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K-SPECTRAL VALUES FOR SOME FINITE MATRICES

VERN PAULSEN

1. INTRODUCTION

Let X be a compact set in the complex plane and let R(X) denote the algebra
of quotients of polynomials whose poles lie off X. We let M,(R(X)) denote the
algebra of n by n matrices with entries from R(X). If we let the n by n matrices
have the operator norm that they inherit as linear transformations on the n-dimen-
sional Hilbert space C”, then we can endow M,(R(X)) with the norm,

i DN = sup{(f: jCDII = x € X} = sup{|I(f; ,(D)| : x € 2X}

where 0X denotes the boundary of the set X. In a similar fashion, if L(H) denotes
the algebra of bounded linear operators on a Hilbert space H, then we endow
M, (L(H)) with the norm it inherits by regarding an element (7 ;) in M,(L(H)) as
an operator on H@® ... @ H (n copies).

If one is given a bounded linear map p: R(X) — L(H) then one can define
bounded linear maps p,: M,(R(X)) - M, (L(H)) by p.((f; ;) = (p(f; ;). One has,
lell < llpell < ..., and in general the supremum of ||p,|| need not be finite. Maps
for which it is are called completely bounded and ||p|l., is used to denote this
supremum. ‘

If T is an element of L(H) whose spectrum is contained in X then there is a
homomorphism p: R(X) ~ L(H) defined by p(f) = f(T). If p is a bounded map,
then X is called a K-spectral set for T and we set Ky(T) = ||p||. When p is com-
pletely bounded, X is called a complete K-spectral set for T and we set
Mx(T) = {iplles -

There are two outstanding questions concerned with developing a structure
theory for the class of operators which has a set as a K-spectral set. The first
question asks if Ky(T) =1, then is T necessarily the compression of a normal
operator whose spectrum is contained in the boundary of X to a rationally semi-
invariant subspace, i.e., does 7 have a dX-normal dilation. No counterexamples
are known, and since being discussed in Sz.-Nagy and Foias {14] this question has
only been resolved affirmatively for sets which are “close’ to being simply connected.
Except for the additional case of the annulus [1].
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The most general resuit is due to Arveson {2], who proved that this question
is equivalent to asking if K (T) = 1, then must M(7) = 1?

The second question asks if X is a K-spectral set for 7, then is 7 similar
to an operator which has a ¢X-normal dilation? When X i3 the closcd unit disk,
this second question is equivalent to asking if K (7)) is finite, then is T similar
to a contraction? This latter question is one of Halmos’ “Ten Problems™ [5].

Generalizing Arveson’s result we have shown that the second question is
cquivalent to asking if X.(7T) is finite, then is it necessarily the case that M(T)
is finite? In fact, if, for any invertible S, we let ¢(S) denote the condition number
of S, that is, the product of the norm of § and the norm of S-%, then {l0},

MT) = min{c(S) : M(S-1TS) = 1)

Both of the above problems thus become questions about the relationship
between K (T) and M (T). Very little is known about this relationship cven for
particular finitc matrices. except that there are examples where My(T) # Ky(f) i
Yet we believe that if counter-examples exist to the first question, then there
should be counter-examples which are matrices. Analogously, the second question
would be false unless one can find a bound for My(T) in terms of K(7) for
finite matrices which is independent of n. Currently the best general linear bound
is that My(T) < nK(T'), which is obtained through the theory of completely
bounded maps [11, Exercise 3.11]. Recently, Bourgain {3] has obtained the estimate
M4(T) < Ky(T)%logn.

Holbrook [6] proved that if X denotes the closed unit disk, then K(7) =
= My(T) when T is a 2 by 2 matrix. Misra [8] proved that if Tis a 2 by 2
matrix with a single eigenvalue and Ky(T') = 1. then M(7)} = 1, for any compact
set X.

In this paper we prove that for a 2 by 2 matrix 7 and arbitrary compact
set X, Ky(T) = My(T), and obtain an explicit formula for this number in terms
of the matrix T and an analytic constant associated with the set X. Thus, in parti-
cular a 2 by 2 matrix 7 with Ky(T) =1 has a ¢X-normai dilation. Qur method
uses Holbrook's and Misra’s techniques, as well as the two characterizations of
M, (T) given above, i.e., as a cb-norm and as a2 minimum condition number.
The proof of Misra’s result obtained by specializing the above result is very different
from the original proof.

