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C*-ALGEBRAS GENERATED BY PROJECTIVE
REPRESENTATIONS OF THE DISCRETE
HEISENBERG GROUP

JUDITH A. PACKER

INTRODUCTION

fn recent years, much progress has been made in the classification of C*-al-
gebras constructed from a countable number of generators with given commutation
relations, by the use of K-theoretic methods [9], [17], [20]. The first step of this
study was made in the classification up to =*-isomorphism and strong Morita
equivalence of the irrational (and then rational) rotation algebras A, mainly
through the usc of K-theory. As was noted in {9] and {20], 4, is the C*-algebra
C*(G, a) of [26], with G = Z @ Z and ¢ :GXG — S' the two-cocycle given by
a((m, , ny), (my, ng)) = "™, Rieflel has gone on to discover many interesting
properties of these algebras (e.g. cancellation) which allowed him to construct up to
equivalence all the projective modules over the A4, along with the corresponding
endomorphism rings. A study of the classification of C*(G, o) for G countable
torsion-free abelian and ¢ : GXG — T has been continued in [8] and [9], and
Rieffel has recently indicated a method of constructing projlective modules which
would apply to non-abelian G as well [23]. (Here, as throughout this paper, we
consider only those projective modules which are finitely generated.)

One of the simplest non-abelian cases to study is the three-dimensional
discrete Heisenberg group H, generated by clements U, ¥, and W which satisfv
UV = VU, VW =WV, and UW = VWU. In [14], the C*-algebras with gener-
ators satisfying UV = eV, VW = WV and UW = VWU were studied in the
case ‘where o is irrational, and for them o (mod 1) is a complete invariant. These
C#-algebras are in fact isomorphic to twisted group C#-algebras for H correspond-
ing: to certain multipliers; in this paper we shall study the C*-algebras of the form
M, (C*(H, 6)) where o is an arbitrary multiplier for # and n € N. Our main aim
is to describe the s-isomorphism classes of such algebras; we shall describe the
strong.Morita equivalence classes of such algebras as well as compute the positive
cones of their Kg-groups in a subsequent paper [16]. It is hoped that some of the
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techniques used here could carry over to twisted group C#*-algebras for more gereral
nilpotent discrete groups. There are three distinct classes of Heisenberg C*-algebras,
depending on the number of generators in R for the range of a faithful normalized
trace on the Kj-group for the C*-algebra in question. The K-theory of these alge-
bras involves a study of both rational and irrational rotation algebras, and as
in [17], [20], and [22], K-theoretic methods will allow us to determine isomorphism
types.

Any C*(H, o) is, as we shall show, =-isomorphic to the C*-algebra generated
(universally) by unitary clements U, V', and W satisfying

Uy = ey,
Wi = exislit,

Uiy = Wre,

for some %, f € R; we denote such an algebra by H(«, f5). If v is any normalized
faithful trace for H(x. f), H(x, ) will be said to be of class 1, 2, or 3 if

THK(H (2, ) = Z + «Z + BZ is generated by 1, 2 but not 1, or 3 but not 2
elements of R, respectively. It is not difficult to show that H(a, B) is =-isomorphic

to H(ax + bfi, cx + df) for any (a b]) € GL(2, Z). The main isomorphism the-
¢«

orem of this paper shows that this condition is also necessary for Heisenberg
C*-algebras to be =-isomorphic:

THEOREM 2.9. Twe Heisenberg C*-algebras H(oy, py) and H{ay, fis) are

s-fsomorplic if and oaly if there exisis (

. iz, Saija, b)Y
) e GL(2, Z) with ¢™™: = ™™ 71
c d

and &¥Fr = giilen, i),

This theorem contuins as corollaries the facts that Heisenberg C%-algebras
of class 1 can be parametrized by H(1/d,0), d € N, and Heisenberg C*-algebras
of class 2 can be parametrized by H(x/q, p/g) where z € [0, 1/2] is irrational, and
plg €[0, 1/2] is rational in lowest terms. A generalization of Theorem 2.9 can be
made which classifies all matrix algebras over Heisenberg C*-algebras.

All of the Heisenberg C*-algebras of class 1 are easily scen to be strongly
Morita equivalent to C¥(H), the so-called rotation algebra of {1]. The primitive
ideal space of this algebra is T,, and its structure was discussed by Howe in [12].
Each Heisenberg C*-algebra of class 2 will be shown to be strongly Morita equi-
valent to a C*-algebra generated by a certain Anzai skew-product action on the
torus, which was studied in [14].

The structure of our work is as follows: In the first section we use a result
of Mackey [ 13] which classifies the similarity classes of 2-cocycles for £{ with values
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in T, and allows us to separate the algebras C*(H, o) for various 2-cocycles &
into the 3 distinct classes mentioned above. We show that the C*-algebras of
classes 2 and 3 are simple and have a unique normalized trace. In section two we
briefly discuss a method for studying projective modules over the H(a, ) construct-
ed by means of crossed products, which will be an important tool in both this
and our subsequent paper. We emphasize the use of strong Morita equivalence
bimodules 4-X-B for C*-algebras with unit and the corresponding isomorphisms
M3(X) 1 Ko(B) = Ko(4) and ME(X) : Ko(A) = Ky(B) canonically determined by X,
and introduce the concept of “coupling constant” when 4 and B are unital.
Examining some of these maps and using the uniqueness of the range of the trace
on the Ky-groups for the Heisenberg C*-algebras we are able to prove the isomor-
phism theorem. Finally we indicate an extension of Theorem 2.9 to matrix alge-
bras over Heisenberg C*-algebras.

We would like to thank Professor Marc Rieffel for helpful remarks and for
showing us preprints of his work which relate to this subject. A preliminary ver-
sion of part of this paper was distributed in [15]. Some of the results discussed
here were obtained while the author was a member of the M.S.R.1. in Berkeley,
California on a N.S.F. postdoctoral fellowship.

1. TWO-COCYCLES FOR H AND THE CLASS OF C*(H, a)

Throughout this paper / represents the discrcte Heisenberg group, which we
express as {(m, n, p) | m, n, p € L} where the group structure is given by (m,, ny, py)-
(Mg, Ny, ps) = (M, + my + pyng, ny + ny, py + pPo); alternatively this group can be
described as the subgroup of SL(3, Z) consisting of upper triangular matrices with

ones along the diagonal, or as a semidirect product (Z @ Z)X Z, where
(0, a)(bs, b) = (T, + ((1) ‘:)7;'2, a + b). Recall that a 2-cocycle for H with
values in T = S'is a mapo : H X H — T satisfying
o(x, y2)o(y, 2) = o(xy, 2)o(x, ).
A cocycle ¢ is called a coboundary if
a(x, ¥) = b(x)b(»)b(xy)y~* for some mapb : H - T.

