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GENERALIZED CONDITIONAL EXPECTATIONS
AND MARTINGALES IN NONCOMMUTATIVE L”-SPACES

FUMIO HIAI and MAKOTO TSUKADA

INTRODUCTION

Since Umegaki’s earlier works [25, 26], the martingale convergence theory
for conditional expectations in von Neumann algebras has been developed by several
authors (see [7, 15, 24] for example). The conditional expectation of a von Neumann
algebra M onto its von Neumann subalgebra N does not generally exist relative
to a faithful normal state (or semifinite weight) ¢ on M. Indeed, according to the
well-known theorem of Takesaki [21], the existence is equivalent to the global inva-
riance of N under the modular automorphism group associated with ¢. Never-
theless, the generalized conditional expectation introduced by Accardi and Cecchini
[1] always exists relative to any N and ¢ (whenever ¢ | N, is semifinite), while it
is not necessarily a projection onto N. The strong martingale convergence of gene-
ralized conditional expectations was obtained in [12, 17].

After Haagerup [10] introduced L”-spaces over general von Neumann algebras,
several other constructions of noncommutative L”-spaces have been known (see
2, 4, 13, 14, 23]). Although those LP”-spaces constructed so far are mutually iso-
metrically isomorphic, the interpolation LP-spaces in [14, 23] have the advantage
of enjoying the complex interpolation technique. With respect to a faithful normal
state @ on a von Neumann algebra M, Kosaki’s L?-spaces LP(M; ¢),, 1 <p < oo,
are defined with the parameter 0 < 5 < 1 corresponding to the way of imbedding
of M into M, . On the other hand, Terp’s L*-spaces are defined in one way without
the parameter but with respect to a faithful normal semifinite weight ¢ on M.

Concerning the martingale convergence in noncommutative LP-spaces, some
results have been obtained by Cecchini and Petz [5] and Goldstein [8, 9]. But these
are not yet complete. The purpose of this paper is to study more thoroughly gener-
alized conditional expectations and their martingale convergence in L?-spaces.

In Scction 1 of this paper, we give a brief survey on Kosaki’s and Terp’s
interpolation LP-spaces for later convenience. In Section 2, fixing a unital von Neu-
mann subalgebra N of M, we introduce the generalized LP”-conditional expecta-
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tions on Kosaki's L-spaces LP(M: ¢),, | <p <oo, 0 <y <1, rciative to a
faithful normal state ¢. These are regarded as natural extensions of the generalized
conditional expectation &: M — N and becomes linear contractions between
LP-spaces. The main tool is the complex interpolation theorem of Riesz-Thorin
type. Our class of (generalized) L’-conditional expectations includes those given
in {4, 5, 8, 9]. Furthermore we give some characterizations of ¢ : M —» N being
the conditional expectation (i.e. norm one projection onto N) in terms of generalized
LP-conditional expectations. In Section 3, we discuss the norm convergence of
generalized martingales in L”-spaces under an increasing or decreasing net of unital
von Neumann subalgebras of M in the same situation as Section 2. Finally in
Section 4, we consider generalized L”-conditional expectations and martingales
in Terp's LP-spaces relative to a faithful normal semifinite weight.

1. PRELTMINARIES ON L7-SPACES

In this section, we briefly summarize Kosaki's and Terp's interpolation LP-spaces
to give preliminaries and notations for later discussions. We fix a von Neumann
algebra M on a Hilbert space # with a faithful normal semifinite weight ¢.
The following are the usual notations in the Tomita-Takesaki theory: », =
= {x € M : p(x*X) < co}, w, =spanjx,, the GNS representation (.#",, n} of M
induced by ¢, the canonical injection A of .., into #,, the modular operator 4,
the modular conjugation J. the modular automorphism group o,, ¢ € R, associated
with ¢.

We begin with Haagerup’s Lr-spaces. Let R denote the crossed product
M X ., R which admits the cancnical faithful normal semifinite trace 7 and the dual
action 0. s € R, satisfying t-6, = e~“r, s € R. The set of all T-measurable oper-
ators affiliated with R is denoted by R (cf. [16], [22, Chapter IJ}. For each ¥ € M.,
let J/ be its dual weight on R and /1, the element of R satisfying 397/ =1{/1,-). The map-
ping y — h, is extended to a linear bijection (still denoted by Y — /) of M,
onto {ag¢€ R: O0fa) = e a. se€ R}. For each 1 < p < oo, Haagerup's L -space
LT introduced in [10] is

LAy ={ae R: Ofa)y = e~ g, se R}

When 1 € p < oo, LP(A7) coincides with the set of a € R having the polar decom-
position a = uja| such that v e M and !a'’ € LYM). The linear functional {r on
LMM) is defined by tr(fh,) = (1), ¥ € M. Then L7(M) is a Banach space with
the norm

lall, = te(la?)Ve, ae LP(M), 1 < p < co,

i = 1@, a€ LX) {(=M).
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In particular, M = L*(M) and M, =~ LYM) by the isometry y +> h,,. The detailed
expositions on Haagerup’s L?-spaces are found in [22, Chapter II).

Now let ¢ be a faithful normal state on M (hence M is o-finite). By taking the
GNS representation of M induced by ¢, we may assume that M has a cyclic and sepa-
rating vector ¢ € # and ¢ = (-£|€). We denote i, € L'(M) simply by h. For each
0 <n <1, Mis imbedded into L*(M) by x — h"xh'~", x € M. Define the norm
[hixht =", = |IxIl on A"ME*~"(< LN(M)), ie. I"Mh*~" = M. Then (A"MA ",
LY(M)) becomes a pair of compatible Banach spaces. For each 1 < p < oo and
0 < 5 < 1, Kosaki's LP-space L”(M; @), with respect to ¢ is defined as the complex
interpolation space Cy(h"Mh*-", LX(M)), 6 = 1/p, equipped with the complex
interpolation norm -], , (= |-llc,)- In particular, LP(M; )y, L"(M;¢), and
LP(M; @)y o are called the left, right and symmetric LP-spaces, respectively. For the
[general theory of complex interpolation spaces, see [3] for example. According to
14, Theorem 9.1}, L(M; ¢), is exactly AVILP(M)h*-"/7 where 1/p + 1/q = 1, and