Finally, we study K(7) and M(7T) when 7 is an elementary Jordan block
matrix and obtain some partial results. We believe that these clementary Jordan
block matrices are quite central to any general study of the relationship between
K(T) and M,(T), since they are the models for the “localizations™ of a general
operator to the eigenspace above a particular eigenvalue.
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2. UNEQUAIL EIGENVALUES

Let X be a compact set in the complex plane and let A, u be in X with
As#pu Let T, = [A !
0 n
similar to T, and Kx(7,) = Mx(T,) = 1, it is easy to see that Ky(7,) and My(T)
are finite and in fact are both bounded by ¢(S), where S is any similarity carrying
T, to T,. Note that for any f in R(X),

] , where ¢ is any non-negative real number. Since T, is

. (1) ) — )¢ — u

P [f( ) ) — ) ;)] .
0 ) .

Let © and v be any pair of unit eigenvectors for 7, with eigenvalues A

and p, respectively. We define the eccentricity of T,, ¢(T;) to be the modulus of

the inner product of u# and v». Note that e(T,) is independent of the choice of u

and v and that if fis in R(X) and f{(?) # f(u), then e(f(T,) = e(T,), since u
and v are eigenvectors for f(T;). Set

HT) = (1 + eTHY(1 — e(T)2
Finally, we let
ax(A, 1) = sup{IfQD] : f(2) = — f), f| <1, fin ROX)}
A straightforward calculation yields

e(T) = t/(JA — pi® + 32,

and

—ul® + 2+ ¢

W(T,) = (I , .
o

LinvmAa 2.1. (Holbrook). Let B = [z ;-i with b # 0, then ||Bj| = b- h(B).

Proof. See the calculation in [6, p. 239].

Taiorem 2.2. Let T, be as above. Then Ky(T) =1 if and only if
ax(i 1) T < 1.

Proof. If Ky(T}) =1 and fis in R(X) with |If]| <1, and f{}) = — f(n),
f(A) # 0, then by Lemma 2.1,

1> AT = 12! (T,

froni which one implication follows.
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Conversely, assume that the inequality in the statement of the theorem is
met, let ¢ >0 be given and choose f with 'fii < 1 and f(4) # f(1) such that
K(T) < AT + ¢

There exists a Mobius map  from the disk to the disk, such that y(f(%)) =
= — Y (f(1)). Hence, by Lemma 2.1 and our hypothesis, (AT )i = W({fONT)<1.
But, now by von Neumann’s inequality, ||fA(T)}i = [¥ AT < Y2 < 1.
Thus, Kx(T,) = 1, as desired.

Note that e(T,), #(T,), and Kx(T,) are all non-decreasing functions of ¢. It is
also the case that My(T,) is a non-decreasing function of ¢. This is most casily
seen using the unitary equivalence introduced in Proposition 2.6. Let ¢, denote
the value of ¢, with T, the corresponding matrix, for which ax(4, p) M(T,) = 1.
By Theorem 2.2, t, = sup{t: Ky(T,) = 1}.

LemMa 2.3. (Holbrook). Let r<t, then inf{c(S):S-T,8=7T,) =
= W(THIH(T,).

Proof. See [6, Lemma 3.2] and [6, p. 240].
THEOREM 24. Let t 2 t,, then Ky(T)) = ax(Z, 1O(T,). Furthermore, if f is
in R(X) with |ifl' < 1, f{2) = — f(n), and ‘fi7). = ax(}, 1), then Ky(T) ="f(T)".

Proof. The inequality K (T,) > ay(%, 1)(T,) follows by applying Lemma 2.1
to f(T,) when {|f}| <1, f(2) = — f(u). To obtain the other inequality note that if
S-T, S =T,, then Kx(T,) < ¢(S), and so Ky(T)) < inf{c(S): ST, S =T,} =
= WT)/I(Ty) = ax(%, )A(T,).

In order to prove the last statement, note that for such an f, by Lemma 2.1,
AT = ax(Z, A(T,) = Kx(T).