Two 2-cocycles o, and g, are called cohomologous if their quotient is a coboun-
dary. Cocycles with values in T are also called multipliers, after [13].

We define the C*-algebra C*(H, 6) as in [26], 2.24; recall that the isomorphism
class C*(H, o) depends only on the cohomology class of ¢ in H%(G; T). In our
case, C¥*(H, 0) & CX4(H, o) [26], Section 5; this allows us to avoid a number of
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technicalities. If 4 is an automorphism of H, then C*(H, ¢) = C*(H, cA) where
0A(gy, &) = 0(A(g1), A(g:))- This is seen by mapping U, into W _, . wiere
U, e C*(H, o), W,eC*(H, cA). This is true as well for an arbitrary group G, but is
especially helpful here since the quotient group Aut(H)/Inn(H) of automaorphisis
of H modulo the subgroup of inner automorphisms (conjugacies) is known ¢ he
GL(2, Z). As will beseen, this considerably facilitates the classification of the C¥(#1, ).
First let us attack the problem of finding the cohomology classes of two-cocycies
for A with values in T. Though the following results can be worked out by using
exact sequences in cohomology and the universal coefficient theorem, I prefer
to use the following more explicit method to compute cohomology classes of
two-cocycles for H.

PROPOSITION 1.1, Let v : HxH - T be a two-cocycle for H with values
in T. Then there exist 7,1 € T such that the two-cocyele o = a(4, p) defined by

pypy -1 pyBy(n,—1)
mp, e T g Ry, nl(mu ;plnt) L e =
G((my . 1y, Pr)imy , s Pa)) = /. H )

is cohomologous to v.

Proof. We noted in the beginning of this section that # can be expressed

- . . - 1
as the semidirect product (Z © Z) X Z where (v, a)(ts, b) = (¢, + (0 (;) Ua,

@ + b). Hence by Theorem 9.4 of [13], any multiplier v for # is cohomologous
to a multiplier v = v'(7. ¢, g) of the form

vy . g, ). (s, ila, P3)) =
oy _ Ty
= (my, ) 0 ] (mig, 15)) Py, Po)gl(my, Hey P1))

where y is a multiplier for Z ® Z, o is a multiplier for Z, and g is 2 function
from H to T satisfying

(a) v((n t)‘a?l. (1 t)“ﬁ,_,) = l@ﬁ;@g(@f Fa. 1)
01 01 g(vy, )g(vs, 1)
- _ - 1 Y-
(b) gle.ty + 1) = g(o, h)g (0 : Uy,

Clearly, if o, is cohomologous to w, then v'(y. w;. g) is cohomelogous to
vy, wy. ). It is an casy calculation that if 7, is cohomologous to ;,, Le. if
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b + 5 o ”((;t])s)

7(Vy, Tp) = y2(Vy, Vp) = ACALCAR then, with gy(v, t) = %) &(v,1),

v'(y,, 0, 84) is cohomologous to v'(ys, 0, g,). Thus to derive the cohomology
class of multipliers for H, it suffices to find parametrizations [w] for H¥Z; T)
and [y] for H*(Z ® Z; T) and to find all functions g satisfying (a) and (b) for a
given y. The structures of H*Z;T) and H¥Z ® Z; T) are well known; all
cocycles for Z with values in T are coboundaries, and any cocycle for Z @ Z with

n_m

values in T is cohomologous to one of the form y'((m,, ny), (my, ny)) = p""= for
some p €T. Fixing y in such a form, we now find appropriate g. By the cocycle

identity (b), thc value of g on (Z @ Z) X Z is determined by its values on the

set (Z @ Z, 1), since g(v, n) can be expressed as a finite product g(v,, g(v,, 1) . . .
. g(v,, 1) for appropriate choice of the ;. Hence our parametrization of multi-

pliers of H up to cohomology will be completed upon calculating an appropriate

function § : Z - T with &(n) = g((0, n), 1). Computations using equations

a(n—1)
(@) and (b) show that g(m, n, 1) = A"y * &, where 1 = g((l, 0),1) and
o =g((0, 1), 1). It follows that

pp-n pa(n-1)
—_— s

glm,n, p) =24 ° pu ° o™
Hence

V'(f”1 s M, P1), (Mg, 1y, pa)) = y((my, ny), (my + pyny, n))g(my, ny, py) =

pln,‘,(ns—l) pl(pl—-l)n2
nl(n12+p1112)+——2 nmyp, - — T,
= yu A o*E.

But v is now easily seen to be cohomologous to ¢ = a(2, p); just defineb : H - T
by b(m, n,p) =067 and compute b(h)b(l)b(hy,hy)~* for hy,, hye H. Thus 6,
which appears in the relation UW = 6VWU, has no bearing on the cohomology
class of v

The proof of the proposition shows that it is fairly easy to determine 2
and g when the 2-cocycle v has certain symmetric properties:

CoroLrary 1.2, If' v is a 2-cocycle for H with
v((1,0,0),0,1,0) =1, v((0,1,0),(1,0,0) = g,
v((1,0,0),(0,0,1)) =1, and v((0,0,1),(1,0,0)) = 1,

then v is cohomologous to o(2, ), where o(A, p) is the cocyele of Proposition 1.1.

The proof follows from repeated use of the Proposition and Theorem 9.4
of [13] we leave it as an exercise to the reader.
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As a result of Proposition 1.1 and Corollary 1.2, any C*(H, 6) is =-iso-
morphic to the algebra generated by three unitary elements with the following
relations, for some A, peT:

uv = ru,
WV =puVw,
Uuw = Vywu.

We shall denote C*(H, o(4, 1)) by H(x, ), where 4 = e¥ls, y = >, For
future reference let us now prove the following simple proposition, which allows
us to reduce further the number of cases which must be studied (the proposition
is related to work of Brenken [3] on #-automorphisms of two-dimensional non-

-commutative tori).

PROPOSITION 1.3. Ler / = e® and p = e*F for o, fcR. Then for any

(a b{) € GL(2, Z), C*(H, o{4, 1)) = H(x, By is =-isomorphic to C*(H, a(29y’,
¢« A
Au®) = H(bB + dx, aff + en).

