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ADMISSIBLE AND REGULAR POTENTIALS
FOR SCHRODINGER FORMS

PETER STOLLMANN

0. INTRODUCTION

For a nonnegative potential V € Ly o (R") one can define a selfadjoint
realization of the formal Schrddinger operator — A+ V using quadratic forms.

To be more precise, one uses the “form sum” —A 4- ¥, ie. the sum i + t,,
where h and 7, are the closed forms which correspond to the semibounded
operators — A and V, respectively. This is possible since # + ¢, is densely defined.
{Note that CP(RY) = D(h) n D(ty).)

An example in [6] shows that /# + r, may be densely defined without the
requirement V e L, 1,(R"). 1t is therefore legitimate to ask for a characterization
of those potentials for which D(#1)n D(¢,) is dense. This question leads us to
the notion of “admissible potentials” which was introduced by J. Voigt [7]. Voigt
also defined the somewhat smaller class of regular potentials. A regular potential
has the important property that —A -~ ¥ is a restriction of the maximal operator
(_‘A + V)maxs Where D(("A + V)max): = {f € LQ(RV) L Af, er Ll,loc(Rv)7
~Af + Vf =: (—A + V)narf € L‘J(RV)}

Therefore —A4V is a “reasonable” selfadjoint “‘realization’” of the formal
Schrédinger operator —A + V. Indeed, this is a special case of a result of Voigt
([7], Theorem 7.4). We shall prove an extension of the latter in Theorem 3.4.

~ Our main results are Theorems 3.2 and 3.3 where we give equivalent con-
‘ditions for a potential V in order to be Uy(-)-admissible or Uy(-)-regular, res-
pectively, where (Uy(f); t > 0) is the semigroup associated with —A + V; on Ly(Q)
(2 = R open) for rather general V,. The results state that, roughly speaking,
V is admissible or regular, respectively, if it is locally integrable outside of
“small sets’”, where the smallness is measured in terms of the capacity.

In the first two sections we have chosen the abstract setting of regular
Dirichlet forms although we are mainly interested in Schrédinger forms.

The main reason is that we only need to truncate and mollify functions
in the form domain, and the concept of a regular Dirichlet form enables these
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manipulations. Therefore regular Dirichlet forms are, in our opinion, the adequate
setting for a great variety of statements concerning Schrodinger forms. Note, for
example, that Corollary 2.5 gives a generalization of a result of Cycon ([l], Thee-
rem 2).

The paper is organized as follows: In Section 1 we characterize U(-)-ad-
missibility and U(-)-regularity of potentials where (U(1) ; ¢+ > 0) is the semigroup
associated with a regular Dirichlet form 7. Tt will turn out in Theorems 1.5 and 1.6,
that a nonnegative potential V is regular and admissible, respectively, if it satisfies
an integrability condition outside of open sets with arbitcarily small t-capacity.

Section 2 is devoted to the study of perturbations of Dirichlet forms with
negative potentials. The form /i of the first paragraph is, in fact, a regular
Dirichlet form. But we are also interested in Schrédinger operators —A + V¥
with ¥, not necessarily semibounded below. Hence, the associated forms will
not be Dirichlet forms, in general. In Theorem 2.2 we will prove that for a cer-
tain class of negative potentials ¥, regularity and admissibility will not be affected

if one replaces 7 by 1, = *'r — f_VO”. (Note that the last symbol is, in general, not

defined.) The main tool of this section is Proposition 2.4, which might be of some
interest of its own, even in the case of Schrédinger forms.

In Section 3, finally, we are able to state the main Theorems 3.2 and 3.3
as simple consequences of the results of Sections 1 and 2.

Concluding the introduction T want to express my thanks to J. Voigt. Tt
is a great pleasure to acknowledge his help and encouragement.

1. REGULAR AND ADMISSIBLE POTENTIALS
FOR REGULAR DIRICHLET FORMS

In order to fix the notation we want to recall some basic definitions and
properties. (For details we refer to [2] and [7].)
In what follows let X be a o-compact Hausdorfl space (i.e. X is locally

compact and X = ij X, . where X, 1s open and relatively compact) with a Borel
ne!d

measure p.

