). OPERATOR THEORY © Copyright by INCREST, 1987
18(1987), 303~ 326

ORDERED GROUPS AND TOEPLITZ ALGEBRAS

G. J. MURHPY

INTRODUCTION

The classical theory of Toeplitz operators and their associated C*-algebras
is an elegant and important area of modern mathematics. For this reason many
authors (e.g. Douglas, Singer, Howe, Devinatz) have sought to extend this theory
to a more general setting. In this paper a new extension is given principally with
the objective of presenting a certain new class of C*-algebras which have very
interesting properties — to each partially ordered group G we associate a C%*-
-algebra 7 (G), its Toeplitz algebra. Z(G) has a certain universal property which
may be useful in general C*-algebra theory, particularly K-theory. Often 77(G)
contains a simple C*-subalgebra as a closed ideal and this is analyzable in terms
of G.

The classical Toeplitz algebra J(Z} associated to the ordered group of inte-
gers Z appears in two guises in the literature: '

1. 7(Z) is the C*-algebra generated by the Toeplitz operators with conti-
nuous symbol.

2. 7(Z) is the C*-algebra (unique up to =-isomorphism) generated by a
non-unitary isometry (Coburn [3)).

It is principally in its second guise that we are interested in generalizing J(Z).
However in analyzing the Toeplitz algebra of a general partially ordered group we
need to extend many results of the classical Toeplitz operator theory.

Here is a brief outline of what we do in each section: In Section 1 we con-
struct J(G) and show that the functor G — J(G) is “continuous’, a result very
important for the sequel. In Section 2 we specialize to the case where the ordering
on G is total. In this situation J(G) is representable as a hereditary C*-subalgebra
of a certain crossed product C*-algebra got by an action o« of G on an abelian
C*-algebra &,(G). By showing that &,(G) is G-prime and calculating the Connes’
spectrum I'(x) in the case that G is finitely generated, and then extending by
“continuity’” to the general case, we show that 7(G) is prime, and is isomorphic
to any C*-algebra generated by a non-unitary semigroup of isometries over G.
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We then identify a certain simple ideal in F(G) (‘“‘usually’’ not type I) which plays
a somewhat similar role in the general theory to that played by the ideal of compact
operators in the classical case. A number of the results here generalize some results
of Douglas [4]. However Douglas confines himself to ordered subgroups of R,
and our methods are completely different from his (his techniques do not appear
to be extendable to this generality). In Section 3 we return to general partially
ordered groups. Here we extend many results of the classical theory, for example
we show that generalized analytic Toeplitz operators have connected spectra.
For each partially ordered group G we exhibit a very explicit and useful irreducible
representation of Z(G) (faithful if G is totally ordered). Finally in Section 4 we
show that a number of our results are best possible, and that for a totally ordered
group G, J(G) has simple commutator ideal iff G is (ismorphic to) an ordered
subgroup of R (sufficiency is due to Douglas [4]).

A brief word concerning terminology. What we call a partially ordered group
is sometimes referred to as a directed partially ordered (abelian) group. There is
little consistency in the literature in this area (compare Effros [6], Rudin [14], Good-
earl [7], etc.).

Finally the author would like to thank R. Douglas for drawing his attention
to his paper [4].

1. THE GENERAL TOEPLITZ ALGEBRA

Let G be a discrete abelian group and < a partial ordering on G. For
S < G we write S* for the set of all x in S such that 0 € x. We call (G, <) a
partially ordered group if G = G*—G+ and x €< y implies that x+z <y + 2
(x,y,z€ G). If I is a subgroup of G such that I = I+ — I+ we call I a partially
ordered subgroup of G. Then of course (I, <) is itself a partially ordered group.
If < is a total ordering on G (i.e. for all x,y € G we have x < y or y < x) then
we refer to (G, <) simply as an ordered group. In this case any subgroup I of G
is a (partially) ordered subgroup, since G = G+ y(— G*) implies that I =
=JI*y(--I*) =I*—I*. Thus (I, <) is an ordered group.

Suppose now only that G is a discrete abelian group and M is a subset of G
such that

OeM, M+McM, Ma(—M)=0 and G=M--M

In this case we call M a cone in G and we define x <, y to mean that y--x¢€
e M for x,y in G. It is easily checked that (G, <,,) is a partially ordered group
with G+ = M. We shall often use (G, M) to refer to (G, <). If (G, <) is a partially
ordered group then G+ is a cone and (G, <¢:) = (G, <). Moreover (G, <) is
an ordered group iff G = G*U(— G*).
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If H is a closed subspace of a Hilbert space K we shall let S, denote
the compression to H of the bounded linear operator S on K.

If G is a partially ordered group and B a unital C*-algebra, a semigroup of
isometries in B (relative to G) is a map fi : G* — B such that each f(x) is an
isometry, i.e. f(xY*f(x) = 1forallx € G+, and B(x + ¥) = B(x)B(y) forall x,y € G+.
(This implies that B(0) = 1.) If B = B(H), the C*-algebra of all bounded linear
operators on the Hilbert space H, we call a pair (K, n) a uritary lifting of B if K
is a Hilbert space containing H as a closed subspace, n: G — B(K) is a homo-
morphism of G into the group of unitaries of B(K), H is invariant for all =(x),
x € G+, and B(x) = (rn(x)), for such x. The following is the basic result concerning
unitary liftings and will be used a number of times below.

THEOREM 1.1 (Ito). Let G be a partially ordered group and B :G* — B(H)
a semigroup of isometries on the Hilbert space H. Then B admits a unitary lifting
(K, n).

For a proof, see Suciu [15], p. 221. (Note that there it is only shown that
P(x) is a compression of n(x)—i.e. invariance of H is not stated. However an ele-
mentary 2 X 2 operator matrix argument shows that if an isometry is the compres-
sion of a unitary it is in fact a restriction of the unitary. Hence we can conclude
that H above is invariant for all n(x), x € G*))

Here is another result that we will be using a number of times. It is well
known and follows easily from the von Neumann inequality, see e.g. Suciu [15],
p. 213.

(For G a discrete abelian group, G* will denote the dual group of G considered
as a compact abelian group. 1f T denotes the circle group and x € G, we let ¢, or
&(x) denote the evaluation homomorphism from G” to T defined by e.(y) = y(x),
yeG")

LemMmA 1.2, If n : G — B is a homomorphism from an abelian group into the
group of unitaries of a unital C*-algebra B then there is a unique s-homomorphism
B : C(G") - B such that B(e,) = n(x), x€ G.

We need one more preliminary concept for the construction we are about
to undertake: Let 4 be a C*-algebra with identity element 1 and let 4,, A, be C*-
-subalgebras such that 1 € 4, n 4,. We say that 4 is a free product of A, and A,
and we write A = A, * A, if for every unital C*-algebra B each pair of unital x-homo-
morphisms ff; : 4;— B (j =1, 2) have a unique extension to a =-homomorphism
f : A > B. Any two unital C*-algebras admit a free product (Brown [1]). By the
way, since any two free products of 4, and A, are canonically w-isomorphic, we
can talk about the free product. A, U A, generates A; = A,.

We can now define the Toeplitz algebra and show it has a certain universal

property.
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Let G be a partially ordered group. Let p denote the projection (I, 0) in C?,
and let I be the closed ideaf in C2 s C(G") generated by all ¢.p — ps.p, x€ G*.
If 7 denotes the quotient map from C2 = C(G") to C2 = C(G")/I ihen we set 7(G) =
= n(p)(Im(n))n(p). Thus F(G) is a unital C*-algebra (n(p) is the identity element).
We call 7(G) the Toeplitz algebra of G. We define the canonical semigroup of iso-
metries 'V = V9: G+ - 7(G) by V, = n(e)n(p). It is readily verified that V is
in fact a semigroup of isometries generating J(G).

THEOREM 1.3. Let G be a partially ordered group and B : G+ — B a semigroup
of isometries in a unital C*-algebra B. Then there is a unique =-homomorphism
B* : 7(G) — B such that f*V = B.

Proof. We may assume without loss of generality that B is a C*-subalgebra
of B(H) for some Hilbert space H such that 1 =id, € B. By Theorem 1.1 the
semigroup of isometries § : G+ — B(H) has a unitary lifting (X, n). There exists 7,
a unique unital x-homomorphism from C = C(G") to B(K) such that y,(¢,) = =(x),
x € G, by Lemma 1.2. Let Q € B(K) be the projection onto H and y, : C* - B(KX)
the unique unital =-homomorphism such that y,(p) = Q where p = (1,0) € C2. We
let y denote the unique =-homomorphism extending 7y, and y, to C?x C — B(K).
Since y(p) = Q and y(c,) = n(x) we have y(e,p — pe.p) = 7(x)Q - Qn(x)Q = (O for
all xe G* (H is invariant for n(x), x € G*). Thus (/) =0 where [ is the closed
ideal in C?: C generated by all e.p — pe.p, x € G*. It now follows that the map
BE 1 T(G) — B(H) defined by f*a + I) = y(a), for a + [ € T(G), is a well-defined
=-homomorphism. Alsc B%(V.) = B%ep + I) = e p)y = m(x)y, = f(x) for all
x€eG*, so Im(f*) < B. Thus p*:7(G) — B is a s-homomerphism such that
BV = B.

