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INVARIANT SUBSPACES FOR ¢-OPERATORS HAVING
BISHOP’S PROPERTY (8) ON A LARGE PART OF THEIR
SPECTRUM

E. ALBRECHT and B. CHEVREAU

To the memory of our friend C. Apostol who made the first successful attempts to apply
the S. Brown technique outside the Hilbert space framework.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In [4] it is proved that a hyponormal operator with thick spectrum has non-
trivial invariant subspaces. One essential ingredient in the proof is a result of [§]
to the effect that hyponormal operators are subscalar. In fact, as pointed out in [4],
only the subdecomposability of hyponormal operators is needed to make a certain
variant of the S. Brown machinery go through. In Sections 3 and 4 of this paper
we fully explicit and also extend this aspect. Using the internal characterization
of sub-residual-decomposable operators by means of Bishop’s property (f8) obtained
in [1], we thus prove that operators S € Z(X), where X is topologically isomorphic
to a quotient of two closed subspaces of /7, 1 < p < co, and S or S* has property
{B) on a large part of its spectrum, have nontrivial invariant subspaces. Then,
after developing a version of the S. Brown technique adapted to our context
{inspired by that of [2] but simplified by the use of convexity properties) we obtain
additional local structure theory results, the most important one having to do with
the richness of the lattice of invariant subspaces in the case that S or S* has
property () on a thick part of its essential spectrum.

Before stating our main results we first recall some basic notations and facts
from local spectral theory [6, 10]. Let X be a Banach space, T € Z(X), and let F
be a closed subset of the spectrum o(T) of 7. The operator T is said to be F-
-decomposable if for every finite open covering U, U,,..., U, of o(T) such that
F < U, there are X; € LatT (0 < j < n) with o(T|X}) = U; and X = X, + X; +
+ ... 4+ X,. It turns out that it is sufficient to require this property for n = 1.
For general n € N it can be derived from this special case (cf. [10], Theorem IV.4.26).
Of course every T € £(X) is o(T)-decomposable. Thus, the definition is only inte-
resting if F is a proper subset of o(7). If F is not specified, then we speak of
residually decomposable operators.. A ©-decomposable operator will be called
decomposable in the sense of C. Foias. )
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If U< Cis open, we write @(U, X) for the space of all analytic X-valued
functions on U. Endowed with the topology of uniform convergence on all compact
subsets of U, €(U, X) is a Fréchet space. For T € #(X) a continuous lincar map-
ping af : O(U,X) - (U, X) is defined by (2¥f)z):=(z — I)fiz) for ze U,
J€ 6(U, X). Let now G be an open set in C. We say that an operator 7 € .Z(X) has

— the single valued extension property (SVEP) on G if for all open subsets U
of G the mapping of : ¢(U, X) - (U, X) is injective;

— Bishop’s property (B) on G (cf. [3]), if for all open subsets U of G the
mapping af : 6(U, X) = €(U, X) is injective and has closed range.

If T e #(X)is F-decomposable, then T has property (8) and hence the SVEP
on C\F (see [10], Lemma [V.4.16). Also, if T € %(X) has property () on G
then T | Y obviously has property (f) on G for all Y € LatT. Conversely, it has
recently be shown in [1] that, if § e #(X) has property () on C\F for some
closed F c: ¢(S), then there exists a Banach space Z and an F-decomposable operator
T e #(Z) such that § is simijar to T] Y for some Y € Lat T; the operator S wiil
then be called F-subdecomposable (resp. subdecomposable if F =©). Moreover,
if X is a (separable) Hilbert space then also Z can be chosen to be a (separable)
Hilbert space. If X is topologically isomorphic to a quotient X,/X; of two closed
subspaces of /7 =/P(N) (I < p < oo) then therc are an open rectangle R = a(9),
two closed subspaces Z; « Z; of £7, and an operator T € ¥(Z,/Z,) which is (F § ¢R)-
-decomposable such that S is similar to T | Y for some Y € Lat T (sce [1] for details).

Let Q be an open set in C. Reczlil that a subset G < Q is said to be don-
nating for Q, if for all fe H®(Q) we have

| )} = | ’\' b= i 0 .
ig%f())‘ §lé%f(/)‘ [FAGPs

We can now state our first main result.

1.1. THEOREM. Let X be a Banach space which is topologically isomorphic
to a quotient of two closed subspaces of (P (1 < p < co) and let S be an operator
in L(X) such that S or S¥ has property (B) on C\F for some closed F < o(S).
Suppose that there exists a sequence (Q,)%., of open sets in C such that

O #Q,cQ,,, forall neN,

) Q, N o(S) is dominating in @, for all n € N,
Q.. N o(S) is dominating in Q= \JQ,, and Q. NF=0.
n. -1

Then S has a nontrivial invariant subspace.

In particular, if 6(S)\F has nonempty interior then there is always a sequence
(2,)%., of open sets in a(S)\F satisfying (1) and S must thus have a nontrivial
invariant subspace. In this case we will show that even Lat# g is nontrivial, where
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W' is the closure of {f(S) |/ rational with poles off o(S)} in the weak operator
topology (WOT). This fact and Theorem 1.1 will be proved in Section 4. In the
Hilbert space case we obtain:

1.2. CorROLLARY. Let 5 be a Hilbert space and let S € L (#’) be an operator
such that S resp. S* (here we mean the adjoint operator) has property () on C\\F,
resp. on C\F*, where F* :={z; z€ F}. Suppose that there exists a sequence
(2,)2.1 of open sets in C satisfying (1). Then S has a nontrivial invariant subspace.

Proof. Of course, we may assume that 3# is separable. Because of (1) #
must be infinite dimensional. Hence, 5 is isometrically isomorphic to ¢2 = £2/{0}
and we are in the situation of Theorem 1.1. :

1.3. COROLLARY. Let S be a subdecomposable operator on a Hilbert space H
such that inta(S) # Q. Then S has a nontrivial invariant subspace.

Our next main result states that Lat S will be very rich if (1) is satisfied for
the essential spectrum o,(S) instead of ¢(S). More precisely,

1.4. THEOREM. Let X be as in Theorem 1.1 and let S € £(X) be an operator
such that S or S* has property (B) on CN\F for some closed F < o(S). Suppose
that there exists a sequence (Q,)2., of open sets in C such that (1) is fulfilled with ¢(S)
replaced by 6S). Then there exists 4, N € LatS with /" < 4 such that N
is infinite dimensional and such that Lat S contains a sublattice {order) isomorphic
to Lat M)A, the lattice of all closed subspaces of MIN.

Notice, that a sequence (2,), setisfying (1) for o (S) will exist if ¢ (S)\F
has nonempty interior. Theorem 1.4 will be proved in Section 5.

1.5. COROLLARY. Let # be an infinite dimensional separable Hilbert space
and let S € L (H) be as in Corollary 1.2. Suppose that there is some sequence
()., of open sets satisfying (1) with o(S) replaced by ¢,(S). Then LatS has
a sublattice which is order isomorphic to Lats.

Notice, that in this case .#/A" is topologically isomorphic to #.

1.6. COROLLARY. Let S be a subdecomposable operator on a separable infinite
dimensional Hilbert space 3 such that intc(S) # ©. Then Lat S contains a sub-
lattice order isomorphic to Latif.

This result seems to be new even for the special cases of subnormal or hypo-
normal operators.

