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THE HOMOTOPY GROUPS OF THE UNITARY GROUPS
OF NON-COMMUTATIVE TORI

MARC A. RIEFFEL

In studying the homotopy groups of the ordinary unitary groups U, , an impor-
tant tool [26] is provided by the fibration of U, over the sphere S*'~! with fiber
U,_, obtained by letting U, act on the unit sphere in the complex vector space C”
and viewing U, _, as the stability subgroup of the standard basis vector ¢,. Recently
a corresponding fibration has been used by Corach and Larotonda [6] to study the
homotopy groups of the group of invertible elements of a Banach algebra, and by
Schroder [22] to study the homotopy groups of the group of unitary elements of
a von Neumann algebra. In the present paper we use this fibration to calculate the
homotopy groups of the group of unitary elements of a non-commutative torus for
which there is at least some irrationality in the structure constants.

We recall [8, 9, 21] that a non-commutative m-torus A, (where m > 2) is
determined by a real-valued skew bilinear form 6 on Z”, and is the universal C*-al-
gebra generated by unitary elements u, for x € Z™ subject to the relation

uyux = exp(nie(xa y))ux+y

for all x, y € Z™. We say that @ is not rational if there exists at least one pair, ¥ and
y, in Z", such that 6(x, y) is not a rational number. In [21] much information was
amassed about the non-stable K-theory of non-commutative tori 4, for which 0 is
not rational. We here combine some of that information with the fibration alluded
to above, to calculate the homotopy groups of the groups U,(4,) of unitary matrices
over 4,. Ouf main result is:

THEOREM. Assume that the skew bilinear form 0 on Z' is not rational. Then

AU (Ay) = {KI(A,,) for k even} N Z2m—1

Ko(4do) for k odd

forallk >0andn > 1.

4 — 1017
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The results of Corach and Larotonda [6] are based on the Bass stable rank,
denoted sr(4), and give the above result only for n > sr(4,) + k£ + 1. (It can be
shown that for 0 not rational, sr(4,) < 2, with equality if A, is not simple, while
sr(A )==1 for some simple 4, [18,1] though it is not known how widely this happzns.)
The results of Schrider [22] depend on special properties of von Neumann algebras
which do not hold for the 4,’s. In Section 4 we will discuss a somewhat wider con-
text in which the techniques of Schrider apply.

In the course of our discussion we obtain a variety of new results about the
non-stable K-theory of C#-algebras. For example, Theorems 2.9 and 2.10 give
information about when GL ,(4)/GL%(4) is isomorphic to K,(4), while Theorem 4.7
gives information about how the connected stable rank behaves under the for-
mation of matrix algebras.

1. THE FIBRATION

Let A be a unital C*-algebra, and let GL,(4) and U,(4) denote the groups
of invertible and unitary elements respectively in M,(4), the algebra of n X n matrices
with entries in A. Now U,(4) is a deformation retract of GL,(4), as will be discussed
early in Section 5, and so for the purposes of computing homotopy groups we can
use cither one. We find it technically slightly more convenient to use GL,(4) (as
in [5,6,7]), and so we will use it throughout the next sections. We return to U, (4) in
Section 5.

In this section we will establish some of our notation, and will review the
fibration in [6], in a form suited to our needs.

Let ¢, denote the last standard basis vector in the free right A-module A”,
and let Lc,(4) denote the orbit of e, under the evident left action of GL,(A), where
the clements of 4" are viewed as column vectors. Then Lc,(4) will consist of exactly
the last columns of the various matrices in GL,(4), which explains our choice of
the notation Lc,. The stability subgroup of e, must then be the subgroup of matrices
whose last column is e, that is, matrices in GL,(4) of the triangular form

(x 03

¢ 1 }

where x € GL,_,(4) and ¢ is any row of elements of 4 of length n — 1. We will
denote this subgroup by TL,(4). Thus we have the identification

GL,(4)/TL,(4) = Lc,(4)

for m = 1 (if we let TL,{4) denote the group with one element).
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We will equip A" and GL,{4), and any subsets of them, with the topology
coming from the norm on 4. Then the action of GL,(4) on A" is jointly continuous.
In [20] we considered the subset Lg,(4) of A" consisting of elements (@) of A4” for
which there exists a (b;) in A" such that ¥ b,a; = 1. It is easily seen that the action
of GL,(4) on A" carries Lg,(A4) into itself (and by 1.4.8 of [14] the orbits in Lg,(4)
correspond to certain isomorphism classes of stably free modules). Since e, is in
Lg,(A), it is clear that Lc,(A) is a subset of Lg,(4). Now in the proof of Theorem
8.3 of [20] it is shown that for any & € Lg,(A4) the map x> x¢ from GL,(4) to
Lg,(4) is an open mapping. Consequently, Lc,(4) will be an open (and closed)
subset of Lg,(A4), and the mapping y from GL,(4) onto Lc,(4) defined by y(x) =
== xe, will be an open mapping. Furthermore, as indicated in [22], Theorem 7.2 of
[15] applies to show that y is a Serre fibration, so that by, for example, Theorem 10
of Section 2 of Chapter 7 of [25], one has the homotopy exact sequence

- Tck+1(LCn(A)) - 7Tk('TI-’n(A-)) - ﬂ:k(GLn(A)) - Tck(Lcn(A)) -

where the base points in the groups are taken to be their identity elements, while
the base point in Lc,(4) is taken to be e, . As is made clear in [25], this long exact
sequence ends with