Uniqueness of % is trivial, since the V, (x € G+) generate 7 (G). 3

If A is a C*-algebra we let K(A4) denote its commutator ideal, i.e. the closed
ideal generated by all ab — ba (a, b € A). K(A) is the smallest closed ideal J in A4 such
that 4/J is abelian. If § : A — Bis a =-homomorphism of C*-algebras then (K(A) =
< K{(B), with equality if § is surjective.

If ¢ : G, > G, is a homomorphism of partially ordered groups we say that
o is positive if o(G}) € Gy (equivalently x € y in G; = @(x) < 0()) in G,). We
let ¢ :Gf — Gf be the restriction of ¢. There is a unique =-homomorphism
o* 1 T(G,) - T(G,) such that (p*VGI = V¢~ (simply take ¢* = (V%™ )* — it
is clear that V62<p~: Gy — 7(G,) is a semigroup of isometries). We thus get co-
variant functors G —» .7(G) and G — K(7(G)).

For G a partially ordered group we define g, = ¢% =1— V., V¥ (xe G*).
Since ¥, is an isometry, g, is a projection (in K{(Z(G))). If x < y then g, < g, (because:
vy=x+2z for some zeG* =V, =V. V.=V VI =VV.VIVEVV} since
V.V¥ < 1. Hence g, = 1 — V., V¥ 21— V. VF =q,). We are now going to show
that g, < ¢, = x < y. To do this we consider briefly a certain representation of
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77 (G) that will be very important later. Before doing this, a useful remark: If ¢: G; —
— G, is a positive homomorphism of partially ordered groups then ¢*(q,) = gux)
for all x € G}.

PROPOSITION 1.4. [f G is a partially ordered group and x,y € G* then x < y
if and only if q,. < q,.

Proof. Let H? = H¥G) be the closed linear span in L3(G") of alle, (x € G*).
Define U, € B(H?) by U.f =¢.f, x€ G*. The map U :G* — B(H?, x—U,, is
easily scen to be a semigroup of isometries: thus U* maps 7 (G) to B(H?) and U*V =
= U. Now the projections Q, = | — U.UF on H? satisfy the relations Q,(g,) =0
for x < y and Q,(¢,) =¢, for x £ y (x,y € G*). Hence x < y iff Q, < Q,. But
Utq, =Q;,s0 xSy =q, <4, =@, <@y = x<y Z

Note in passing that it is now easy to see that ¥ :G* — Z(G) is injective
V. = Vy =y =g, =X =¥

Given any partially ordered group G the map ¢ : G* — C(G"), x+—>¢,,1s a
semigroup of isometries (actually of course the ¢, are unitaries) so we have the
induced map &* : 7(G) —» C(G"). Since ¢, (x € G*) generate C(G") (by the Stone-
-Weierstrass theorem), &* is surjective. Here is the full story:

THEOREM 1.5. If G is a partially ordered group then ker(c*) = K(7(G))
and the map T(G)/K(T(G)) » C(G™), a + K(T(G)) — e¥(a), is a *-isomorphism.

Proof. All we have to show is that K(7(G)) = ker(e¥*). Since F(G)/ker(e¥) is
abelian, ker(¢*) 2 K(7(G)). The map n:G - T(G)/K(T(G)), x —y—>V FV +
+ K(7(G)), (for x,y € G*) is a well-defined homomorphism into the unitaries of
T (G)/K(T (G)), so by Lemma 1.2 there exists a unique +-homomorphism y : C(G") —
— T (G)/K(T(G)) such that y(e._,) = n(x — y) = V,*V, + K(T(G)) (x,y € G*).
If & is the s-homomorphism 7 (G)/K(7(G)) - C(G"), a + K(T(G)) — &*(a) then,
2V, + KT(G)) = 76 (V,) = 3(e) = 7(x) = ¥, + K(T(G)) (x€ G*) =15 = id
(since ¥V, + K(7(G)) generate 7 (G)/K(F (G))). Hence a € ker(e*) = 6(a + K(Z(G))) =
=¢*a) =0 = a + K(7(G)) = yé(a + K(F((G))) =0 = ae K(T(G)). Thus K(7 (G)) =
= ker(c*). %

Our next result, showing that the functor G —» J(G) is “continuous”, i.e.
preserves direct limits, is interesting in its own right and plays a crucial role in
the development of the theory. First we need to make a somewhat technical remark
about direct limits in the category of partially ordered groups. Let (¢;; : G; — G))ic;
be a direct system of partially ordered groups (indexed by I) with direct limit G and
natural maps (¢ : G; » G);. If x€ G;, y € G;, and ¢’(x) = ¢/(y) then there exists
kel k 2 i,jand @u(x) = ¢u(y). This detail is nceded in the proof that follows.
The way to see it is to construct one example of a direct limit G and natural maps
{¢"); satisfying it. Then it follows from an elementary diagram chase that every



308 G. J. MURPHY

direct limit and system of natural maps for (¢;; : G; = G))i<; has the above pro-
perty. Here is a sketch of how to construct the required limit: Define an equi-
valence relation ~ on the disjoint union of the sets G, (i € I) by setting (i, x) ~ (j, »)
if there exists k € I, k > i, j, such that ¢;(x) = ¢;(»). Let [i, x] denote the equi-
valence class of (7, x) and G be the set of all equivalence classes. Define the map
¢ 1 G, > G by ¢(x) =[i, x]. There is a unique operation on G making G an
abelian group and all the maps ¢ homomorphisms. Define G+ to be the union
of all the sets ¢'(Gf") (i € I). Then G* is a cone in G and it is easily checked that
the partially ordered group (G, G+) is a direct limit of the direct system (¢;; : G; -
— G))i; in the category of all partially ordered group (with the maps ¢’ as natural
maps). Clearly x € G;, ye G;, and ¢'(x) = ¢/(y) imply that there exists k € I,
k > i, j such that @(x) = @;(»).

THEOREM 1.6. Let the partially ordered group G be the direct limit of the
direct system of partially ordered groups (¢;;: G; = G)icj. Then F(G) is the
direct limit of the direct system of C*-algebras ((¢;;)*: 7(G;) = T (G)))i<j-

More explicitly if (¢': G; —» G); are natural maps for G then ((¢')*: 7(G;) —
— 7(G)); are natural maps for 7(G).)

Proof. Let I be the index set for the direct system (¢;; ; G; = G)i<;. Given
B a C*-algebra and §': 7(G;) - B x-homomorphisms such that gi(¢;)* = p’ for
all i < jin I, we must show that there is a unique x-homomorphism f:J7(G) -
— B such that B(¢")*= B¢ (i e I). By replacing B by the unital C*-subalgebra
C = (U {B(Z(G)) :i e I})” if necessary, we may assume without loss of generality
that B is unital and that all the maps B’ are unital. Let Vi: G} —» J(G,) and
¥V :G* - 7(G) be the canonical maps and recall that (¢;)~ and (¢')~ are the
restrictions to the positive cones of ¢;; amd ¢ respectively. We have

Q)] ((Pij)*Vi = Vj((pij)~ <)
@ @)V =V(@©)~ (€l
&) Bi(o)* = (@ <))

Let xe€G;, ye G, and suppose that ¢'(x) = ¢/(y). Then there exists
kel k >1i, j, such that ¢u(x) = @u(y) implies Vi = BXpu)*Vi (by (3)) =
= BVHpu(x) by (1)) = BV (@a(y)) = B@u)* Vi (by (1) again) = IV} (by (3)
again). Thus ¢'(x) = ¢/(y) implies p'Vi = p/Vi.

We define the map f : G+ — B by setting B(¢'(x)) = B'V:. This is well defined
from the above calculation and from the fact that G+ is the union of all the sets
¢'(G) (ieI). Now f§ is clearly a semigroup of isometries, so f*:7(G) » B
is a =-homomorphism and *V = B. Also, by (2), B*(@)*V' = B*V (")~ = B(¢")” =
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= BV’ (by the definition of ), which implies f*(@")*V’ = BV, so B*(')* = f
(since Vi (x € G;") generate I (G))).

Finally suppose that y : 7(G) — B were another #-homomorphism such that
9(¢')* = B’ (i € I). We must show that y = f*. But yV(¢")~ = y(¢)*V (by (2)) =
= BVi=B(p")", so yV = B (since G* is the union of the sets (p')(G) (i € I)).
Thus yV = B = B*V =y = B* (since V, (x € G*) generate J (G)). %

2. THE TOEPLITZ ALGEBRA OF AN ORDERED GROUP

To prove deeper results about the Toeplitz algebra F(G) one needs to speci-
alize G. Specifically one needs to assume that G is totally ordered. That this assump-
tion is not merely convenient, but actually necessary to get our results, is shown
in a later section below. Qur technique is to represent 7 (G) as a hereditary C*-
-subalgebra of a certain crossed product C*-algebra, and to use some powerful
results of the theory of crossed products to analyse J(G).