[V oah*=me)| = llall,, ae€ LY(M).
That is,
LA(M ; @), = h"oLP(MY =14 = LP(M).
Furthermore, when 1 < p’ < p < oo,
WM =" < LP(M; @), < LP'(M; @), = L{(M),
Ixll = ekt ="y, = WAk 7|, , >
2 W=, = ARy, x € M.
Also A"MR'~7 is dense in L7(M; o), forevery 1 <p <oo. Let 1 < p,g < oo with
1/p + /g = 1. Then L?(M; ¢), (= L?(M)) becomes the dual Banach space of
LYM; @), (= LYM)) for any O < y,%" < 1. Especially when #’ =1 — 5, the
duality between L?(M; ¢), and LI(M; ¢);-, is given by
{hfagh=mila pd-mieppiiry, - = tr(ab), a € L(M), b e LY(M).
This duality is convenient in the sense that, for every x, y € M,

Chxh =, hl_”yh”>,,,,, = tr((hn/pxh(l—n)/p)(/z(l—n)/thn/q)) =

= tr(h"xht~"y)
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is independent of the pair (p, ¢q). Since
xhr =y, = [hRxp =R, =
= tr(fxit TUIxFE = |47 xE|, xe M,
we can define a surjective linear isometry O" : # — L¥M; ¢),,0 < 5 < 1, by
O A™2xE) = hixlt-n, x e M.
We have also
tr(xht 7)) = (A"2xE | AV2pRE) = (A"2xE | JAL-PRpE)

forevery0 < n < landx,ye M.

We next turn to Terp’s Lf-spaces. Now let ¢ be a faithful normal semifinite
weight on M. Let L denote the set of all x € M such that there exists a (unique)
¥, € M, satisfying

Uu(z%y) = (Jn(x)*JA(Y) [ A@), »,z€ n,,

which is a Banach space with the norm |\x|l, = max{|x||, |,ll}. We have s, c L
(see [23, Proposition 4]). Let L* be the dual Banach space of L. Taking injective
linear contractions x€ L+>x € M and x € L —~ . € M, and their transposes,
we obtain the commutative diagram of canonical imbeddings as follows:

/'\
\/

Then (M, M,) becomes a pair of compatible Banach spaces. Foreach 1 < p < oo,
Terp’s LP-space LP(M; ¢) (denoted in {23} by V) with respect to ¢ is defined as
the complex interpolation space Cy(M, M), & = 1/p, with the complex interpo-
lation norm ||- ||, (= [ lic,)- When ¢ is a state (or ¢(1) <o), the imbedding
x>y, of M (= L) into M, corresponds with x ~— hY2xh' of M into LYM)
and Terp’s LP-spaces are exactly Kosaki’s symmetric LP-spaces LP(M'; @), (cf. [14,
Remark 12.3}).

We here recall spatial LP-spaces of Connes and Hilsum. For details, see [13]
and [22, Chapter IV]. Besides ¢ on M, let ¢’ be a faithful normal semifinite weight

d . - .
on the commutant M’ of M and d = d—(p the spatial derivative of ¢ with respect
@
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to ¢’ (cf. [6]). For ¥y € M with the polar decomposition Y = u|y|, define % =
¢

d .
=u 5|"l//7| and S —?’k’ de- =(1). For each 1< p < o0, the spatial LP-space LP(¢') with
P ®
respect to ¢’ is the space of all closed densely-defined operators @ on 2 having the

dy

polar decomposition @ = ula| such that u € M and |a|” = T for some y € M,
@

1/p
equipped with the norm ||af, = (S]al”dqo’) . For p =c0, L®(¢p’) = M with

llalleo = lla]|. Tn particular, M, = LYM) by the isometry ¥ —> g—'/,-;
4

According to [23, Theorem 23], there exists a surjective linear isometry 2: #, —
— L*(¢’) such that 2(A(x)) = [xdV?], x € »,, where [xd'/2}is the closure of xd'/2.
For 1 < p < oo, Terp constructed injective linear contractions u,: L — L?(¢) and
Vp: LP(¢") - M + M, (< L*) where v,opu, coincides with the canonical imbedding
L — L*, and proved (see [23, Theorem 36]) that v, maps L?(¢") onto L”(M; ¢) with
lvy@ll, = llall,, a € L?(¢"). So we can take a surjective isometry @ = v,0 P : H, —
— L3(M; ¢). When 1 <p,g<oco and 1fp + 1/qg =1, L?(M;¢) is the dual
Banach space of L9(M; ¢) with the duality given by

Cry(@)s VB3 0 = Sa-bdqo', ac L), be L@,

where a-b is the closure [ab] of ab. For every x, y € L, by [23, (56)] we have

5 PDpa = Sup<x>-uq(y)d<p' = 0,(7)

‘independently of (p, g).

2. GENERALIZED CONDITIONAL EXPECTATIONS

Throughout this and next sections, let M be a von Neumann algebra on a
Hilbert space 5 with a cyclic and separating vector £. The faithful normal state ¢
on M is given by ¢ = (-&|&). In this section, let N be a fixed unital von Neumann
subalgebra of M which acts on 5 = NZ with a cyclic and separating vector ¢.
Let oy =@ ' N and Py be the orthogonal projection of # onto #y. We
take Ay, Jy, o, Haagerup’s L”-spaces L?(N), 1 < p < oo, and Kosaki’s LP-spaces
LN ; ¢p),, 1<p<oo, 0<n <1, associated with (N, @y) as well as 4,
J, 6., L”(M) and L°(M ; ¢), associated with (M, ¢). Then LP(N; ¢y), =
= RYILP(N)hG="% (< LA(N)) where hy = h,, and 1/p + 1/qg = 1.
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“Let ¢ : M — N be the generalized conditional expectation relative to ¢ intro-
duced by Accardi and Cecchini [1], that is, ¢ is given by

e(x) = JyPyJxJJy, x€ M,

and is a faithful normal unital completely positive map of M into N with @ = @t
This ¢ coincides with the conditional expectation (as a norm one projection onto N)
relative to ¢ whenever the latter exists. The aim of this section is to extend
€ : M - N to linear contractions between Kosaki’s LP-spaces in natural way.

LEmMA 2.1. For each 0 < n < 1, the following inequalities hold:

(1) l[/lj{v{;'(x)h]lv-"” 2.9 < thxhl—77 l?‘.’,n E) X € M'
) (B3l ="ls,, < B HY ™"y ,, vy e N.
Proof. (1) Since !Hie(x)hi "y, = [A¥%(x)¢! and [h7xhi="ly = [A%2xEl,

it suffices to show that
14¥e(x)EN| < jlavexgll, xeM.

Suppose that x € M is g-analytic and y € N is ¢"-analytic. Define an entire func-
tion F(z) by

F(2) = (600520 " 0Yizp(1)E) = (IPyJA™*xE | 4298).