(TL,(A)) > mo(GL,(4)) — mo(Le,(4))

viewed as pointed sets. (See also 17.11 of [26].)
Now if GL,_,(4) is viewed as embedded in GL,(4) by the embedding map ¢

defined by
x 0
olx) = B
p(x) (0 1)

then it is evident that one obtains a deformation retraction of TL,(4) onto GL,_,(4)
by carrying the off-diagonal entry of any element of TL,(4) linearly to zero. Thus
the inclusion of GL,_;(4) into TL,(4) gives an isomorphism of homotopy groups,
and so the above homotopy exact sequence can be rewritten as

Tes2(Le,(4)) » m(GL,_1(4)) - m(GL,(4)) - m(Le,(4)) —,

ending, as before, with =n,(Lc,(4)). Thus if we can obtain information about
n,(Lc,(4)), this will help us to obtain information about 7, (GL,(4)).

2. THE SPACE OF LAST COLUMNS

It is an immediate consequence of Theorem 8.3 of [21] that if A= A4, is a
non-commutative torus with 0 not rational, then for every n = 2 the map from
GL,_,(4) to GL,(A4)/GLYA) is surjective, where for any C*-algebra 4 the con-
nected component of the identity element in GL,(4) is denoted by GLI(4).
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2.1. PROPOSITION. Let A be any unital C*-algebra. For a given n, the map
Jrom GL,_(4) to GL(A){GLY(A) is surjective if and only if Lc,(A) is connected,
or equivalently, if and only if every element of Lc,(A) is the last column of an ele-
ment of GLY(A).

Proof. Suppose that the map is surjective. Let ¢ e Lc,(4), and choose
z & GL,(4) whose last column is ¢. By the surjectivity, there is an x ¢ GL,,._I(A)
and y € GL)(4) such that z = y@(x). But ¢(x)e, =e,, and so ye, =- ze, -~ ¢. But
y is connected by a path to the identity element, and so & is connected by a path to
e,. Thus Lc,(A4) is path connected.

Suppose, conversely, that Lc,(4) is connected. Now according to Theorem
8.3 of [20] the connected components of Lg,(A) are exactly the orbits for the action
of GLY(A4), and so this must be true for Lc,(4) also. Since Lc,(4) is assumed to be
connected, it must be the orbit of e, under GLY(A). Let z be any element of GL,(4),
and let ¢ be the last column of z. From what we have just found, thereis a y € GLY(A)

. . X
such that y¢ —¢,. Then yze, == e,, so that y= is of the form (

0) for some
c

1

x € GL,_,(4). Let w = (
—ex-1

0), which is an element of GL(A). Then

Wyz r= (; (1)) s @(x). Thus the coset of z in GL,(4)/GLY(A) is in the image of the

map from GL,_,(4), as desired. Q.E.D.

The difficulty in working with Lc,(A4) is that in general it is hard to tell which
elements of Lg,(A4) are in Lc,(4). The following aspect of this difficulty is pertinent.
Let T denote the 1-torus (== circle), and for any non-negative integer k let T* denote
the A-torus (with T° being just a point). For any C*-algebra A let T4 denote the
C~-algebra of continuous functions from T* into A. If 4, is a non-commutative
torus, then so is T*4,, and if the skew bilinear form @ is not rational, then neither is
that for T*4,. Thus from Theorem 8.3 of [21] together with Proposition 2.1 we
actually find:

2.2. LeMMA. Let Ay be a non-commutative torus for which 0 is not rational.
Then Lc (T¥A ) is connected for all integers n = 2 and k > 0.

However, to calculate homotopy groups, we will see later that what we need
is information about the space C(T¥, Lc,(A)) of continuous functions from T* into
Lc.(A). And in general, although it is clear that Lc,(T*4) can be viewed as a sub-
spuce of C(T*%, Lc,(A)), these spaces need not coincide. On the other hand, since
Lg.(A) is not defined in terms of GL,(4), it does not share this difficulty. Specifically :

2.3. LEMMA. (See Corollary 2.4 of {7).) For any unital C*-algebra A and any

integers n 2 1 and k > 0, we have
Lg,(T*4) = C(T", Lg,(4)).
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Proof. That Lg,(T*A4) is contained in C(T*, Lg,(4)) is clear. The other direction
becomes evident when one uses the alternate characterization of Lg,(A4) obtained
in Proposition 1c) of [22], which says that (g;) in 4" is in Lg,(4) exactly if ¥ a}a;
is invertible in A. Q.E.D.