Proof. Let A, denote the automorphism of H defined on the generators by
‘AAI((I, 09 0)) = (det -A{a 03 0)’ ‘4;\1((09 ]’ 0)) = (03 a, C)s A]\l((o’ 0’ 1)) = (0’ bv d)' Theﬂ
if we denote by gA,, the two-cocycle for H defined by oA,(g:, g2) = a(Ay(gL),
An(g2)), we know that C*(H, o) is =-isomorphic to C*(H, 64,,), and C*(H, 64,,)
is defined by

W = Weue,
U = Whusd,
V' = VdetM'

We sec that
U’ V' o= lfV"’U‘inetM — Wb VdetM;f{dctMUd —

= )Hdet Mﬂbdet MVdet MVVI’ Ud — (;Ld#b)det M Vdet Mwad = (}.dub)dﬂMV' U’
w’ V' = WU« Vdctm' — Wa)ycdet Alydcu’t{Uc —
— /‘h('deﬁ A’\{‘“adet IVIVd:t A"{WQUC — (}.C,Lla)det MVI W',
U'W’' = WhUaweUe = W, VIWeydUc = (some x; € T)
= %lu“de“dWaWbUcUd = xluadeadsz~chaUcwad — (%2 e T)

— ),Vat]—chaUchUd = ‘))V’ W'U,. (Y € T)
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Hence oA, is cohomologous to o((A4u”)3tM, (Jeu?)9etM) 5o that by Corollary 1.2
C*(H, o(4, 1)) is *-isomorphic to C*(H, a((A4pu?)t M (lepeydet™y) 1f M e SL(2, Z),

—! 01) eSL(2, Z),

we are done since detM = 1. If detM = -1, then, as (

and the proposifion is proved for matrices in SL(2, Z), C*(H, o((A4u®)~%, (Acu®)~1)
is *-isomorphic to C*(H, a(A4u®, 2<u“)). This proves the desired result. %

We now wish to introduce a preliminary classification of the C*(H, o).
In order to do this, let us show that the range of any faithful normalized trace
T on K (C*(H, a(4, p))) is equal to I YA, ud) = Z + Zoa + Zf, where {1, >
is the subgroup of T generated by p and A and JT: R - R/Z =T is the natural
projection. Let (U, V) and {V,W) be the C¥-subalgebras of C*(H,a(2, u))
generated by U, V and V, W, respectively. We can write C*(H, (2, u)) as the
crossed product (U, V) XZ or as the crossed product {V, W) XZ. In either
event, by the Pimsner-Voiculescu exact sequence, the group K (C*(H, o(2, 1))
is generated by the insertions of Ky({U, V) and K, (KV, W>) into it. The desired
result follows from this, together with known facts about the images of normalized
traces on K,(KU, V), Ko(KV, W) [9], [20]. This fact gives meaning to the classi-
fication which follows:

DeFiNniTiON 1.4, Let C*(H, 0) be brought into the form C*(H, o(2, 1)) for
some A, ueT. We say that C*(H,a(A, 1)) is of class 1 if IT7'({4, x>) can be
generated by one element of R, class 2 if IT-%({2, u>) can be generated by two
elements of R but not by one, and is of class 3 if IT7}({J4, u>) can be generated
by three but not by two elements of R.

The paragraph preceding Definition 1.4 guarantees that the class is an
isomorphism invariant for the algebras C¥(H#, o). The following proposition
follows from Proposition 1.3 and gives a standard form for Heisenberg C*-alge-
bras of classes | and 2.

Prorasition 1.5, fff C*(H, c) is of class |, then C*(H,c) is =-isomorphic
to H(l/n,0) for some ne€ N. If C*(H, o) is of class 2, then it is x-isomorphic to
H(a, p/q) for some irrational a and some p, q € Z.

Proof. If C*(H, o) is of class 1, it is of the form H(p/q, r/s) for p,g,r,s€Z
with (p,q) = (r,s) = 1. Then, with n the ‘lcast common multiple of ¢ and s,
it is easily shown using Proposition 1.3 and elementary number-theoretic arguments
that there exists (a b) GL(2, Z) with (a b)(p/q) = (]/”) mod1, so that

c d c dJ\r/s 0

H(plq, r|s) = H(l/n,0).

If C*(H, o) is of class 2, then it is =-isomorphic to H(f,, B;) where at least
one of the f; is irrational, say f,. Since Z + fZ + B.Z has two generators,
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B> € Q + Qp;. In other words there exist integers #, /, m and m’ with

A

n
Bo=-- P+
m m

We may assume that (#, m) = 1. Let @ and b be integers such that am + bn =

= —1. Then (“’" b ) eSL(2, Z). By Proposition 1.4, the C*-algebra C*(H, (e,

h a

&"P3)) is x-isomorphic to the C*-algebra

C:::(H, o(e(‘.!niﬁj)a e (2rziﬁ2)b, e(‘.’:ziﬁl)n e(2nl[32)—m)) —

I}
— C3(H, O_(c‘.:niaﬂle2nib/?2, ef.’nin/fle2ni(—m)('::1/31-{“;7';))) _

= CH(H, (e, ¢i9)) = H(x, plg),

where
b 1
o = ap, + bfi; = (a + ‘l)ﬁl + =,
m m
which is irrational, and
—m :
plg = —="" 1. 2

m

We shall sce in the next section that class 1 Heisenberg C*-algebras .are
strongly Morita equivalent to the group C#-algebra for the Heisenberg group
C*(H), the rotation algebra of {1). Those of class 2 will be shown to be strongly
Morita equivalent to C*-algebras generated by minimal Anzai transformations on
the two-torus, and are thereforc simple. We now introduce another approach
towards showing that class 2 Heisenberg C*-algebras are simple, and this method
can be applied to class 3 Heisenberg C*-algebras as well.

Let o(4, n) be the cocycle discussed at the beginning of this section, and
lety :HxH —>Z ® Z be given by

lp((’nl vy, I)1)9 (’"2 ] "g ) pg)) =

-1 9 — 1
= (Pl(’"l + @17')‘"2) s Pyltz ’(’”"2“**‘)— + (my + "21)1)"2)-
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Tt is easy to verify that \ is a cocycle, and denoting by IT the map from Z ® Z —» T
given by IT(m, n) = A"u", we see that the diagram

[

HxH YASW/

T

commutes.

Now form the central group extension H X, (Z @ Z). Since H is a nilpotent
torsion-free discrete group, H X, (Z @ Z) = I'" is a nilpotent torsion-free discrete
group. Hence, by the work of Howe [12] the C*-algebra C*(I') has a T, primitive
ideal space, i.e. any primitive ideal of C*(I') is maximal. We can define a unitary
representation of I' on L%(H) by setting

Uig,mpf(8) = Il(my)o(gy, g7 ) (g1 '8)

(here ' = HX, (Z® Z) so that g, e H,m e Z ® Z).