For every t € R, we have |F(ir)! < |IxE|l |[»¢|| and

VF(L+ i) | = | (A0 _np(x)E | AR2E) | =

= | Uye(0 - aX¥)E | A5i7298) | =
= [Py A2 _ (x)E | AGi2yE) | = | (A-7PxE Ahipe) | < IxE Iye]l.

Hence the three lines theorem implies

| (d}Pe(oiye () 1 y0) | = TF) | < IIxEl IvEd
Replacing x by o_i,s(x), we get

[4372()E] < llo-iya()El = {l42xE]).

For each x € M, there is a sequence {x,} of o-analytic elements of M such that
x,& — x¢]| = 0 and ||4"2x,¢ — A"®xE|| — 0. Since

le(x) — e()Ell < LiGx, — X}l =0



NONCOMMUTATIVE LP”-SPACES 271

and
43%e(x,)E — AWe(a)Ell < 147(x,, — )¢ - 0
as m, n — oo, 1t follows that

l437%e(x)¢ !l = lim {|A%%(x,)E] < lim [|472x, &l = [|472xC]).

n—00 n=o0

(2) Although (2) can be proved by the three lines theorem as in (1), we prefer
the following proof for later reference. As seen from the proof of (1), the closure
[A%PIyPNI A2 of AYPJyPyJA~"%is a contraction # into #y. If xe M and
y € N, then

(AT WPy A~ (A58 | TARPyE) =
= (IWPNIXE [ Tnyd) = (xE | JyE) = (4"°xE JAyE) =
= (A7 | JATRATI T AY ).

This shows that [JA"2A5"/2/,] is the adjoint of [A%2J PyJ4~"2] and is a contrac-
tion of #y into ##. For every y € N, we hence have

A"yt ="ly , = || 4"2pE || =
= [[JA2ARET (TN AEN < AHAEN = |hyhi s, -

Because of Lemma 2.1 and the density of A”Mh'~" (tesp. I}y Ny ™) in L¥(M; ¢),
(resp. L*N;@y),), the linear contractions & : L¥M;¢), - L*N; ¢y), and
%" LA(N;@y), = L*(M; ¢),, 0 < n < 1, are determined by

N X" = he(x)hy ", xeM,
(HLyhN = K'yR*-",  y e N.
Then WA"MRI ") < WNhy", »"(WiNhi ™) < "MHK*-", and
"R xh "o,y = HeG < lixl} = [A"xh o,  x € M,
" BRyAN DMloo y = ¥} = WARYAN "oy, ¥ € N.

Furthermore, by the reiteration theorem for complex interpolation spaces (cf. [3,
Theorem 4.6.1)),

LP(M’(p)q = CZ/p(hnM/ll —ﬂ’LZ(M;(p)"),
LP(N; (pN)I) = C‘.!/p(hg/Nh}V—n, LZ(N; (PN)11)9 2 < p < 00.
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Thus the abstract version of the Riesz-Thorin theorem (cf. [3, Theorem 4.1.2))
implies

THEOREM 2.2. For each 2 <p<oco and 0 < n <1, & maps LYM; ¢),
into LP(N: @y), with (&(xX)!, , < X, ,, x € L(M; ¢),, and x" maps L"(N; ¢y),
into L°(M; @), with [%"(3)", , < 3[4, ¥ € L7(N; @y), -

Py

Let E" = 5" c €. Then E" | L°(M; @), is a linear contraction of L?(M; ¢),
into itself for 2 < p <ococand 0 <y < 1.

Corresponding to the contractions Y € Mo+ | Ne N, and Y € N, —
> Y oge M, , we define the linear contractions & : LY(M) —» LY(N) and % : L{(N)—
- LY(M) by

try(z(a)y) = tr(ay), ae€ L\(M), y € N,
tr(#%(b)x) = try(be(x)), be LY(N), xe M,

where try is the linear functional tr on LYN). Also define E  LMM) - LY (M)
by E=%-%.

THEOREM 2.3. Let Vp +1jlg=1,1<g<2,and 0 < n < 1. Then & maps
LAM ; @), into LYN; @y), with (), < |x|q,, x € LYM;¢),, and % maps
LYN; @), into LAM; @), with |x(O)|, ., < [¥llgq, ¥ € LUN;@y),. Moreover,
under the duality {-,->, , between LP(M; @), and LY(M; ¢),_, and that between
LA(N; ¢y), and LY(N; oy, (see Section 1), the transpose of &' | L°(M;¢), is
% } LYN; Oxh-, and the transpose of x" | LP(N; @y), is & |} LYAM; @), .

Proof. The first assertion follows from the second and Theorem 2.2. To show
the second, let (g)' and (x))' be the transposes of &) =¢" } L”(M; ¢), and
#p =" | L2(N; @p), . If x€ M and y € N, then

tr( (i whi)x) = trg(hy rhie(x)) =
= (hje(ON ", I Yhi, ¢ =
= WX, (D )Y p.a = tE(ED U D)),

so that s (Iy "vhy) = ()N vhik). Since hy "Nhj; is dense in LY(N; @y),—,, we
obtain (e})* = % } LYN: @y)-, from [l < |i-|i;;_, and Theorem 2.2. The
proof of () = & | LYM:¢p)_, is similar. a

By Theorem 2.3, for p, g and # as above, E maps LYM; @), into it self and
the transpose of E” | L*(M; @), is E P LAM; @)y,

LEMMA 2.4. The map & extends eV and x does xV2.
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Proof. Tt suffices to show the following equalities:
e(WM2xhV?) = gli2(h2xhli?),  x e M,
2(i2vha?y = M2(hByhi®), y e N.
For every x€ M and y € N, we have
try(e(hY2xhV?)y) = tr(h/2xhV2y) =
= (x| Jyd) = (InPyJIxE | Iyyt) =
= (AN*e(x)E | TnAN'YE) = try(eV2 (WM 2xh*)y),

implying the first equality. The second is analogously proved. %

When & and E (resp. x) are restricted on LY(M; ¢), (resp. LIUN; On)y), We
denote them by 37 and E” (resp. %"). Lemma 2.4 shows that V2 = /2, EV2 = F1/2
on LAM; @), and x¥% = V2 0n LAN; @y)ys-

The next lemma is useful in Section 3.

LemMMA 2.5. For each 0 < <1,
(0" -1 E"@" = (@1—11)—10E1—n°@1—n = [A"2 PyJA~"'?)

where O" .3 — LXM; ¢), is the isometry given in Section 1.