Let G be an ordered group. We define an action o of G on £°(G) by setting
@) = fly — x) for all f€ £°(G) and all x, y € G. It is clear that u, € Aut(£(G))
and that the map G — Aut(/*(G)), x+»a,, is a homomorphism. We define p,
to be the characteristic function of the set G+ as a subset of G and p, = « (p,)
for each x € G. Thus p, is the characteristic function of the set x + G*. We call
P, the projection determined by x. Clearly x < y iff p, > p,. If x v y denotes the
maximum of x and y then p _p, = p.y,. It follows that the closed linear span
&(G) of all the projections p, (x € G) is a C*-subalgebra of £°(G). Put &#,(G) =
= F(G) + Cl (1 € #(G) = G =0) and let F(G) denote the closed linear span
of all p, — p,(x, y € G). ¥4(G) is clearly a closed ideal in £(G). Since.each «, maps
&1(G) into itself we get by restriction 2 homomorphisma: G — Aut(¥,(G)), x > a,,
ie. (Z4(G), G, n) is a C*-dynamical system. Clearly #(G) and &(G) are G-invariant
ideals in &%,(G). Recall that one can regard &,(G) as a C*-subalgebra of the crossed
product C*-algebra &,(G) X, G and that &,(G) contains the identity element of
F(G) X, G. Also if 6:G - #(G) X, G is the canonical homomorphism into
the unitaries then we have o (f) = ¢, /0% (f € #1(G), x € G). #(G) X, G is generated
by &1(G) and &(G). If J is a closed G-invariant ideal of &,(G) then the C*-sub-
algebra of #,(G) X, G generated by all /6, (f€ J, x € G) is in fact a closed ideal of
#1(G) X, G which is =-isomorphic to the crossed product J X, G. We can, and do,
therefore regard J X, G as this ideal in &(G) %X, G. Note that J = J x,G.

Now we define #(G) = py(&1(G) X, G)p,- Thus /(G) is a hereditary C*-
-subalgebra of &;(G) X, G with identity element p,. Define W : G+ — o/(G) by
setting W, = py0,.p,. W is a semigroup of isometries. This is immediate from the
fact that pyd,.py = d,p, for all x € G+ (pyd,ped¥ = X6 )t yge) = Aot ngercty =
=Xppgr = 0,Pe0F = pedPy = 0.py). Thus we have the induced *-homomorphism
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W# . 7(G) - 4(G) with W5V = W. Since ¥1(G) X, G is generated by p, and
all 5, (x € G*) one can easily show that W, (x € G+) generate &/(G). This implies
that W* is surjective. We are going to see in a moment that W* is in fact a s-iso-
morphism, but first we need a lemma which shows that &,(G) has an interesting
universal property.

LemMma 2.1. Let G be a non-zero ordered group, u : G -+ B a homomorphism
into the unitaries of a unital C*-algebra B, and q a projection in B such that
u(x)q = gqu(x)qg for all x in G+. Then there is a unique unital =-homomorphism
Y 1 LUG) = B such that y(p.) = p(x)gu(x)* for all x in G.

Proof. Uniqueness is obvious, we show existence.

Let I" denote the linear span of all p,(x € G), so I' is a dense =-subalgebra
of £(G). Put g, = u(x)qu(x)* and note that if x < y then g, > ¢,, since q,q, =
= p()qu(y — )qu(yy* = p(u(y — x)qu(y)* (asy — x € G*) = q,. Thus q.q, =
=G, Now let x!, ..., 2" € G, and let p; =pi,and g, =q.(i=1,...,n).
We show that |Lp, + ... + Apli = Jiae + ... + 4,90 (4, ...,7,€C) We
may assume (by re-indexing if necessary) that x* <...< x", and hence thatp, > ...
... =2 p,and g, =...> q,. Therefore the projections p;, — py, ps — Py, - oy Pper —
-~ P, P, are pairwise orthogonal, as are the projections g, — ¢, g — G55 - - -5 §ou1 —
— gy -Letv, =2+ ...+ 4, (=1,...,n). Thenwe have A,p, + ... + A,p,=
= v(p - Po) + ... + Vyos(Pp-y — Py) + v,p, and correspondingly ¢, + ...
vt Ay =@ — ) + oo+ Veoi(Gy-1 — G,) + vog,. Since p, = p, implies
x =y, and so g, = q,, we now deduce that

iy + oo+ Apt =max{y, ip,— pa #0(i=1,...,n—1) orp,#0}>
>max{{v:1¢,— g, #0 (=1, ...,n—1) or g, # 0} ={lhq + ... + 4,4,

It is now routine algebra to check that the map y : I' — B defined by setting y(i,p; +
+ ..+ 4p)=ha + ... + 7,4, is a (norm-decreasing) x-homomorphism, and
so extends to a x-homomorphism y : #(G) — B. Finally we extend y to unital
=-homomorphism y : &,(G) — B by setting y(1) = 1.

THEOREM 2.2. If G isanordered group then the canonical map W% : 7(G) —»
— (G) is a =-isomorphism.

Proof. We already know that W# is surjective, so we just have to show
injectivity.

Now we can regard 7 (G) as a C*-subalgebra of B(H) for some Hilbert space
H with id; = 1 € J(G). Also we may assume G # 0. By Theorem 1.1 the semi-
group of isometries V' : G+ — B(H), x — V., admits a unitary lifting (K, n). Thus =
is a homomorphism from G into the unitary operarors on the Hilbert space K,



ORDERED GROUPS AND TOEPLITZ ALGEBRAS 311

and if Q denotes the projection of K onto its subspace H we have n(x)Q = Qn(x)Q
for all xe G+, since H is invariant for such zn(x). Also V, = n(x)y (x € G*).
By Lemma 2.1 there exists a unique unital x=-homomorphism y : %4(G) — B(K)
such that y(p,) = n()Qn(x)* (x € G).

We now claim that (y, n, K) is a covariant representation of the C*-dynamical
system (&4(G), G, o). All we need to do to see this is to show that y(a . (f)) =
= n(xX)y(f)n(x)* for f € &1(G) and x € G. By using the fact that 1 and all the pro-
jections p.(x € G) have closed linear span #(G), it clearly suffices to show
the above equation for f of the form f=p,. But p.(p,) = y(Px+y) =
= n(x + »)Qn(x + p)* = n(X)n(NQr(Y)*n(x)* = a(x)y(pIn(x)*.

Thus since (y, m, K) is a covariant representation it induces a unique »-homo-
morphism 3"~ : £ (G) X, G - B(K) extending y such that y7(5,) = n(x)(x € G).
It is now ecasily verified that the map pu: &(G) > B(H), a —» 7y (@)y, is
a s-homomorphism. However u(W,) = u(6:po) = (v (6)¥(Po))y = (m(X)Q)yy =
=V,eJ(G) (xe G*), so Im(u) € Z(G). Thus we can regard p as a =-homo-
morphism from &/(G) to J(G). Again since u(W,) =V, we have pW*(¥,) =
=V, (x € G*), so uW* = id (), thus W¥* is injective. %

We state now a result of Power [13] that we will need for the next theorem
Power defines a C*-algebra C of operators on the Hilbert space K to be inner with
respect to a closed subspace H of K if id; € C and C is generated by its elements
T such that T(H) < H. If this is the case and C is commutative, and B is the C*-sub-
algebra of B(H) generated by all T, (T € C) then T € K(C*(C u {Q})) (Q is the pro-
jection of K on H) implies T, € K(B) (see [13], proof of Theorem 4.2).

THEOREM 2.3. If G is an ordered group then K(4(G)) = po(K(F(G) X, GYpoisa
Jull hereditary C*-subalgebra of K((G)X, G).

Proof. Let Z = #(G)X,G. Since &(G) is a C*subalgebra of Z,
K(#(G)) € K(Z), and since A(G) = p,Zp,, K(#(G)) = p,K(Z)p,.

Now regard Z as a C*-subalgebra of B(K) for some Hilbert space K with
idg =1€Z, and let H = py(K). Since 8,py = ped.po(x € G*), H is an invariant
subspace for these &, so the commutative C*-subalgebra C of B(K) generated by all
0. (x € G*) is inner with respect to H. Let B be the C*-subalgebra of B(H) gener-
ated byall T, (T" € C). By Power’sresult mentioned above T € K(Z) implies T, € K(B)
(since Z = C¥(Cu {py})). Now the map B: #(G) > B, T+ Ty, is easily seen to
be a =-isomorphism. Thus T € pyK(Z)p, implies T € K(Z), and T € &(G) implies
Ty € K(B), which implies $YT,) = T € K(«#(G)). We have therefore pyK(Z)p, =
= K((G)), so K(&(G)) is a hereditary C*-subalgebra of K(Z).