We consider a symmetric form r > ¢ with dense demain D on the complex
Hilbert space (L,(X, ), (-;-)). We assume f to be closed, ie., (D; (-‘;‘-),) is a
Hilbert space, where (- ;-), = [-.-]1 + (1 — ¢)-(- i-) and |- !, denotes the correspond-
ing norm. (Note that for + > ¢' the corresponding norms are equivalent.) Since
¢ is closed there exists an associated nonnegative selfadjoint operator 7. Hence,
- T generates a Cy-semigroup (U(r) ; r = 0) on Ly(X, p), the associated semigroup.
If V:X —[0:00] is measurable, then

D(1y):= {f € Ly(X,p) : VI2f € Ly(X, p)} =
={/eL(X, 1) VIfre Li(X, 1)), #lf.8l:=V'2f|Vig)
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defines a closed nonnegative form, which is densely defined if and only if V is
finite p-a.e. Letting V¢ (x) := (V An)(x) (we denote by fag (f vg) the point-
wise minimum (maximum) of two functions f,g) it follows from perturbation
theory of Cy-semigroups that —7 — V™ is the generator of a C,-semigroup. If

U,(t) := s-limexpt(— T — V)
n-eo0

defines a Cy-semigroup (U, () ; t = 0), we call V U(-)-admissible. If V is U(-)-ad-
missible, then so is aV for 0 < o < 1. If, in addition,

s-hm Ug(t) = U(t) for t = 0,
a0
we say that V is U(:)-regular.

Note that U(-)-admissibility depends on the semigroup (U(?) ;¢ = 0). The
characterization in Proposition 1.1 is more convenient in our context, but we
wanted to give the original definition introduced in [7], where a slightly different
situation is considered. In [7] the semigroups are defined on L (X, i) and therefore
are assumed to be positivity preserving. In the Hilbert space case this requirement
may be dropped since the limit U,(¢) exists for ¢+ > 0 by monotone convergence
of forms (cf. [5], Theorem 3.1).

To be more precise,

L+t =+ 8y

in strong resolvent sense, which proves part (a) of

1.1. ProposiTion (cf. [7], Proposition 5.8). Let t be a closed form, T and
(U(t) . t 20) be the associated selfadjoint operator and C,-semigroup respectively
and V:X —1[0;c0] be measurable.

(a) V is U(-)-admissible if and only if t + t, is densely defined. In this case
—(7 -j- V) is the generator of (U,(t) ;t = 0).

(b) V is U(-)-regular if and only if D n D(t,) is dense in (D,(- l-),).

For the proof we refer to [7], proof of Proposition 5.8.
1 is called Dirichlet form, if

geD =|gle D and r{igl] < gl
and

g€ D real valued = galeD and tgnl] < tg],

where we use the notation ¢ f, f] =: ¢{f].
We want to remark that the first property implies (cf. [4], Theorem XIII
50) that U(r) is positivity preserving and in particular reality preserving.
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This yields
feD=RefeD and t[Ref]<[f])

A Dirichlet form ¢ is said to be regular, if DnC(X) is dense in (D, ] -,) and
in (C.(X), || llo) (cf. [2), p. 5 and p. 6 where real Hilbert spaces are considered).

1.2. REMARK. Let r be a regular Dirichlet form.

(@) For a closed st 4, Dn C(X\A) is dense in (C(X\A), i|-!w) and
in Lo(X\A4, 10).

(b) Forf,ge D & Lo(X,u) we have f-ge D and

S gl < i1 18l + S o gl -
For the proof we refer to [2], Lemma 1.4.2 (iii) and [2], Theorem 1.4.2
{ii).
Throughout the rest of this paper let us assume:

¢t denotes a regular Dirichlet form with domain D. T and (U(t) ;¢ = 0)
(A) are the associated selfadjoint operator and C,-semigroup, respectively,
and ¥ : X —[0: co] is a measurable function.

To get some idea what U(-)-admissible and U(-)-regular potentials look like
fet us state

1.3. REMARK. (a) If Ve L, (X\A4), where A is a closed set and u(4) =0,
then V is U(-)-admissible.
(b) If Ve L, (X) then V is U(-)-regular.

The proof is an immediate consequence of Proposition 1.1 and Remark
1.2 (a). .

An example in [6] shows, however, that ¥ may be U(-)-regular without
being locally integrable. In order to characterize U(-)-admissibility and U(-)-re-
gularity we introduce the 7-capacity:

For an open set U < X let

c(U) =inf{{|f[?:feD, f 2 Xy}, (nf@ = o0),

be the t-capacity of U.
For arbitrary 4 < X, we set

¢(A) :== inf{c,(U) : U open, U > A}

(cf. [21, p. 61).
For the reader’s convenience we recall some basic properties concerning

capacities.
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1.4. LEMMA. (a) For any open U such that ¢(U) < co there exists a unique
ey € D satisfying Xy € ey < 1 and ¢ (U) = |leyll}, the so-called *1-equilibriunt
potential” of U. :

(b) For any f € D there exists an f such that f = f p-a.e. and for each ¢ > 0
there exists an open U satisfying c(U) < ¢ and f'l (X\U) is continuous.