Proof. We have
(ON(AM2xE), OF(AC-TI2YENS, o\ = te(HTxht-Ty) =
= (A7 | T4 -2pg)
for all x, y € M. Hence
O™y, O opop = (L1, G, (et
Since the transpose of E" | L¥(M; ¢), is Er-n M L3(M; ¢),_, , this shows that
(O 10 E177 ¢ @177 = J((O") 1o E" 0 @)
It is immediate from definitions of ©" and E” that

(O) 1o ET5 @7 = [AV2]\PyJA ",
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Furthermore, since
(AWRTGPyTA I AEE) | AT RE) =

= (& [ JIyPydyE) = (8" | JAVEIPLJA =AW Y)),

we get
[4% 2] (PyJA "2 = J[4"2T (P JA™2.

Thus the lemma is proved. Z

In the rest of this section, we discuss when ¢ becomes a norm onc projection
onto V.
THEOREM 2.6. Let [ < g <2< p <oo end 0 <y <. Then the following
conditions are equivalent:
(i) & is the coaditional expectation;
(i cre=¢ on M (e(M) =N is not required) ;
(iit) £ - E" = £ on LP(M; @),;

(iv) E"o E" = E" on LYM; o), -
Proof. Tt is obvious that (i) implies (ii)—(iv). If either (iii) or (iv) holds, then
we obtain (it). Finally (ii) implies
(InPyI)xE = JyPyJxé, xeM,
so that (JyPyJ)? = JyPyJ. Because an idempotent contraction on a Hilbert space
is an orthogonal projection, we get JyPyJ = P, , showing (i). 7

THEOREM 2.7. Ler O € y < 1 with n # 1/2. Then the following conditions are
equivalent :

(1) ¢ is the conditional expectation;
(i) &" = 8" on LM, ¢),;
(iif) %" = %" on LYN; @y),,
(iv) £7 = E"on 12 (M; @)y -
For the proof, we need

Lemma 2.8. (1) [A¥2T PyJA-1?] = P
(2) [AY2I Py JA~YY = JI Py .
Proof. (1) For every x € M,
ANTyPTA~V2(AV2xE) = ANPe(x)E = Tye(x*)E =

= PyJx*d = Py(4'%x{).
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(2) For every x € M,
AV P JA-12(AV2xE) = AM2e(x)E = Je(x¥)E =
= JINPIXEE = JS P (AY2XE). %

Proof of Theorem 2.7. First suppose (i). We thus have 4y = 4 } #y and
Jy=J Ay (cf. [21]). If x e M and y € N, then

try(€( )y) = (ARRe(0)E | ARy*3) =

= (A"3xE T AN *EY = (XA Ty) = try(E(MxhtTT)y),
so that {(A"xk1 ") = g(I"xh*-"), showing (ii). Similarly we obtain (i) and
hernce (iv).
By Theorem 23, &' = g" on LXM;e¢), if and only if 3'-" = x'~" on
LAN; @), and E" = E" on L“(M'(p),, if and only if E'-" = E-" on
LYM; @);-,. So we may assume 1/2 <% < 1 to prove that each of (ii)—(iv)

implies (i).
(ii) = (i). Suppose (ii). For every x € M and y € N, by Lemma 2.8(1) we have
(A2xE AT 2E) = (NPT PyIxE AN 2pE) =
= (A¥Fe()E  APyE) = topy(e" Xt )y F) =
= tr(Wxht ="y %)y = (A2xE AT-VRYE),
Hence A4~ 12p¢ = AT-Y2%p¢ for all y € N. This shows 4y = 4 | Ay, so that
JINPy = [4YV2  PyJA7Y2] = [AYAT W PyJAY%] = Py,

by Lemma 2.8. Therefore JyPyJ = (JIyPy)* = Py, implying (i).
(iii) = (i) is analogously proved.
(iv) = (i). For every x, y € M, we have

"tr(E"(/z”xlzl*")yk) = tr(M"e()ht-"Ty*) =

= (A" M2 Py xE | AVRYE)
and

tr(EM(WxA =) y%) = te(fxht ="e(py) =

- (A.ﬂ—l/zx(: |A1/2JNPNJy§V) — (JNPNJA"_IRXE |A1"*‘yé)
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by Lemma 2.8(2). Hence (iv) implies that JyPyJA"-V2 c 4%-12J P.J. This
shows JyP\JAY? ¢ AU\ PyJ, so that JyPyJ = JJyPy by Lemma 2.8(2).
Therefore, since

' (JyPyJ)? = JyP\JJIWP, = P,
we get g(e(x)) = x for all xe€ N. So ¢o¢ is a norm one projection onto N with
@ogoe = ¢@. Thus ¢ =go¢ and we obtain (i). %

If e is the conditional expectation, then %" (= ") is an isometry of L?(N; ¢y),
into L?(M; @), for each 1 < p < oo and 0 < 5 < 1. In this case, we can regard
L?(N; ¢y), as the subspace of LP(M;¢), and E7( = E%) as the projection of
LP(M; @), onto LP(N;¢y),. In fact, this case was stated in [14, Proposition 4.1}
and [9].

When ¢ is not the conditional expectation and 5 # 1/2, it is a problem to
decide whether &” (resp. »") is extended to a linear contraction on L”(M; ¢), (resp.
L?(N; ¢y),) for p < 2, or equivalently whether x'~" (resp. g'~") is contractive in
the norm j;-{,,_, for g > 2.

We regard the linear contractions ¢”, E” on L”(M; ¢), and &7, E" on
LYM; ¢),, 1 <q<2<p<oo,as the generalized L"conditional expectations
relative to ¢. Notice that the LP-conditional expectations given in [4, 5] coincide
with ours in the symmetric case 1 =1/2. Also §” on LYM;¢),, 1 <g <2,
0 < 1 < 1, are already given in [8] by a similar method of complex interpolation.

3. MARTINGALE CONVERGENCE

In this section, we discuss the norm convergence of increasing or decreasing
generalized martingales in L7-spaces. First let {N,} be an increasing net of unital

von Neumann subalgebras of A with N, = VN,. Let o, =@ | N,, #, =m

and P, be the orthogonal projection of # onto #,. We take 4,, J, and L’(N,, ¢,),
1<p<oco, 0 <py <1, assoctated with (N,, ¢,). Let ¢, : M - N, be the gener-
alized conditional expectation relative to ¢. The corresponding linear contractions
on Kosaki’s LP-spaces are given as follows: for 2 < p<eooand 0 <5 < 1,

s;Z i zg " ,
LA(M; @), —=5 LN, ;90,), —= L(M; @),, EI =xlcel,

and for 1 <g<2and 0 <y <1,

3 %N - - .
LAM; @), 25 LY(N,; @0.),—> LI(M ;9),, Eil==1x]-¢].
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Also € : M = N, E, and Ego are given. Moreover, when o > f§ in the directed
set of indices, we take the generalized conditional expectation &,5 : No—> N, rela-
tive to ¢, and the corresponding linear contractions &g : LP(Ny; @,), —
~ LP(Ng; 0p),» &g 1 LI(Ny; @)y = LI(Ng;05), for 1 <g<2<p<oo and
0<pyp<.