Hence there exists a representation ¢ of C*(I') on L*(H). We claim that
@(C*¥(I')) = C*(H, o). It is clear that (C*(I')) is generated by U 0,0,0,0):U(0,1,0,0,0)
and U(,0,100). By inspection we see that Unoeem, Ueioeog, and Ugq,e100
correspond to V, W, and U respectively, in the left regular representation of C*(H, o).
Thus @(C*(I')) = C¥(H, ). But since H is amenable, C}(H, o) = C*(H,0) =
>~ H(x, ). Assume that H(a, ) is of class 2 or 3 and that « is irrational. Tt is
not hard to see that the representation ¢ of I' described above is a factorial
representation in this case. In fact let .# be the von Neumann algebra acting on
L3(H) generated by U, V, and W, and let A" be the von Neumann subalgebra of
-/ generated by U and V. Tt is easily shown that .# is *-isomorphic to A'XZ
where the action of Z on 4" is generated by AdW. Since 4" is a factor (by our
choice of «) and since AdW” is an outer action on A" for all ne N, .4 = A"xZL
is a factor. 1t follows that the kernel of ¢, .7, is a primitive ideal. Since I' is nil-
potent and torsion-free, by the work of Howe .# is maximal. In other words,
CH(I')J = H(x, ) is simple. Also, by the same work of Howe [12, p. 297, Pro-
position 3], this simple quotient has a unique trace. The above ideas complete
the proof of

THEOREM 1.6. Let C*(H, o(4, 1)) = H(a, B) be a Heisenberg C*-algebra of
class 2 or 3. Then H(x, f8) is simple and has a unique normalized trace.

4 —~ 1193
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ReMARK 1.7. The referee has noted that Theorem 1.6 can also be proved
using the arguments of Slawny [24] for non-commutative tori. We add that
by applying the methods of Howe as it the proof above, one can show that
if N is a finitely generated torsion-free nilpotent group, C*(N, ¢) is simple and
has a unique normalized trace whenever the following two conditions hold :

1) o can be lifted to a cocycle ¢ taking values in R;

2) the left regular representation of C*(N, o) is factorial.

2. STRONG MORITA EQUIVALENCE AND ITS
APPLICATIONS TO THE CLASSIFICATION
OF HEISENBERG C*-ALGEBRAS

In this section we discuss the isomorphism problem for Heisenberg C*-al-
gebras and their matrix algebras. As in the case of irrational rotation algebras
the range of a normalized trace on the K, -group provides an important isomor-
phism invariant. It is a complete invariant for Heisenberg C*-algebras of classes
1 and 3. Distinguishing between the various class 2 C*-algebras and their
matrix algebras necessitates the use of further invariants, however, and so we
first review the relationship between strong Morita equivalence and projective
modules over unital C#-algebras and their subalgebras.

We recall the idea of strong Morita equivalence, due to Rieffel [19]. Let A
and B be algebras. A complete left 4- and right B-bimodule X is said to be a
strong Morita’ equivalence bimodule if it has 4 and B valued inner products
satisfying

(1) {x.¥>42 = x{y, 5.

(2) The representation of A (respectively B) on X is a continuous repre-
sentation by operators which are bounded for { , D, (respectively { , >,).

(3) The linear span of (X, X, is dense in A'and similarly for (X, X)>; in 8.
If such an X exists, 4 and B are said to be strongly Morita equivalent. Following

[2] an A-B strong Morita equivalence bimodule X; is said to be equivalent to an
A-B strong Morita equivalence bimodule X, if they are isomorphic as A-8
equivalence bimodules. If 4-X-B and B-Y-C are equivalence bimodules, then
there is a natural composition of bimodules providing the equivalence bimodule
A-X ® 5z Y-C. Tt is shown in [2],[19] that the category whose objects are equi-
valence bimodules of C*-algebras and whose morphisms are equivalence classes
of equivalence bimodules is a category with inverses.

When unital C*-algebras 4 and B are strongly Morita equivalent, the work
of [20, Section 2] shows that projections in 4 can be represented as projections in
some M, (B) and conversely. The correspondence between finitely generated pro-
jective A- and B-modules described by the tensoring-by-X operation above is exactly

v
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the map of projections described in [20]. In this way we obtain a linear isomorphism
between Ky(A4) and K,(B), which we denote by M%(X), and a linear isomorphism
M3(X) between K (B) and Ky(4). Given an equivalence bimodule A-X-B we
define an equivalence bimodule B-X-A by setting X =X,b-x =xb*, x-a =
=a*x, {x, YOI = Cx, DT Cx, OV = (x, DS 1t is clear that ME(X) = ME(X)
and M4(X) = MAX). By Lemma 6.22 of [19], A-X ® ;X-A is equivalent to the
natural equivalence bimodule 4-4-4 where right and left inner products are given
by {x,y> = x*y,{x,y> = xp*, respectively. Similarly B-)f@,1 X-B is equivalent
to B-B-B. Hence

MAright (X ®B’?) = Td(Ko(A)) ‘and Mg()? ® 4 X) = Id(Ko(B)):

Alefy

but on the other hand

.M;;I"f:“ (X ® X) = MAX)MEX).
Similarly ME(X) M4(X) = Td(K,(B)) thus the isomorphisms M%5(X) and M%EX)
are inverse to each other.

DUFINITION 2.1. Let A-X-B be a strong Morita equivalence bimodule
where 4 and B are C*-algebras with unit. Let t be a faithful trace on 4, and
let Tnd () be the trace on B induced by X, as defined in [20, Proposition 2.2].
We definc the coupling constant from A to B for t determined by X, denoted by
CH(X)(t), to be the positive number Ind(t)(Id g)r(Id 0)~*. Similarly, if ¢’ is a fajthful
trace on B, we define rhe coupling constant from B to A for t' determined by X
denoted by C4(X)(r"), to be the positive number Indy(z")(Id)t’'(Idg)~" (This
concept is related to the work of {5, Section 3], and most importantly to {20,
Proposition 2.5 and 2.6].)

We note in passing that the coupling constant remains unchanged under
normalization, i.e. if A-X-B and 7 € Trace A are as above, and if Ke R*, then

CHX)(KT) = Tndy(Kr)(1d ))(K(Id )" =
= K Indy(t)(Id K I1(1d )~ = CE(X)(x).

%

We also note that if we denote the normalization of the trace Indyt by n(Indyt),
then ‘ .
M) n(Indy(1))*(Ko(B)) = (CHX)(1)) " 1*(Ko(4)),

(2)  (Indy@N*(MAXY P = (CHX)@)'*([p]), for every [p] & Ko(4).

This is because Indx(7)*(Ky(8)) = t*(Ky(4)), and a(Indy(z)) = (CE(X)(z)) Indx(1).
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. )
ExampPLE 2.2, Let « be an irrational number, and suppose that (a )) €

qp
€GL(2, Z),and let V,(p, q) be the left A4-right A,-module described in [22, Section 1],
b
where f# = R and A,, A, are irrational rotation algebras with normaliz-
gx +p

ed traces 7, and 7, The groups K¢(4,) and Ky(4,) can be identified with Z + «Z
and Z + BZ respectively. The coupling constants are given by

CoVilp, )(ea) = lgu + pl™*
and

CPValp, a)ea) = g + pl,

as can be scen by the proof of [20, Theorem 4].

