {e(j;1) ;i=2,3,...}. Then, by [1], Q; is a subfactor of P; such that [P; : Q;] =
= . The subfactor o(R) is generated by the family {Q,, P,, ..., P,}. Hence

the index of ¢ =[R : a(Rj] =[P, :0,]= A

For j=1,2,...,k, ¢/(R) n R is generated by the family {Q;n Py, ..., Qj_1 N
nP_,,Cl ..., C1} which are pairwise commutative.
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Assume that /. < 4. Then Jones showed that @;n P; = Cl forj- 1,2, ..., k.
Hence 6/(RY n R = Cl for j=1,2, ..., k. On the other hand ¢**{R) n R con-
tains the projection p. Hence & + 1 is the minimal positive integer j such that
¢/(R) n R is non trivial.

Assume that 72 > 4, Then for each j:=1,2,...,k, there is a projection
f;€QinP; such that Q; = {x + 0,(x) ; x € (f;P;f;)} for some s-isomorphism
9; of f;P;f; onto (1 —f)P;(i —f;) by [2; Corollary 5.3]. Hence Q;n P; is the
abelian algebra Cf; + C(1 -- f}), so that ¢/(R)’ n R is an abelian von Neumann
algevra for all j == 1,2, ..., k. On the other hand, the relative cornmutant of the
subfactor generated by {e(j; /) ;i=13,4, ...} in P; contains f; and ¢(j; 1). Since
/; is contained in Q; n P; and f; is non trivial, it follows that f; does not commute
with e(j; 1) for j == 1,2, ..., k. Hence ¢**1(R)’ nn R is not commutativé.

DeriNiTION 2.4. Suppose ¢ is a Z-projection shift of R. Let a projection p
and a positive integer & satisfy the conditions in Definition 2.1. Then p is called
a generaior of ¢ and k is called the anticonunutator number of o.

LemMa 2.5, Suppose o, and 6, are 7-projection shifts of R. If oy is outer
conjugate to oy, then the anticomnustator number of oy equals the one of o .

Proof. It 6, is outer conjugate to ¢,, then there are an =-automorphism &
of R and a unitary # in R such that 0,Ad & := 0~ 1g,8. Take an integer j and put
w: o ay() ... oi(u). Then

ci(R)' r R = Ad w*(6-Yai(R) ~ R)).
Hence by Lemma 2.3 the anticommutator numbers of g, and g, coincide.
THEOREM 2.6. For eacl 7 € {dcos*(rfn) ;n = 3,4, ...} L[4 00), there are

at least a countable infinity of outer conjugacy classes among ithe 7-projection shifts
of R.

Proof. Let take a 4 € [4cos*(n/n) ;n = 3,4, ...} n[4,00). Let & be a positive
integer. Then by Example 2.2, there is a J-projection shift of R, the anticommutator

number of which is k. Hence by Lemma 2.5, there are at least a countable infinity
of outer conjugacy classes among the Z-projection shifts of R.

3. UNCOUNTABLY MANY NON-CONJUGATE SHIFTS

In this section we shall discuss on shifts of R, the indices of which are integers.
Let n be a positive integer. We treat a pair of sets O and S of integers
satisfying the following condition (=) for some integer 7i:

) [Q = (1), 1), ..., im), 0 <i(l) <i(2) < ... <i(m)
TS G, ), J@) =1,2, . .n—1, fori- 1,2, .. .. m
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DEeFINITION 3.1. A shift ¢ of R is called an n-unitary shift of R if there is a unita-
ry u € R satisfying the following:

i) u"=1;

(if) R is generated by {u, o(w), o*(u), ...};

(i) o*(wu = us®(u) or o*(Wu = yuo®(u) for all k=1,2,..., where
y = exp(2ni/n); ~

(iv) for each (Q, S) satisfying (+), there are aninteger k ( > 0) and a non trivial
AeT ={ueC; |p| =1} such that

o wu(Q, S) = Mu(@, S)a*u),

where u(Q, S) is defined by
u(Q, 5) = (DYDY .. (5.

The unitary u is called a generaror of o.