It should be noted that the present methods do not admit an immediate gene-
ralization to arbitrary Banach spaces. Indeed, the Rosenthal theorem used in Sec-
tion 2 actually characterizes Banach spaces not containing ! as a closed subspace.
Also the version of Lemma 5.3 needed for the case X =/! (i.e. ¥ = oo and weak
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nuil sequence replaced by weak* null sequence) does not hold. In this connection
a closer look to the example found by Read [9] of an operator S € £(/*) without
nontrivial invariant subspaces could be of some interest.

2. A CHARACTERIZATION OF THE LEFT ESSENTIAL SPECTRUM FOR OPERATORS
ON SEPARABLE BANACH SPACES CONTAINING NO CLOSED SUBSPACE
TOPOLOGICALLY ISOMORPHIC TO ¢!

Let X be a Banach space and T e £(X). Recall that the left essential spectrum
o1 (T) is the set of all i€ C such that ker(A — T) is infinite dimensional or such
that ran(Z -— T) is not closed. The following proposition is well known for Hilbert
spaces. In fact, in this case, the sequence (x,)?., may be chosen orthonormal and
one may take x¥ = x, for all ne N.

2.1. PrROPOSITION. Let X be a separable Banaclh space such that no closed
subspace of X is topologically isomorphic to /* and let T € £(X). Then a point
Le Cis in o (T) if and only if there are sequences (x,)L., in X and (x})? , in X*
such that

@) 'x,ii = 1 forali n € Nand x,, - 0 for n — oo in the weak topology o(X, X*).

) ik — x| =0 for n > oo,

©) lix¥i=1 for all ne N and x¥ -0 for n - oo in the weak* topology
o(X*, X).

(d) The limit n 1= lim {x%, x,> exists and n > 1/2. (Here, {-, -) denotes

R=00

the duality (X*,X>.)

Proof. (1) Fix an arbitrary 4 € 0,(T).
() First we construct a sequence (x,)?., in X satisfying (a) and (b). For this
purpose we consider two cases:

Case 1: dimker() -- T) = oco. Then, by the Riesz lemma there is a sequence
(@)1 in ker(A — T) with {ju,ll =1 (n € N) and }ju, —u,| > 1/2 forall u,me N
with n # m. By the complex version of the Rosenthal ¢* theorem (see [7], p. 201), the
sequence (#,)7° . has a weak Cauchy subsequence which will be again denoted by
()2 1. Therefore, u,,, —- u, — 0 weakly for n — co. Since the sequence (l|u,+, —
—u,i"HP.; is bounded, the sequence (x,)?.;, defined by

K = ”un+1 - un”_l(un+.l - ll"),

tends weakly to 0. It follows that (x,)7., satisfies (a) and (b).
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Case 2: dimker(). — T') < oco. Then ran(2 — T) cannot be closed. Moreover,
as a finite dimensional space, ker(J — T) has a topological complement
YelatX : X =Y @ ker(2A — 7). Since (1 — T)Y) =ran(. — T) is not closed,
there is some sequence (v,).; in Y such that |ju,|| =1 for all n€ N and

) (A —Tu,]l >0 for n > oo.

As in the first case we may now assume (dropping to a subsequence) that (¥,)%.,

is a weak Cauchy sequence. The sequence (1,)., cannot have any norm conv ergen

subsequence. Indeed, if u,,, — u in Y, then, because of (2), we would have u e Y n

nker(Z — T) = {0} in contradiction to 1 = lim |juy,ll = ||ull. Since (u,)., has
H=>C0O

no norm-convergent subsequence there are some ¢ > 0 and a subsequence ()71,
such that

inf {4 — Wjmanyll 2 &
neN

Let  x, := |t — Ujne )| 7> Wiy — Ujwsnr)- It s straightforward to
check that the sequence (x,)%., satisfies (a) and (b).

(B) Because of (¢) we now have a sequence (x,)?.; with properties (a) and (b).
Notice, that then also every subsequence of (x,)3>., must have these properties. For
the construction of (x¥)?., we first remark that by the Hahn-Banach theorem
we can find v} € X* such that

3) okl = | = (v¥, x,> for all ne N.

The unit ball XF of X* is weak* compact and, due to the separability of X, metri-
zable in the weak® topology. Hence, by passing to subsequences (if necessary) we
may assume that v} — v* € XF for n —» oo with respect to o(X*, X). Then
wk 1= ovFf — v* >0 for n — oo with respect to o(X*, X) and {wi| < 2 for all
n € N. Moreover, because of (a) and (3), we have

lim {w¥, x,> =lim (v}, x,> =1,

n—-»o0 n—roo

and therefore

I £ 6 :=liminflw}| < 2.

n—ro0

The sequence (x¥)%2., with x¥ := ||w}¥|~*w, now satisfies (c). Taking again subse-
quences, we may assume that |[w¥|| - J for n — co. It follows that

ok xy = [wrll=Xwik, wp > 1/6 2 1/2
for n —» oo. Hence also (d) is fulfilled and the construction is complete.

10 — 1475
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(II) Conversely, suppose now that for a given 2 e C there are sequences
()R 1 in X and (x7)% ., in X* satisfying (a)—(d). If dimker( — T) = oo then
/. € 0(T) and we are done. Hence, suppose that dimker(2 — T) < co and assume
that ran(i — TI') is closed. Then the mapping S, : X/ker(. — T) - X induced
by . — T must be bounded below. Hence, because of |'(2 — T)x,|i = 0 there exist
¥, € ker(Z — T) with }lx, — »,| = 0 for n — co. As ker(/. — T) is finite dimensional,
the bounded sequence (y,)7-. has a convergent subsequence ()y)P.1 with
¥y :=lim yy,, € ker(2 — T). But then we also have x;(, — y in norm and because

H=Co

of (a) obtain y = 0. This gives the contradiction

1 = lim [lxll = 2}l =0.

Hence, ran(2 — T) cannot be closed and we obtain 1 € ¢,(T).

2.2. REMARK. The proof in (II) shows that the existence of a sequence (x,).;
in X satisfying (a) and (b) already implies A € a,(T) (without any restrictions for the
Banach space X).

3. LOCAL APPROXIMATION

Throughout this section, Z = Z,/Z, will be a quotient of two closed subspaces
Z,c Zyof 7,1 < p < oo, and T € L (Z) will be a fixed F-decomposable operator,
F a closed subset of o(7T). We write

Frp={A=AcC;AnF=0 or Fc 4}
and we define for 4 € Z
&4, T) := Znranas ™

where we identify Z with the set of all constant functions in O(C\4, Z). Then
&(4, T) € Lat T (see [10], IV.4.19 and (4.2) in the proof of IV.4.21) and the mapping

T Fp—>LlatT, A—E(A, T)
1s a spectral capacity for T, i.e. it has the following properties:
4 6O, T)=1{0},8C, T)=2Z.
(=] oo
6 ¢ ( M Au> T) = (M 6(4,, T) for every sequence (4,)52; in Fp.

"=l

(6) For every finite open covering {U,, U,, ...,U,} of o(T) with F < U,

n=1
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and UynF=0 (j=1,...,n) we have
Z=6WUy, T)+ U, T)+ ... + &U,, T).
() VA e Fp:0(T|6A, T)) = Ano(T).

For the proof we refer to [10], IV. 4.19—4.26.