ExampLE 2.3. Let @ and ¢ be relatively prime and choose p, b such that
ap + bg = 1. Let A = C(T?) and let X(q, a) be the left C(T>)-module consisting
of all continuous maps /i from RxT to C satisfying h(t — g, s) = e**“h(r, 5).
From the results of [22] we know that EndC(Ts)X('q, a) = A, the rational rotation
algebra, so that X(q, a) is a left C(T?)-right A,,-strong Morita equivalence bimc-
dule. Furthermore if we let Ko(C(T?)) be parametrized by {(m,n)|m,n e Z}
where m represents dimension and » represents twist, following the notation of
[22, Section 3], then

Mgf{f)(X(% a)((g. — @) = [‘ld]KoMn/‘l)'

This is just a restatement of the fact that X(g,a) is a projective module -with
dimension ¢ and twist — a, which is proved in [22]. It follows that if 7 is any faithfut

normalized trace on C(T?), CZ:’;"!J)('[) = g. We now state the following easy
ProrosiTION 2.4. Let A-X-B and B-Y-C be two strong Morita equi-
valence bimodules, where A, B and C are all C*-algebras with unit. Let A-X ® 5 Y-C
be the strong Morita equivalence between A and C formed from X and Y via the
tensor product construction. Let t be a faithful trace on A. Then
CSX @5 Y)(1) = CH(Y)(Indx(x))CAX)(T).

Proof. The conclusion follows from noting that

Ind y(Indy(7)) = Indxy y(7),
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since then

CiX ®pY)(1) = IndX@gBY("c)(ldC)r(IdA)"] = Ind,(Indy(z))(Idc)r(Ad )7t =

= Ind (Indx(t))(1d )Ind()(Id g) *Indx(T)(Id g)z(1d ) =
= C§(Y)(Indyx(1))CEX)(1).

To prove the equality of the traces, one simply uses formulas for {(x; ® y;,
Xy @ yac given in [18, p.186] to verify that Indx@,,y(f)((v\']‘ @ y1, X3 @ ¥o)co) =
= Indy(Indx(T)(Kx; @ y1, X2 @ Yo)o)- %

We move on to discuss the construction of crossed product equivalence
bimodules for crossed products of unital C*-algebras, from equivalence bimodules
for the original C*-algebras. This has been discussed extensively in [4], [7] and
{15]. We include here an outline of a treatment very close to that of Combes
{41, which is slightly different from the work of Curto, Muhly, and Williams [7].

DEFINITION 2.5. Let X be a left module over the C*-algebra A4 which is
a left A-rigged space in the sense of [19, Definition 2.//8], and let @ : G > Aut(A4)
be an action of the locally compact group G on A. We say that (4, «, G) is a
unitarily covariant system with respect to X if there exists a strongly continuous
action of G on X, i.e. homomorphism U : G - Aut(X), which satisfies

0)) Ux, Upydy = a(g)Kx,9>,) VgeG, Vx,yeX,

2) UyaU -y = a(g)(a) as an endomorphism of X, VgeG,Vaced

If X is a finitely generated projective module over 4, then the condition above
implies that the map a(g)* : K,(4) — K,(4) determined by the Morita equi-
valence between A and itself defined by the automorphism a(g) (see [2, Section 3))
acts as the identity on [PX]Ko( 4) Where Py is the projection in some M,(4) deter-
mined by X. ’ '

We now state the following result, which is a slight variation of the main
results of [4] and [7] for unital C*-algebras.

THEOREM 2.6 ([4], [7]). Let A-X-B be a strong Morita equivalence bimo-
dule where A and B are unital C*-algebras. Let o be a continuous homomorphism
of the unimodular locally compact group G into Aut(4), and suppose (A, a, G) is
a unitarily covariant system with respect to X. Then there exists a continuous action
B of G on B such that (B, f, G) is unitarily covariant with respect to X, and the
crossed product C*-algebras AX,G and B XgG are strongly Morita equivalent.
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Sketch of proof. The existence of the action of G on B is actually contained
in ([4), p. 292, Proposition and Remark 2), but we include a few details for our
case. Given g €G, b € B, define f(g)(b) as an endomorphism of X acting on
the right by setting x-B(g)(p) = Ug((U,-1x)b), Vx € X. Since A and B have
units, and X is complete, we can identify B with End 4,(X), and we claim f(g)(b) € B.
Since

(@x)B()(b) = U(U,-1)(@x))b) = U (((g @)U ,-1x])b) =
= U (g ™)@)[(U,-1x)b]) = a(U[(U,-1x)b]) = a(xB(g)(b)),

B(g)(b) is an element of End,(X) and hence defines an element of B. It is easy to
verify that (B, §, G) is a unitarily covariant system for X. The conclusion of Theo-
rem 2.6 now follows from application of [7, Theorem 1} or the theorem of [4,
p. 299]). For further use we note that the equivalence bimodule between A X, G,
and B X4 G can be constructed as follows: Let & = C (G, A) and let Z = C_(G, B)
denote the =x-algebras of continuous functions with compact support from G to
A and B respectively. Let & = C (G, X) where C(G, X) is the set of continuous
functions with compact support from G to X. We shall give 4 the structure of an

£Z-# equivalence bimodule.
The left and right module actions of & and 4 are defined on 4 by settting

foxte) = S S (x(eT'8) s,

x-hig) = S *(g0B(e) (g e)) des,

for f(g), x(g), (g) € &7, X, # respectively. Then for every fes?, xed¥, heB,
(f-x)-h = f-(x-h),

The o7- and #- valued inner products on 4" are defined by

o> o) = S<f1(g1>, US(folgT gD des.

s Fodale) = Sﬁ(g1)<f1(gl),j@(g; 1855 g

Upon suitably structuring and completing 2 we obtain the desired equi-
valence bimodule, which hereafter we denote by X 3 G.
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REeMARK 2.7. If G is discrete, it is clear from the definition of coupling con-

stant given in Definition 2.1 that if 1,4 is a trace on 4 X G which reduces to the
trace T, on A, then Chixx G)(t xg) = CHX)(z4).

ExampLE 2.8. This example will be useful in proving the isomo}phism theo-
rems. Let 4 = C(T*) and let X(g, a) be the left C(T?)-module consisting of all

continuous maps from RXT — C satisfying A(t — g, s) = e?™ash(t, 5), where
@q =1

From the results of [22] we know that-End ;2 X(q, @) = 4, a rational

rotation algebra, where p € Z is such that ap + bg = 1 for some be Z. Let V
and W be generators of 4,, such that WJ¥ = e?"?/a)/ J¥. Recall that the action
of 4,,, on X(q, a) is defined by

h-V(t, 5) = h{t, s)e*"'9,
h-W(t,s) = h(t — p, s)etris,

(These formulas come from examination of the formulas found in [22], 3.4, 3.5,
3.6.) ‘

Let o be the action of Z on C(T?) given by Anzai’s skew product on the
torus: a(l)f(t,s) = f(t + «, s + t), f€ C(T?). In order to apply Theorem 2.6 to
C(T*) X, Z = H, we must find an a(l)-equivariant automorphism of X(g, a).