(c) For any sequence (U,) of open sets we have

c(UJU)< ) aelUy.

neN neN
(d) For fe D and f as in (b)

llf > ) < —}— 171

holds.

For the proof we refer to [2], Lemma 3.1.1, Lemma 3.1.2, Theorem 3.1.3
and Lemma 3.1.5.

1.5. THEOREM. Assume (A). Then the following statemcnts are equivalent.

() V is U(-)Y-regular or, equivalently, D D(t,) is dense in (D, |- 1).

(ii) For each ¢ > O there exists an open set U < X such that ¢(U) < ¢
and X,\'\UV € Ly .. (X, ).

(i) For each & > O there exists an fe D such that 0 <f <1, |flli<e
and (I — fYV e L, ,.(X, ).

Proof. (i) = (ii) Let X = U X, € > 0. Using 1.4(c) it suffices to prove (ii)
with X replaced by X,. Since t is regular, there is a ¢ e DnC (X) such that

@ = . Let 0 <y < ¢, ¥ € Dn D(t,) such that [[¢ — ||, < & and choose a
representauve i and an open set W according to Lemma 1.4(b), i.e. c(W) < ¢
and | (X\W) is continuous. Therefore, U := X, n ([ < 1/2] U W) is open. (Re-

call that [y < 1/2] is relatively open in X\W.)
cU) < efXenlh < 12]) + c(W) <
X nlp — i = 12D + (W) <
<4 —yYlii + (W) < 4e2 + 6.

By construction, we have 0 < Xy, ,V < 4-y*V € L, since y € D(t).
(ii) = (iif) Let f = e, with U being as in (ii). Then Xy < f < 1 which implies
(L =) < AoV € Ly o, and Jif]l, = Ve.

(iii) = (i) Using (iii)) we find a sequence (f,) = .D such that Ifulle = 0 and
(1 '*--f,,)VE Ll sloc ¢ Let (P € D N C (X)a ”(p”eoSI
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In order to show ¢ € .D—(sztT)(‘ " it suffices to find a sequence (¢,) < D 0 D(t,)
such that ¢, - ¢ weakly in (D, (-]-)). Let ¢, := @(1 — f,) € D0 D(t,). Then
{i@alic < 10 + [l Since ¢, — ¢ in Ly(X, 1) we have

VeeDT):(p—¢,|8) =(p—9,|Te)~0,

which implies ¢, — ¢ weakly in (D, (+|-),). @

We want to remark that, in our opinion, the implication (i) = (ii) of the
above theorem is more surprising than the other implications, and that the proof
of (iii) = (i) is very reminiscent of the proof of the theorem in [6]. Roughly speak-
ing, Theorem 1.4 states that V is U(-)-regular if and only if it is locally integrable
t-q.e. (t-quasi everywhere, i.e. outside of sets with r-capacity zero).

1.6. THEOREM. Assume (A). Then the following statements are equivalent:

(1) V is U(-)-admissible or, equivalently, D 0 D(1,) is dense in Lo(X, p).

(i) For each ¢ > O there exist a closed set A < X and an open set U <= X
such that p(A) =0, ¢(U) < ¢ and LeyV € Ly . (XNA).

(iii) For each € > 0 there exist a closed set A < X and fe D such that
WA)=0,0< /<Y, {fl,<eand (1 —f)Ve L, (X\A.

Proof. (i) = (ii) It suffices to prove (ii) with X replaced by X,. In fact,
let £¢>0 and choose U®W A® <X, such that p(d®) =0, ¢(U®) < .27
and Yy 0V e Ly 1o (XNA®)

U:= U U® is open and c(U) < ¥ ¢(UP) < ¢
keN keEN

A= XN\(U X, \A4%) is closed and p(4) = 0.
keN

N
Moreover, if Ko X\ 4, K compact then K< | X;\A® . Therefore Lo YoV €
i1

€ [,(X). Hence }(X\UVE Ly 1o (X\A). In order to prove the assertion for X pick
a sequence (¢,) <= DnD(t,) 0< ¢, <1 such that ¢, —»xxk in Ly(X, p).