One knows from [10], IV.5.5, that the transposed operator T# € £(Z*) is
also F-decomposable. It turns out that the spectral capacity 6(-, T*): # - LatT*
of T* is given by

(8) 84, T*) = &(T)\4, T)* for A e F,,

where &(@(T)\A, T):=\J{EB, T); Be F, B < o(T)\A}. Indeed we have
o(T* | 8(@(T)\A4, T)*) = 4 by [10], IV.5.3, and hence &(@(T)\4, T)* < &(4, T*).
Conversely, if x*e &(4, T*), then x* = (L — T*)f*(1) on C\A4 for some
f* e O(C\A, Z%). Fix an arbitrary x € &(0(T)\A4, T). Then x € &B, T) for some
Be F with B < 6(T)\A < C\4. For 1€ C we define

0 = (x*, (A —T'&B, T) x> for ie C\B
7 {(f*().), X5 for 1 € C\A.
¢ is well defined since for 1 e (C\B) N (C\A) we have
%, — T| 8B, T)xy =<0 — THIR), 0. — T| &8, T) x> =

='W, A-D0. - T

E(B, TH %) = {f*(N), x).

It follows that ¢ is an entire function vanishing at co. Thus ¢ = 0 on C. For
{A] > ||T|| we obtain

0 = ()= <x*, (A — T|£(B, T)) x> = (3%, (4 — T)"Mxd =
= ¥ AT, T,

This implies {x*, T"x> =0 for all n€ N;. In particular {x*, x> = 0. Hence
x* € &(6(T)\A, T)* and the proof of (8) is complete.

Let now Q, U be two bounded open sets in C with @ < U c U = C\\F.
We write T§:= T*]é”(??, T*). For x€Z and y*e &(Q, T*) we define
x Oy y* e HPU)Y* by

x Qe % = f[TEy*, x> for fe HU).
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Here f+> f(T3) denotes the analytic functional calculus for 7. Wotice, that
a(T3) < Q, so that f(T?) is defined for fe H®(U). It is clear that

VX € Z, yP e 8(Q, T*) : |Ix Qe y®] < Kool ¥l ¥

with a constant K, ;, independent of x and y*.
Let us show that the definition of x [J, 3 is consistent with respect to changes

in Q and U. Indeed, if Q < Q then 6(Q, T%) < &(Q, T*) and hence f(T%) =
=f(T3) | 62, T*) (notice that o(T) < o(TE) < Q@ < U). It follows that

ATEW®, x> = ATH*, x> for all x€ Z, y¥ e §(Q, T%), fe H?U).

Recall, that H*(U) is a dual space, H®(U) = Q(U)¥, where Q(U) =
= LNU, w)/* H*®(U) (with respect to the planar Lebesgue measure ). Let now also
U’ be a bounded open set with U< U’ and U'n F =0@. Then the restriction
mapping

rg tHO(U') » H°(U), rg (f) i=f|U for fe H*(U")
is obviously continuous with respect to the weak* topologies. Hence, the mapping
&) JY 1 QU) - QU") with JI(L):= L-rl] for Le Q(U)
is continuous. Observe that
(10) ]|Jg'(L)]]Q(U,) < IILHQ(U) for all Le Q(U).
Direct computation shows that
03)) (U (x Oy ¥ =x Oy y*  for all xe Z, y* € £(Q, T*).

Hence [, is also consistent with respect to U.
Notice, that +Z" and hence also JJ' is compact if U< U'. The following
lemma furnishes some important slightly less elementary propertics of the linear

functional x O, y*.

3.1. LEMMA. (a) For any x€ Z, y* € §(Q, T*) the functional x[J;)* is
weal™® continuous on H®(U) and hence (x, y*) — x [y ¥v* is a continuous bilinear
mapping from Zx6(Q, T*) into Q(U). Thus, in particular, in (11), YY* can be

replaced by J7'.



INVARIANT SUBSPACES FOR ¢P-OPERATORS 347

(b) For any w* € £(Q, T*) and any sequence (x)n>1 in Z converging weakly
to 0 we have

lim{lx, Oy W*”Q(v) = 0.

n—c0o

(¢) For any z € Z and any sequence (y¥)®, in 6Q, T *) converging weakly to
0 we have

lim ||z Oy y¥llow) = 0.

Proof. Choose an open set ¥ with Q « ¥V < V < U. As mentioned earlier
the mappings rZ and JY are compact.

(a) If £, = 0 in the weak® topology of H®(U), then by the compactness of
ry’ “rgf;l”I[OO(V) had 0 ]"enCC,

<X DUy*o fn> = <x DUy*a rﬁ'f,,) s 0'

Therefore, x O, y* is weak* sequentially continuous and thus weak* continuous
on H*(U).

(b) The mapping x+— x J, w* from Z to Q(V) is continuous. Hence,
the mapping x> x Oy w* = JY(x Oy w*) (cf. (a) and (i1)) is compact and
maps weak null sequences into norm null sequences.

(¢) The statement follows as in (b) by the compactness of the mapping
YE 2 Qe y* =770y y»).

We will now use the fact that Z = Z,/Z, is the quotient of two closed subspaces

of #7. Notice, that Z* can be identified with Zi'/Zs (and is thus a quotient of two
closed subspaces of /9, where 1/p + 1/g = 1) via

(z*, z) 1= (&*, &)  for & + Z¢ =z* e Z|Zy and & + Z, = z € Z,|Z,.

We write
n, (0P =P Zy, myilf - (17§

for the canonical epimorphisms. If X € LatZ then X = X,/Z, with X,:=
1= n,(X) € Lat/”.

To run the approximation process inherent to any variant of the S. Brown’s
technique we introduce some special sets in the predual Q(U) of H*(U). Of course,
as the reader will notice, they bear a strong analogy to the subset (&) of the
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predual of a dual algebra «7 [2]. Whenever X € Lat 7 and V is an open set such that
V < U, we define the subset #x(V, U) of Q(U) as the set of all those L & Q(U)
such that there exist sequences (x,)i2.1, (%)% 1 in the unit ball of X, := n;}(X)
and 6‘0(V) 1=y Y& (V, T*)) respectively converging weakly to 0 and satisfying
’]E"m:o”L — m,(x,) O n,(0%) ey = 0.

Obviously, the set Zx(V, U) is circled, ie. for all Le &4(V, U) and /. € C with
{A1 <1 we have AL € #y(V, U). It turns out, that & (¥, U) is even absolutely
convex and closed. We admit and will use freely these facts for the time being.
These statements will be proved (independently of the upcoming results of Sections
3 and 4) in Section 5, Proposition 5.4.

For 7 € U, we denote by E; the element of O(U) defined as point evaluation
at 2, that is {E,, > :=f(/) for all f€ H®(U). The following lemma establishes
how spectral properties supply elements in &'x(V, U).

3.2. LeMMA. Let X € Lat T be infinite dimensional and let Q, V, U be bounded
open sets in C with QcVeVecUand UnF=0. Then there exists some
§=0(Q,V,T)> 0 such that Zyx(V, U) > 6{E; ; j.€ ai(T| X) n Q}.