If we knew that My (T,) = 1, then Lemma 2.3 and the proof of Theorem 2.4
imply that K(T,) = My(T,), for all z. This is the case, for example, when X is
a disk or an annulus. However, determining that My(T,) =1 is precisely the
problem that was left open in [8]. We show below that this is indeed the case,
but our proof is rather roundabout. Essentially, we obtain estimates on K,(T})
and My(T,), then by considering the behaviour of these estimates as ¢t — co, we
find that Ky(T,) = Mx(T,), for all ¢.

We now turn our attention to My(7,). Set 7y = sup{s: My(T,) < 1}, and
let Ty denote the respective matrix. Note that ¢, < r,. We shall eventually show
that 1, =1¢,.

LEMMA 2.5. Lett > t, , then My(T)) = W(T)/h(Ts) = inf{c(S): S-1T,S = T4 }.
Proof. Recall My(T,) = inf{c(S) : My(S-1T,S) = 1} and note that S-IT,S

is unitarily equivaleat to T, for some s with s < t,. Applying Lemma 2.3 yields,

Mx(T) = inf{i(TYN(Ty) : s < 1o} = h(THh(T4).
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For the next result we need to introduce another constant related to the analytic
structure of X. Let

7x(hs 1) = sup {l M|
A—p

qfl <1, fin R(X)} .
PROPOSITION 2.6. y,(4, p) = hm Ky(T,)/t = im My(T,)/t.

Proof. Recalling the form of f(T,), we see that

S — 1)

(1) N P

<D < D]+ fl+1

)= 1w |
A—up |
From this is follows that,

® 1754 1) < Ky(T) < 2 + 17,2, ),

and hence, lim Ky(T))/t = y,(%, p).
t—00

Similarly, if (f;;) is an n by n matrix of functions, then (f; (T})) is an
n by n matrix of 2 by 2 matrices, and is unitarily equivalent to,

[F(z) t(F(3) — F(u)/(2 — u)]
0 F(u) ’

where F(z) denotes the matrix-valued function (f; ;(z)). Thus, inequality (1) still
holds with f replaced by F, and so (2) holds with M(T)) replacing Kx(T,), and

‘F(/l)- FQu)
| A—p

¥ x(%, 1) replacing V(% 1), where 7 (4, p) = sup{ }: |F] €1, Fin

M,,(R(X))} . If we fix vectors x and y in C", with ||x|| = ||y|| =1, then f(z) =
= (F(z)x,y) is in R(X) and ||f]] < 1. Since x and y were arbitrary, we have that
¥ x4 1) = y,4(%, u). The proof that lim M(T)/t = y,(4, ), now follows as for
o0
Kx(T).
Combining Proposition 2.6 with Theorem 2.4 yields,
. \ 2a4(7, u
el 1) = limayG, KT, )1 =]7i_7fl) .

This relationship is also easily obtained by elementary complex analysis. In parti-

cular, it implies that

— ﬂ|2 + t2)1/2 4+t
2

Kx(T) = yx(% 1) [[(M ] , fort>au,.
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THEOREM 2.7. K(T,)) = Mx(T,), and, in particular, ty =t .

Proof. By Lemma 25 and Theorem 24, My(T)/Kx(T) = i(T) W T:).
But by Proposition 2.6, this constant ratio approaches 1 as ¢ approaches infinity,
and so consequently is always I. Furthermore, if this ratio equals 1, then ¢, = ¢,
and hence ty =t,.

REMARK 2.8. Misra [8]. calculates ¢, in terms of the constanté =sup{ fiz) : f <1,
S() =0} and obtains 1% = |2 — p!*(1 — ¢%/6% Using the above results, onc has
T, = ay(4, 1), which allows one to solve for £, in terms of ay(/, u). In this
manner, one obtains, f, = ;i — g (1 — a%)/2a, where a = ay{/, p). These two
formulas imply a relationship betwesn the constants ¢ and 0, which is also
readily derived by standard complex analytic techniques.

ot .
REMARK 2.9. For the case R, = [0 ] , one can argue heuristically that
2

(R = My(R) by epplying Theorem 2.7 to T,, with 1 # p, and arguing that
as p approaches i, Ky(T,) approaches Ky(R,), and M,(T,) approaches M,(R,).
By evaluating the limiting value of K (7,) as u approaches 2, onc obtains 2 formula
for Ky(R,). In fact, if we let

7l4) = sup{lf'(A)i 1 if] < 1, fe RXX)},
then
Limy (4, 1) = 7,(2).

u—;

Using the formula preceding Theorem 2.7, we obtain,
(Wl Ry = v, (21, fort =,

With care, these arguments can be made precise.