Thus if Lc,(4) happens to coincide with Lg,(4), then we do avoid the difficulty
indicated above. But it is evident that Lc,(4) coincides with Lg,(4) exactly if GL,(4)
acts transitively on Lg,(4) (that is, 4 is (n, 1)-Hermite in the terminology of [7];
see also [14]). Now recall Definition 10.1 of [20] which defines gsr(A4) to be the smal-
lest integer m such that GL,(A4) acts transitively on Lg,(4) for all » > m. Thus
gsr(4) is the smallest integer m2 such that Lc,(4) coincides with Lg,(4) for all n > m.
But recall also Proposition 10.5 of [20] which says that gsr(4) is the smallest integer
m such that whenever Wis a projective A~-module such that W@ A = A" for some
n = mthen W = A"-1 (Throughout this paper, by “projective module’ we always
mean “finitely generated projective module’.) Recall further that a unital C*-al-
gebra is said to be finite if left-invertible elements are invertible (and stably finite if
M, (A) is finite for all n). Equivalently, GL,(4) acts transitively on Lg,(4), or
W@ A = A implies that W= {0}. Thus we have:

2.4. PROPOSITION. Let A be a unital C*-algebra. The following conditions are
equivalent for an integer p:

1. gsr(A) < p,

2. whenever W is a projective A-module such that W@ A = A" for some
n > pthen W= A" (and, if p =1, then A is finite),

3. Lc,(4) = Lg,(4) for all n > p.

Now according to Theorem 7.1 of [21] A, satisfies cancellation for projective
modules whenever § is not rational, and so, in particular, stably free modules are
free. Also A4, is finite since it has a faithful trace. Thus we obtain:

2.5. PROPOSITION. If 0 is not rational, then gst(T*A,) = 1 forall integersk > 0.

Recall now Definition 4.7 of [20], which defines csr(4) to be the smallest
integer m such that GLY(4) acts transitively on Lg,(4) for all n > m, or equivalently

by Corollary 8.5 of [20], such that Lg,(4) is connected for alln > m. (Thus gsr(4) <
< csr(4).) Clearly we have:

2.6. PROPOSITION. Let A be a unital C#-algebra. Then Lc,(A) = Lg,(4) for
alln = csr(A), and Lc,(A) is connected for all n = cst(A). Thus the map from GL,_,(A4)
to GL,(4)/GLY(A) is surjective for all n > cst(4). If gsr(A) = 1, then cst(A4) is the
smallest integer m such that the usual map from GL,_,(4) to GL,(A4)/GLYA) is
surjective for all n = m.

Since Lc,(A4) = GL;(4), and since from Theorem 8.3 of [21] it follows that
GL,(T*4,) is not connected, we obtain from Lemma 2.2 and Propositions 2.5 and 2.6:

2.7. PROPOSITION. If 0 is not rational then cst(T*A ) = 2 for all integers k > 0.



242 MARC A. RIEFFEL

It is thus appropriate (o combine Lemma 2.3 and Proposition 2.6 to obtain:

2.8. PrOPOSITION. Let A be a unital C*-algebia, and let p be an integer such
that cst(TEA) < p for all integers k > 0. Then C(T*, Lc,(A)) is connected for all
integers n z p and k = 0.

Clearly this proposition applies o 4, for 0 not rational, with p — 2. We will
use this result in the next section to calculate homotopy groups. But we will first
draw a consequence concerning the injectivity of the map from GL, _,(4)/GLY _,(4)
to GL,(4)/GLY(A4), or equivalently, from my(GL,_1(4)) to my(GL,(4)). From the
long exact sequence at the end of Section 1 it is clear that this map is injective exactly
if the map from =, (GL,(4)) to m,(Lc,(4)) is surjective. This can be seen directly as fol-
lows. Injectivity means that if x € GL,,_,(4) and if ¢(x) € GLY4) then x € GL?__,(4).
Now if ¢(x) € GL)(4) then there is a path, {u,}, from ¢(x) to 1. Let &, be the
last column of #, for each ¢, so that &, is a path in Lc,(4) going from e, to e,, that
is, a loop in Lc,(A) representing an element of m,(Lc,(4)). One then proceeds to
examine whether this loop is homotopic to the loop of last columns of a loop in
GL,(4) from 1 to 1.

One situation in which injectivity will hold is when Lg¢,(4) is simply-con-
nected, that is, m;(Lc,(4)) == 0. More generally, suppose that z > csr(4), so that
Lc,(A4)::Lg(4) and these are connected. Let fe C(T, Lg,(A)). Since Lg,(A4) is
connected, f is homotopic to a function from T to Lg,(4) which carries the base
point 1 of 7" to the base point e, of Lg,(4). If the map from 7,;(GL,(4)) to ny(Lc,(A))
is surjective, this function has a homotopy preimage. Consequently there is a
g€ C(T, GL,(4)) such that the function f+~>g(t)e, is homotopic to f. But
C(T, GL,(4)) = GL,(T4) and C(T, Lg,(A)) := Lg,(TA), and the usual map from
GL,(TA) to Lg,(TA) has range which is open and closed. If we view f as an element
of Lg,(TA4), we see that the above argument shows that the component of f in Lg,(TA4)
meets the range of the map from GL,(T4). It follows that the map from GL (T4)
to Lg,(TA) is surjective.

Conversely, suppose that the map from GL,(TA) to Lg,(TA4) is surjective.
Let f be a loop in Lg,(A) preserving the base point, and so representing an element
of =,(Lg,(A4)). Then f can be viewed as an element of Lg,(T4) such that f(1): :e,.
By the surjectivity, there is a g € GL,(TA) such that g(¢)e, = f(¢) for all ¢. In parti-
cular, g(l)e, =e,, so that g(l1)~le,=e¢,. Define & by h(t) = g(t)g(1)~2. Then
h(tye, = f(t), and h(1) = I. We see in this way that the map from 7,(GL,(4)) to
7,(Lg,(4)) is surjective.