On defining Qh(t, s) = e 8Wh(t + a, s + t), where g(t) = ia— 2+ —az—~t is a real-

-valued function, a calculation shows that

Q1(t, ) Q7 -h(t,s) = f{t + «, t + $HA(t, 5) = a(1)(f)-h(t, 5),

for f'e C*(T?) and h € X(q, a).

Furthermore (Qh, Qh)C(Tg) = al)(Kh, ’1>C(T‘~')3- Hence the conditions of
Theorem 2.6 are satisfied, and we calculate

QUQ MV = h(s, t)e2alay,
QU@ W)W) = h(s, )xV-W for some x €T;
in other words, the action of Z on A,, guaranteed by Theorem 2.6 is given by
BV = e2rinlay,
¢ BW) = xVW.

Thus by Corollary 1.2, 4,,, Xz Z is »-isomorphic to H(a/q, p/q), as defined in Sec-
tion 1. Hence the application of Theorem 2.6 to our situation shows that H,
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is strongly Morita equivalent to H(a/q, p/q). We denote the equivalence bimodule
constructed there by X(g, @) X,,; Z. An application of Remark 2.7 shows us that
the projection in some M, (H,) correspondingto the projective module X(g, ) X, ;4 Z
is just the projection in some M, (C(T%)) corresponding to the projective module
X(q, a). Following Rieflel, we say this projection has trace (dimension) ¢ and

twist--a. Remark 2.7 also shows that CZZ“""’” "X (9, @)Xyq Z)(z) = q, where 7 is the

» . A -~ -~ . .
unique normalized trace on H,, because Cdp_g)()((q, a))(T) = ¢, where T is any

faithful normalized trace on C(T2). Z

Two direct applications of Example 2.8 and Proposition 1.5 show that any
Heisenberg C#-algebra of class 1 (which is #-isomorphic to H(l/n, 0) for some
n € N) is strongly Morita equivalent to the rotation algebra. C*(H), and any
Heisenberg C#*-algebra of class 2 (which is =-isomorphic to H(f, p/q) for some
irrational B and p, g € Z) is strongly Morita equivalent to a C%-algebra generated
by an Anzai skew product action on the torus.

We are now in a position to prove the first of our main isomorphism theo-
rems:

THEeOREM 2.9. Let H(wy, ) and H(ag, ;) be two Heisenberg C*-algebras.
h

Then H(xy, By) is =-isomorphic to H(as, fs) if and only if there exists (‘a l) €
¢«

€ GL(2, Z) with

2xia,,

- e2ni(u1l~, C[il)

2nif, Zni(bzl 2dp)

€ and e =e .

The proof of the theorem will be divided into several lemmas. Given any
Heisenberg C#-algebra, we determine whether it js of class 1, 2 or 3 by examining
the range of a trace on the Kj-group. The following result for class 1 Heisenberg
C#-algebras comes directly from the work of Section 1:

LeMMA 2.10. Let H, and H, be Heisenberg C*-algebras of class 1, so that

Hy = H(p\[qy, n[s1) and Hy = H(py[qy, rafss), where (pifg;) =1 and (ri,s) = 1,

i=1,2. Then H, = H, if and only if lcm.q,s) =lcm.(gy,s,), and
1

H, =~ H (——————, 0).
Lem.(q;, 53)
1

Proof. The fact that H, =~ H ( e
l.c.m.(g;, s))

1.5 of the previous section. Thus if l.c.m.(q,,s,) =l.c.m.(g,, ;) =n we have
H, ~ H, = H(1/n,0). Now assuming H, = H,,lett be any normalized faithful

,0) was proved in Proposition
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trace on H, =~ H,. By the results of Elliott [8] combined with the proof of Pro-

.. : . 1
position 1.7, we see that t*(K,(H,)) = S Z, 5 (Ko(Hy)) = ——— Z.

Lem.(qy, s l.e.m.(q,, $5)
Since t*(K (H;)) = t*(K(H,)), this implies that l.e.m.(qy,s;) = l.em.(g,,s,). @

Before moving on to study the isomorphism problem for Heisenberg C*-al-
gebras of class 2, we review those crossed product C#*-algebras generated by
certain Anzai skew-products on the torus, those given by T(z, w) = (4z, zw) where
(z,w) € T2 and A = e?"i* for irrational «. These C*-algebras, which we denote
here by H,, were classified in [14, Section 3). The Pimsner-Voiculescu exact
sequence tells us that Ko(H,) = Z ® Z @ Z and is generated by three elements:
the identity projection, the so-called Bott generator in M, ({V, W)), which
we denote by ¢, of trace I and twist —1, and the projection in (U, V) = 4,
of trace «, which we denote by P,. We assume that o € (0, 1/2) and write the gener-
ators of K (H,)in vector form as (1,0,0) = {P,), (0,1,0) = [Id], and (0,0, 1) =
= [Id] - - [¢,]). If © is the unique normalized faithful trace on H,, then 1((1,0,0)) =
= o, 7((0, 1,0)) = 1, and 7((0,0, 1)) = 0.

By Proposition 1.5 a more general Heisenberg C*-algebra of class 2 will
be =-isomorphic to one of the form H(B, p/q), for some irrational § and p,qe Z
with (p, ¢) = 1. The range of the unique normalized faithful trace on K (H(f, p/q)) =
=2Z + BZ + p/qZ = 1/qZ + BZ. This range is not a complete isomorphism
invariant for Heisenberg C*-algebras of class 2, but it does limit the possibilities,
and along with the strong Morita equivalence bimodules constructed in Example
2.8, can be used to prove the following lemma, which is a rreliminary version of
Theorem 2.9.

LemMA 2.11. Let H(By, p1/q,) and H(B5. p1/q,) be two Heisenberg C*-algebras
of class 2, where By and By are irrational and (py,q,) =1, (rs,62) =1 for pi,q, € Z,
i =1,2 Then H(B,,pijq)) is *-isomorphic 10 H(fs, Polqs) if and only if ¢, = q, = ¢q,
pe = -t:pymodg, and qf, = 4+ gf, mod 1.

Proof. Let us first show sufficiency. If py =y, =p, ¢1 = ¢, = ¢, 9P, = qf,
mod I, then there exists an integer i < ¢ with f; + ilg = f; mod 1. We then

note that there is a matrix (0 ! ) e SL(2, Z) which gives the isomorphism between
' 1

H(B,,plq) and H(B,,plq) by Proposition 1.3. Tre proof of sufficiency in the
remaining cases also uses Proposition 1.3 and we omit details.