In Section 3, we derive this result by quite different arguments. Part of the
arguments of Section 3 extend to Jordan blocks of arbitrary size.

Remark 2.10. Stampfli [12] studies the problem of determining if each of
two sets is a spectral set for an operator, then is their intersection a K-spectral
set for the operator. Ta the case of two disks he proves that this is the case provided
that the spectrum of the operator is bounded away from the “corners’™ of the inter-
scetion. Some insight into this problem can be gained by considering the matrices T, .
Let X, X, be two compact sets and X their intersection. If /(7)) = min{a, (7. p) %,

1

a, (i, )"}, then X, and X,, will each be spectral sets for 7,, but Ky(T;) =

= min{ay(4, ;z)/axl(/”., 1. ax(i, u)/aX“(}., 1)} By considering a direct sum of matrices
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of the above form, we can see that for X to always be a K-spectral set, for some
number K, for every operator for which X; and X, are both spectral sets, neces-
sarily, the above ratios would need to be bounded, independent of 2 and yu, by K.

3. JORDAN BLOCKS

In this section we study Kyx(T') and M(7") for T the elementary Jordan block
corresponding to a single eigenvalue 2. When T is 2 by 2, we prove that Ky(T) =
= My(T) and obtain a formula for this quantity. We recover Misra’s result [8]
that if a set X is a spectral set for such a matrix, then the matrix has a dX-normal
dilation. Our proof is quite different from Misra’s in that for T 2 by 2, we show
that Ky(T) = 1 implies M,(T) = 1 directly, rather than deducing it by constructing
a dilation.

When T is a Jordan block of size other than 2, our results are very incom-
plete and largely negative. We prove that a likely conjectured formula for Ky(T)
and M (T) can only hold in very special circumstances.

Let X be a compact subset of the complex plane, 2 a point in X, ¢ a non-
-negative number, and let T, be the n + 1 by » + 1 matrix which has 2 for its
diagonal entries, ¢ for its super-diagonal entries, and O for its remaining entries.
Let J denote the » + 1 by » + 1 matrix of the above form which corresponds
to A =0 and ¢ = 1, so that T, = Al + tJ and J* is the matrix which has a 1 for
each entry of its k-th super-diagonal and 0 for its remaining entries. In particular,
J"+1 = 0. It is not difficult to see that for f in R(X),

n

fT) = Y fO@NET]jt.

J=-0

In general, if 1 lies in the boundary of X, one expects to find fin R(X) with
Ifll < 1, but f'(%) arbitrarily large. In this casc, one has Ky(T)) = M(T,) = + oo,
except when ¢+ = 0. To avoid this case, we shall assume in the remainder of this
section that 2 lies in the interior of X, and thus K, (7T,) and M(T,) will be finite
as the following proposition shows.

PROPOSITION 3.1. Let d denote the distaince from 7 to 0X. Then My(T) =1
Jor t < d, and M(T) < (¢/d)" for t = d.

Proof. Let B denote the backwards bilateral shift on /,, so that B is unitary,
and let 1 < d. Since the spectrum of AT + ¢B is contained in X, M (JI + tB) = 1.
The subspace spanned by any » -+ 1 consecutive vectors from the canonical basis
for 7, is semi-invariant for A7 + tB and its compression to this spaceis /I + tJ = T,.
Thus, M(T) = 1.
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Finally, for ¢t > d, it S denotes the diagonal matrix with entries 1, t/d, ...
..., (t/d)", then S(T,)S—* = T,. Hence, Mx(T;) < c(S)Mx(T,) = (t/d)".
Let y,(4) = sup{|/*(A)] : f € R(X), |Ifi! < 1}.

PROPOSITION 3.2. Let 7, be as above, then

7! = lim K(T)/t" = lim M(T,)/t".
t—+00 t 00

Proof. The proof is identical to the proof of Proposition 2.6. One first observes

that y,(A)t"/n! < K(T,) < M(T)) < Yy TR
io

LemMA 3.3. Let s < ¢, then inf{c(S) : ST,S-* = T} = (t/s)" and is attained
by letting S be the diagonal matrix whose diagonal entries are 1, sjt, ..., (s/t)".