Proof. Fix an arbitrary 4 € ale(T|X ) n Q. By Proposition 2.1, there arc se-
quences (x,)%., in X and (¥$)2, in X¥= Z*/X* satisfying (a)—(d) in 2.1. Choose
y* e Z% with [y}] = x¥ in X* = Z¥/X" such that 1 < ||y¥l] < 2. Passing to a
subsequence we may assume that (y3)3°, is weakly converging to some y* e Z#
(notice that Z is separable and reflexive). With u} := y¥ — 1% we have I'u}f" < 4
for all ne N and uf — 0 weakly. Since Iim {[»}], x,> =42 1/2 and x, -0

=00

weakly, by the choice of the sequences (x,)7 , and (x7)& 4,

. . . . . 1
a2) lim Guf, %> =lim DF =D x> =n>

n-00 n-oo A
Let W :={ie Vidist(, Q) < (1/2)dist(d¥, 09Q)} := (1/2)inf{ z —~ =’ z eV,
z' € Q). Then W = W(£2, ¥)is a compact neighborhood of Q and (C\W) U ¥ = C.
Because of the F-decomposability of 7% we obtain

Z# = §(V, T*) + §(C\W, T*).

By the open mapping theorem there is a constant C = C(2, ¥V, T) = 0 only depend-
ing on 7, V and W (which in turn depends only on ¥ and ) such that for all
u¥ € Z% there are v € &(¥, T%) and w* € §(C\W, T%) satisfying u™ = v* + w

and [e¥) < Clju*l, [w* < Clu*ll. In particular, we find e &(V, T+,
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w¥ e 6(CN\W, T*) with
uf =vy +wi and [vF| < 4C, [wi] <

Passing again to a subsequence we may assume that v} is weakly convergent to
some v* € &(V, T*). Since (u})2., is a weak null sequence, this also implies w3 — —v¥
weakly and hence v* € &(V, T*)n &(C\W, T*). With a* := v} — v* and b} :=

= w¥ + v* we then have a} € &V, T*), b} € §(C\W, T#), a¥ -0, b —0 weakly
and |ja}| < 8C, ||b}|| < 8C. Notice, that because of (7), % ¢ o(T*| EC\W, T*)).
Using the fact that ||(A — T)x,}| - 0 by the choice of (x,};2.;, we obtain therefore

(B, x5y = (0o — T (h— T* | 60O, TH)- B2, x> =

= ((h — T*| (€W, T%)%}, (- T)x,> >0 for n = co.

Hence, by (12),

13) lim {ajf, x,> = lim {uf, x,> = 1.

n=-oQ n—o00
Choose now c¥e 7Y (af) with ||c}|l, < 9C. Passing again to some subsequence

we may assume that (¢})?° , is weakly convergent to some c* € n'l(J(V T*) =
= &,(V). If z € Z, then

0 = lim (cf — ¢, 25 = lim Caf, 7,2y — <c¥, 25 = —(c*, 2.

n—-»0o n— 00

Hence, c* € Zg and thus n,(c} — ¢*) = n(c¥) = a¥. With d* := (18C)~Y(c} — c*)
we now have j|dll; < 1 and d — 0 weakly. Choose also ¢, € 7, (x,) with jje ||, < 2.
Again passing to subsequences we may assume that e, — ¢ weakly for some
een,(X) = X,. For all z*e Zi we then have

0 =1lim {z¥, e —¢,> = (2%, ¢) — lim {n(z%), x> = (=%, &).

n—oco 1= 0O

Hence e€ (Zi)* = Z, and therefore np(e,, - e) = m,(e,) = x, for all n € N. With
S 1= (1/8) (e, — e) we now have ||f,|l, < 1 and f, -+ 0 weakly for n - co. Moreover,
by (13),

lim <d;(-’ f;|> (72C) lim (C,, —c* » €y €> =

n—00 H =00

(14)

(72C Him {a¥, x> = ——
a 100 ’ 72C
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Let now A be an arbitrary function in H®(U); h can be written in the form
hE@) =h(A) + (€ — g(d), ¢eU
with g € H®(U) and |\gi; < 2|f,/dist(4, ¢U). Therefore,
IV = k() + (TV — g(T¥)

and we have ||g(T9)|} € K4l for some constant K = K(U, V, T) independent of
h. It follows that

() Oy mfdi) — a5, fdEs, ) | =
= [ MTPIn AT, n(f)> — {m(d), m(f ()} =
= [ KOATP) - h(Dmy(dif), m(f)> 1 = [ {(T* — Dg(TPIn(d), m( )00 =

. . K
= [ &(T¥indi), ; (T —Nxpp ! < " ] - 1T — A,

and hence that

. K N
i7p(f) Oy n,(di) — L, fDEsllowy € " (T — Ax,i| — 0.
Because of (14) this implies
o i
Hm {2, (f,) Oy n,(d7F) — - E, 0.
e ' 72C oo

Thus (n/72C)E, € Tx(V, U). As Zx(V, U) is circled and 5 > 1j2 we obtain
OE;, € ¥x(V, Uy where 6 = 6(Q, V, T) := (144C)~* only depends on 2, V and 7.

4. PROOF OF THEOREM 1.1

4.1. FIrsT REDUCTION. In Theorem 1.1, it suffices to consider the case that
S has property (f) on C\F.

Proof. Let S € #(X), X as in Theorem 1.1, be such that S$* has property () on
C\\F. Since X is topologically isomorphic to X,/X; (X,, X; € Lat£r), X* is topolo-
gically isomorphic to Xi'/Xy (X3, Xo € Lat/9). Hence we are back in the above
situation with S replaced by S*, X by X*, and £? by £7. Of course, if Y € Lat S* is

nontrivial then also Y* < X#% = X is a nontrivial invariant subspace for S = $%%,
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4.2. SECOND REDUCTION. To prove Theorem 1.1 it is sufficient to prove that
Lat S is nontrivial whenever we are in the following situation

S = T|X where T € #(Z) is F-decomposable, F < C closed,

13) Z =2Zy/Z, with Z,, Z, € Lat /P, X € LatT and there exists
a sequence (Q,)%.,; of open sets satisfying (1).

Proof. By 4.1 we may assume that .S € £(X) has property (8) on C\F for
some closed F c o(S) and that there exists a sequence (€,)?, of open sets in C
satisfying (1). As mentioned in the introduction this implies the existence of a
quotient Z = Zy/Z; of two closed subspaces Z, = Z, of £7 and of a (F y dR)-decom-
posable operator T'e £(Z), where R is an open rectangle with ¢(S) = R, such
that S is similar to TI Y for some Y € LatT. Of course, Lat S is nontrivial if and
only if LatT] Y is nontrivial. Notice also that (by the fact that Q. n a(S) is
dominating for Q) we have . = R and hence Q_ n (F U dR) = @. Hence, replac-
ing Fby FUOR, S by T|Y, and X by Y we are in situation (15).

4.3. THIRD REDUCTION. We may assume that a(S) = ¢,.(S).

Proof. Indeed, for all 2 € 6(S)\a1.(S) the space ker(2 — S§) or ran() — S) will
be a nontrivial hyperinvariant subspace for S. Note that this reduction is valid when
looking for invariant subspaces of any algebra contained in the commutant of S.