By Lemma 1.4(b) we may choose an open set U with ¢(U) < ¢ and @, such that
@ (X\U) is continuous. Let A, :={[¢, < I/2]n X, \U which is closed, since
[¢, < 1/2])is relatively closed in X\U. 4 := () 4, isclosed and u(4) =0, since

neR
¢, — 1. Since NS v. XX\A,.< xX\U4(p?Ve L,, we have that N Ve L, (XAN\A).
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(i) = (iii) Choose A and U according to (ii) for ¢ > 0. Then f = ¢y and
A satisfy [|f]l, < Ve and (1 — f)V e L, ,,(X\A).

(iii) = (i) Let @ € Dn C,(X) such that 0 € ¢ < 1. It suffices to prove
the existence of a sequence (¢,) < DnD(ty) such that ¢, — @ in Ly(X, p).
By (iii) there exist sequences (f,)< D and (4,) of closed sets such that (I —f,)V €
€ Ly 10e(X \Ay).

Forne Nlety, € DnC(X\A4,), 0 < ¢, < ¢ such that §, = ¢ in Ly(X, 1)
(such a sequence exists by Remark 1.2 and since u(4,) = 0). Define

=Y, (Il — fu)€ DnD(t,)

(by construction) and ¢, — ¢ in Ly(X, p) by the dominated convergence theorem.

2. PERTURBATION OF DIRICHLET FORMS
BY NEGATIVE POTENTIALS

In this section we shall treat the perturbation of the given regular Dirichlet
form 1 by a negative measurable ¥, : X —» [— oo, 0]. We denote V§”:= V, A(— n).
Following [7], Definition 2.2(b) we say that ¥, is U(- )-admissible, if

s-limexpt(—T — V) =: Uy1)

exists for 1 = 0 and (Uy(t) ; ¢ = 0) defines a Cy-semigroup, whose generator will
be denoted by —Tj.

2.1. ProprosiTiON (cf. [7], Proposition 5.7). Let Vy: X - [—oc0,0] be mea-
surable.
(a) Then are equivalent :
(i) Vo is U(-)-admissible and T, > c.
(i) t + tygm > ¢ for ne N.
(iii) toy, S t—cin the sense of forms, i.e., D(f_yo) = D and the ine-
quality holds pointwise.
In this case t + 1,,&,,) — ty in strong resolvent sense, where ty is the form corres-
ponding to T,.
Moreover, D is a dense subspace of (D(to), (+|-),), and

W71< AT+ S Vo) L du(x)  (f € D).

1 f,. Sfurthermore, the right hand side of the above inequality defines a closable form,
then its closure equals t,.

10 - 1193
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Proof. For the proof of the equivalence we refer to the proof of [7], Pro-
position 5.7. Since {, is the regular part of 1 — 7. 2 ]D (cf. [S], Theorem 3.2) the

other assertions follow. N

For the rest of this section we fix

Let ¥y : X -»[-- 00, 0] be measurable and U(-)-admissible and assume fur-
thermore that

(B) Wifg) =ilf.g] + S Vo) (IEG) du(x)

holds for f, g € D. Denote by T, and (Uy(r) ; t = 0) the selfadjoint opzrator
and semigroup corresponding to t,, respectively.

Since r is regular it follows from Proposition 2.1(iii) that Ve L, (X, p).
We are now able to state the main theorem of this section.
2.2. THEOREM. Assume (A) and (B).
(a) V is U(-)-admissible < V is Uy(-)-admissible.
(b} V is U(-)regular = V is Uy(-)-regular.

For the proof of the theorem we need some preliminary results.

2.3. LemMma. Assume (A) and (B). Then f<€ D(t,) implies Re f,1f' € D(t,)
and t[Ref]1< 6[f) Lllfi] < 4lf)

Proof. By assumption. ¢ is a Dirichlet form, so that [4], Theorem XIIL50
implies that U(¢) is positivity preserving for r = 0. Hence exp 1(—T — V{™) is posi-
tivity preserving, which extends to Uy(t) for ¢+ > 0 by strong convergence. Using
[4], Theorem XII1.50, again we get the assertion. %

The next Proposition is crucial for the proof of Theorem 2.2,

2.4, PROPOSITION. Assume (A) and (B) and let L:={f € D(t,) N Loo(X, 1) :
:supp f compact}. Then L < D and L is a dense subspace of (D(1,), ‘|- ff,(,). More

precisely, for each f e D(1,) there exists a sequence (p,) < L such that "¢, < [
and @, = [ in (D(1y). |- :!10)- :