Proof. Let D denote the above diagonal matrix, then DT, D~ = T, and
(D) = (t/s)", so it will be enough to show that if ST,S~! = T, then ¢(S) = ¢(D).
Let § be such a matrix and set 4 = D~1S, then AT,4™' =7, and so A com-
mutes with J. Thus, 4 necessarily has the form, 4 =a,/ +a,J - ... +a,J".

Define A(z) = gyl + a;zJ + ... + a,z"J", for z any complex number, and
set S(z) = DA(z), so that A(z) and S(z) are analytic matrix-valued functions. Note
that if z, = oz, with ja; = 1, then A(z,) = U*4(z,)U, where U is the diagonal
unitary with entries 1, 2. ...,«¢% and S(z;) = U*S(z5)U. Thus we have that
1S(z)! = §S(zy)li for iz} = iz,\. By the maximum modulus theorem {{S(z)|, is an
increasing function of |z.

Also, if A=Y =b I + by JJ + ... + b, J", and we set B(z) = bof + b;zJ + ...
««. -+ b,2"J", then A(z)"' = B(z), since both are analytic and are clearly equal
when jzj = 1. So S(z)~* = B(z)D~*. By repeating the above argument, we sece that
|IS(z)~1 is also an increasing function of |z!.

Finally, note that S(z)7,S(z)* = T, and that S(1) = S. Hence, ¢(S) =
= ¢(S(1)) = ¢(S(0)) = (D) as desired.

LemMma 3.4. (Misra). Let n = 1, then Ky(T)) = 1 if and only if t € y7*(4).

Proof. This is [8, Corollary 1.1] combined with the observation that, y,(1) =
=sup{if' (D! : f€ RX), {fl <1, and f(2) = 0}.

THEOREM 3.5. Let n =1, then for t < y(A)~%, Ky(T,) = My(T,) = 1, while
Jor t 2 n(A)7Y Kx(T)) = Mx(T,) = t1(%).

Proof. Let ty = y72), Ty =T: , set ty =sup{t: My(T) =1} and let
T, = T,, - Recall that My(T)) = inf{c(S) : Mx(S-7,S) = 1}. But up to a unitary
equivalence §-17,S = T, for some s, and M,(T,) = 1 if and only if s < 74 . Hence,
by Lemma 3.3, My(T,) =inf{c(S): ST, S =T,, s < ty} =inf{tfs : s < 14} =
= tfty, Wwhen ¢ > ty and 1 when t < ¢, .
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On the other hand, if ¢ > 1, then since inf{c(S) : S~17,S = Ty} = t/t,., we
have that Ky(T)) < t/t,. Butif ||f]| < 1, then K(T) = |AT)Hll = t|f'(A)l. Thus,
Ky(T) > ty:(2) = tft, and so, Ky(T,) = t/t, for t = ¢, . Clearly, for r < ty, Kx(T,) = 1.

The proof will be completed by showing that ¢, = ¢, . To see this, note that

T, . .
ty <ty and that 1 < tu/ty = I/ﬁ = —%‘—(«1)—, but this last expression ap-
1ty Kx(T))
proaches 1 as ¢ approaches infinity, by Proposition 3.2. Hence, the constant ratio
1y /ty must be equal to one.

COROLLARY 3.6. Let n =1 and set ty, = y(A)~ 1, T, = T: . Then fort =1,
Kx(T,) = Mx(T) = t/ty, = inf{c(S): ST, S = T,}. Furthermore, if f€ R(X)~ with
Wl =1 and f'(2) = 11(2), then for t > ty, Kx(T) = [|f(THl.

REemARK 3.7. Theorem 3.5 makes it possible to do some explicit calculations.
‘We return to the problem of Stampfli discussed in Remark 2.10. Let D, and D_
denote the closed disks of radius 1 with centers at + sinf and — sin0, respectively,
for fixed 6, 0 < 0 < =/2. If each of these disks is a spectral set for an operator T,
then by Stampfli’s result [12], their intersection will be a K-spectral set for 7, pro-
vided that the spectrum of T contains neither of the points 3 icos 6.

For the above matrices 7,, we wish to calculate this value K explicitly and
then examine the behaviour as we allow the eigenvalue of 7, to approach the points
-+ icos0.