Hence, in the sequel, we will assume that we are in situation (15) and that
0(S) = 01,(S). Notice that this already implies that X is infinite dimensional. Fix
now a sequence (Q,)7 ; satisfying (1). Let (V,)%., be another sequence of open sets

in C such that Q, « ¥, « ¥, < ,,, for all n e N. To simplify notations we set
0, 1= 06(Q,, V,, T) for the constants obtained from Lemma 3.2, Q,:= 0(Q,),
Il- Il :=1l-llg,, and OJ, for O . We also omit the index on [, when there is no
ambiguity on the space. Also, for n < m we write J for the canonical mappings
J3 @, = Q,, given by (9). Finally, for n < m, let A% denote the absolutely convex
hull of {E; |2 € 6,(S) n Q,} considered as a subset of Q,,. Hence, J2(A) = A for
n <m. The dominancy of ¢,,(S)n Q, in Q, implies that A2 is dense in the unit
ball of @, (cf. [5], Proposition 2.2). Hence, by Lemma 3.2 and the absolute con-
vexity of Zy(V,, Q,+,) we have

(]6) 5,,/1:;1'1 < ‘%'X(Vn’ Qn-!—l)'

We state now our goal which is to prove that H®(Q,) has some sort of (A,) property
(in the framework of [2]) with respect to X and &(Q,,, T*).
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4.4. PROPOSITION. With the above notations let p, > 6;%°. Then, for any
LeQ,, there exist x € X, y% € 6(Qp, T*) with "' xi < p, VILii,, 3% < p,,IML,,
such that for all bounded open sets U with Qy, < U and TnF =0 we have

WD) =~

Before proving Proposition 4.4, we first show how it can be used to finish
the proof of Theorem 1.1. In fact, we will prove a little more.

4.5. THEOREM. Suppose that S and T are given as in (15). Let ¥ denote the
weak operator topology closure of the algebra

{r(S) ;  rational with poles off a(S) U o(T)u Qm}

Then Lat " is nontriviad.

Proof. By 43 we may assume that o(S) = 0,.(S). Because of (1), o(T) is an
infinite set. Hence, ker(2 — S) # X for all % € 6(S). If ker(Z — S) # {0} for some
2 € o(S) then ker(A — S) is a nontrivial hyperinvariant subspace for S and hence
invariant for #". Fix now an arbitrary 4 € Q,, with ker(A — S) = {0}. Then /i€ Q,
for n sufficiently large. By Proposition 4.4 there are x € X and y* € 6"(5_20;, T%)
such that x ], ¥* = E, for all bounded open sets U with QocUandUnF = 0.
In particular, 1 = {x Oy p*, 1> = {y*, x> and hence x # 0. We consider now
Ay :=N{r(S)x ; r rational with poles off ¢(S) Uo(T)U Q. and r(}) = 0}. Clearly,
;€ Lat ¥, Since (A — S)x # 0, we have %, # {0}. To prove that .#Z, # X,
consider an arbitrary rational function r with r(i) =0 and with poles off
o(S)Uo(T) U Q.. Fix a bounded open set U with @, = U and Un F =0 such
that r | U € H®(U). From the equalities #(S) = r(T) | X and r(T)*| (R, T%) =
= r(T* | 6(Qu, T*)) we obtain

0 = r(2) = (x Og*, > = (TE %, x5 = K%, r(S)x).

It follows that y* e 7. As (3%, x) =1 # 0 we see that x ¢ 4#,. Thus .#, is
a nontrivial invariant subspace for #.

REMARK. In special cases it may happen that 6(T) < o(S). For instance if T
is strongly decomposable [10] then X < &§(6(S),T) and T,:= Tl(?‘(a(S), T)
is decomposable with ¢(T,) < ¢(S). So we may replace T by T, . In particular (cf. [8])
this applies to hyponormal operators S on a Hilbert space.

Because of 4.2, Theorem 1.1 is now an immediate consequence of Theorem 4.5.
Our basic tool to prove Proposition 4.4 will be the following approximation
lemma.



AINVARIANT SUBSPACES FOR ¢P-OPERATORS 353

46. LemMA. Let 0 # K€ Q,, x€ X, y* € &(Q,, T*), and ¢ > 0. Then there
exist ue X, v¥ e &V, T such that
e _}('Tn-
13700 —w O o* s < o5l fov) < | e

and

l(x + ) O O* + v*) — x O y* —u O v¥,4y < &

Proof. Set d :=||Kj, and let ¢ € A} satisfy ||K — dol|, < ¢/2. (Recall that
A is dense in the unit ball of Q,.) Since, by (16),

5n‘/,l11+1(q0) € 5!1AZ+1 < '!’/Z'X(I/n’ Qn+1)
we can find vectors a € Xy, = n,'(X), b* € ﬁo(V,;) such that [jal, < 1, ||b¥]l, < 1,

. . 0,€
16, /2 (@) — my(@) O my(b*) 42 < 2

and (using Lemma 3.1 and the weak continuity of the mappings =, and ),

e /s, e 175
lx O 7g6*Mlnsr < ‘z'l/—é—;’ Im,(@) O y*{ly+1 < —21/,;.

Straightforward computations show that with u := ]/Zlﬁfn,,(a), v¥i= V-J/F,,nq(b*)
the desired inequalities are satisfied.

By means of Lemma 4.6 we can now construct Cauchy sequences, whose
limits will be the vectors x and y* to be found in Proposition 4.4.

4.7. LEMMA. With the above notations let p > 8;Y*. Then, for any 0 # L€ Q,,
there exist Cauchy sequences (x,,)% .1 in X and (yE)5%. 1 in EQoyy TH), Y€ EW s mo1, TF)
{m € N) such that

(17) “JI':+'"(L) - '\.m Dn+m y:IkI“"'f‘ m d 0 for ’l nd oo
and
Ixal, il < e VILIL, for all me N.

Proof. Fix ¢ > Osuch that (1 + §)J;%* < p and choose ¢,, > 0, ¢, . 0, with

(18) Z ,58',"_. < & V—gg— where g, := HL”n .

1 n+m n
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By Lemma 4.6 (with K = L, x5 : =0, y& :=0) there are v, € X, yfe (‘;('V,;, T*)
with

BUL) — X, O 3Flper < 15

s —Sﬁ
fxall, il < V5—°

Suppose, that x,, x;,....x,€ X and 3} e(( wricts 1¥) (0 <1 < m1) have
already been found with

HIEHL) — X, O Pifes < &
a9

, , . w &g .
Ix; = xo, L F — i< V~5 gt for 0 < i < m.

Applying again Lemma 4.6 (now with n+m instead of n, K : = J,’,’" LY % D 350

X =X,, )% =3k e=¢,,,2) wefind ue X and t¥*e §(V,,,, T*) with

Emaa
N LRZOESS [ H- i £ I s
”Jn’ ( ) Jan (\m a+m ym) u Dn+m+l v imt 41 < 2 ?

el ot < il ] 0

n+m n+m
and
”('\‘m + ll) D (J‘r;l + l)*) - Xm D ym U D U ||n+m+1 <- n12+1 .
With %4, 1= X, + 4, 35, =25 + v¥ we then obtain (recall from (11) that

Jgiﬁ"(xm :n+m lnl) - X“ Enhn+1 .}m)
“JSIZ:H(L) = Xy O Yisalliamer €
< f-]i'::.'f;“(L) — X Oym—u D ¥ e +
+ Xz O ¥ — X O Vi — 2 O 0F|hsmer <
< Em+1f/2 + Eme1/2 = Epmir-

Therefore, (19) is now also fulfilled for / = m + 1. In this way we construct two

sequences (\m)m 0 l]’l X (y:x)m =0 11'1 [(Qm Tﬁ.) Wlth ymE[( nt+m—1> T¢) fOY
m 2 1 such that (19) holds for all i € N. Because of (19) and (18) these sequences
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must be Cauchy sequences. Moreover, for all m € N, we have (because of ¢, = ||L}],,)

m " - 80 80
< L — X, =0
”XmH ‘21 Hx; x,-—l“ S b"-{», L Vb” + & ]/ (S" <

<+ V” I < L.