Finally we show K(#(G)) is full in K(Z), i.e. the closed ideal Jin K(Z) gener-
ated by K(«(G)) is K(Z) itself. This is because J contains py — p, = py — W, W¥
(x € G*), and therefore py6, — 6,.pp = (Po — 0,Pe0%), = (po — P,)0, € J. Hence
Z[J is abelian (it is generated by commutating normal elements), soJ 2 K(Z) =
=J = K(Z). %

8 — 1475
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As a consequence of a theorem of Brown [2] and Theorem 2.3 above it follows
that if K(&,(G)x,G) is separable (e.g. if G is countable) then K{(&/(G)) and
K(Z(G) X, G) are stably isomorphic.

Although we shall not be using it, we record here the interesting fact that for
G an ordered group K(F(G) X, G) = F,(G) X, G. (Proof: Let Z = &,(G) X, G and
J = F(G)x, G. Jis a closed ideal of Z generated asa C*-algebraby all fo, (f € ¥((G),
x € G). Now (py — )0, = (Py — 0,Pe0%)0, = PO, — 0,Po € K(Z), 50 (p. — p )0, =
= (po - P)0. — (Po — 1), € K(Z), thus f5. € K(Z) for all fe #y(G), and all z€ G.
Hence J < K(Z). Also pgd, — 6,.p¢ = (py — P)0, € J implies Z/J is abelian, so
J 2 K(Z).)

Recall that a subgroup I of a partially ordered group G is an ideal of G if
I=J*—TI+and 0 € x < y € Iimplies x € I (x € G). G is said to be simple if 0 and
G are its only ideals. All ordered subgroups of R with the usual order relation are
simple. For n = 2, 3, ... the group Z" with the lexicographic order ((a,, ..., qa,) <
<(by,...,b)ifa, <byorifa, =b,,...,a;, =b;, and a;,; < b;;;) isanon-simple
ordered group.

If I'is an ideal in a partially ordered group G, and ¢ is the quotient map from
G to G/I then @(G+) is a cone in the quotient group G/I. We call the partially ordered
group (G/I, p(G+)) the quotient partially ordered group of G by I. Of course ¢ is
a positive homomorphism from G to G/ If G is totally ordered, so are I and G/IL.

LeMMA 2.4. If G is a finitely generated non-zero ordered group then G con-
tains a non-zero simple ideal I

Proof. Let k be the rank of G. Note that an ordered group is necessarily tor-
sion-free. Thus if I, is a proper ideal in G, then G/, is non-zero and so has positive
rank. This implies rank(J;) = rank(G) — rank(G/L) < rank(G) = k.

We show the result by induction on k. Suppose it is true for all ranks < k. If
G has no proper ideals then there is nothing to prove (take I = G). Otherwise G
contains a non-zero ideal f; with rank (I,) < k. By theinduction hypothesis I, contains
a non-zero simple ideal I. 7 is then an ideal in G, thus completing the induction.

If G is any ordered group let |x| = xif x > 0 and x| = — xif x < 0(x€ G).
Let F(G) ={xe G :for all ye G, y >0, there exists n € N, 'x! < ny}. Using
the triangle inequality |x + y| < {x; + |y one easily sees that F(G) is a simple
idealin G. Hence if I is any non-zero ideal of G, F(G)< I (since if F(G) is non-zero
then there exists x € F(G), x > 0, and there exists y € I, y > 0, so that if z is their
minimum, then 0 < z € In F(G) implies I n F(G) is a non-zero ideal of F(G), so
In F(G) = F(G), thus F(G) < I). Of course F(G) might be just the zero ideal.
In fact itis for G = Z*, the direct sum of countably infinitely many copies of Z
with the lexicographic order: (@, a5, ...) < (b, bs,...) if a <b, or if
a =by,...,a; =b;, and a;,; < b;,, for some integer i.
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The point of Lemma 2.4 can be rephrased as follows: If G is a non-zero finitely
generated ordered group, then F(G) is non-zero. (Proof: By Lemma 24, G con-
tains a non-zero simple ideal I. Let x € G, x > 0, and let I be the set of y in G such
that for some positive integer n, |y| < nx. Then I, is a non-zero idealin G ([, # 0
as x € I,). Now Inl, is a non-zero ideal in I,soInlI, = I, thus I < I,.Hence
y €I implies |y} < nx for some n € N. Thus we have shown I = F(G), and since
F(G) = I by our earlier remarks, F(G) =1 # 0.)

If G is a non-zero finitely generated ordered group we let F#(G) denote the
closed linear span of all p, — p, (x,y € G, x — y € F(G)).

Lemma 2.5. If G is a non-zero finitely generated ordered group then F(G)
is the smallest non-zero G-invariant closed ideal in &+(G).

Proof. ¥f x,y,z€ G with x — ye F(G)thenz v x — z v y € F(G). Hence
p:(p.—p,) = Prye—Poyy € F&(G), so it is clear that F&(G) is an ideal in &1(G).
Since a.(p, — p,) = pyi+. — P,+-, it is trivial that F&(G) is G-invariant. As F(G)is
non-zero, p, — p, # 0 for some x € F(G), so F&(G) is non-zero.

Now let J be a non-zero G-invariant closed ideal in &,(G). We have to show
that F#(G) = J. By replacing J by Jn &((G) if necessary, we may assume that
J € Zo(G) (the reason that Jn &,(G) is non-zero is the easily checked fact that
F(G) 1s an essential closed ideal in &4(G)).

Put I ={xeG:p,—p,eJ}. If x, yeI then p, — p, and o (p,—p,)€J
implies py —p, +pe— Prsy =Po— Prsy€J, 50 x +yel Also x, ye G and
0O<sx<yel implies 0 < py—p, <po—p,€J, s0o pp—p,€J, thus x el
Thus 7 is an ideal of G.

We define I' to be the linear span of 1 and all p, (x € G). In the terminology
of Goodearl [7], I' is a dense ultramatricial «-subalgebra of the AF-algebra &(G).
Hence (/nI')- =J and JnT is the linear span of its projections (see [7], p. 121,
16D, 16E). Since J is non-zero, there is a non-zero projection p in JnTI. Hence
there exists x, ..., x" € G determining projections p,, ..., p, in &;(G) such that
p=Mhp+ ... + 4,p, for some 1,, ..., 2, € C. Recalling a detail from the proof
of Lemma 2.1 we may assume that x! € ... < x" (by re-indexing if necessary) and
then we have p = w(p, —py) + ... + V(P41 —p,) + v,p, for some v; € C.
Of course the projections p; — Ps, ..., Puey1 — Pu» Pn ar€ pairwise orthogonal. Now
if v, is non-zero then p, € Fo(G) (since p, Py — Do, « . -» Pue1 — Pn € Fo(G)) and
this is easily seen to be impossible. Thus we have v, = 0 and of course each v; =0
or 1. In short p is a sum of k pairwise orthogonal projections Pj—P; with

w<v in G. Thus p>p;—p,>0 and peJ implies p; —p,€J, so
u v u v

o~ wW)p;—p;Y=po—p,; ;€J, so v/ —w €I Since p #0, v/ # o/

for some j, we have I # 0. Hence F(G) < [, so if x € F(G) then p, —p, €J as
x € 1. More generally if x,y € G and x — y € F(G) then p, — p,_, € J implies
a(Po == Px-y) =Py — P € J. Hence FF(G) = J. %
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We now need some definitions and results from the theory of crossed products.
We do not state the strongest possible forms of these results, just versions sufficient
for our purposes.

Let (4, G, o) be a C*-dynamical system with A a scparable abelian C*-al-
gebra and G a countable discrete abelian group. A is G-prime if every two non-Zero
G-invariant closed ideals of 4 have non-zero intersection. 4 is G-simple if 0 and A
are its only G-invariant closed ideals. The Arveson spectrum sp() of (A, G, =) is
the set of all p e G™ fer which there exists a sequence of unit vectors f, in A
such that jlz (f)) — p(x)f,]| converges to 0 as 7 — co (x € G). A useful fact: the anni-
hilator sp(x)t+ = {x € G: o, =id}. The Connes spectrum I(z) of (4, G, %) s the
intersection of all sp(xlJ) where J runs over all non-zero G-invariznt closed ideals
of A, and sp(x}J) is the Arveson spectrum of the C*-dynamical system (J, G, &)
got by restriction of a, to J{x € G). I'(«) is a closed subgroup of G* , so if M%)+ =0
then I'(e) = G".

The following two important results will be needed:

Result 1. If A is G-prime and I'(@) = G" then A X, G is primitive.
Result 2. If A is G-simple and I'(z) = G" then AX, G is simple.

Useful references for these resuits, and crossed product theory in general,
are Pedersen [11} and [12].