Let X denote the intersection of D, and D_, and let y. (L), y_(1) and yx(1)
denote the values of y,(4) for the sets D, , D_ and X, respectively. If 1 € X and
we set ¢ = min{y, ()7, y_(4)~1}, then by Theorem 3.5, D, and D_ will both
be spectral sets for T}, ie., Kp (T;)=Kp_(T;) = 1. However, again by Theorem 3.5,
Kx(T) = tyx(2) = min{yx(D)/y+(A), vx(D)/y-(D)}-

This quantity is fairly computable. Recall that if f is the Riemann maping
of a region onto the unit disk with f(1) = 0, then [f'(1)] = y.(A) for the region.

If we set 1 = ai, — cosf < o < cos0, then by computing f, we find,

y+ () = y_(ai) = 2-cos*0 — a2)1,
yx(ai) = mcos (0/(n — 20))(cos20 — o).

Thus, Ky(T,) = 2rncos0/(n — 20), independent of o.

Tt is interesting to see how many of the above arguments can be extended to
the n > 2 case. Surprisingly, if a result like Corollary 3.6 were true for n > 2,
then the whole theory carries over. However, there is a function theoretic obstruc-
tion that prevents a result like Corollary 3.6 from being true for n > 2, at least
for most sets X. We make this precise in what follows.
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Let T be an arbitrary operator with M(T) finite, for some set X. If B is
similar to T, My(B) =1 and M(T) = inf{c(S): S7TS = B}, then we call B
a nearst conjugate of T. Note that when MM (T) = 1, B must be unitarily e¢qui-
valent to 7.

Let T, be the (n+ 1) .. (7 + 1) matrices considered above and set

by = suplt : Ky(T) = 1},
r, =supft 1 M (T) =11

Thus, in our above notation & =1, rp =1y and 4 =7y,

Notc that for ¢ # 0 ths matrices T, arc all similar, and that for 7 > r,,
M(T) > 1. Thus it makes sense tc ask whether or not there exists a single
matrix B, which is a necarest conjugate for all 7,, f > r,. When this occurs we
say that B is a nearest conjugate for the family {T,}, t > r,. Corollary 3.6 suys
that there is a nearest conjugate for the family {7}, + =, when n =1. We¢
shall see below in Theorem 3.9 and Example 3.11 that this generally fails for # = 2,
f.e., when 7, is 3 X 3 or lurger, and that the obstruction is function theoretic.
In Section 2, for the unequal ecigenvalue 2 X 2 case, we saw that the family 7,
t = t. also had a nearest con‘ugate.

We begin with some elementary inequalities.

ProposiTiON 3.8. The sequences {t,} and {r,} are both non-increasing, and
if d denotes the distance from 2 to X, then, d < v, < t, < (a7,

Proof. Then + 1 by i + 1 version of T, is the compression to a semi-invariant
subspace of the & + 1 by k 4~ 1 version when » < 4. From this it easily follows
that 7, and r, are non-increasing.

Note that the (I, » + 1)-entry of f(T}) is ¢"f*"(4)/u!. Thus, if ' f, <1 and
RKy(T) =1, then "f"(1)at < 1, so that " < »nlly,(4), from which the inequality
1, < (nljp )R foilows. The fact that d < r, follows from Proposition 3.1.

Note that M (T, < inf{e(S): 717§ = ’I}"} = (t/r,)" and that Ay(T7,) <
< (#/1,)°. When » = 1, boih these inequalities arc egualities. The following results
show how differcnt the n = 2 case is.

TueoriM 3.9. Let # = 1. The following are equivalent:
i) there exists a negrest conjugate for the family {T), t > r,,
iy T, », is a nearest conjugate Jor the family {T,}, 1 = r,,
i) 7, = 8, = @),
) for t 2 1, Ky(T,) = My(T)) = (1]r,)".
Moreover, if any of these equivalent conditions is met and if {f;} is a sequence
in R(Xywith ;1 < U for all j, such that lim (7)) = y,(2), then lim &) =0

J
j-+o0 j-veo
for kK =0,1, ..., 1.
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Proof. Tf B is a nearest conjugate for the family {7,}, r > r,, then a limiting
argument shows that B is also a nearest conjugate for T,.”. Since MX(7’,"’) =1
we must have that B and _T,” are unitarily equivalent. Thus, i) implies ii).