REMARK 3.2. A o-generator u of an n-unitary shift ¢ has the period =.
In fact, by (ii) and (iii), there is a positive integer k such that o*(W)u = yuc*(u).
Assume v =1 for some m=1,2,...,n — 1. Then ¥ = ¢*(™u = y"uc*('™) =
= y™u. This contradicts that y” % 1 for such an m.

If(Qy, Sy) and (Q,, S,) satisfy (x), then u(Q; , S))u(Qy , So)=pu(Q; , Su(Q: , Sy)
for some peT and u(Q,,SDu(Q,, Sp) is pu(Q, S) for some pe T and a pair
(Q, S) with (), otherwise u(Q,, SPu(Q,, S,) is a scalar multiple of 1.

PROPOSITION 3.3. If n is a prime mumber, then the condition (iv) follows from
the conditions (i), (i) and (iii). ‘

Proof. Suppose (Q, S) satisfies (). Assume that no such k& and 2 as in (iv)
exist. Then u(Q, S) belongs to R’ n R. Hence u(Q, S)= ul for some p e T. Therefore
there are integers p and ¢ which satisfy the condition

a?(u?) = v ¢ DW/D) ... O  for some veT,

where ] € g<n—1,0<il<i@<...<isy<p, 1 <j(-)<n—1.Letus
consider the decomposition n = ga + b, where 1 < ¢ < n and 0 < b < ¢g. In the
case where b # 0, there is an / such that ¥/ % 1 by Remark 3.2. Then o?(?)
can be expressed in a similar form to the above one. Continuing like this, we may
assume that b = 0, so that ¢ must be 1 because n is prime. Hence o,(u) is contained
in the von Neumann algebra B generated by {¢'(x) ; 0 < i < p — 1}. It implies
that ¢/(u) is contained in B for allj =0, 1, 2, ... . This is a contradiction because
the hyperfinite IT, factor R is not contained in a finite dimensional algebra B.
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THEOREM 3.4. Let o be an n-unitary shift of R and u € R a o-generator. Then
each x € R has a unique expansion:

x =Xl + ¥, x(0, S)u(Q, S), (xp, x(Q, S)e C)

in the pointwise || -|l-convergence topology, where Y. is taken over the set of all
(Q, SY's satisfying the condition (%), and || x|y = (tr(x*x))/2 for all x € R.

Proof. If (Qy, S)) and (@5, S,) satisfy () and (Q,, §;) # (@2, S.), then there
is a (Q, S) with (#) so that u(Q,, S)*u(Q,, Ss) = pu(Q, S) for some peT. On
the other hand, by (iv), there are a A€ T (2 # 1) and an integer k such that
w(Q. S): : io*(w)*u(Q, S)6*(u). Hence tr(u(Q,, S$)*u(Qs, Ss)) == utr(u(Q, S)) - - 0.
Thus all #(Q, S)’s and 1 form an orthonormal unitary basis in R, because the lincar
span of the #(Q, S)'s and 1 is |- j,-dense in R,

COROLLARY 3.5. Let ¢ be an n-unitary shift of R. Then the index of & is n.

Proof. Tt is clear that 6(R) is a subfactor of R. By Theorem 3.4, each x& R
is expressed in the form

X=:gy+ua, + ... +u"a,_,,
where
ag == X1 + Y, x(Q, Hu(Q, S)
for @ = (i(1), ..., i(m)) with i(1) # 0 and
a; = Z x(Q, S)u(Q, S)

for Q and S with i(1) = 0 and j(l) == i. Then {ay, ..., a,_,} is contained in &(R)
and £(fa;,) - 0foralli=1,2,...,n— 1, where E is the conditional expectation
of R onto o(R). Hence [R : 6(R)] = n.

Next, we shall consider the following condition (iv)’ for n-unitary shifts of R:
(iv)’ For each (Q, S) satisfying (), there are a positive integer k and a non
trivial 4 € T such that

d*()u(Q, S) -= 2u(Q, S)o*(u).

PROPOSITION 3.6. If n is a prime number, then the condition (iv) follows jrowt
the condition (i), (i1) and (iii).