As generalized martingales in L”-spaces, we consider nets {x,} of x, € L*(N,; ¢,),
where 2 < p < oo (resp. 1 <p < 2) such that ely(x,) = x5 (resp. zJg(x,) = xp)
for any o > B. We discuss the norm convergence of {x7(x,)} (resp. {#1(x,)}) in
LA (M; @), for such martingales {x,}. Since elgoe? =¢} (see {1, (3.30)]) and
glp o8l = g for a > B, it follows that if x, = ¢(x) (or x, = £J(x)) for some
x € L(M; ¢),, then {x,} is a martingale in the above sense. In this case, {x,} is
called to be simple. We point out here that the definition of martingales in [5] (in the
symmetric L7-spaces) seems somewhat inadequate because EgzoE, # Ez, o > f3, for
the case of generalized conditional expectations (see Theorem 2.6) and so simple
martingales are not necessarily martingales in the sense in [5].

For simple martingales in LP-spaces, we have the next theorem extending
[5, Theorem 8] and [8, Theorem 8].

THEOREM 3.1. (1) ||E)(x) — EL(X)|, , >0 for every xe€ LP(M; ), where
2<p<ocoand 0 <n<l.

) I|Eg(x) — E},’o(x)]!q,,, =0 for every xe€ LYM; @), where 1 < q <2 and
0y L

Before the proof, we state two useful lemmas.

LeMMA 3.2. If 1 < p,py,py < oo and 1/p = (1 —0)/p, + Olp, with 0 < 0 < 1,
then

a0 IR [ Tt 2 e [
or every x€ M and 0 < n <1, where |||, = Il -
Because the reiteration theorem (cf. [3, Theorem 4.6.1}) gives
LAM; @), = Co(L"(M; 9),, L™(M; 9),),

the lemma is an easy consequence of the abstract Riesz-Thorin theorem (cf.
{3, Theorem 4.1.2]). A special case of Lemma 3.2 1s [8, Theorem 1].

LEMMA 33. If O <y, m,ne < land n =0 — Oy + Ony with 0 <0 < 1,
then

[ AR T B T ot 3
Jor all xe M. In particular,
(A7 ="lg , < PGP Ix*E N

forallxe Mand 0 < n < 1.
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Since [{A"xh* "]y, = {{d"2x¢]i, we can show the lemma by applying the three
lines theorem to 4?/2x¢ on the strip 0 € Rez < 1. See also [2, (C.7)] and [I8,
Lemma 1].

Proof of Theorem 3.]. (1) We may show the assertion for x = iah'~", a e M.
When p = 2, we have

|:Eg()‘) - E;’;.,(.\‘);Eg,,i = ‘;ih"(sm(a) - aco(a)) hl -1 ii?..n <

< 1UE8) — En(@)Ch! 7" e(a¥) — Ea(@¥))SL)”

by Lemma 3.3. Since ¢,(a) — &{a) strongly for every a € M (see [12, Theorem 3}
and [17, Theorem 11]), it follows that |Ei(x) — Ei{x);s , — 0. The assertion for
the case 2 < p < co is obtained from the case p = 2 and Lemma 3.2.

(2) Since ||-ligy € I lla,y for 1 < g < 2, it suffices to show the case g = 2.
But this follows from (1) ard Lemma 2.5. 7]

The next theorem is our main result concerning the increasing martingale con-
vergence. We note that, even in the symmetric case y = 1/2, this is different from [5,
Theorem 9] in view of the formulation of generalized martingales.

THEOREM 3.4. Assume Ny =M (ie. N, /' M).
Dlet 2 €<p<oo and O << 1. If {x,} isanet of x,€ LN, 0,)
[’ - Ltz L 2 Dy n
satisfying €lp(x,) = X5 for x> B and supix,',, <oo, then there exists an
Z

) a..p.g
x € L7(M; 9), such that x, = ¢ix) for all o and |x%(x,) — x|, ,— 0.
(@ Let ! <g<2end 0 <y <1 If{x,}is anetof x,€ LYUN,, @,), satis-
ing €(x,) = xp for x = B and supiix,l,., < co, then there exists an x € LYM,;
y af B ] ‘/) n
k4

such that x, = gi{x) for ell x and %3(x,) — x g, — 0.

Now let T, and T be positive selfadjoint operators on J# such that 7, - T
strongly in the generalized sense, equivalently (! + 7,)~* - (1 + T)-! strongly
(cf. [19, VIIL.7, Problem VIIIL 27]). We then have

LemMa 3.5. If {,€ @T,), (e 2T), il,— (] =0 and T, — TS -0,
then [T, — T' -0 for all 0 <y < 1.

Proof. Let T, =4 2ide?) and T = Sﬂ. de(Z) be the spectral decompositions.
0

0
o

For any ¢ > 0, take an s > 1 with \ 22d|'e(2){})* < ¢ and define two bounded

s—1
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continuous functions f, g on [0, o) by

2, 02 s—1,
SA=L=Ds—=1), s—1<i<gs,

0, ) = s,

A 0 2<s,

g ={s"s+1 -2, s<i<s+1,

0, L= s,

where 0 < 5 < 1. Since f(T,) — f(T) strongly (cf. [19, Theorem VIIL.20]), we get
T, — AT| — 0. Similarly ||g(T ), — g(T){|| - 0. Choose an ¢, such that
IT Lol < INTCIE + 2°and [ATYENP > AT — e for all a > oy If @ >0, then

S)?"d[]ea(Z)CaH? < S/1‘~’clilem(ﬂ~)f;mll2 <

S TP — TR < ITLPE — AT + 26 <

< \ 2dleC) + 26 < 362,
s-1
so that
1730, — T < 18Tl — (T +
i 1/2 & 1/2
+{SAZ"dneu(ﬂocaI12} +{S/‘ﬂ"dne<2)cn‘~’} <
< |lg(TEe — &(THCN + (3 + De.
Hence there exists an a, (> o) such that ||T2, — T7¢|| < 3e for all a > a. %

Proof of Theorem 3.4. We show that {x,} is simple. When this is shown,
the convergence of {xJ(x,)} or {ki(x,)} follows from Theorem 3.1.