Recall now that gsr(T4) is the smallest integer m such that for all n > m the
map from GL,(T4) to Lg,(T4) is suriective. Then if we combine the above obser-
vations with Proposition 2.6 we obtain:

2.9. THEOREM. Let A be amital C*-algebra, and let r = max(csr(d), gsr(TA4)).
Then for all n > r the map from GL,_(4)/GLY _,(4) to GL (A)/GLYA) is an iso-
moiphism, and in particular, GL,_;(4)/GLY _,(4) = K,(4).
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This theorem is a refinement of Theorem 10.12 of [20], and provides a streng-
thening of that theorem with, a much simpler proof. To sce this, we must use the
notion of topological stable rank, tsr, which was introduced in [20] as a generali-
zation to Banach algebras of the classical covering dimension of a compact space,
and which in [12] was shown in the case of C*-algebras to coincide with the purely
algebraic Bass stable rank (denoted Bsr in [20]). From Corollary 4.10 of [20] we
know that csr(4) < tst(4) + 1. On the other hand, as seen earlier, gsr(TA) <
< csr(TA), while by Corollary 8.6 of [20] we have csr(TA4) < tsr(4) + 1. Thus we
obtain from Theorem 2.9:

2.10. THEOREM. Let A be a unital C*-algebra. For all n = tst(A) the map
Jrom GL,(4)/GLYA) to GL,.(A)/GLS,(4) is an isomorphism, and in particular
GL,(4)/GL(4) = K,(4).

The possibility of this improvement over the purely algebraic results used for
Theorem 10.12 of [20] is presumably due in part to the fact that we are working
over the complex numbers.

3. THE HOMOTOPY GROUPS

We wish to show that, in fact, 7, (Lc,(4,)) == 0 for all integers n > 2 and
k = 0. Now =, is just the set of connected components of C(S%, Lc,(4,)). So we
need to show that this space is connected. Note that since Lc,(4) is an open subset
of A", the components of C(T¥*, Lc,(4)) are the same as the path components. Thus
if C(T*, Lc,(A4)) is connected, then any map from T* to L¢,(A) is homotopic to a
constant map.

3.1. PROPOSITION. Let X be a path-connected space such that for every integer

k = 1 all maps from T* to X are homotopic to constant maps. Then n(X)=0 for
all k=2 0.

Proof. The proof is by induction on k. Since X is path-connected, clearly
7o(X) =: 0. Since T! = S, it follows also that x,(X) = 0. For higher k¥ we use the
Hurewicz isomorphism theorem. (See, for example, [25]. I am indebted to Ed
Spanier for showing me that the Hurewicz theorem was just what I needed here.)
Since X is path-connected, we can use any base point. Suppose that we know that
n,(X) =0 for 0 <j< k—1. Then by the Hurewicz isomorphism theorem the
homology groups H;(X) are 0 for 0 < j < k — 1, and n(X) = H(X), where the
isomorphism is given by the Hurewicz map. We now show that H(X)=0. Let
n € Hi(X), and let [S*] denote a fundamental class in H(S*). Then because 7, (X) &
~ H/(X) under the Hurewicz map, there must (by the definition of the Hurewicz
map) be a map f from S* to X such that f,({S"]) == n. Let [T*] denote a fundamental
class in H(T¥), and let g denote the usual map from T* to S* obtained by viewing
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T* as the k-cube I¥ with certain faces identified, and collapsing all the faces to
a point. (This is implicit in the alternate description of homotopy groups given
on page 372 of [25].) Thus g.([T*]) = = [S*]. Then (fz).((T*]) = + 4. But fg isa
map from T* to X, and by hypothesis any such map is homotopic to a constant map.
Thus n = 0. It follows that H,(X) = 0. Consegently n,(X) = 0. Q.E.D.

Combining this with Proposition 2.8, we obtain:

3.2. PROPOSITION. Let A be a unital C*-algebra, and let p be an integer such
that cst(T*A) < p for all integers k > 0. Then m,(Lc,(4)) = 0 for all integers n > p
and k > 0.

Combining this with the homotopy long exact sequence of Section 1, we
obtain one of our main results:

3.3. THEOREM. Let A be a unital C*-algebra, and let p be an integer such that
cst(T*4) < p for all integers k > 0. Then for all integers n >p—1and k 20

K,(4) for k even

ﬂA(GLn(A)) = {Ko(A) for k odd.

Proof. Let GL(4) denote as usual the inductive limit of the GL,(4)'s with
the embedding maps ¢. Then by definition K,(4) = n,(GL,(4)). By Bott perio-
dicity (see III, 1.11 and 7.7 of [13]), Ky(4) = n,(GL(4)) and m(GL(A)) =
2 m,_o(GL(4)). From Proposition 3.2 and the long exact sequence, we see that
under the embeddings ¢ used carlier,

m(GL,-1(4)) = m(GL,(4))

for all integers » > p and & > 0.Because of the inductive limit topology on GL(4),
any maps from any S* into GL(A4) and any homotopies between such maps come
from maps and homotopies into some GL,(4). Thus we see that for the canonical
maps of the GL,,(A) into GL{A) we have

m(GL,_1(4)) = m1(GLc(4))

for all integers n > p and & > 0. Q.E.D.