LemMA 2.6. Let G be a finitely generated ordered group. Then P (G)x,G is
primitive and FF(G)X, G is simple.

Proof. If G =0 then #(C)X, G = C and F#(G)xX,G =0, so there is no-
thing to prove. So we may suppose that G is non-zero, and hence F(G) is non-zero.
If J, and J, are non-zero G-invariant closed ideals of &;(G), then by Lemma 2.5
F#(G) = JynJ, and FS(G) is a non-zero G-invariant closed ideal in % (G).
Thus &1(G) is G-prime, and since J, < J, implies sp(alJy) < sp(a'/y) we have
I'(@) = sp(@|FS(G)). Hence I'@)* = sp(@|FFAG)L = {xe G:a, =id}. Let x €
e}t and ye F(G), y>0. Then a(py—p,) =Pc—Prsy =Py~ P, (siNCE
Po— D, € FF(G)). Nowifz < tinGand [z,1) = {ueG:z<u<t}thenp,  p, =
= Ao 1y - Thus Ao wtyy = Xjoyy » SO X =0, and therefore I'(x)+ =0, implying that
I'(®) = G" . By Result 1 above, &,(G) X, G is primitive. Of course from what we have
just shown, it is clear that (F.%(G), G, &) is G-simple (since any G-invariant closed
ideal of F&(G) is one of &,(G) also) and the Connes spectrum I'(x) = G" for
(F&(G), G, o) also. Hence by Result 2 above FS(G)x, G is simple. (Note that
F&(G)x, G is non-zero since it contains F(G), and this is non-zero.)

If G is an ordered group we let &7 (G) denote the closed ideal in 7(G) gener-
ated by all ¢, = 1 — V. V¥ (x € F(G)*). Clearly #7(G) < K(7(()), and FT(G) =
= K(7(G)) if F(G) =G.
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LEMMA 2.7. If G is a finitely generated ordered group then (G) is primitive
and FI(G) is simple.

Proof. s4(G) is a hereditary C*-subalgebra of &,(G) X, G, so «(G) is primitive
as L (G)X, G is. Let J = p(FF(G)X, G)py. Then J is a closed ideal in #(G) =
= p(FL1(G) X, G)p, (since FL(G)X, G is a closed ideal in &,(G)X,G), and J is
a hereditary C*-subalgebra of the simple C*-algebra F#(G)X,G, so J is simple.

Now let W*: 7(G) — «#(G) be the canonical =-isomorphism. Since &Z(G) is
primitive, so is 7(G). Also WHFT(G)) = J, so FI(G) is simple. (To see that
WHFT(G)) = J, note W¥(gq,) = W*1 — V.V¥) = py — WIWE = py — 0.pe0F =
=po -~ Ppx. Thus x e F(G)* implies W*q,) € po,FL(G)p, <J which implies
WHF T (G)) = J. If G =0 then F#(G) =0, soJ =0, thus WHFIT(G)) =J.If G is
non-zero, then F(G) hasa positive element x, so ¢, # 0,50 W¥(q,)#0, so W¥(F T (G)) =
= J by simplicity of J.) %

Recall that a C*-algebra A4 is prime if every two non-zero closed ideals of A
have non-zero intersection. Every primitive C*-algebra is prime (we are about to
use this fact in a moment) and the converse holds for separable C*-algebras. (The
non-separable case is an open question, see Pedersen [11].)

Let B: G* — B be a semigroup of isometries in the unital C*-algebra B, over
the partially ordered group G. We say that § is nonunitary if f(x) is non-unitary
for all x > 0, x € G. The following lemma will be generalized immediately in
Theorem 2.9 below.

Lremma 2.8. Let G be a finitely generated ordered group and B:G* —> B a
nonunitary semigroup of isometries in a unital C*-algebra B. Then the unique +~homo-
morphism f*: T(G) — B such that B*V = B is injective.

Proof. Let J = ker(ff*). If J is non-zero then G is non-zero (G = 0 implies
T(G) =0, so J =0), so F(G) is non-zero, thus FJ(G) is non-zero. Hence
Jn FIT(G) is non-zero (as J(G) is primitive and therefore prime). As 7 (G) is
simple, J N FI(G) = FI(G),s0 FT(G) = J. Now there exists x € F(G), x > 0,
sowehave g, € J, thus 0 = f*(g,) = f*( — V. V) =1 — B(x)B(x)*, whichimplies
that B(x) is unitary. Since §is nonunitary this is impossible, so J cannot be ron-zero.
Thus f* is injective.

THEOREM 2.9. Let G be an ordered group and : G* —» B a nonunitary semi-
group of isometries in a unital C*-algebra B. Then B*: 7(G) — B is injective.

Proof. Let I be the set of finite non-empty subsets of G, ordered by set inclusion
(ie. i € j iff i = j). Thus I is a directed set. For i € I let G, be the subgroup of G
generated by /, and let ¢': G; > G be the inclusion homomorphism. Likewise for
i < jinIlet @;;:G; — G; be the inclusion homomorphism. Of course all the G,
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are ordered groups and the maps ¢’ and ¢;; are positive. Since G is the union of
all G; (i € I) it is easily checked that G is the direct limit (in the category of all parti-
ally ordered groups) of the direct system (@;; : G; = G,);<; with the maps ¢’ as natu-
ral maps. By Theorem 1.6 7 (G) is the direct limit (in the category of C*-algebras) of
the direct system ((¢;))* : 7(G;) = J(G)))i<; With the maps (¢')*: 7(G)) — T(G)
asnatural maps. Let 4; = (¢))* (7(G)) (i € I). Then T(G) =(UJ{4;:ieI})",since
J(G) is the direct limit.

Let ' : G — G+ be the restriction of ¢°. Now fy' : G; —» Bis a semigroup of
isometries over G; and By’ is nonunitary, since if fi’(x) were a unitary thenyi(x) =0
implies x =0 (¥(x) = x). Hence by Lemma 2.8, (Byy')* is injective. Let V' : G} -
—7(G;) and V: G+ — J(G) be the canonical maps. Then f*(o')y*Vi = g*Vj)f =
= BY’, so f*(@")* = (BY)*. Thus B is an isometry on each 4, (i € I), implying that
B¥ is an isometry on T(G) = (\J{4;:iel})". 2

THEOREM 2.10. Let G be an ordered group. Then T (G) is prime.

Proof. We retain the notation of the proof of Theorem 2.9. Let J be a non-zero
closed ideal of Z(G). Then J n A; is non-zero for some i € I. (For otherwise let-
ting = be the quotient map from J(G) to F(G)/J, = is isometric on each C*-algebra
A;, so m is isometric on Z(G) = (\J{4;:i€I})-, thus J = ker(z) = 0.) Thus
if J; and J, are non-zero closed ideals of 7 (G) then (since [ is directed) J, n 4; and
J; n A; are non-zero closed ideals in some 4;. Now (¢')* : 7(G,) - Z(G) is injec-
tive since (@')* = (V{')* and Vy' : G} — F(G) is a nonunitary semigroup of iso-
metries (which implies (Vi')* is injective by Theorem 2.9). Hence A4; = (¢")*(7(G)))
is z-isomorphic to J(G),), so A; is primitive (by Lemma 2.7), and therefore prime.
It follows that (J;nA;)n(JsnA4;) is non-zero, so J;nJ, is non-zero. Thus
F(G) is prime. A

We inciuded Theorem 2.10 here since one can derive it so easily given one
has set up the machinery to prove Theorem 2.9. Actually however we will show in
the next section that J(G) i1s primitive (for G an ordered group) by cxhibiting explt-
citly a faithful irreducible representation of 7 (G).

THEOREM 2.11. If G is an ordered group then F T (G) is simple.

Proof. Let J be a non-zero closed ideal of #.7(G)and let n be the quotient map
from J(G) to F(G)/J. Let the map f: G+ — F(G)/J be defined by setting f(x) =
= n(V,) (i.e. p = nV). B is clearly a semigroup of isometries and 8% = n. Suppose f
were nonunitary, Then n = f* is injective, so J = 0. Thus f is not nonunitary, and
so there is an element x € G, x > 0, such that f(x) is a unitary. If y € F(G)* then
y < nx for some n € N, so nx =y + z for some z € G+. Hence f(x)" = f()B(z) =
= B(2)B(¥), so P(y) is invertible as f(x)" is. Thus =n(g,) = =(l — V,V}}) =
=1 —BBO)* =0, so FI(G) < ker(n) thus FF(G) = J. %,
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Of course #J(G) is non-zero iff F(G) is non-zero.

COROLLARY 2.12. (Douglas, [4)). If G is an ordered subgroup of R (usual order)
then K(7(Q)) is simple.

Proof. In this case F(G) = G. Hence I(G)/F T (G) is abelian (as 1 — V . V} e
€ F7(G) for all x € G+), so FIJ(G) 2 K(7(G))and we know already that F7(G) <
S K(7(G)), so FI(G) = K(T(G)).