Assuming ii), by Lemma 3.3, we have that M, (T, = (¢/r)", for t = r,.
Applying Proposition 3.2, we have that y,(2)/n! = (1/r,)". Hence, by Proposition 3.8,
ry = 1, = (aly (A" Thus, ii) implies iii).

By considering the (1, n)-entry of f(T;) we see that " f*)()i/n! < ||AT)) <
< Ky(T)), for ||f]] € I. Taking the supremum of the left-hand side yields,

"yDint < KelT)) < My(T) < (tfr)"

Now iii) implies that the first and last terms of the above inequality are equal,
and hence iv) follows.

If iv) is true, then M(T,) = (¢/r,)" = inf{c(S) : S7T,S = T,"} by Lemma 3.3,
for £ > r,. Thus, T, is a nearest conjugate for the family {T.}, t > r,, and so i)
follows.

Finally, assuming i) -- iv) and with {f;] as above, we have that the 2-norm
of the first row of f(7)) satisfics,

WO InY = KT > 1T = (SR + ...
MO S g )

Since the last term in this inequality is approaching the first term, f3(2), ... , [~ Y(2),
must all be approaching 0.

REMARK 3.10. If X is the closure of an open set G, and if every element

of H®(G) is the pointwise limit of a bounded sequence of elements of R(X), then
by a normal families argument there exists an analytic function f from G to the
unit disk, such that y,(2) = f"()). (Such a G is called, “approachable’ in [8].)
In this case, the last statement in Theorem 3.8 simplifics. Namely, for such an f,

fU) = ... =f"10) =0.

EXAMPLE 3.11. We show that for » > 2 and X the closed unit disk, the
equivalent conditions of Theorem 3.9 are not met.

It is well-known that the disk is a spectral set for an operator if and only
if the operator is a contraction, ard that, in this case the disk is a complete spectral
set. Thus r, = ¢,, in this case, and their common value is the unique value of ¢
for which [T} = 1.

Now consider the problem of finding,

(%) sup{I/()} () = ... =f""V() =0},
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where fis an analytic function from the disk to the disk. Let y;(z) denote the

elementary Mo6bius map which is 0 at £, i.e., ¥;(2) = (z — )}l — )‘.z). For [ as

in (x), there will exist a function g, analytic on the disk, such that f{z) = ,(z)"g(z).

Since |y,(z)] =1 for |z =1, by the maximum modulus principle, ig(z)) < 1. But,

JOC) = (WD\"™(2)g(/), and so we have that (=) is attained by the function
4. We calculate,

(=) WMD) = nlQd — 123"

If the hypotheses of Theorem 3.9 were met in this case, then we would have
that this last value agrees with y,(%), by Remark 3.10. This can be shown to be false,
except when n = 1 or 2 =0, by a direct calculation. In fact, for odd n = 2m + 1,
y.(4) is attained by the function f(Z) = Z™y,(Z)"+* and y,(2) = |f"()] =
o _ " m m. 2 ok

nf(t — 12 ){kgo(k) i }

Also, for even n, y,(2) # nlf(1 — |A1?)" although the expression is more com-
plicated. See [4, Chapter 8, Exercise 7], and [13].

Another less direct way to see that both these hypotheses are false, is to
note that, if not, then by iii) we would have that, r, = t, = (rl/p, (D))" =1 — 12]2,
a value independent of #!. This would say that T, _. 4% has norm 1, for our pre-

scribed n, which can again be shown to be false by a direct calculation, except
when n =1 or 2 =0.

Thus, we see that for n > 1 and 1 # 0, the family {T,}, 7 > r, does not have
a nearest conjugate. The obstruction is simply the fact that the function where 7,(1)
is attained does not have the property that its first (# — 1) derivatives vanish at 1,
except when 2 =0 orn = 1. The n = 1 case, i.e., the 2 by 2 case we have already
treated.

When A =0, a Cauchy estimate shows that y,(0) < n!, but the function
AZ) = Z" has f®)0) = n!, so n! = y,(0). On the other hand, for 2 =0, |7, =1
when ¢t = 1. Thus ¢, =r, = 1, and so Theorem 3.9 iii) is met.

Using the disk, it is possible to construct other simply connected regions
with a single point where the hypotheses of Theorem 3.9 are satisfied, for some n.
We do not know any examples of connected sets with more than one such point.