From the work of Pimsner and Voiculescu [17] it is easily seen that if A,
is 4 non-commutative m-torus, then

) om=1
Ko(dg) = Z = Ky(4o)-

Since we have seen that when € is not rational the hypotheses of Theorem 3.3 are
satisfied with p = 2, we obtain:
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3.4. THEOREM. If A, is a non-commutative m-torus, and if the skew form 0
is not rational, then

m(GL(4,) = 2"

for all integersn 2 1 and k = 0.

Since, as we will see in Section 5, each U,(4) is a deformation retract of GL,(4)
the above result will also hold for n (U, (A4,)), giving the theorem stated in the:
introduction.

4. DIVISIBLE ALGEBRAS

In this section we treat a situation in which one can use arguments which
are much closer to the original arguments of Schréder for von Neumann algebras.
{22] than are our arguments in the previous sections. Some of our main examples.
here are motivated by, and in the spirit of, the results of Blackadar in [4] (and
4.7.2 of [3)).

In the last sentence of Schréder’s paper [22] he makes important use of the
fact that any type II, von Neumann algebra can be expressed as the tensor product
of a full matrix algebra of any size with another type II, von Neumann algebra.
This suggests the following definition:

4.1. DEFINITION. A C*-algebra A is said to be divisible if for every integer m

there is an integer n > m such that A4 can be expressed in the form M, (B) for some
C*-algebra B.

It is clear that any UHF C*-algebra is divisible.

We actually need a much stronger condition than divisibility, given by the
following definitions.

4.2. DEFINITION. Let 4 be a divisible C*-algebra. We say that A is csr-bound-
edly divisible (resp. tsr-boundedly divisible) if there is a constant, K, such that for
every integer m there is an integer n > m such that 4 can be expressed as M, {(B) for
a C#-algebra B such that csr(B) < K (resp. tsr(B) < K).

Since for any C*-algebra C we have csr(C) < tsr(C) + 1 by Corollary 4.10
of [20], it follows that:

4.3. PROPOSITION. If A is tsr-boundedly divisible, then A is crs-boundedly
divisible.

As a first example we have:

4.4. PROPOSITION. If A is a divisible C*-algebra and if tst(4) = 1, then A is.
tsr-boundedly divisible.
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Piroof. This follows immediately from Theorem 3.3 of [20], which tells us
that tsr(C): « 1 iff tsr(M (C)) == 1. Q.E.D.

The results of Schrdder [22] fit into the present context because tsr(A4): = 1
means exactly that invertible elements are dense, so that what he in effect uses is:

4.5. COROLLARY. Any type 11, von Neumann algebra is tsr-boundedly divisibic.

In fact, this corollary is also true for 4 W*-algebras of type II,, with the divi-
sikility ccming from § 19 of [2], and tsr(4) = 1 coming from [11].

4.6. ProrositICN. [f A is tsr-boundedly divisible, then tsr(d) < 2.

Proof. Let K be the constant in Definition 4.2, We can, by Theorem 6.1 of
[2C1, find an integer m such that, for any integer n > m and any C*-algebra C with
tsr(C) € K, we have tsr(M,(C)) < 2. Q.E.D.

Actually, csr behaves in part the same way as does tsr with respect to
forming matrix algebras (Theorem 6.1 of [20]). Specifically:

4.7. THEOREM. Let A be a C*-algebra. Then for any positive integer m

est(M,(A)) < {(cst(4) — 1)/m} + 1,

where here { } denotes “‘least integer greater thaw’.

Proof. We consider first the case in which A is unital. Let r == csr(4), and
let i be any integer such that (k-- 1)m + 1 = r. We show that Lg (3, (4)) is
connected. Let S::(S,,...,S,) e Lg(M,(4), and view S as a column, and
thus as anmk x m matrix with entries in 4. We will show that S is path connected
to the “first standard basis vector” in (M, (A))*. Now the fact that S e Lg(M,,(4))
means that there is an m X mk matrix T with entries in 4 such that 7S = I,.
the identity matrix in M ,(A). This means in particular that the first column of .§
is in Lg,.(4). Since by the choice of k we have mk = r, it follows that there is an
clement of GLY(4) = GLYM,,(4)) which carries this first column to the first
standard basis vector, e, in A", By right-multiplying S by this element, wc sce
that S is path connected in Lg (M, (4)) to an element whose first column is ¢, .
So we can assume now that S itself has this property. Since TS =1I,,, it follows
that the first column of 7 must be the first standard basis vector in 4™ Thus
the second row of T begins with a 0. But the “inner-product” of the second row
of 7 and the second column of S must be 1. It follows that the second column
of § with first element removed, say ¢, must be in Lg,,,_,(4). By the choicc of k
we have mkk — 1 = F, and so there is an element, x, of GL%,_,(4) which takes I

. oy .. . L
to the first standard basis vector. Then ( ) is in GL%,(4) and carries S o

X
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a matrix whose first column is e, , and whose second column has arbitrary first entry,
1 as second entry, and 0’s for all remaining entries. By an elementary row operation
with a matrix in GL%,(4) we can arrange that the second column is, in fact, e,.
That is, S is path connected to an element of Lg,.(4) whose first two columns
are e; and e,.