(1) We first prove the case p = 2. Let O" : # - L (M; ¢), and O} : 4, —
—L3(N,; ¢,), be the surjective isometries as in Section 1. Define 67 = (©%)~1ogl- Q"
and &% = (O] teglyo OF for a > B. Then &1 = [47*J,P,JA-"?] and the adjoint
(6%g)* of &3y is given by (63p)* = [J,472457%J;] as seen from the proof of Lemma

61475
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2.1(2). Tt was shown in [11] that A,P, + (1 — P,) — 4 strongly in the generalized
sense. Since P, /1 and

U+AJJ“=U+Lh+U"P$“+%O—hx

we get A, P, — 4 strongly in the generalized sense. Moreover it was shownin[12, 17]
that J,P, — J strongly. For each a € M, since [|g,(@)é — al|l - 0 (see [12,17}) and

W4, e (@) — AV2al| = [ e (a®)E — Ja*E] <

< llea(@®) — a*|| + [[(JuPy — J)a*c|| > 0,
Lemma 3.5 implies
{(4.P,)""%,(a)¢ — A"2al} >0, 0<n <L
But
G Aag) = A%, (0) = (4,P.)" e, (@)%
Therefore &7 — 1 strongly for 0 <5 < 1. Also &% = J,P,J — 1 strongly. Now

define a net {{,} of {, € #, (c #) by {, = (09 ~x,. Then 4, = {; for « > B
and sup ||{,|| < co. Hence there exists a subnet {{,-} of {{,} which converges weakly

to some { € #. For each o, if «' > « and b € N,, then
(o — 3L T A7) = (81(Lsr — 620 | JAY?E) =
= ({0 — 4L (68 T AUE) = ({y — UL, T A12bE).

We have sup||{, — 67.{]| < co and {,» — &%{ — 0 weakly since &7 — 1 strongly.

On the other hand, since

(4o PP BEE — AYV2BE|| = ||(Joo Py — J)BE|| = O,
using Lemma 3.5 we have

1, A2bE — TJAM2bE]| <
< (4o Py)''2bE — A"26E|| + ||(Jo Py — NA™HE || = 0

for 0 < n < 1. This holds for 7 = 0 as well. Therefore ({; — &%.( J,4%2b¢) -0,
so that ({, — &2 | J,4%%b¢) = 0 for every b e N,, showing {, = &. Letting x€ @"(
we obtain x € LXM; ¢), and x, = &)(x) for all a.

We next prove the case 2 < p < oo. Since L?(N,; ¢,), = LAN,; ¢,), and
Ixelle,y < [iXalls.y, it follows from the case p = 2 that there exists an x € L}(M;p),
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satisfying x, = ¢J(x) for all a. But there exists a subnet {x%(x,)} of {xZ(x,)} which
converges in the weak topology of L?(M; @), to some y € L?(M; ¢),. For each
a € M, since

”%Z'(Xu') - x”l < ”Eg'(X) - x”z,q -0

by Theorem 3.1, we get

tr(xa) = limtr(xl.(x,)a) =
= lim{f(x,), B~"ah™y, , = tr(ya).

Thus x =y € L(M; ¢),.
(2) Let h, = hy, and tr, = try, on LYN,). Since || x7(x)ly,, < l|Xullg.n> there

exists a subnet {x2(x,)} of {%(x,)} which converges in the weak topology of
LYM; @), to some x € LU(M; ¢),. For each «, if &’ > « and b € N,, then

tr(#dA(x,)b) = try(xyey (b)) =
= try(xb) + tr (x,(ex(b) — b))
since £0,(x,) = x,. With 1/p + 1/q = 1, using Lemmas 3.2 and 3.3 we have
[0y (xo (e (B) — B)) | = | {xys L (e (B) — BYhYDg,p| <
< Ixeellg, i (6 (B) — DY lpa-y <
Sxarllg, ol (e (6) — BYRLIIYE W (e (B) — BYRE NP, <

< e llo, 2UBIDY 2 7{lI(ew(®) — BN lI(ew (%) — BRI 37 - 0,

so that
tro(x,0) = lim tr(%7(x,)b) =
= lim{#2(x,), B-"BITY, , = tr(xb)
for every b € N,. Hence x, = ¢%x) for all a. %

The assumption N, 7 M is essential in Theorem 3.4. For instance, let N be a
von Neumann subalgebra for which the generalized conditional expectation & : M —
— N is not surjective. If we take N, =N and x, = h}ah} " for all & where
a € N\¢(M), then the conclusion of Theorem 3.4(}1) fails to hold.



282 FUMIO HIAL and MAKOTO TSUKADA

From the last argument in the proof of Theorem 3.4(1), we have the following
result as well: iof Naz ,‘” M and if {x,} is a net of x, € N, satisfying ¢,5(x.) = xp
fora > f and sup x, < oo, then ¥, = ¢,(x) and x, — x strongly for some v € M.

In the rest of this section, we discuss the convergence of cecreasing gencrzlized
martingales in LP-spaces. Let {N,} be a decreasing net of unital von Neumann
subalgebras of M with N, = (\V,. As in the increasing case, we use the notations

P, J,, &, EI, E’ (or E,) associated with (N,, @, = ¢ ' N,), and P.. Jo,
€, EL, EL (or E) associated with (Ny, 0o = ¢ | No).

Iet I1<g<2<p<oco and 0 <y < 1. We consider the following con-
ditions:

(Cloo &,(X) = 2(x) strongly for every x e A4:

(C) 1reg, — Y-z, —0 forevery ¥y e M. (ie. }ljz‘z(a) — Ew(u)‘ » — 0 for every
a e LY{M));

(C)p 7 I'E"(\') - Ei;(\')",, , = 0 for every x € L"(d; @),;

(C)q g L EAX) — Enfx)! a.q — 0 for every x € LA : o),

It was shown in [i2, Theorem 4} that P, \y Py, <> (Cleo = (C), . Also (C), =
< (&)2’1_ , is seen from Lemma 2.5. The next theorem establishes the relations among
the above conditions.

TaeoreM 3.8. (1) For cach 2 < p < oo, conditions (Ce,. (C), 4 and (C),; are
equivalent.

(2) For each 2 < p <oo and 0 <y <1, condition (C),, is equivalent to
(C)y. For each 1 < q <2 and 0 < 5 < 1, coadition (C),,’,, is equivalont to (C),.