In the same way we obtain |jy,|| < p [/||L||, and the proof is complete.

We can now easily conclude the

Proof of Proposition 4.4. We may assume that L # 0. Let (x,)% ; and (%)%
be the sequences provided by Lemma 4.7 and define x :=limx, € X, y*

m-+00

= lim y% € 6(Qy,, T*). Hence, |ix|, |[y*]| < p, V| Ll,. Let now U be an arbitrary

N =00
bounded open set in C with @, = U and U n F =©. By means of (17, (10) and
(11) we obtain

HJ,‘{"(L) — X Duy;:i”(z(u) =

= ”‘Ig (J'IlH—m(L) — X Dn-{-m yr’:)”Q(U) <

ntm

< ”J,r‘H-m(L) — Xm Dn+m yltt”n+m -0
and by (a) of Lemma 3.1 this implies

JU(L) = hm)‘mDU)m —XDUJ*

Hi—00

For the proof of the fact that the operator S in Theorem 1.1 has even non-
trivial rationally invariant subspaces if int(c(S)\F) % @, we need some further
facts from local spectral theory. The following lemma is a variant of Lemma IV .4.24
in [10].

4.8. LemMA. Let Z be an arbitrary Barach space and let T € $(Z) be an
F-decomposable operator. Let A € & . and suppose that G,, G, are open sets in C

such that A = Gyu Gy, Gyn F =@ and with F < Gy or Gyn F = 0. Then
&4, T) < 8(G,, T) + 6(Gy, T).

Proof. Write T for the operator induced by T'on Y := Z/&(G.'Jﬁ_Gl', T) and
denote by n : Z — Y the canonical epimorphism. Because of cr(AT)ca(T)\(G0 n Gy)
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(cf. [10], Lemma 1IV. 4.23) the function f given by

iy = [F0= T|&(4, T) ) for /e C\4

TG - D) for 1 € Gon G,
is well defined and analytic on Q := (C\A) U (G, N G,) with (. — T)f(}) = n(x)
on Q. Let I'; be admissible contours surrounding 4; := ANG,_; in G; (j = 0,1}
and define

1
=\ f(2)d2
¥ 2niS 1) d7

r.
J

Let B; be the closure of the open set containing 4; and having I'; as boundary.
Then the function g; with

gi(2) 1= %{T S (z— A)"Y(Adi  for ze C\B;

I,
J

is in 6(C\B;, Y) and

¢ — i) = — S (s — )7 — 7+ (. — D) f2 =
21
r,

2ri
F. I,
J J

= 1 Sf(/’.) dz + I—S n(x)dl =y;
2ni

for all ze C\B;, j =0.1. Choose now u; € Z and h; € 6(C\B;, Z) such that
n(u;) = y; and n(hi(A)) = gi(4) on C\B;,j =0,1. For the existence of holo-
morphic liftings see [10], Corollary I1.10.9. Then we have

(- TY(2) — u; = v(A) € 8Gon Gy, T)
and therefore
w; = (2 — D) — (G — T|6(Gy 0 Gy, T)) eyA)]

on C\GJ:. Thus, u; € (5‘((};‘, T),j=0,1. With x; := 1y, x; :=1; + (x — 1ty — ;)
we obtain  x,€ &6(Gy, T), x,€ Gy, T) + E(Gyn Gy, T) =6(G,, T) and

X =Xy + Xy.
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49. LeMMA. Let Z be a Banach space, T e L(Z) F-decomposable and
By, B, = C be closed sets with BinB, =@ and B:= B,U By, > F. Then

EB,T)=6E6B,, T)®DEB,, T)
where, for j =1, 2,

& (B;, T) = Znranoo"ie LatT
with
o(T | &(B;, T)) < B;n o(T).

Proof. We have from (7), o(T|&(B, T)) = (B, U By) na(T). By means of
the analytic functional calculus we find Y;, Y, € LatT with (B, T) =Y, @ Y,
and o(T| Y)) = B;no(T). Hence Y; = &(B;, T). Conversely, if x € &(B;, T) then
X=y +y, with y, €Y, (k =1, 2). It follows that y,_; = x — y; € §(B;, T).
Hence there is some f'€ O(C\B;, Z) with (A — T)f(1) = y;_; on C\B;. Consider
now

JA) _ for Ze C\B,.

QY 1= j
(A—=T|Ys_)7ly;— for L€ C\B,_;.

Since T has the SVEP on C\F o> C\B, the function / is a well defined entire
function vanishing at co and hence identical zero. It follows that y,_; =0 and
thus x = y; € Y;. This proves Y; = &(B;, T).

J
4.10. LeEMMA. Let Z be a Banach space, Te L(Z). If K = C is closed and
x€ &K, T):=ZnranaS K, ie. x = (A — T)f(%) on C\K for some f € O(C\K, Z)
then f(Aye &K, T) for all 2 € C\K.

Proof. Indeed, the function g with

(L —2)7U(f(2) — f(A) for J # z€ C\K

£6) := {—f’(/l) for /. =z

is in O(C\K, Z) and satisfies (z — T)g(z) = f(4) on C\K.

4.11. LEMMA. Let F, = FU F, where F, F,< C are closed sets with
FnF,=0. Let Z be a Banach space and T € £(Z) be F-decomposable. Let A be
a closed set with F ¢ A < C\F,.

(a) 6(4, T) € LatT and for T,:=T| &4, T) we have o(Ty) = Ana(T).

(b) If also K is closed with F = K < A then §(K, T) € LatT by (a). Moreover

o(T | 8K, T)) = o(T)n K.
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(c) If also B = C is closed with F = B and Bn Fy =0 then
A, TYn6B, T)=6AnB, T).

(d) Ty is Fy-decomposable with Fy := (FU CA) 0 (T ).

Proof. (a) follows from 4.9 with B, = 4, B, = F,.
(b) Fix an arbitrary x € §(K, T) < 6(A4, T). Then x = (z — T)f(z) for some
€ O(C\K, Z). The Z-valued function / with

By o= & for 7€ C\K
. {(;.— Ty x  for 2 e C\o(Ty) =: p(T,)

is well defined and analytic on C\(Kno(T,)). By 4.10 we have i(J) € &(Kn

No(Ty), T) < 6(K, T) for all i€ p(T,). Hence, &K, T) € Lat(} -- Ty)™* for all

4 € p(T,)and thus o(T | 6 (K, T))=a(Ty). Since o(T | §(K, T)) < K by (a), we obtain (b).
(c) Fix an arbitrary x € §(4, T)n (B, T). Hence,

x = (z— Tha(z) on C\4 witha € 6(C\4, Z)
x= (i~ T)h() on C\B with be O(C\B, Z)
and thus
(z — T)a(z) — b(z)) = 0 on (C\4)n (C\B).

As T has the SVEP on C\\F, we obtain @ = b on [(C\4)n (C\B)]\F,. By the
identity theorem we thus conclude that @ = b on (C\4)n (C\B). Hence, the
function

. _ Ja) for ze C\4
/e {b(z) for ze C\B

is well defined and analytic on C\\(4 n B) and satisfies (z--T)f(z)=x on C\\(4 n B).
Thus xe 6(AnB, T)< 6§, T)n&E(B, T) and we obtain 64, T)N&EB, T) =
=6AnB, T).