Continuing in this way, we can path-connect S to an element of Lg,,(A4)
whose p'® column is e, for each p. When we reach the last (that is, m™) column,
we find that its last mk — m + 1 entries form an element of Lg,—,.+1(4), and so
to ensure that the last column can be adjusted to be e,, we must have GL?,_,,..(4)
acting transitively. Thus our requirement that m(k — 1) + 1 = r gives the smallest
value of k that will make this technique work. But as long as this requirement
is fulfilled, we see that we have path-connected S to the matrix which is the “first
standard basis vector” in (M, (4))*. Thus Lg,(M,,(4)) is connected when m (k —- 1) +
+ 1> r, that is when k > ((r — 1)/m) + 1, and so when k > {(r — 1)/m} + 1.
T hat is,

cst(M,(4)) < {(cst(4) — 1)/m} + 1.

To handle the non-unital case it suffices to show that if A4 denotes 4 with

identity element adjoined, then csr(M,,(4)) = cst(M,(4)). Since we will not need
this case in this paper, we leave the details to the reader. Q.E.D.

I do not know what can be said about the reverse inequality for the above
theorem. However, in Theorem 3.10 of [24] Sheu shows that, for K the algebra of
compact operators, one has csr(4 ® K) < 2 for any C*¥-algebra 4.

Just as in Proposition 4.6 for tsr, we immediately obtain:
4.8. COROLLARY. If A is cst-boundedly divisible, then csr(4) < 2.

Since gsr(A4) < csr(4), and since whenever gsr(4) < 2 and A is finite we
have gsr(4) = 1, we obtain:

4.9. COROLLARY. If A is cst-boundedly divisible, and if A is finite, then
gsr(d) = 1.

4.10. CorOLLARY. If A is csr-boundedly divisible and finite, then stably-fice
A-modules are free.

For the purpose of determining homotopy groups we need:

4.11. PROPOSITION. If A is tsr-boundedly divisible, and if X is a finite-dimen-
sional compact space, then C(X, A) is tst-boundedly divisible.

Proof. Since X is finite dimensional, it can be embedded as a closed subset
of some torus, T¢ Setting T?B = C(T¢, B) for any C*-algebra B, as before, we
see that C(X, B) is a quotient of TB, and consequently tsr(C(X, B)) < tst(T“B)
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by Theorem 4.3 of [20). But TYB ~ B X, Z9 for the trivial action of Z“ on B,
and so tsr(T9B) < d + tsr(B) by Theorem 7.1 of [20].

By the hypothesis on A4 there is a constant K such that for any m there is
an n = m such that 4 > M, (B) with tsr(B) < K. Then C(X, 4) = M, (C(X, B)),
and tsr(C(X, B)) € d + K by the above discussion, which shows that C(X, A) is
tsr-boundedly divisible, Q.E.D.

We remark that the above proposition is our version, for the present context,
of the corollary in [22].

4.12. COROLLARY. If A is tst-boundedly divisible, then for any finite dimensional
compact space X we have csr(C(X, A)) < 2.

4.13. THEOREM. Let A be a unital C*#-algebra which is tst-boundedly divisible.
Then for alln > 1 and k > 0 we have

Ki(4) for k even

m(GL(A) {KO(A) for k odd.

Proof. From Corollary 4.12 we see that csr(C(S*, 4)) < 2 for all k >0,
so that Lg,(C(S*, A)) is connected and is equal to Lc,(C(S¥, A)) for all n > 2 and
k = 0. Thus n(Lc,(4)) = 0 for all n = 2 and k > 0. (Alternatively, we could have
used Proposition 3.2 here instead of Corollary 4.12.) The rest of the proof is the
same as that for Theorem 3.3. Q.E.D.

We now give further examples to which the above theorem applies. These
involve AF C#*-algebras [10] and are motivated in part by the results of Blackadar
in [4].

4.14. PROPOSITION. Let A be any unital C*-algebra for which tsr(4) < oo,
and let B be a unital divisible AF C#-algebra. Then A @ B is tsr-boundedly divisible.

Proof. By hypothesis, for any m there is an # = m such that B = M, (C).
Now Cis a cornerin B,and so Citself must bean AF C*-algebra. Also, 4 ® B =
= M (4 ® C). But by using Theorems 5.1 and 6.1 of [20), it is easily seen that
tsr(d ® C) < tsr(A). Q.E.D.

We conclude with a similar situation where, however, tsr(4) need not be
finite. For this we need:

4.15. LEMMA. Let B be a unital divisible AF C*-algebra, and suppose that B
has been expressed as M(C) for some k. Then C is a unital divisible AF C*-algebra.

Proof. Since corners of AF C#-algebras are again AF C%-algebras, C is
an AF C*-algebra. Let s be given. Then since B is divisible, there is a ¢ > mk
such that B can be written in the form M (D) for a unital AF C*-algebra D.
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Then there is a finite dimensional subalgebra, C’, of C, having the same identity
element, such that M, (C’) is close enough to the matrix units for the decomposition
B = M/(D), that M, (C’) itself contains matrix units for an A,. But C’, being
finite dimensional, is the direct sum of full matrix algebras, C;, and the size of
each M, (C;) must be divisible by both k£ and ¢ > mk. Then the size of each
M (C}) must be divisible by the least common multiple, say p, of k and g. Let
n = plk, so n > m. Then the size of each C; must be divisible by n. Thus C’ will
contain matrix units for M, , and so C = M, (E) for some AF C*-algebra E. Q.E.D.