Proof. Suppose (Q, S) satisfies (x).

Case (1). u(Q, S) = v/ for some j # n. By Proposition 3.3, the condition (iv)
is satisfied. Then the integer k in (iv) for »/ must be non-zero. Hence (iv)’ iy sa-
tisfied.
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Case (2). u(Q, S) € o(R). If there are no such k and 2 as in the statement,
then the unitary #(Q, S) must be in the center of the factor ¢(R). This contradicts
that u(Q, S) = tr((Q, S))1 = 0 by Proposition 3.3.

Case (3). u(Q, S) =u/w for some integer j=1,2,...,n—1 and w=
= u(Q’, S') € ¢(R) for some (Q’, ') with (). Assume that there are no such k
and A in (iv). Then #/w € o(R) n R. Hence, for each integer i, we have that

[o'@),u] =0 if and only if [6'(w), w] =0

and
' (Wu = yus'(u), if and only if o'(w = y'wo'(u).

Since w = w(Q’, S’) is contained in o(R), it follows that there are non-zero integer
h and non trivial g € T such that ¢*(u)w = puwo”(u). Then p = 7/ and

o"uydw = i o"(1w = il woh(u).

Since w/w € 6(R) n R and ¢"(u) € 6(R), we have that y* = 1. Hence 2j = n be-
cause j is in the set {1,2, ...,n — 1}. This contradicts that » is a prime number.
Therefore, the statement (iv)’ is satisfied.

Geoffrey Price kindly pointed out to me some typographical errors in the
proof of Proposition 3.6 in a preliminary version of this paper and that he has
another proof of this proposition.

THEOREM 3.7. Suppose o is an n-unitary shift of R with a generator u€ R
satisfying (iv)'. Then the relative commutant of o(R) in R is trivial.

Proof. Let take an x € o(R)' n R. Let {x(Q, S)} be the coefficients of x
in the expansion provided by Theorem 3.4. For each non negative integer & and
each (Q, S) with the property (x), there is a A(k,(Q, S)) € T such that

o wu(Q, S)akwuy* = Ak, (Q, SHu(Q, S).

Since o*(u)x = xco*(u) for all positive integer k, we have that x(Q, S)=
=x(Q, SHAk, (Q, S)) for all k. By (iv), for each (Q, S) with the property (x), there
is a positive integer k with A(k,(Q, S)) # 1, which implies that x(Q, §) = 0. Hence
¢ = x,1. Thus o(R) n R = CL.

Let o be a shift of R. A unitary w € R s called a normalizer of ¢ if we*(R)w*=
= ¢*(R) for all k= 1,2, .... The set N(¢) of all normalizer of ¢ is also called a
normalizer of & ([3]).

COROLLARY 3.8. Suppose ¢ is an n-unitary shift of R with a generator u satis-
Sfying (ivY. If w is a normalizer of o, then there are a 2 €T and (Q, S) with (x)
such that w = iu(Q, S).
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n-1
Proof. For an x € R, consider the expansion x = Y, xa' where x; € o(R).
i.0
Put
. "—1 . .
(x) = Y v
i -0

Then 0 is an automorphism of R and 6(R) = {x € R ; (x) -= x}. Since wo(R)w* -~
a(R), there is a s-automorphism % of R such that wo(x)w* == o(x(x)). Then

O0()o(xX)0(w)* == B(a(2(x))) = wo(x)w* for all x € R.

Hence w*0(w) € o(R)' 1 R. Since o(R) n R = Cl by Theorem 3.7 and 0"(x): : x
for all x € R, there is an integer k(1) (1 < k(1) < ) such that 0(w) -~ y*®y.. Hence
(=) = =Dy 50 that »w=*Dw € g(R). Then there is a unique w; in N(g)
becaise wo(R)w™ = ¢*(R). By the same argument, w, can be expressed in the
form wy = *¥®g(w,) with w, = N(c). Put

po=supls ;w = MW F®) L g @k V)g i wy), k(s + 1) # ).