(d) Let 8 :=dist(4, F,) > 0 and set U := {z € C; dist(z, A) < §/3}, W, :=
:= {z € C; dist(z, F,) < ¢§/3). Fix an arbitrary open covering U,, U; of o(7}) with
Fyc Upand U, n Fy =0. With U} := U,n U and U; := (U,\F)nintd we still
have o(7,) < U, U U;. Hence we can choose open sets V,,, ¥; = C with VJ < U;
and o(T,) = V, U V;. Let also W, be an open set satisfying AN(V,UV,) « W, cU
and o(T)nW, =0. It follows that 4 < Gou G, where F, < Gy:= V,u
UW,UW, and G, := V. with G, n F; =O. Fix now an arbitrary x € (4, T).
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By Lemma 4.8, x =y, + uy, with u; € A’(C’j, T)(j = 0,1). Morcover, by Lemma 4.9,
ty = 1y + v with v, € (W, UW,, TYc: &U, T) and vy &W,, T). Because of
Gy, Ty o (A, Ty« (U, T) and 4.8 we obtain

Yo X =y — v € E(U, TYn6W,, T) = {0}

It follows that v =x € &(V,uW,, T)NEA, T) = ANV, uW,, T) (by
(c)). Hence, we have shown that v =y, + 1, € AN VouW,, T) + 6(V,, T), ie.

EA) = E(ANV, U, T) + &by, T).

Applying (b) with K:=AnV,uW, we see that &(AnV,UW,, 7)€ LatT,

ne(T,) = V, < U,. Moreover, £(V,, T)e LatT, and o(T, ] eV, T) <V, cl,
by (7). Hence we have proved that 7, is F,-decomposable.

We are now ready to prove the announced criterium for the existence of non-
trivial rationally invariant subspaces.

4.12. THEOREM. Let X be a Banach space which is topologically isomorphic to
« quotient of two closed subspaces of £"(1 < p < o0) and let S e Z(X). If S or S*
has property () on C\F for a closed set F < o(S) such that int(o(SYN\F) # O
then W'y, the WOT-closure of {r(S) ;r rational with poles off o(S)} has a nontrivial
invariant subspace.

Proof. As in the first reduction it suffices to consider the case that S has (B)
on C\F with int{(a(S)~.F) # . As mentioned in the introduction, there exist a
quotient Z = Z,/7, of closed subspaces Z, < Z, of /? and a (F U dR)-decomposable
opcrator T e £(Z). where R is an open rectangle containing o(S), such that S
is similar to S, := 7| ¥ for some Y e Lat 7. Of course, ¥ ¢ #(a(S), T). Consider
now 7T := T[ 4(a(S). T). Let us remark that also Z 1= £(a(S), T) = n;UE(6(S).
)/ 7, is a quotient of two closed subspaces of /7. By 4.11 (d), T, is I,-decomposable
with F, := (FU da(S)) N o(T,). Notice, that int(a(Sy\Fy) # O since int(o(S)\F) £ 0.
Let now (Q,), be a sequence of open discs with O # Q, Q,,, for all n
and ., < int(a(S)~Fy) where 2, :=|_J,. Then (8,7, satisfies (1) and we

n o1
are (n the situation of (13) (with S, instead of S, 7, for 7" and £, for F). Because of
Q. a(S) = a(S,) and o(T,) = a(T' 8(0(S), T)) = a(S) = a(S,) (by 4.11 (a))
we have
6(Sy) == a(Sp) U o(Tp) U Ly

The statement now follows from Theorem 4.5.

1 - 1478
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S. RICHNESS OF LAT .S IN THE CASE OF THICK ESSENTIAL SPECTRUM

In the sequel, Z : = Z,/Z, will denote a quotient of closed subspaces 7, «: Z,
of /7 (1 <p<o0), TeLZ) will be an F-decomposable operator, X ¢ Lat 7.
and S:=T|X. If Y is a closed subspace of /¥ or, more generally, a quotient
of two closed subspaces of /¢, then for Ve NUIN,! we define N(V):c=
c=1je N;j < N} and

(YY) i= = ()jeNwy 11 EY, y b= }_, ¥ "< ool

JENNY)

Endowed with the norm - .,,/4(Y) is a Banach space. For finite N € N we simply
write Y™V instead of /4(Y). In particular /(") =/?(N(N) x N) and thus
£(7?7) =~ ¢7 isometrically. Moreover, if Y e Lat /7 then £{(Y) € Lat/{(/*) and for
Z =Z,Z we obtain /8(Z) = /8(Z,)//(Z,) isometrically, where the isometric
isomorphism is given by

mp(2) > (T3 jeneyy  for = = (2))jenwy) €RIZ,).

Here n, :£7 /2| Z, and 1ty ¢ 5¢7)— ¢ §td 7)1 {4 Z,) denote the canonical epimorphisms.
We therefore will identify 73(Z) and #%(Z,)//%(Z,) in the sequel. The space Z% will
be identified with Zi" Zi and is thus a quotient of two closed subspaces of /¥, where
I,p+1/g=1 We also write n, :£¢ —#9Zy and NS VA = L) Z) for
the canonical epimorphisms and will as above identify /4(Z%) with Z4(Z{ ) 774,

For a bounded open set G = C we denote by H>®(G, N) the Banach space of
all those families H = (f; 4); x=new) such that h; € H2(G) and

H yoe.m :‘=j'kg;w) hin o, < 0
Let also Q(G, N) be the Banach space of all those families I. = (L; 1); 5. ~iw) Such
that L;, € Q(G) and
(20) 'Ligni= sup "L;; ¢ < oo.
S hEN(N)

With this norm, the unit ball of Q(G.N) is precisely the set of all those
L = (Lj‘k)j_kEN(N) € Q(G, N) such that all L; ;. /. ke N(N), are in the unit ball
of Q(G). Tt is easily scen that for ¥ € N we have Q(G. N)* = H®(G, V) via the
bilinear mapping -, -> : Q(G, N) x H®(G,N) —» C given by

L, HY : = Z ’<Lj,k.~hj_k>

Y
15 N
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for L = ([‘j.kl)ls'j'l\«“\' € Q(G, N), H = (_/’i,k)l <j kSN € 1[:0((;, ‘N) If V. G are bounded
sets with P = G and GNF =0, Ne NU{N,], then for x = (x;);env) €%(X),
yE = (0 enan ECUWEW, TF)) the element

(21) x O * 1= (406 1)) kenw)
of Q(G, N) operates on H®(G, N) via

<-\‘ D(; J':;:* H> = Z <'\‘j [-J I .vlfs /’jk> =
JRERN)
(22)
= E </7j,k(T$).]'If:s X
JkERON
We also introduce the following notations: X, :== ;% X). &(V) : = n; (7, T*).
Then, for all Ne N, X{M = () {(XWN), 6)(V) : = £,(V)® = (a) " HEF, TH)
where we identify X™ with X{M/Z(™ and §(7, 7)™ with 63(7)/Zs ™ by mcans
of the canonical isometrical isomorphisms.
Let now N € N be finite. We introduce the set Zx(V. G) as follows.