Proof. (1) Tt is immediately seen from Lemmas 2.5 and 2.8(2) that cach of
(C)eos (C)z 0 2nd (C)y 5 is equivalent to J.P, — J Py stronvly Foreach2 < p <co
and 0 < 77 < 1, we have (C),, = (O),, from -5, < |-, and Lemma 3.2

(2) Suppose that (C), holds. By Lemma 3.2, we then obtain ((Nf),j_q for every
1 <g<2and 0<y < 1. Furthermore (C)y ., (= (6)3'1‘,2) is satisfied in view
of Lemma 2.4. Hence Lemma 3.3 gives (C), , for every 0 <5 < 1. So, by Lemma
3.2 again, we obtain (C),, for every 2 < p <oo and 0 <5 < L.

Conversely if (C),, holds for some 2 < p <co and 0 < 5 < 1, then (C),,
follows from ||- {5, < jj- i, ,» so that we gef (C)n 1-y- On the other hand if (C)q "
holds for some 1 < ¢ < 2 and 0 < 5 < 1, then (C), follows from [-7, < -', .
Thus (2) is proved. 4

In contrast with the increasing case, (C), is not satisfied in general. Indeed
it happens that & is cyclic for each N, while N, = Cl (cf. {i, 12]). But the
question is whether it is possible that (C), holds while (C),, does not.
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4. GENERALIZED CONDITIONAL EXPECTATIONS RELATIVE TO WEIGHTS

Throughout this section, let M be a von Neumann algebra with a fixed faithful
normal semifinite weight ¢. Let N be a unital von Neumann subalgebra of M such
that @y = @ | N, is semifinite. We take sy = s, NN, sy =m,N N and the
GNS representation (#y, ny) of N induced by ¢y where oy is identified with the
closure of A(sy) in o, . Let Py be the orthogonal projection of #, onto # , then
Pyen(N) and mp(x) = n(x)Py, x€ N. Let Jy be the modular conjugation associated
with ¢y. Moreover, for 1 < p < co, we take Terp’s LP-space L(N; ¢y) as well as
L7(M; ¢). That is, LP(N; ¢y) is the complex interpolation space Cy,,(N, Ny) where
N and N, are imbedded in the dual L} of the Banach space Ly consisting of all
x € N such that there cxists a ¥y € N, with

YE*Y) = (Uvmy () InAO)  A@),  p, 2 € .

The generalized conditional expectation ¢ : M — N relative to ¢ (see [1, Theo-
rem 7.5]) is given by

Ty(&(x)) = Iy PyIn(x)I Ty, x€ M,

which has the same properties as that relative to a state (sec Section 2). To extend
¢: M — N to linear contractions between Terp’s L”-spaces, we first give

Lemma 4.1, (i) If x€ L, then e(x) € Ly and Yl =y, } N.
) If xe Ly, then xe L and r, = Y¥ -c.

Proof. (1) if xe L and y, z € »y, then
Y(2%) = (Irn(x)*IAY)  A2)) =
= (NPT I AY) | A@) = Uyl )T AD) | A)).

(2) Let x € sny. For every y, z € s, e(z¥y) € my and A(e(z¥y)) = JyPyJA(Z%y)
by [12, Lemma 1]. Hence, using [23, Proposition 7, Lemma 3], wz have

YYEE)) = Pazep(x) = (AR) | IyMie(zy) =
= (A(x) | PyJA(*) = (A()  n(zpTA()) =
= (A(Y) | Jn(x)JA(2)) = (Fr(x)*JA() | 4(2)),

so that x € L and y, = ¥ oe. Now let x € Ly. According to [23, Theorem 8], there
exists a net {x;} in sy such that x; — x o-weakly and ||y Y — ¥|| - 0. Since {x;} <L
j
with ., =4 ce and Y, —yYeel < YN — ¢¥| -0, we obtain xe€ L and
. 7 j

Yy == lM\Y“ £
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We notice (see [23, Proposition 7]) that L = M n M, when M and M, are
imbedded in L* with identification x = ,. Lemma 4.1(1) asserts that if xe L
then e(x) = . } N as elements in L. So we can extend ¢: M — N to alinear map
(denoted by the same ¢) of M + M, (<=L¥) into N + N, (< L) by

ex+Y)=e(x)+ ¥ )N, xeM, yeM,.
Similarly Lemma 4.1(2) enables us to define a linear map % : N + N, - M + M, by
#(x+yY)=x+yce xeN, yeN,.

THEOREM 4.2. Let 1 <p <oo and ifp+ 1/q =1. Then ¢ maps L°(M ;o)
into LP(N; @y) with je(x)), < |lx!,, x € LP(M; ¢), and » maps L°(N; @) into
LP(M 5 p) with {[x(0)|l, < lixli,, x € L°(N: @y). Moreover the transpose of ¢ | L"(M ; ¢)
is 3 | LYUN; @y) under the duality o3 Dpq between LA 0) and LYM; @) and
that between LP(N; @y) and LI(N; @y) (see Section 1).

Proof. Since ¢ (resp. x) is contractive on both M (resp. N) and M, (resp. N),
the first assertion follows from the abstract Riesz-Thorin theorem. By Lemma
4.1(1), we get

Celx), ¥Dpa = Vit = V() = <x, #0)yy, v€L, yeLiy.

This shows the second assertion, since L and Ly are dense in L7{M; ¢) and LYN; ¢y)
respectively (see [23, Theorem 27]). 2]

When ¢ is a state, Theorem 4.2 is the same as the case = 1/2 of Theorems
2.2 and 2.3 because ¢ = ¢ on M, = LYM) and % = % on N, = LYN).

Let E =3xoe Then E [ L°(M; ¢) is a linear contraction of LP(M ;@) into
itself for 1 < p < oo. The contraction © 1< E< @ on £, is naturally connected with
¢, where O 3¢, —» LA(M; ¢) is the isometry given in Section 1. Because A(e(x)) =
= JyPyJA(x) for all xe ., (see [I12, Lemma 1]), another related contraction on
is JyPyJ.

7
b4

THEOREM 4.3, The following conditicns are equivalent :
(i) e: M - N is the conditional expectaticn;

(ii) ece = ¢ on M {(e(M) = N is not required);

(iii) Eoc E = E on LP(M; @), where 1 < p < co;

(iv) O7LoEc@ = JyPyJ.

LemMA 4.4. If x € in,, then O(4V4A(X)) = x.

Proof. Let ¢’ be a faithful normal semifinite weight on M’ and d = (;i(p;
¢

Since @ = vy02 and vy(uy(x)) = x for x € L (o42,) (see Section 1), it suffices
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to show that
P(AYVAA(x)) = po(x), X € wn,,.