Assume that p is infinite. Take an (@, S) with (+). Then there is an s > i(su) such
that
W Dy | @M i), 1 < k(s + 1) < .

Since there is a unitary ¢ in the von Neumann algebra generated by {u, (). ...
.., 6°"Yu)} which satisfies that

w(Q, S)*w - Jeas G+ Mg+ for some A e T,

it follows that tr(u(Q, S)*iv) .= 0, because either v = u(Q,, S;) for some (Q;, S}
with () or v is a scalar mualtiple of the identity. By Theorem 3.4, this is a con-
trodiction. Hence p is finite and we have that there is a (Q, §) with (s) such
that w == u(Q, S)e*+1(w,) for all & > i(m), where Q = (i(1), ..., {(i)). Hence
2(Q. $)*w is contained in g*(R) for all k such that k > i(m). Since o is a shift,
u(Q, $Yw == Al for some 4 € T. Thus w = Zu(Q, S).

j.et ¢ be an m-unitary shift of R with a generator uw. Put S{o:u) ==
Nk s oM (W) = yuc®(u)}.
Now, we consider the following condition () for an infinite set {k; ;=
++ 1,2, ...} of positive integers:

(::::::) ki+1 > i{i :.'lnd. ki+2 _— ]\'i‘*l > ki.:y]_ —_— ki for a]l {.
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COROLLARY 3.9. Suppose u and v are generators of an n-unitary shift o, and
that each S(o; u) or S(o; v) satisfies (xx) when it is infinite. Then u = y*v™ for
some k and m.

Proof. If S(o;u) is either finite or satisfies (x#), then the condition (iv)" is
satisfied by Lemma 3.16. Hence by Corollary 3.8, u = Ac@ (/@) . .. ¢/("(v/(™} and
v = pePOI®y . o?O(u2)), where all j(k) and g(h) are in {1,2,...,n— 1}
i) <i@2) < ... <im), p(1) < p2) < ... < p(s) and 4, u € T. Substituting the
expression for u in the expression for v, we have u = vg/@+PM(FMIW)

. ¢!+ PGs) (M) for some scalar v. Since the expression is unique, i(1) = p(1) =
=0 and j(1)g(1) =na + 1 for some integer a. Suppose m % 1. Then j(m)g(s) = nb
for some integer 5. If S(o; v) is finite, put i = i(m) + max S{c; v). Then ¢'(w)u ==
= pIMIWygi@y). Since /MW = | apd (MMM — »itm) + 1t contradicts
the condition (iii) in Definition 3.1. If S(o; v) = {k; ;i =1, 2, ...} is infinite, there
exists j such that k;,, — k; > 2i(m). Put i = k;,; — i(m). Then ¢'(x) and u can
not satisfy (iii). Hence m = 1. Similarly s = 1.

In the case of a prime number », the condition for S(o; ) and S(s; v) in
Corollary 3.9 is not necessary.

DerFiNITION 3.10. Let o be an n-unitary shift of R with a generator u such
that S(o; u) satisfies (%) when it is infinite. Put

S(o) = {k ; " (wyu = yuc®(u)}. °
‘We shall call S(¢) the y-set or the anticommutator set of o.

ReMARK 3.11. The y-set of ¢ does not depend on o-generators by Corollary
3.9.

THEOREM 3.12. Suppose o, and o, are n-unitary shifts with generators satisfying
the condition in Definition 3.10. Then o, and o, are conjugate if and only if S(o,) =
= S(o.).

Proof. Let u be a generator of g, satisfying the condition. For an automor-
phism 0 of R with o, == 0716,0, the unitary 6(u) is a generator of o,. Hence
S(oy) = S(o).

Conversely let u; be a o genérator with the property (iv)’ for /= 1,2. Then
there is an automorphism 6 of R such that 6(c¥(x)) = o%(u,), for all k = 0,1, ... .
Hence 0¢, = 0,0 because the trace tr on R is determined by unitaries u,(Q, S)’s.

Now we shall give examples of n-unitary shifts of R with generators satisfying
the condition in Definition 3.10.
Let 2 be a subset of positive integers. For all integer k, we put

1, when |kle X
0, otherwise.