Now we prove the necessity. Let H, = H(f};, pr/q:) be x-isomorphic to
Hy, = H(f,, ps/gs) where By and f, are irrational and (p;, ) = 1,(ps, q) = 1.
Then H, is strongly Morita equivalent to H”1/’1 ‘and H, is strongly Morita equi-
valent to Hgp,» 80 both are simple and have unique normalized traces 7; and 7.
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The image of these traces on the K, groups is an isomorphism invariant. Her.ce if
H, =~ H,, then

THK(HY)) = Z + pyJnZ + B2 = 15 (Ky(Hy) = Z + pylg.Z + B,Z

as subgroups of R. This implies that ¢, = g, = ¢, and that ¢, = i- gf, mod 1.
Without loss of generality, we may assume gB; = gp, (since H(fy, palgs) =
= H(--fs, po/g;) in any case). Hence we have reduced our problem to showing
that if H(B,, pi/q) = H(B,, ps/q) where gB, = gB, mod 1, then p; = ::: p, mod q.
We now examine the strong Morita equivalences

H, = Hqﬁl -X(g, a)) XﬁIZ'H(ﬁl , P1/qy)
.and
H, = Hqﬁ.:‘X(q, a,) Xp, Z - H(Bs, P2/qs),
for a,,a,,b,,b:€ Z with a,p, + byg = 1, ayps + byqg = 1, where the equivalence
bimodules are as constructed in Example 2.8.
Forming the equivalence bimodule

H(Bs, palq) - X(q, ay) Xp, Z-Hgp, = Ha,

as in the remarks preceding Definition 2.1, we note that the isomorphism of
H(Bs, Po/q) with H(B,, p1/g) allows us to form the strong Morita equivalence bi-
‘module

A’
Hy = Hyp -X(q, @) X5, Z ® X.a) X, Z-Hy, = H,,
1=

which we shall denote by V.

With respect to our notation given earlier, we see that Mzalri;‘f':‘("//)=
. x

== Mﬂgﬂs_pqu)(Xm) X g, Z)Mﬁiﬁl"’IIQ)(X(q, a) Xp, Z). To ease notation,we write
MUY = M5, for C#-algebras A and B, with the bimodule ¥~ fixed as above.
Then by Example 2.3 and Remark 2.7 we know that, in terms of the standard
-generators for K (#H,) discussed previously,

(1) Mz, oIk 1, 0ya0) = (0,4, — a5),
@ MZ&Y,,],Vq)([[d]Ko(H(,;l,,,1,:,,),) = (0,9, — a)).

These two mappings along with Proposition 2.4 show us that the coupling constants
are CL“” v 1"‘”(p) = ngﬂ » m(r) = l/g (where p,t are the unique normalized
a 2’ o

traces on H(B,, p./q) = H(B,, p+/q) and H, respectively), so that by Proposition 2.4
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H right
C o

et () =¢q-1/g =1, i.e. the normalized trace on H (right) is equal to the

trace induced on H, (right) from the strong Morita equivalence bimodule ¥~ (since
this latter trace is normal hence equals the unique normalized trace 7). Hence, by
our equation (2) after Definition 2.1, the mapt* is Me :i!}lt‘t("’/ )-invariant where
*: Ko(H,) - R, ie.

H right

My e TPl 0) = T2 PIk 21,)-

H nght
H left

Hence, if we wish to write M, ° " (¥7) as an element of GL(3, Z) with respect

to our standard generators for Ky(H,) we must have

100

H nght('V) 01 0

H lef't
* k¥

ng

(since if the first two rows were not as above, t* would not be M,z e

1 00

-invari-

ant). Hence we write MZ :;ﬂ“ as|0 1 0], where ¢ = 4- 1, with respect to the

a b ¢
standard generators for Ky(H,), so that

0 0
M ﬁ,’:f;?{“ qg |=M Z(ﬁ pyfa) MH:,I" O g )= (by equation 2)
—a, —a,
- .
3 = Mﬂgﬂu- pgl‘l)([[d]Ko(H(ﬂl' l)l/q))) = (since H(By, po/q) = H(B., /@)
0
= MZ?”Q' PQ/Q)([Id]Ko(~H(ﬁ2‘ ”2/4))) = q " (by equation' 2)
\—a, /
Hence
0 0
: H right
@ Mg | 4 |=1| 4

—a,, —a,
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Hence either

1 00 0 0
(%) ¢ 10 91 =14¢q
a b 1 —a —a,
or
I 0 0y /0 0
(©6) 01 0 9 |=14
a b -1 —a —a,
Hence either
) ay = —gb + a
or
®) a, = —qgb — a,.

If a; = (—b)g + a,, we note that P = p,, B = (b, + bp,) satisfy
a, P+ Bq = ayp, + (by + bpy)g = a,py + byg + bg-p, =
=ayp, + byq + py(ay — ay) = b,g + pra; = 1.

Hence a,P + Bq =1, which implies that P = p, + kg, B = b, — kp, for some
integer k. Hence p; = p, + kg so that p; = p, modq. On the other hand, if (8)
holds one easily shows that p, = — p;, mod ¢, as desired. Z

REMARK 2.12. Lemma 2.11 uses the following idea, which is a simplification
of the proofin [22] that rational rotation algebras Apl,,,1 and Ap,q, are isomorphic

if and only if p;/q, = - pafq, mod 1. (This fact was initially proved in [11].) Form
the bimodules

CH(T%)- X(q1, ar)- Ap 1q,
and

CH(T?)-X(q;, as)- Ap ja,
of [261. Then

CHI)-X(gi,a)  ® gy, a)- CH(T)
An]/qupz/qz

is a strong Morita equivalence bimodule for C*(T?) which we denote by & :

CH(T#) - & - C*(T™).
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We see that Cg:gf;(ﬂ’)(r) =1 where 7 is the trace on T? determined by

Haar measure, and g, = g,. This implies that the matrix

MEED(2): Ko(CHTY) = Ky(C3(T2)

1 0 . . .
must be of the form ( I)’ where @ is an integer, with respect to our stan-
a

dardized generators for K, (C*(T%)) as discussed in Example 2.3. Then as in
Lemma 2.11 one computes that

MET(Z) 7Y [ 1)
eI —a ~= s

(o o)) (3)

where a,, a,, b, , b, are integers such that

Hence

apy +bg =1, ayp, + byqg = 1.

But the arguments of Lemma 2.11 show that p, must be equal -4- p, modg in
such a situation. Hence

A/ll/ql = Apz/q2 = pi/g1 = o ps/qe mod 1,
as desired. B

We turn now to class 3 Heisenberg C*-algebras. It is not surprising to find
that here the trace completely determines the isomorphism class.