Since 22, = span(s,),, we may assume X € (#,), . Taking a = xV/2, we define

a, =\njx S e~ ,(a) dt

— 00

and x, = a, for n > 1. Then ||a,|| < |ial|, a, = a strongly and ||A(a,) — A(a)|j = 0
(cf. [20, p. 29]). Note (cf. [23, Lemma 22]) that vd® < d%o,(v), s = 0, for any
o-analytic v € M. Since {a,d"4] and dY4c;,(a,) = [o.;,4(a,)d"/*]* are in L%¢") by
[23, Theorem 26], we get [a,d"4] = dV%¢,,(a,) and dV%a, = [o_, (a,)d*"). From
definition of y, in the proof of [23, Theorem 27], it follows that

He(%,) = d¥%a,-[a,d" "] > 0_;(a,)d* 0, (0 - (a,)) o
> 0.514(8,)0 - 1ja(@)A? =0 _(x,)d "2,
and hence po(x,) = [o_;/4(x,)d¥?] since both sides are in 12(¢p"). Therefore
PUAMA(R) = P(AG_ia(x) = po(x), 7 > 1,

by definition of £. Since ll'//x"H < ||A(a,)|?* by [23, Proposition 4] and [|ps(x)ls <
< ||¢xn||1/2nx,,||1/2 by [23, Theorem 27}, we have sup|us(x,)||s < oo. Since py(L) is

dense in L*(¢’) and
S Ha(Ha(e) 40’ = Yry() — y(x) = Suzcv)nz(x) do, yel,

we have p(x,) — py(x) weakly, so that 4¥4A(x,) = P~ (uy(x,)) = P H(us(x))
weakly. On the other hand,

[4(x) — A = lin(a,)A(a,) — n(@A(@)] - 0.

Thus AY4A(x) = 2~ Yuy(x)) as desired. %

Proof of Theorem 4.3. Clearly (i) implies (it) and (iii). Since L*(M; @) n M (> L)
is o-weakly dense in M (see [23, Corollary 5]), we have (iii) = (ii). Furtherm ore
(i) == (i) is seen as in the proof of Theorem 2.6.

We now show (i) < (iv). If x € »2,, then &(x) € », and Lemma 4.4 gives

O-10 Eo Q44 A(x)) = O 7Y (e(x)) = A2 A(e(x)) = AV4TyPyJA(x).
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So condition (iv) is equivalent to JyPyJ4Y? < AY4J PyJ. Hence (i) < (iv) is shown
as in the proof of Theorem 2.7. %

We hereafter consider the martingale convergence of generalized conditional
expectations relative to the weight ¢. Let {N.} be an increasing net of unital von
Neumann subalgebras of M with N, = \/N,. Assume that ¢, =¢ *(N,); i

o
semifinite for each o and hence also ¢, = ¢ ! (Ny), is semifinite. We take », =
= s, N N,, the orthogonal projection P, of #, onto 71(;:), the modular conju-
gation J, associated with ¢,, and analogously P, J,. Lete, : M — N, and ¢, : M-
— N, be the generalized conditional expectations relative to ¢. Foreach | < p < oo,
¢, and ¢, are extended to linear contractions E, and E, of L°(M; ¢) into itsclf.
We then have

THEOREM 4.5. The following conditions are equivalent:

(1) e,(x) = eoo(x) strongly for every xe M;

(il) Woe, — Yoty —0 for every Y€ My;

(i) |E(x) — Ewlx)|, =0 for every x e L*(M; ), where 1 < p < co.

Proof. We proved in {12, Theorem 3] that (i), (i) and J,P, > J_.P,
strongly are equivalent.

(i) => (ii). Let x € L. By Lemma 4.1, we get &,(x), x(x) € L with )=
=y v 8y, Yo o = Vs 8. When 1)p + 1/qg =1, it follows from [23, Theorem

27] that
HEa(-\:) - Eoo(x)?!p = {“lp(ci(x) - aoo(x))“p <

< s =y (0 177 12a(%) = Sea(0)[M <
< Weo8, — Yeote N2 x Y 0.
Since L is densc in L?(A3; @), we obtain (iii).

(iii) = (i). Let x, » € L. Using Hélder's inequality on spatial L -spaces (cf.
[22, Chapter 1IV]), we have

Hale (X)) e {x V() do’ ’ = ig,up(sz(x) — (N L3y deo’ <

Car™

|
g ELN) — 5l T (1) g = EAX) — E(X) ¥ g = 0.

This shows pie,{x)) - na(e(x)) weakly, because (L) is dense in L2(¢’) and
o) = 2} o < W (o — ) 2]e,(3) - 2 <

<20y
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In particular Jet x € wz,,. Then £,(X), €.(¥) € #2, and, by Lemma 4.4, we have

A2 A(e(x)) = PN polealx))) = P itafEeu(x))) = AV A(eoe(X))
weakly, so that
(Alel(x)) — Aleo(x))| 44) =

= (4 Ae,(x)) — Alex(N) | O = 0, L€ D4V

Since || A, (X))} € |A(es(x))]], this gives A(e,(x)) — A(e(x)) weakly and hence
| AE(x)) — Ales(x)|| > 0. Thus J P, — J,P, strongly. 2

It is known (see [12, Theorem 3]) that the conditions in Theorem 4.5 hold
if and only if U A, n 2¥) is a core of 432, where A(z, N %) is the left Hibert alge-

bra associated with ¢, and A4, is the modular operator associated with ¢, . When
¢(1) < oo, this condition is satisfied and Theorem 4.5 is reduced to Theorem 3.1
with = 1/2. But, for the weight case, this seems to be a rather strong condition (cf.
[11, Example 1.6]).

Next let {N,} be a decreasing net of unital von Neumann subalgebras of M
with N = () N,. Assume that ¢, = @ | (Ny), is semifinite and hence each

0, = ¢ [ (V). is semifinite. Let P,, ¢,, E, and P, &, , E, be as above.

THEOREM 4.6. If P, P, then the following conditions hold :
(1) e,{x) = e,(x) strongly for every x € M;
(i) [ o0 — o ool = 0 for every Y € M,
(iti) |Efx) — Ex(X)|l, >0 for every xe L'(M;¢@), 1 <p <oo.

Proof. Tt was proved in {12, Theorem 4] that if P,\ P, then (i) and (i)
hold. (ii) = (iii) is seen as in the proof of Theorem 4.5. 2

When each ¢, is the conditional expectation, all the conditions in Theorems
4.5 and 4.6 are satisfied (cf. [12, 24]).
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