A1) = {
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LEMMA 3.13. Let X be a subset of positive integers. For a positive integer n,
there is a sequence {u; ;i : 0,1, ...} of unitaries satisfying the relations :

(n ul =1
) wpgy == =T o where y = exp(2mifn).

Proof. Let A be a type I, factor. Then there is a pair {v, w} of unitaries
in A so that {¢'w/ ;i,j:::0,1,...,n} form an orthonormal basis in 4 with res-
pect to the canonical trace. Considering the tensor products of A4, we have {u,. ...,

s U, With (1) and (2), where m = minX — 1. Let B be the von Neumann
algebra generated by {u,, ....u,}. Then there is a =x-automorphism g,,., of B
such that g,..(u;) =~ u; for j==1,...,m and g,.1(1) == yu,. Considering the
crossed product C of B by g,4+1, We have {u; ;i=0,1,...,m + 1} with (1)
and (2). Since an element in C has a unique expression as a linear combination
of the group generated by {m; ;i==0,...,m + 1}, there is an automorphism
8m+s Of C so that g, o) == p/<"+2=0y, Thus we have the desired sequence
of unitaries.

DEFINITION 3.14. The sequence {u; ;7 =0,1,...{ in Lemma 3.13 is called
an n-unitary sequence over .

We denote by the same notation u(Q, S) as in Definition 3.1 the unitary
defined as follows:

u(Q, S) = (ui(l))ju)(ui(e))j(g‘ S (ui(m))j(m)a

where (@, S) satisfies (x). We put
AEAQ. $),K) = 3 fE: k — i
hi-=1

THEOREM 3.15. Suppose £ is a subset of positive integersand {u; ;1 :0,1,...]
is an a-unitary sequence over X. Then the following statements are equivalent:

(1) The C*-algebra A generated by {u; ;i =0,1, ...} is simple.

(2} The center of A is the multiples of the identity.

(3) A has a unique trace t such that (1) = 1.

(4) If (Q, S) satisfies (%), then there are an integer k (k > 0) and a non trivial
~ €T such that uu(Q, S) == /u(Q, S)u,.

Proof. Suppose the statement (4) is false. Then there is a (Q, ) with (=)
such that u(Q, S), = wu(Q, S) forall k = 0,1, ... . Since u(Q, S) is not a scalar
multiple of the identity, the statements (1) through (3) are false.



SHIFTS ON THE HYPERFINITE II,-FACTOR 233

Suppose (4) is true. Then the set of all u(Q, S) and 1 is linearly independent.
For all (Q, S) with (x), put 7((Q, S)) = 0. Put 7(1) = 1. Since 4 is the C*-algebra
completion of the linear span of all #(Q,S) and 1,7 is a trace on 4. Take a
trace ¢ on A. By (4) o(Q, S)) == 0 for (Q, S) with (x). Hence the tracial state of
A is unique. Thus (3) and (4) are equivalent. In order to prove that (2) is true,
take a z in the center of 4 and ¢>0. Then there are complex numbers {4, ..., 2.}
and {(Q;, S);i=1,2,...,m}, each of which satisfying (+) and

lz —Jol — ¥ 2(Q;, s,.)“ <.
i1 |

By (4), there are k(i) and p(i) such that
uy(Qi, ;) = YPOu(Q;, Shuyy, for i=1,2,...,m.
For all x € R, put
Efx) =Y, (/) atiy) xiiy) ™ -
i=1
Then [E()| < ||x|| for i=1,2,...,m and E;(z — A1) = z — A l. Since p(i)
isin {1,2,...,n — 1} for all i = 1,2, ..., m, we have that N yP@ = 0. Hence

J=1
we infer

E](Ez( e (E,,,(z — A1 — g Au(Q;, S,-)) .. )) =z — Jgl,
iz1

50 that ||z — A,1]| < ¢. Since ¢ is arbitrary, we have z = 241. Thus (2), (3) and (4)
are equivalent.