Proof. Let ¢ € L. Using Lemma 2.3 we assume without restriction ¢ to
be real valued and nonnegative. Let ¥ € D n C.(X) such that ¥ = ¢ (which exists
by the regularity of 7). Since D is dense in (D(t), || - i],o) there exists a sequence
(Y,) = D such that ¥, — ¢. Again using Lemma 2.3 and the regularity of 7 we
conclude that ¢, = (Y,v0) Ay e D for each ne N and, moreover, (Hq),,[[,o)
is bounded. Hence, @, — ¢ weakly in (D(#), (-]} ), and (p,)={f€ D : |fI<y}.
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i
Since the last set is convex, there exists a sequence (g,) < {f €D :|f] < ¥} which
converges to @ in (D(t) (-] )y ).

t[(pn - “pm] = to[(/’n - (pm] - SVO(X) l‘Pn(x) - (pm(x)l2 dH(X)

Since
Vo)l @u(x) — @, (x)? < 2V()(x)|2 (2, m € N)

and V|2 € Ly(X, ) we may pass over to a subsequence (¢,) such that the right
hand side of the last inequality tends to zero as n, m — oo. Using that ¢ is closed
it follows that fe D. .-

As D is dense in D(t,), so is D n C(X). For real valued, nonnegative f € .D(z,)
(which we may -assume using Lemma 2.3) there exists (p,) = Dn C(X) such
that ¢, — f in D(t,). Using Lemma 2.3 again we find that f,:= fA¢@,€L and
(/) 18 bounded. Mimicking the above given arguments for the convex set
{he L :lh <[} the assertion follows. %,

A

We think that Proposition 2.4, which provides the heart of the proof of
Theorem 2.2 might be of interest of its own. In fact, the following corollary is
a generalization of a result of Cycon. One sees immediately how one can deduce
Theorem 2 in {1 from Corollary 2.5 by using mollifiers. Even in the case of
Schrédinger forms, this provides a more general result; in {1] the negative part
of the potential must _.'s_a‘ti‘sfy (C"), which is more restrictive than (C) (see Section
3, take V as in (C'"), V not locally square integrable). What seems to be more
interesting is, in our opinion, the different method of proof.

2.5, COROLLARY. Assume (A) and (B) and ler L = {f € D(to) 1 Loo(X, 1):

: supp f compact}. Then L n D(t,) is dense in D(t, + t,). More precisely, for each
J € D(ty) n D(ty) there exists a sequence (@,) = L such that |, < |f| and @, = f
in (D(ty + ty), I Ht0~| 'V)'

" Proof of Theorem 2.2. (é) RGN clear, since D(t,) o D. “<="" follows from
Proposition 2.4 and Corollary 2.5.

(b) “="" Let fe D(s,). By Proposition 2.4 we may assume without res-
triction /"€ L. By assumption. there exists (f,) = D n D(r,) such that f, = f in
(D, |{- ). Without restriction |/,| < |f1.

. == ) = 47— 21+ |9 169 = 01 aco)

Using the dominated convergence theorem (for a pointwise converging subse-
quence of (), if necessary), it follows that

fo=f in (DU, II- n).
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“<="" By assumption D(¢,) n D(t,) is dense in D(t,). Using 2.5, this implies that
L n D(t)) is dense in D(1,) and, moreover, that for each fe L there exisls a se-
quence (f,) < L n D(ty) such that |f,” < |fi and f, — [ in D(t)). Using the domi-

nated convergence theorem again, we claim that f, -/ in (D, -;,) which
concludes the proof since L is dense in D. 7

3. APPLICATION TO SCHRODINGER FORMS

In this section we are going to state our main results Theorem 3.2 and
Theorem 3.3. In what follows we let X := 2 an open subset of R¥, equipped
with the v-dimensional Lebesgue measure. Moreover, we will generally assume

Let D(h) = WL¥(Q), Mfegl= 2‘ (¢:f]| 2. and Vi e L, (Q) be reai va-
1

lued, such that (B) is satisfied with ¥V, := - (V)" and ¢ -l + ¢, |- Le. ( +
1
©
+I(V yo = by ) is semibounded and closable. We denote /o=l + Lo y*
1 1 1
and by A, the closure of i, — 1, - | D().
1

Obviously /# and h, are regular Dirichlet forms. The associated operators and
semigroups are denoted by —A, H,, Hy and U(-). Uy(+). Uy(-), respectively.