This result is attributed to Douglas because for G an ordered subgroup of
R, V:G* - 7(G) is a nonunitary one-parameter semigroup of isometries in his
terminology, and the corollary follows from [4]. The techniques used by Douglas
to prove this result are completely different from ours.

3. A GENERALIZED THEORY OF TOEPLITZ OPERATORS

We return in this section to partially ordered groups. We exhibit an irreducible
representation of the Toeplitz algebra as a C*-algebra of generalized “Toeplitz”
operators (this representation is faithful for ordered groups). This involves our deriv-
ing a theory of such operators. The results and many of the proofs are closely ana-
logous to the classical special case G = Z, although there are some interesting diffe-
rences. Perhaps the most remarkable fact here is that so much of the classical theory
extends in such generality.

Let G be a partially ordered group, 7 the circle group, and recall thate(x) : G —
— T is the evaluation homomorphism &(x)(y) = y(x) (x € G,y € G"). As is well
known (e(x))re¢ forms an orthonormal basis for the Hilbert space L2 = L¥G"),
and letting P, denote their linear span, it follows from the Stone-Weierstrass theorem
that this =-subalgebra of C(G") is dense in C(G") in the sup-norm topology. The
elements of P are called the trigonometric polynomials (relative to G). Denote by
H? = H*G) the closed subspace of L2 having orthonormal basis (¢(x)),eg+, and let
P e B(L? be the projection onto H2%. If ¢ € L® = L*(G") we define T, € B(H?) by
setting 7,(f) = P(¢f). T, is the Toeplitz operator with symbol ¢ (refative to G). The
map L*® — B(H?), ¢ — T,, is easily seen to be linear and norm-decreasing. Also
Ty = T

If G = Z (with the usual ordering) then of course H? is the usual Hardy space
and we get the classical Toeplitz operators.

If G is a partially ordered group and F is a finite non-empty subset of G,
then there exists x € G* such that x > y (y € F). (Proof :If F = {x', ...,x"} then
each x’ = y¥ — z/ with ¥, z/ € G+. Take x = 3*+ ...+ ") This is used in the next
easy but useful lemma. (Both this result and the next lemma will be often used
tacitly.)

LeMMA 3.1. If G is a partially ordered group and ¢ € Pg then e(x)¢ € H¥G)
Jfor some x in G+.
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Proof. ¢ = Le(y)+ ... + 2,&(") for some ', ...,y" € G, and some/,, ...
.54, € C.Choose x € G+ suchthatx > — ', ..., —)" Thene(x)p = Ze(x + )+
+ ..+ Le(x + YY) e HE Z

As in the proof above we shall often drop explicit reference to G when refer-
ring to the spaces L3(G"), H¥G) and L>(G").
If E is a subset of C then hull(E) denotes its closed convex hull.

THEOREM 3.2. Let G be a partially ordered group. If ¢ € L(G") then (T, =
= {'¢llo and Sp(¢) = Sp(T,) < hull(Sp(p)). (Sp(p) is the essential range of ¢.)

Proof. Let M, € B(L?) be the multiplication defined by M (f) = ¢f. Now the
map L*® - B(L%), ¢ — M, is an isometric =-homomorphism, so Sp(M o) = Sp(p)
Let S = {e(x)f:xe G+, fe H%. Then S~ = L2, since (P;)~ = I2and P, < S.
Suppose that 7, is bounded below, so for some u >0, T\ > u'fi(fe HY,
Then M fe(x)"ll = Tof | > [P@N] = TN > plfl = whe(v)fl. Hence
1M, ()| > migli(g € L?), as S~ = L*. Thus for any ¢ € L®, Sp(¢) = Sp(M,) <=
< Sp(7,). Hence T, | = #(T,) = r(M,) = '¢lle, 50 |T,ll = l@ll,. But an iso-
metric =-linear map p: A — B from an abelian C*-algebra 4 to another C*-algebra
B has the property that Sp(p(a)) = hull(Sp(a)) for all a € 4 (Douglas [5], p. 203).
Hence (4 = L®, B = B(H?), p(¢) = T,) Sp(T,) < hullSp(e)) (9 € L=).

For G a partially ordered group let H® = H*(G) be the set of all ¢ € L®such
that ¢ € H2. Then H® is a closed subalgebra of the Banach algebra L* (since for
¢ € L® we have ¢ € H* iff oH?* = H?).

PROPOSITION 3.3. Let G be a partially ordered group and @, € L*(G"). If p~
or Y € H*(G) then T,y = T,T, .

Proof. If € H* then y H*< H?implies T, T,,(f) = T,P(Yf) = T, ) =P(oyf) =
=T,,(N(fe H?,so T,,=T,T,.If on the other hand ¢ ~ € H*then(T,,,)* = T~ - =
= Ty-T,- (by what we have just shown) = T:T s, thus T,, = T,T,. %,

If G is a partially ordered group then we denote by 7 7(G) the C*-subalgebra
of B(H?®) generated by all T,, (¢ € C(G")). We call 7(G) thereduced Toeplitz algebra
of G. For x € G+, let U, be the isometry T,,, and Q, be the projection 1 — U U¥,
and let U denote the map G* — 7 7(G), x — U,. Uis a semigroup of isometries and
x<yin G* is equivalent to 0, < @, in K(F7(G)) (as we saw already in the proof
of Proposition 1.4). These projections @, commute. Finally since (P;)~ = C(G?)
it is easily checked (using Lemma 3.1) that U, (x € G*) generate 7 *(G).

LeMMA 34, Let G be a partially. ordered group and let J be the lincar span
in 7G) of all T, T, ... T, ~Ty.-.0, (¢1,...,90,€ Pg). Then S € Jimplies that

S = SO, for some xe€ G+.
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Proof. If S, and S, are in J and §; = Sjij; then (S; + AS)Q 4, =
= SlQ_\.lQ,\.1 bx, + /1.SZQXZQX1+,\,2 = SIQX1 + 4805 =S, + 2S, (%€ C). This calcula-
tion shows that is suffices to prove the theorem for § of the form § =7, T, ...

Ty, =Ty ..o, (@1, . ,0, € Pg). Howeversince P is the linear span of all e(x) (x € G)
it follows that we may, again without loss of generality, assume each ¢; =:&())
for some y* in G. In this case choose x € G* such that x > all the elements — y*,
-+, ..., — 0+ ... + ). Then

SU. Te(y")Te(y o Te(yl)e(x) - Te(y") . e(yl)e(x) =
E(y")TE(y" ]_ e Ta(y",)e(yl)s(x) b TE(}’") . E(}'l)t(x) = ... =
= T,ny .. ce(phe(x) T, 0" .. ehey = 0

(true by Proposition 3.3 and since &(3') ... () e(x) € H®, i =1, ...,n). Thus
SU, =0, so SUUF =S(1 — Q,) =0, implying § = SQ..

THEOREM 3.5. If G is a partially ordered group then

1. (Q.) ,eq+ is an approximate unit for K(T'(G)).

2. If o € LX(G"), then T, € K(T(G)) if and only if ¢ = 0.

Proof. 1. (G*, <) is a directed set, so (Q, )xec-r isa net. Let J be defined as in
Lemma 34. If ¢, o,, ..., ¢, € P, then T T Ty, .. Ty =T, ...p)=T,T,

T, = Too,...0, F Too,. ..o, — Ty ... Is inJ. Hence J~ is a closed ideal in

J(G). By Lemma 3.4, S € J implies S = SQ, forsomex € G+, so wehavelimTQ, =
= T'(T € J7). Thus (Q,), s+ i an approximate unitfor J~. Since all 0, € Ky(f’(G)),
J~ € K(77(G)), and since all Q. e J~, I(G)/J™ is abelian, implying that J-2
2 K(77(G)). Thus J~ = K(F(G)) and (Q.), ¢ g+ 18 anapproximate unit for K(7 *(G)).

2. Let ¢ € L® and T, € K(J(G)). Then T,, = lim T,Q,, s0o0 = lim T, U, U},

x x

thus 0 = lim | 7,U,| = lim || Tyuoll = lim @e(0)c = [[9lleo» 50 0 = . %

Part 2 of the above theorem generalizes the classical result that 0 is the only
compact Toeplitz operator (relative to G = Z). K(J"(Z)) is K(H¥Z)), the ideal
of all compact operators on H2(Z).

CoroLLary 3.6. If o, y € C(G™) then T,T, — T,, € K(T*(G)).

Proof. Since (Pg)~ = C(G") it suffices to show the result for ¢, Y € P;. But
this case is obvious from the proof of Theorem 3.5. %

THEOREM 3.7. Let G be a partially ordered group.
1) The map

C(G") » T(GIK(T(G) o~ T,+ K(T(G))
is a x-isomorphism.
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2). If S € T(G) then there exists unique ¢ € C(G") and unique K € K(7*(G))
such that S =T, + K.