Suppose A is not simple and (4) is true. Let y be in a two sided ideal
J such that t(y*y) = 1. Then we have {;;i=0,1,...,m} and {(Q;, S)) ;i =
= 1,2, ..., m} with (*) such that

y*y - ).01 - Z )».,-u(Qj, S‘)E! < 1/4.
i=1

Let E; be the same map as above for i=1,2,...,m. Put ) = E(E(...
< AE *Y)). . .), then ¥y — Al € Jand ||y — A1l < 1/2. Since 1(y') = (y*y) =
=1, we have that ||y’ — 1]| < 1, which implies that ' is invertible so that J = 4.
Thus all statements are equivalent.

LEMMA 3.16. Let % be a set of positive integers which is finite or satisfies
() and let {u; ;i = 0,1, ...} be an n-unitary sequence over X. Then for a(Q, S)
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with (s), there are a positive integer k and a non trivial » € T such that
u(Q, S) = Au(Q, Suy.
Proof. Let Q = (i(1), ..., i(m)) and S = (j(1), ...,j@n)) satisfy (s). Then
w(Q, S) == pu(Q, Su, and p, = PEG50

for k== 0, 1, .

Suppose X is a finite set. Put k = i(m) + maxX. Then f(Z;(Q, S),k): =
= jGm). Since jim)e {1, ...,n — 1}, p # 1. Thus the lemma holds in the case
where Z is finite.

Suppose X satisfics (+#). Then there is an integer p such that

kpp1 — k, > max{i(m) —i(j);j=1,2,...,m —1}.

Put ) = i(m) + k,. Then k — i(m) = k, is in Z and k — i(j) is not in X for all
Je:1,...,m— 1. Hence f(Z; (Q, S), k) = j(m) and p, = y/¢ £ 1. Thus Lemma
is true when X satisfies (=)

THEOREM 3.17. Let Z be a set of positive integers which is either finite or
satisfies (s% ) Then there is an n-unitary shift ¢ of R such that ¢(R) n R == Ci
and S(o) +

Proof. Let {u; ;i==0,1,2,...} be an n-unitary sequence over 2. Let 4
be a C#-algebra generated by {;;i=0,1,...}. Then 4 has a unique tracial
state T by Lemma 3.16 and Theorem 3.15. Let = be the cyclic =-representation of
A induced by t. Let R be the von Neumann algebra generated by n(4). Since
the trace is unique, the algebra R is a finite factor. On the other hand by the
requirements for the n-unitary sequence, the C*¥-algebra A4 is the union of an
ascending sequence cf finite dimensional algebras. Hence R is a hyperfinite 1I,
factor. Put u == n(up) and o'(n(u)) = n(u;) fori = 1,2, ... . Then by Theorem 3.15,
Lemma 3.16 and Theorem 3.4, the mapping ¢ is extended to all elements of R.
It is clear that ¢ is a shift of R. By the conditions for ¥, Lemma 3.16 and Theo-
rem 3.7, we have that o(R)’ n R == Cl. By Lemma 3.13, we have that S(¢o)=: ¥

COROLLARY 3.18. Let n be a positive integer. Then there are uncountably
many n-unitary shifts of R with multiplicity 1 which are pairwise non-conjugate
and there are at least a countable infinity of n-unitary shifts which are pairwise not
outer conjugate.

Proof. Since there are uncountably many sets of positive integers satisfying
the condition (#=), by Theorem 3.17, we have uncountably many s-unitary shifts
of R with multiplicity 1.
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Let ¢ be an n-unitary shift of R such that S(c) = {k} for some positive
integer k. By a similar way as in Section 2, it is shown that

k + 1 = min{integer j ; ¢'(R)' n R # Cl}.

Hence we have a family {0, ; Kk = 1,2, ...} of n-unitary shifts of R which are
pairwise not outer conjugate.

REMARK 3.19. In the above discussion in Section 3, we fixed the primitive
n-th root y of 1 as y == exp(2ni/n). If we take another primitive n-th root of 1,
the same results as above are true and it is easy to show that two n-unitary
shifts, which are associate with different primitive n-th roots of 1, are not conjugate..
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