4.16. PROPOSITION. Let A = C(X) X, G where X is a compact space, G is
a discrete solvable group, and o is an action of G on X. Let B be any unital
divisible AF C*-algebra. Then A ® B is tsr-boundedly divisible.

Proof. For any m we can find n > m such that B= M (C) where C is
divisible AF by Lemma 4.15. Then 4 ® B =~ M, (A ® C). Thus it suffices to show,
with C replaced by B, that:

4.4. LeMMA. If A is as above and if B is a wnital divisible AF C*-algebra,
then tst{(A ® B) < 2. '

Proof. This proof is just an elaboration of the proof of Corollary A'S of [4].
Since any compact space can be embedded in a product of intervals, and thus is
a projective limit of finite-dimensional compact spaces, C(X) is the inductive limit
of C(X;)ys with tsr(C(X;)) < co. By Theorem 6.1 of [20] and the assumption that
B is divisible, we can, for any X;, find a large enough integer » such that
tsr(M,(C(X}))) < 2 and B = M,(C). Then C(X,)) ® B = M, (C(X)))® C. Since C
isan AF C*-algebra, it follows from Theorem 5.1 (and 6.1) of [20] that tsr(C(X,) ®
® B) £ 2. Then, again by Theorem 5.1 of [20}, it follows that tsr(C(X) ® B) < 2.

Notice that A ® B =~ (C(X) ® B) X, G, where we use « to denote also the
evident action of G on C(X) ® B which leaves elements of B fixed. Let H be any
finitely generated subgroup of G. Since H is solvable, we can find a finite compo-
sition series {H,} for H such that each H,/H,_, is cyclic. Let s be the length of
this series. Then it is easily seen that (C(X) ® B) X, H is obtained by s successive
crossed products with cyclic groups. If the cyclic group is infinite, then in forming
the crossed product the tsr is raised by no more than 1 hccording to Theorem 7.1
of [20]. But if the cyclic group is finite, then by 7.8.1 of [3], or [16], the crossed
product is a quotient of a crossed product by an infinite cyclic group, so that
by Theorem 4.1 of [20] the tsr is again raised by no more than 1. We conclude
that tsr((C(X) ® B) X H) < 5 + 2.

By Theorem 6.1 of {20] we can choose an integer m such that if D is any
C*-algebra with tsr(D) < s + 2 then tst(M, (D)) < 2 for all n = m. Since B is
divisible, we can find an n > m such that B = M,(C) where Cis an AF C*-algebra.
Then (C(X) ® B) X, H =~ M,((C(X)® C) X, H). But the results of the previous
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paragraph apply when B is any divisible AF C#-algebra, and C is divisible by
Lemma 4.2, Thus tsr{{(C(X) ® C) X, H) < s + 2. From our hypothesis on a it
follows that

tst(M((C(X) ® C) X, H)) < 2.

Consequently, tsr({C(X) ® B) x., H) < 2. Now (C(X) ® B) x, G is the indvctive
limit of the (C(X)® B) X, 1# as H ranges over the finitely gencrated subgroups
of ¢. From Theorem 5.1 of [20] it follows that tst((C(X)® B X,G) < 2 as
desired. Q.ED.

5. UNITARY GROUPS

In this section we gather together a few facts relating unitary groups to the
setting of the previous sections. For a unital C¥-algebra A we let U A4) denote
the group of unitary elements in M, (A). Following Schréder [22], we let S,(A4) denote
the set of (q;) in A" such that Za}”ai =1 (the “unit 4-sphere™). Clearly LU i4) <
< GL,(A4) and S,(4) < Lg,(4}, and the action of GL,(4) on Lg,(A) used carlier
restricts to an action of U,(A) which carries S,(4) into itself. The map ¢ ({i ---
= O+ (e~ for r€[0, 1] and v e GL,(4) clearly defines a deformiation
retract of GL,(A) onto U, (A4).

We begin by showing that, just as we saw earlier that the action of GL (A4)
on Lg,(4) is open (the proof of Theorem 8.3 of [20]), so also the action of L (A)
on S,(A) is open. A proof of this is already implicit in the proof of Proposition 3
of [23], using the theory of Banach Lie groups. We give here a direct procf. The
proof we give here will be notationally simpler if we formulate it in a setiting
where matrices arc not explicit:

3.1. PROPOSITION. Let A be a wnital C*-algebra, and let = be « projociive
vight A-module equipped with a Hermitian metric {,»,. Let E: : End (=), with
its striucture as a C*-algebra coming from the Hermitian metric. Let U(Z} denote
the group of unitary elements of E, and let

SE) = (Ee5i¢E = 1),

so that U(Z) acts on S(Z). Thea for each ¢ € S(Z) the mapping u— u from U(Z)
to S(Z) is an opcen mapping.

FProof. By translation it suffices to show that for every & in S(Z) and for
cvery open ncighborhood NV of 1, the set N is a nzighborhood of & in S(Z).
et ¢ > 0 be given, with ¢ < 1/48. We show that if N is the ball in U(Z) of rudius
£le about 1, then NE contains the ball in S(Z) of radius ¢ about ¢. (The norm
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on = is given by ||€|l = (IKS, ED4IDV2) So let n € S(E) with ||p — €] <e. Let
p =: <&, &, where by definition

GO =28, D4

for { € E. Itis easily verified that p is a projectionin E, and in fact is the projection
on the A-submodule ¢4 of Z, which is a free A4-submodule. In the same way,
g = {n, Dy is the projection on nA. Then simple calculations using the generalized
Cauchy-Schwarz inequality of Proposition 2.9 of [19] show that

P —qll < K€, &5 — & myell + IIKE me — <mmll < 2e.