Proof. Let p denote the map in 1). Then p is clearly =-linear and by Corollary
3.6 p is multiplicative. p is injective by Theorem 3.5 and surjective since T, (¢ €
€ C(G")) generate 7 (G). This proves 1), and 2) follows immediately from 1).

LeMMA 3.8. Let H, be a dense linear submanifold of a Hilbert space H, and
(S,)iea anetin B(H). Suppose that 1im (S, f, g) exists for all f, g € Hy and that there
A

is a positive number p such that |(S.f, i<pllf|' gl (A€ A, f, g€ H). Then there
exists S € B(H) such that S = lim S, in the weak operator topology on B(H).
)

For a proof, see Halmos [8].

LeMMA 3.9. Let G be a discrete abelian group and suppose that the matrix
(@, Jx,yec 0f S€ B(L¥G")) with respect to the orthonormal basis (¢(x))xec is a Laurent
matrix (i.€. 8,y yo. =@, ,(X,y,2€ G)). Then S is a nultiplication, S = M, for
some @ € L*(G™).

(Explicitly: a, , = (5((3)), &(x)).)
For a proof, see Murphy [10].

THEOREM 3.10. Let G be a partially ordered group, and let S € B(H*G)).
Then S is a Toeplitz operator {relative to G) if and only if UFSU, = S(xe G*).
Proof. If S =T, for some ¢ € L™ then U}SU, =T oToTew = Tggyeiey =
=T, = 8§ (as g(x) € H*). Conversely suppose that UZSU, = S(x € G*). Define
S, € B(L?) by setting S.(f) = e(x)SPe(x)f, for x€ G+, and note that ['S,i'<
<iiS[. Also for f, g€ H®, (S.f, 8) = (e(x)SPe(x)f; g) = (UFSU.f, g) = (SF, ).
Now let ¢, @, € P; and put p, = (S,9,, ¢). We show that the net (1), g
converges by showing that there exists x, € G* such that u, = Hx, for xzx,.
Certainly there exists x, € G+ such that ¢, ¢, € e(xo)H®. Let ¥; = e(x,)p;, so
Y, € H®. Now if x>x, then p, = (S.e(xol1, e(xo)¥) = (Se(x — xoWy, &(x —
— Xol) = (Sm—xolllls Yo) = (SY¥1, ¥) (asyy, Y€ HY) = M- Since (Pg)~ = L*it
follows from Lemma 3.8 that there exists 7 € B(L? such that T =1lim S, in the
X

weak operator topology. Let(a, ,)x,yec be the matrix of Trelative to the basis ((x))xe ¢
of L*. If y,ze G andx € G* then a,, ... = (Te(2)e(x), e(y)e(x)) = lim (S £(x)e(z),
t

6(e()) = im (S,4,8(2), 8(3) = lim (S,&(z), e(y)) (since lim o,y = lim ). Thus

Qi :4+x =4a,., and one can now immediately extend this equation to arbi-
trary x € G since G = G+ — G*. Hence by Lemma 3.9, T = M, for some ¢ € L=,
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Clearly, for f, g€ H?, (T,f, g) = (¢of, &) = (Tf, g) =1im (S.f, g) = (5. &) (as
(S«/, &) = (Sf, g))- Thus S = T,,.

The next proposition is important — it shows that H®(G) displays “analytic
behaviour’’.

PROPOSITION 3.11. Let G be a partially ordered group. If ¢ and @ € H®(G) then
¢ € Cl. Vi

Proof. If x € G*+ and &(x) € H? then —x € G+, sox = 0. Now ¢, ¢ € H® and
xe€ G+, x >0 implies 0 = (¢, &(x)) =Saa(x) (as e(x) € (H?HL). HenceS qpax—) =0,

ie. {p, &(x)) = 0. But (o, &x)) =0 for x € G\G+ also, since ¢ € H®. Thus ¢ €
€ Ceg(0) = Cl. : %,

If G is a partially ordered group and ¢ € H®(G) we say that T, is an analytic
Toeplitz operator (relative to G). Of course T, is subnormal (it is the restriction of
M,). All analytic Toeplitz operators commute. The map H® — B(H?), ¢ —T,, is
an isometric algebra isomorphism onto the closed subalgebra of all analytic Toe-
plitz operators.

THEOREM 3.12. Let G be a partially ordered group.

1) If S e B(HXG)) then S is an analytic Toeplitz operator (relative to G) if
and only if US = SU, (xe G*).

2) The analytic Toeplitz operators relative to G form a maximal commutative
subalgebra of B(H*G)).

3) If ¢ € H(G) then Sp(T,) = Sp"w((/)).

4) Every analytic Toeplitz operator has connected spectrum.

Proof. 1) If S is an analytic Toeplitz operator then SU, = U.,.S since the U,
are analytic Toeplitz operators. Conversely if SU, = U_,S (x € G*) then UfSU, =
= §,s0 § = T, for some ¢ € L* by Theorem 3.10. Now for x, y € G+, (o, &e(x —
— ) = (9e(), &(x)) = (T, U,&(0), &(x)) = (U,T,(0), e(x)) = (T,€(0), e(x — »)). Thus
if x —y ¢ G*, then (@, e(x — ¥)) = 0. So ¢ € A*. This proves 1), and 2) follows
immediately from this.

3) Let A be the maximal commutative subalgebra of B(H?) of all analytic
Toeplitz operators. Then Sp,(T,) = Sp(T,) for ¢ € H®. But Sp,(T,) = Spﬂw((p)
since the map H® — A, ¢ — T, is an isomorphism. This proves 3).

4) Let X be the character space of H®.If ¢ € H* is anidempotent then ¢ = ¢?,
thus ¢ = ¢ € H®, so ¢ € Cl by Proposition 3.11. Thus ¢ = 0 or 1. Since H* thus
has no non-trivial idempotents it follows from the Shilov Idempotent Theorem
that X is connected. Now if ¢ € H*® and ¢" denotes its Gelfand transform
then Sp, (@) = ¢"(X) is connected, i.e. Sp(T,) is connected .



322 G. §. MURPHY

THEOREM 3.13. If G is a partially ordered grovp then 7 (G) and K(77(G)) are
irreducible algebras on H¥G). Moreover if G # 0O then im Q. =1 in the sirong

operator topology on B(H¥G)).

Proof. 77(G) is irreducible iff its commutant B = CI iff 0,1 are the only pro-
jections in B (since B is a von Neumann algebra). Now for Q€ B, QU, = U, 0
{(x € G*), so Q is an analytic Toeplitz operator, thus, Sp(Q) is connected. Thus
if Q is a projection, then Sp(Q) = {0} or {l1},s0 Q@ =0 or 1. Hence B = C! and
T Y(G) is irreducible on H2.

If G =0 then dim(H* =1, so K(G)) is irreducible on H2. So we sup-
posc that G is non-zero. Let M = (K(Z(G)YHY) ™. f M =0 then K(F(G)) =
=0,5¢c Q, =0 (x € G*), thus G* = 0 which implies G = 0. Thus M # 0. Since M
reduces .7 N(G), M = H*. If fe K(TG)H? then f=T1fi + ... + T,f, for some
Ty,....T,€e K(ZYG)) and some f;, ..., [, in H2. Thus lim Q. f = Iim Q.71\f; +

+ ... +0im Q.T.f,=ThH+ .... + T f,=f because T; = iim Q.T; (=1, ...
..., n). Hence f = lim Q. f (f'e I1*) as K(T™(G))H? is dense in H?, solim @, =1 in

the strong operator topology on B(H?).
Now suppose that N is an invariant closed subspace of H? for K(7(G)),
and fe N, Te 79G). Then Tf = lim TQ.f is in NV, since 7Q0,.f € N(x € G~). Thus

N is an invariant subspace for 77(G), so N = 0 or H2. We have thus shown K(7(G))
is irreducible on H2. Z

Recall that if G is a partially ordered group then the map U: G* - 7 (G) is
a semigroup of isometries, so it induces a unique =-homomorphism U*: 7(G) —»
- J(G). Since U, (x € G*) generate 7 (G), U* is onto. We can thus regard U¥
as an irreducible representation of 7(G) on H*G). This representation is not always
faithful as the next example shows:

ExampLE. M = N\{1} is a cone on Z. Thus (Z, M) is a partially ordered
group. Note that 2 and 3 are not comparable for the partial order <, . Let
G, =(Z, M) and G, = (Z, N). The identity map ¢ : G, = G, is a positive homo-
morphism, so it induces a =-homomorphism ¢* : 7(G,} - J(G,) and this is sur-
jective since ¢ is surjective. Hence the restriction ¢* : K(7(G,)) - K(7(Gy)) is
surjective, and thus non-zero. If K(7(G,)) were simple then this restriction map ¢™*
would be a =isomorphism, so 2 <y 3 implies g, < q; in K(7(Gy)), so ¢¥(q.) <
< ¢*(qy), implying ¢, < ¢, in K(T(GY)), so 2 <,; 3, which is false. Thus K(5(G,))
is not simple. However it is easily seen that all the Q) are of finite rank (x € M), so
K(7'(G,)) = K(H¥G)) (as (QD)yenr are an approximate unit for K(7%(G,)), and
since K(7(G,)) is irreducible on H%G,) we therefore deduce that K(97(G,)) =
= K(H*G,)). In particular K(J7(G;)) is simple. Since K(Z(G,)) is not simple,
the map U* : 7(G,) - T*(G,) is not injective.
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THEOREM 3.14. [f G is an ordered group then the canonical map U* . T(G) -
—= TG) is a faithful irreducible representation of I(G) on H¥G).