3.1. REmMARK. Assumc
(C) V€ L,,,.(82) real valued, such that —-A4- Y, {C3°(Q) is semibounded

or
(C") Vie Ly,
Then V; satisfies (C).

(Q) real valued, such that (¥,)™ is -A-form small.

Next, we introduce the classical (1.2)-capacity (cf. [3] for an alternative
definition). For an open subset U < R let

o o(U) = Iinf{ flf, = % 1OLIE + 1fi2 - eWHR), f 2 A}
il

For arbitrary A let
¢, o(U) = inf{e; AU) : U o 4, U open}.

Since ¢; 5 is the capacity of a regular Dirichlet form (/i as above for the special
case @ = R") the assertions of Lemma 1.4 hold for the (1.2)-capacity. The main
theorems of this section read as follow:
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3.2. TuiorEM. Assume (C) and let V:Q — [0: oo) be measurable. Then the
Jollowing statements are equivalent

() V is Uy(-)-admissible.

(i) V is U(-)-admissible.

(i) V is U,(-)-admissible.

(iv) For each & > O there exists a closed set A< R’ and an open set U < R’
such that M(A) = 0, ¢, 5(U) < & and yu ,V € Ly 10 (2\A).

Proof. (i) <> (il) = (iii) is an immediate consequence of Theorem 2.2. (Note
that we may replace ¢ by /1, and ¢, by h since —(V;)*:= V, satisfies (B).) (ii) = (iv),
since ¢, ,(U) < ¢, (U) for any open set U < Q. (iv) = (ii) is proved by mimic-
king the proof of (ii) = fiii) = (i) of Theorem 1.6.

With analogous arguments one finds

3.3. THEOREM. Assume (C) and let V :.Q —[0; oo] be measurable. Then the
Jollowing statements are equivalent :

(W) V is Uy(-)-regular.

@) V is U(-)-regular.

(i) V is U,( - Y-regiilar.

(iv) For each ¢ > 0 there exists an open set U < R such that ¢, (U) <
and Xy -V € Ly 1, (2).

As indicated in the introduction we shall now prove that for a U(-)-regular
V.H, 4 V is a restriction of the ‘“‘maximal operator” H.y :== {fe L(Q):

A VLV € Ly oo (), Af + Vif + Vf =: Huaxf € Ly(Q)}, under suitable con-
ditions .on V,.

3.4. THeorReM. Assume (C) and let V be U(-)-regular.
(@) For fe D(H, + V) we have Vfe L, and Hyf € L, in the d/strzbu-

tional sense, i.e. there exists ag € L, . (8) such that {f, Hyp) =g, ¢> (¢ € CI(Q)).
Moreover

(Hy 4- V)f = Hof + VF.
(b) If moreover V, is as in (C") or (C"'), then
Hy 4 V < Hyx.
Proof. Let fe D(H, + V), ¢ € C2(Q) < D(hy). Since V is regular we ﬁnd

a sequence (f,) = D(hy) n D(t,) such that f, = ¢ in D(h). Using 2.5 we may
assume |f,} < |@|. Hence

(Hy + V1) = hol £, ] + 611, 1)
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which implies

Jim \ VA7) dx = lim (4 1) — hlf 1) =

Q
= (Ho + V)f| ) — hilf, 0]
exists. Since ¢ was arbitrary, it follows that ¥fe L, , () as well as
Hyf =(Hy, + V)f — Vfe Ly 1,(2)
in the distributional sense.
If moreover ¥, is as in (C') or (C"), then V,f€ L, (Q), so that we may

conclude
Hof = “‘Af + Vlf

%

in the distributional sense, which proves (b).

We want to remark that Theorem 3.4 and its proof are very reminiscent
of [7], Theorem 7.4 and the proof given there. The assumptions in 7.4 concerning
the negative part of the potential are more restrictive. Take, for example,
V(x) = —|x|"2 in @ = RS, Then V satisfies (C') but V ¢ K;.

It is, in our opinion, an interesting question, whether (b) of Theorem 3.4
holds without the additional requirement.

Concluding the final section we would like to point out another problem:
The reader will have noticed so far, that the assumption “h, — t"f is closable™

was crucial for this section. Tt might be as well that s, — t,— is closable whenever
1

it is semibounded, but we were not able to prove that.
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