Let T be the unique normalized trace on the class 3 C*-algebra H(a, f5).
We saw in Section 1 that 1. (K,(H(x, 8))) = Z + aZ + BZ. This fact allows us
to prove the following

Lemma 2.13. Let H(ey, B,) and H(ay, B5) be two class 3 Heisenberg C*-alge-
bras. Then the following three statements are equivalent:

(1) H(ay, By) = H(ag, Bs).

() Z + Zoy, + ZB, = Z + Zoy, + Zf, < R.

(iii) There exists (a I;) € GL(2, Z) with
¢

bay, + dff;, = azmod 1,

ao, + ¢ff; = fismod L.



62 JUDITH A. PACKIR

Proof. The direction (i) = (ii) is clear from the tracial invariant mentiored
above. The direction (iii) = (i) was shown in Proposition 1.4. Thus we need only
show the implication (i) = (iii). If Z + 0,Z + B,Z = Z + %,Z + B.Z where
{(x,, f,) are pairs of linearly independent irrational numbers, then there exist M, A,
B, N, C, De Z with

M+ Ax, + Bf, = 25,
N + Cay + DBy = B,.

Without loss of generality we may assume M and N are zero, so that
Ax, + Bff, = 2, Cx; + D, = f,. We now claim that in fact AD — BC = -:-1.
Since Z + 0,Z + pZ = Z + 2,2 + B,Z, there exist I, r, s, x,t,w e Z with

L+ rog + 5By =0y,
X+t + why, = B
Hence, in succession, we have the following statements:
I+ r(A4%, + Bfy) + s(Cxy, + D) = 2,
X+ t{Ax, + BB + w(Cx, + DB) = By;
because of the independence of I, x,, and B,
I =x =0,

(rA + sC) = (1B + wD) =1,
(rB + sD) = (1A + wC) = 0;

(26 n))
ol 2)eer ()02

Taking A =b, B=d. C = a, D = ¢, we obtain the desired result. =

We have completed the proofs of our preliminary lemmas and are now in
a position to prove the main theorem:

Proof of Theorem 2.9. The fact that H(x,, f,) = H(a,, ) if there exists

a b . 2ni i - i i(ca, + .
( d) € GL(2. Z) with " = ™) and e = W) 5 merely
¢
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Proposition 1.3 restated. For the proof of =, we note that if H(x, , fi,) and H(x,, fi,)
are isomorphic, they are of the same class. The theorem then follows for Heisen-
berg C*-algebras of class | and 3 from Lemmas 2.10 and 2.13 respectively. As for
class 2 Heisenberg C*-algebras, the result follows using Lemma 2.11 in conjun-
ction with Proposition 1.5. @

Note added in revision: After reading the original version of this paper
{15), Hong-sheng Y in remarked in the preprint “Classification of C#*-crossed
products associated with characters on free groups’” that he could provide a short-
er proof of the above theorem, also using K-theoretic invariants. For our pur-~
poses, we prefer the above approach, since the isomorphism theorem for all
matrix algebras of Heisenberg C*-algebras follows directly from this method,
and since we use these constructions in our subsequent paper [16], where we
determine a one-to-one correspondence between strong Morita equivalence classes
of Heisenberg C*-algebras and the real projective plane, and prove that the
cancellation property of Rieffel holds for Heisenberg C*-algebras of class 2 and 3.

To conclude, we state the generalization of Theorem 2.9 to matrix algebras
over H(a, B):

THEOREM 2.14. Ler oy, By, 0, fs € R, iy, 0, € N. Then M,,I(H(ozl, f)) =

gM,,z(H(ocz, B2)) if and only if ny = n, and there exists (a b) € GL(2, Z) with

c d

2mia, — e‘lni(aal-|~l)/}1) ,

S

and

e‘&niﬂ2 — e‘.}ni(('al l'dﬁ]) .

Proof. The proof involves many of the techniques of Theorem 2.9, including
dividing up the situation into the three cases class I, class 2 and class 3, as wel
as using the matrix method determined by strong Morita bimodules; as before
a.key role is played by the range of a normalized trace on the K,-group of the
C*-algebras. We give here the proof for the class 2 case only and leave the other
cases to the reader.

Suppose that .#, = M, (H(ow, Br)) = M, (H(x;, By)) = .#, with class.#, =

m; n;

class #, = 2. Then there exist matrices A; = ( ), irrational numbers

o8

p;, and relatively prime non-negative integers p;,q; with 0<pj<yg;,

”j ”f) (“J‘) —( Pi )mod] such that .#, ~ M, ( '
- s ;= n(H(P,I’/‘I))> J = 1: 2.
("- 8 B; p;lg; ’ ! e

J J
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We will show that ny, =#, =n, ¢, = ¢, = q, py= =-p, mod g and gp, = - gp, mod L.
This will complete the proof for class 2 Heisenberg algebras, since in this case

i 2ri ¢« 2pi 2ri . .
(™1, ™) and (¢*™, ™) would be conjugate under a matrix of the form

110 ,
4 ')ABEGL(Z,Z).

-1

If 4, - - 4, then the ranges of normalized traces on the K,-groups must be

equal, i.e.
b (1 (1
. .(,AZ + plz) = (—Z + pQZ).
1\ G 3 \ 4z
Hence nq, == n,g. and q,p, == - q,p, mod1l. Let o, : : q,p;, 8, =: g-p,. We then

have the following chain of strong Morita equivalences, following the nota-
tion of Example 2.8:

Hdl - X(qy, a1) Xp, Z-H(p,, p1/9))

; ”1 ]
Hlpy, par) - .®1 H{py, pila) - MIIH((KH Pyq) =

= Moy (H(py, polgs) - _@l H(ps. Paigqz) - H(ps, Psla3),

H{py, ps/q5) - X (45 ay) Xp, Z-H,, .
Hence there exists a strong Morita equivalence bimodule
Hs, - ¥-Hs, ,

and we calculate (using the method of Lemma 2.11)

0 0
Hy
2 (% .
M,Hd #) mgy | T 9 |
1
Ty —Holly

in terms of the standard generators for K‘,(Hal). Hence s, divides #y¢,, 1y divides
1:q,. Since (ay, q;) = (a5, 9,) = 1, this implies that n, divides 5, and n, divides
ny, so that n, = n, = n. Since mq, = nyg, we obtain ¢, = ¢, = g, which implies
gp, = 4= gp, mod 1, so that we need only show p, = £ p, mod ¢. Since n; = np, = n,
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g, = g, = ¢q, we see that

0 0
Hy 1=
M Hdi(@) q 1|~ q
—a —a,
1 0 0

Since Cj(@)(x) = 1, M, '(®) is of the form |0 1 0 [ As in the proof of
1 1

a b +1
Lemma 2.11, we see that p, = p, modg or p; = —p, modg, which is what we
desired to show. A

10.
1.

12,

13.
14.

15.
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