Proof. The map U : G+ — 7(G) is a nonunitary semigroup of isometries,
so by Theorem 2.9 U* is injective. i

4. CONVERSES OF SOME EARLIER RESULTS

The idea of this section is to show that a number of the stronger results
we proved earlier are in fact “best possible”. For example if G is a torsion-free
partially ordered group for which K(Z7(G)) is simple we show G is isomorphic
to an ordered subgroup of R (cf. Corollary 2.12). One can interpret Theorem 2.9
as saying there is essentially only one candidate for the title “Toeplitz algebra®
if G is an ordered group. More specifically it implies that if B is any C*-algebra
generated by a nonunitary semigroup of isometries  over G then f*: 9(G) - B
is a sz-isomorphism. We show that this result characterizes the ordered groups
amongst the torsion-free partially ordered groups.

If G is an abelian group we call a cone M in G maximal if M is not
contained in any other cone of G. A simple application of Zorn’s Lemma implies
that every cone of G is contained in a maximal cone of G. The following ele-
mentary result is probably known, but we include a proof for the sake of
completeness.

Lemma 4.1. If G is a torsion-free abelian group and M a cone of G then
M is a maximal cone of G if and only if (G, <,,) is an ordered group (i.e. <y is
a total ordering ).

Proof. It is trivial that if (G, <,,) is totally ordered, then M is maximal (this
does not require G to be torsion-free). Suppose conversely that M is maximal.
First, let x € G\{0} such that nx € M for some positive integer n. We show that
xeM: Define N={y+mx:ye M, me N}. Clearly 0e N, N+ N N and

G = N — N. Suppose that ze Nn(— N), so that z =y, + myx = — 3, — mex
for some y,,y,€ M, and some m,,m,€ N. Thus 0 <, n(y, + y9) = — (1 +
+ my)nx € 0, s0 n(y, + y,) =0 = — (my + my)nx implying that y, + 3, =0 =

= (m, + my)x (since G is torsion-free), thus 3, = 3, = 0 (since yy, ys =, 0), and
m, + my =0 implies m;,my, = 0. Hence z =0, implying that Nn(—N) =0.
Thus N is a cone, and N2 M implies N = M, so x € M.

Now suppose only that x e G\(— M). Again let N ={y+ mx:ye M,
m € N} and again we have 0e N, N+ NeNand G =N—N. If ze Nn(—N)
then z =y, + mx = — y, — myx for some y,,y, € M, and some m,,my € N,
§0 3y + Yo = — (my + my)x, thus n(— x) € M where n = m; + m,. If n > 0 then
by the earlier part of this proof, — x € M, so x € — M, which is false. Thus iz =0
implies m; = m, =0, so y; + 3, = 0, which implies »,, y, = 0 (since 0 <,; 3, y),
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s0 z = 0. We therefore have N n(— N) =0, thus N is a cone, and sinceM < N,
M = N.Thus x € M. We have shown that G = M J( — M), ie. (G, <,,)istotally

7

ordered. %

Of course the hypothesis that G is torsion-free is necessary in Lemma 4.1,
since ordered groups are torsion-free.

THEOREM 4.2. Let (G, <) be a torsion-free partially ordered group such that
Jor every unital C*-algehra B and every nonunitary semigroup of isometries §: G+ —
— B, B* is injective. Then (G, <) is an ordered group.

Proof. G+ is contained in a maximal cone M, so if ¢ denotes id, then ¢
is a positive homomorphism from G, = (G, G*) to G, = (G, M), and so induces a
z-homomorphism ¢* from Z(G,) to F(G,). Since ¢ is surjective, so is oF,
The semigroup of isometries f§ : G} — T(G,), x — @*(V,), is nonunitary (for if f(x)
is unitary then ©*(V,} = ¥V, is unitary, so ¢(x) =0, i.e. x = 0). Hence f* = ¢*
is injective. Thus if x, y € G+ then we may suppose x <, ¥ (since (G, M) is totally
ordered). Hence g, < ¢, in K(Z(Go)), so ¢™(q,) <¢*(g,), implying that ¢, <gq,
in K(7(G)), so x < 1. More generally if x, y € G then there exists z € G* such that
x,p <z imply z-—y, z—x€G*, so z —y, z— x are comparable in (G, <),
thus x, y are comparable in (G, <). Thus (G, <) is totally ordered. 2

THEOREM 4.3. If G is a torsion-free partially ordered group for which
K(7(G)) is simple then G is order isomorphic to an ordered subgroup of R.

Proof. (Two partially ordered groups G,, G, are order isomorphic if there
exists a bijective map ¥ : G; — G, such that  and ¢ ~! are positive homomorphisms.)

First we show that G is simple: Let I be an ideal of G, and iet /i : I - (v and
¢ : G — G!I be the inclusion and quotient homomorphisms respectively. Siiice @
is surjective, so is @* :J(G) - Z(G/I), and hence also the restriction map
¢*  K(T(G)) = K(T(GI)). As K{.7(G)) is simple this restriction map ¢* is zero or
injective. In the first case we have K(J(G/I)) =0, so G/I =0, so G =1 In the
second case for x € I'*, 0™%(q,) = iy =90 =0, 50 q. =0, so x =0. Thus, I'* =
= 0 implying that I = 0. This shows G is simple.

Now we show G is totally ordered: Using the same trick as in the proof
of Theorem 4.2, therc is & maximal cone M containing G+. Let ¥ =id,, G,=
= (G, G*), and G, = (G, M). Thus ¢ is a positive homomorphism from G, to G,.
As  is surjective, so is ¥ : I(G,) — F(G,), implying that the restriction map
Y¥ K(7(GL) = K(T(G,)) is zero or injective (again we are using the simplicity
of K(7(Gy))). In the first case K(7(Gy)) = 0 which implies G = 0, so G is order
isomorphic to the ordered subgroup 0 of R. In the second case if x,y € G+ we
may suppose that x <, s0 g,.<q, In K(7(Gy), ie. ¢¥(g,)<9™(g,), so q.<gq,,
in K(7(Gy)), thus x<yp. This implies that (G, <) is totally ordered.
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Thus G is a simple ordered group, so G = F(G) ={xeG: for all y>0
|x|]<ny for some ne N}. (For if xe G and x>0 then I, ={ze G: |z|<nx
for some n € N} is a non-zero ideal of G, so I, = G.) Thus G is an archimedean
group in the terminology of Rudin [14], and by a well known result G is order
isomorphic to an ordered subgroup of R ([14], p. 194). )

One can thus summarize Theorem 4.3 and Douglas’ result (Corollary 2.12)
as follows: For G a torsion-free partially ordered group K(J(G)) is simple iff G
i1s a simple ordered group iff G is order isomorphic to an ordered subgroup of R.

Recall that a C*-algebra A is elementary if there is a Hilbert space H such
that A4 is s-isomorphic to K(H).

THEOREM 4.4. Let G be a torsion-free partially ordered group. Then K(T(G))
is elementary if and only if G is order isomorphic to 0 or Z.

Proof. If G =0 then F(G) =C, so K(7(G)) =0 = K(H) for H=0. If
G = Z then by Theorem 3.14, K(7(G)) is »-isomorphic to K{(Z (G)). But K(Z77(G)) =
= K(H*G)) since all Q, (x € G*) are finite rank, and K(J(G)) is irreducible on
HYG).

Conversely, suppose that K(7(G)) is elementary and that § : K(7(G)) — K(H)
is a x-isomorphism for some Hilbert space H. Then in particular K(F(G)) is simple,
so we may assume that G is an ordered subgroup of R, and without loss of
generality suppose also G # 0. Since all fi(g,) (x € G*) have finite rank in K(H)
we may choose x € G, x > 0, such that the rank of f(g,) is minimal. Then x is
a smallest positive element of G. Hence G = Zx, so G is order isomorphic to Z.

We finish with a few remarks and questions. The author showed in [9]
that for G an ordered subgroup of Q, we have K(7(G)) is an AF-algebra and
the group K,(K(Z(G))) is isomorphic to the group G. Is the converse true, i.e. if
K(7(G)) is an AF-algebra is G isomorphic to an ordered subgroup of Q? These
commutator ideals are not AF-algebras in general, nor is K,(K(Z(G))) = G always
true. The author hopes to deal with the K-theory of these algebras more fully in
a forthcoming paper.
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