The results of this section show that the problem of determining M,(7,) and
K (T) is, for n = 2, considerably more subtle than in the 2 by 2 case. Indeed,
we do not even know if M,(T,) = Ky(7,) when X is the closed unit disk. Another
important question, to which we do not know the answer, is whether or not the
ratio My(T,)/Kx(T,) is bounded, independent of A, ¢, and n. Again, even when X
is the closed unit disk this is not clear. If this ratio is not bounded, then it is likely
that one could find an operator 4, which is the direct sum of these elementary
Jordan matrices, with Ky(A4) finite, but My(4) infinite.
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Theorem 3.9 also leaves open the possibility that for some r > r,, the family
{T.}, t = r has a nearest conjugate. In fact, we conjecture that in some limiting
sense this is true, and that is the topic of the next section.

4. ASYMPTOTIC NEAREST CONJUGATES

Let X be a compact set in the complex plane and let T be an operator with
My(T) finite. If B is similar to 7, then we set

my(T) = inf{c(S) : S-'TS = B}.

If My(B) =1, then My(T) < mg(T) and we call B a nearest conjugate when
My(T) = my(T).

Let {T,} denote the family of (n + 1) by (n + 1) matrices considered in the
previous section. Tn that section we considered the problem of finding a matrix B
with My(T,) = mg(T,). We call B an asymptotic nearest conjugate for the family
{T,} if Mx(B) =1 and

M limsup(mg(T,) — Mx(T)))/t" = 0.

By Proposition 3.2 this is the same as requiring that M,(B) = 1 and

) limmg(T)/t" = y,(A)/n!.

t—co
We conjecture that the family {7} always has an asymptotic nearest conjugate.
In this section we verify this conjecture in one simple case.
Note that for any matrix B similar to the family {7} with My(B) =1 the
quantity
liminf mg(T,)/¢"

t—00

gives an upper bound on 7y,(%). Thus, our conjecture is equivalent to requiring that

inflimsupmg(T,)/t" = y,(A)/n),
B t—00

where the infimum is taken over all matrices B, similar to {7,} with Mx(B) = 1.

Let X be the closed unit disk, and let J be the (» + 1) Jordan block with 0

cigenvalues, i.e., the entries of J are all 0 except for the superdiagonal which consists

of U’s. Let A be an arbitrary point in the open unit disk, let T, = Al + tJ, and let

WZ) = (Z + )1 +7IZ) be the elementary Mobius map which carries 0 to A.
We conjecture, that for all n, W(J) is an asymptotic nearest conjugate for {7.}.
We shall verify this only in the case n = 2.
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When i = 2,

A ;
iy =10 A 152
0 i

A direct calculation shows that if $-17,S = (J) and S is normalized such
that its (i, {) entry is 1, then

E”]l a
S=10 (- (o —-iiNa— i)
L@ 0 (1 — 22y
and
1 —at’(l - 23 (& —ai -- byl — L2)R
S-t=10 (1 =23 —fa — iy — ey L
0 0 21 — A2

where a, b are arbitrary complex numbers.
Letting S(i. a, ) denote this family of matrices

my (T = inf e(S(, a, b)),

ab

thus-

Ta(A)2 < Hmsup g, (T,) 1% < inf limsup ¢(S(¢, a, b))ie®
a,

-0 -0

clearly,

lme(S(t, @, b)) = (3 + @2+ b2V 4+ a- 22+ & —ai- b2V — 2R

£ -—»CO

Setting @ = + 42, b = — '8 yields,

1(2) < 2-limsup i, (T)0% < 21 + 2381 — 222

>0
In [13], the value of 7.4) is calculated and shown to be equal to the right-hand
side of the above inequality. Thus, for n = 2, (/) is an asymptotic nearcst conjugate
as claimed.
In fact, we do not need the full strength of [13] in order to complete the above
argument. Szasz producss the function,

(Z — iy + ; HZ - W - 22y — é AL - 2Z)
Zy=- - Ty .

(L == 2P - HZ— WL - 2Z) - ) JHZ - J)
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and then argues that this is the extremal function, i.c., that y,(1) = [f"'(1)|. However,
since we already have an upper bound on y.(4), we need only calculate that |f"’(1)]

is equal to the right-hand side of the above inequality, which is tedious but straight-
forward.
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