Let w=¢gp + (1 — ¢)(1 — p). Then a standard straightforward calculation shows
that

11 —wll <2lp—qll <4e

Thus w is invertible if ¢ < 1/4, which we now assume. Clearly gw = gp = wp,
so that w restricts to an isomorphism from ¢4 onto 4. Furthermore, wé = gpé =
= {n, 7)€, so that

wé — nll = |19<i, €y — <, M4l < 1€ — nll <&

Note that ww* =gpg + (1 — ¢)(1 — p)(1 — g), which maps 54 into itself and
(nA)* into itself, so that (ww*)~1/2 does also. Now [|ww* — 1|| < ||ww* — w|| +
+ flw — 1] € (1 + 4e)de + 4e < 12¢. Assume now that & < 1/48, so that 12¢ < 1/4.
A little calculation shows that for |1 — ¢} < 1/4, one has |l — V2 < |l —¢|,
for any real number ¢. It follows that |j(iww™®)~12 — 1| £ 12s. Let u = (ww*)-12y,
so that u € U(Z). Then

fu — | < fJlu—w|l + ||w— 1)} £ 12e(1 + 4¢) + 4e < 28e.

Furthermore, u carries £4 isometrically onto nA. Let { == ué, so that { € 4 and
{{,{>4==1. Then

IE ~ nll < lug — well + [we — il < [[0vw*) 12 — 1] |wé]| + & < 13e.

Now the mapping « — na is an isomorphism of 4 onto 4 as right A-modules,
preserving the Hermitian metrics. Thus there is a b € 4 such that { = b, and
b%bp = 1. Furthermore

o —1=]{—-n<13<1,

so that b is actually invertible, and so is a unitary in 4. Let v € U(Z) be defined
to be the identity operator on (74)!, and on 54 to correspond to Jeft multiplication
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by b on A. (Note that #4 + (yd)t = Z because the inner-product is assumed
to give a Hermitian metric, so that = is self-dual.) Thus vy = {, so that v*ué := 3.
Furthermore,

ithu — 1 < flo — 1 + ilu — 171 < 13 + 28¢ == 4le.

We thus see that if, for ¢ < 1/48, we let N be the ball in U(E) of radius 41¢ about I,
then N¢ contains the ball in S(Z) of radius ¢ about &, as desired. Q.E.D.

It is clear that the stability subgroup of e, is U,_;, and so if U, (4) acts
trapsitively on S,(4) then we obtain a Serre fibration of U,(4) over S,(4) with
fiber U,_,(A) just as in [22].

We can now supplement Proposition 2.4 as follows:

5.2. PROPOSITION, Let A4 be a unital C*-algebra. Then gst(A) is the smallest
integer m such that UA) acts transitively on S,(A) for all n > m.

Proof. Suppose that » = gsr(4), and that ¢ € S,(4). As in the above proof,
¢A is a free submodule of 4”7, so that ((4)~ @ A = A" By Proposition 10.5
of [20] it follows that ({4)L =~ A"-1. Any such isomorphism can be adjusted to
be unitary, and so (¢A4)L will possess a basis 7y, ...,n,_; which is orthonormal
with respect to the Hermitian metric. Thus #,, ..., 7,_y, ¢ is an orthonormal basis
for A", and so thereis a u € U,(4) such thatue, := &. Thatis, U,(4) acts transitively
on S,(A).

Conversely, suppose that U,(4) acts transitively on S,(4) for all # > m. Now,
as discussed earlier, the orbits of GL,(4) in Lg,(4) are all open, and so closed,
and so they are unions of path components. But it is easily seen that every element
of Lg,(4) is path-connected to an element of S,(4). (In fact S,(4) is a deformation
retract of Lg,(4) by Proposition 1b) of [22].) From the assumption that U,(A4)
acts transitively on S,(4) it then follows that GL,(4) acts transitively on Lg,(4).
Thus m > gsr(4) as desired. Q.E.D.

Let UY(A) denote the connected component of the identity in U,(4). We can
supplement Proposition 2.6 as follows:

5.3. ProPOSITION. Let A be a unital C*-algebra. Then cst(A) is the smallest
integer m such that S,(A) is connected for all n = m, or equivalently, such that
UNA) acts transitively on S,(A) for all n > m. For n > csr(A) the usual map from
U,_:(A) to U (A)/UNA) is surjective. If gst(A) = 1, then cst(A) is the smallest
integer m such that for all n = m the usual map of U,_,(A) to U,(A)/UNA) is
surjective.

Proof. Since, as indicated above, S,(4) is a deformation retract of Lg,(4)
we sce that S,(4) is connected exactly if Lg,(4) is. Thus the first assertion is true
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Since from Proposition 5.1 we know that the mapping from U,(A4) to S, given by
u > ue, is open, the image of UY(4) under this mapping must be a component
of S,(4), and thusis all of S,(A)if S,(4)is connected. The proofs of the remaining
assertions are similar to the proofs of Propositions 2.1 and 2.6.
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