5.1. DermNiTION. With the preceeding notations, let Z%(V, G) be the set
of all those L € Q(G, N) such that there exist sequences (x,)%; in the unit bail
of XM and (»¥)%, in the unit ball of &Y(V) converging weakly to 0 in £” resp.
7, and satisfying

1L — 75(x,) O g (VF) g8 =0 for n - oo.
We shall neced the following version of the vanishing lemma which, by means
of (20) - - (22), follows immediately from the case N = 1 (see Lemma 3.1 (b), (c)).
5.2. LEMMA. (1) For any w* € &(V. T¥)™) and any sequence (1,)2., in Z™)

Sn=1
converging weakly to 0 we have

lim{ju, O¢ w*igx = 0.

N0

(b) For any z€ Z™ and any sequence (v¥)2., in &V, THYN converging weakly
to 0 we have

imiz g vf v = 0.

1= QO

The following will be needed for the proof of the convexity of Z¥(¥, G).

5.3. LEMMA. Let x = (v)Pq €/, | <r<oo, with jxi, <1, ,820
with %+ i = 1.0 ()1 is a sequence of elements vy, = (y, )32, in the open unit
ball of (" tending weakly 1o 0 in /7. then there is some nye N such that for all
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n = ny we have

0,17 .. AV

Halfx 4 By, L < 1.

Proof. (2) First recall that a sequence (z,)7°, of eclements A PR TA
1 < s < oo, is a weak null sequence in /* if and only if ("z,")2; is bounded
and |z, ;} -0 for all j ¢ N when n - cc.

(B) For 0 < p < we define (P 1= ( &, /)7, and 5 o5 ( Yo i M) a4 N
Notice that "2 e/* with 1 <t:=rj{r—p)<oo and e/ with 1 <.

i=r/p < oc. Morcover, “iqh.'s = v, £ < l.so that ( 57 )2 ,is bounded. As (1), .

is a weak null sequence in /7, we have by (), (v, ;” — 0 for all je N. Again by
(=), this implies that (#2)2 , is a weak null scquencc in/* Becausc of 1§ 4+ 17 =1
wec conclude that

(23) X X TRy, =y 200 for - oo
i

(y) If 2 =0 then f =1 and we may choose n, == 1. Hence suppose now
that « > 0. Let m be the unique natural number with m < r and r - m < 1. Then,

oc
ol Lr,. v . SR
JATON + ﬁ /r}" ; h Z % -\_i + /) r.‘n‘i vr <

i

o
\'f (%1: v + ['lv . ; )m+(r~~»m) <

> 2 (m e pple-ayr nte
£ VY W x; Vi '
joip 0

N 3(1 i.\,i ‘r~—m + /}1 P.“n,j .r -m) o

<o .\“; + l)’ Yy : + R,, RN : + /; + Rn
with

por.
R = 2_; (’” 1(;-—-nH—u).‘r/j(m-',n I3 <\:r—m~f-" ’]Zh /1> +
HI = .
o\

"

i

tE ( )Wﬂ”"”"'«:"- n .
I’

'S Y /

Hence, using (23) with p = m - g resp. p = r -- p. we obtain R, =0 for n -» cc.
Because of @ > 0 we have 2'x,7 + f < = + f# = | and the lemma follows.



INVARIANT SUBAPACTS FOR ZP-OPF RATORS 363

The next proposition has alrcady been used (without proof) in the special
case A ==

5.4. PrRovOSITION. IV GY is an absolutely convex closed subset of Q(G, N).

Proof. (%) /PN and (1Y) are separable Banach spaces because of | < p < o0,
I'p ++ 1l'g = 1. Henee we can choose dense sequences (2,) 5 in £7Y) and (wh)F
in /N,

() ¥V, G) s closed.

To prove this, consider a scquence (L,)®° , in 43V, () converging to L in
Q(G, N). For each v e N let (x{%,, (yiC ‘),, 1 be scquences associated to 1.,
via the property in Definition 5.1 defining #¥(V,G). For ¢ =1 we choose i,
large cnough so that

(L)

. Ll (\n ) [J(, T'q(l,,(”) «“, <

and

. b3 RAR! By !
"<H""\”|>‘ (‘Il 7—I> < I
Suppose, ny, ...,y have been selected so that for j =1, ..., 4,

y (i) ) ST
L; u,.(\ )U(, (‘uj ) gx < 1
and for | € i< /< k
) 5 .
<H,,\:.’> + v ‘”,*> < 1.
Onc can select 17,4 50 as to cosure

k1) I

Ill.l—’lvf LT 7T,, n/ . ) D(, |[ ‘n ) G, ':"““"
and, for 1 2 /i< h + 1,
| * - 1) s (I\< N . I
.< Wi, \n/ > + <‘u N LIy < P
. Ay s '
With wy, @ e \,(, L oE = 1,,; ’ we clearly have

lm || L — m () L, 2 ) o v =~ 0.

koo

Moreover, lim (w1, > = 0 whenever w# = w# for some 7€ N. Since (1) 1s
Aoron

bounded in /7™ and {w¥ ;ie N} is dense in /9N, the scquence (#)7 o tends
weakly to 0. Similarly one shows that (vjf)? ; enjoys the same property.
(v) ANV, G) is absolutely convex.
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Si»nce A3V, G) is obviously circled it suffices to prove that it is convex. Hence.
fix L. Le #%V,G) and %, > 0 with 2 + = 1. We want to show that M :
c=aL + L e 4NV, G). Let (x,)® 1. ()2, resp. (£,)% 1. (1), be sequences
'lssoudled to L resp. L by the definition (5.1) of .4V(V, O) We may assume that
¥E . are all strictly less than | for all n e N. Let

‘\n e .\n.p* A 4

H [ ln 1 75
Sppe= 4 N + [)

B mligy% Mg
Ny o = % lq}m -+ /’ E.‘ n

for m, n € N. We first choose 1, large enough so that

e e < 102
and

E L - T}\v-( '\""1) D(} W‘q\v(,l"::), G, N < ] /3

Since ¥, - 0 weakly in 772" and 7% — 0 weakly in 24, for n = n, sufficiently

large. we have

<L Mg < (by Lemma 5.3),

L -- 7)) Uera(rH v <13 (by the definition
of the sequences),
. <“V;§:' '{:n> + . <.F;' :1> . < 12-
and (using Lemma 5.2 and the fact that n3(¥,) -0 weakly and =)(¥'#) -» (0 weakly)

I N C N[ NeTay -
R (G) O 1y (i) o n + Tpm ) Og () W len <13,

We set o, .= ;f,,,l,,,l. Ny = ;;,’,‘}1_,,1 and obtain

“:’l:'p <1, i."fq <L
M — (&) Qe myrf)., < 1,

VeE G+ L < L
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In the same way, we obtain by induction two strictly increasing sequences (m,)%. 1,
(1), in N such that

. L . 1 .
i Wy, .\',,,k>5 + 1<y,,,k, >l < - for 1 <<k

LN

. N( L
L~ ﬂﬁ'(«\mk) e my (."nz,v)|‘j(;,,\' < ':;‘/“
I

and (after m, has been chosen this way) we can find n, sufficiently large such that

o B
H@mk,nka < 1, Hnmk’"/{”" < 1,

- ~k 1 .
f L+ IR <o Prlssk

WE Nis ~ 1
1]L - ”;I(xnk) Oe “g(ynk)m,v <—,

3k

and
N N ‘,:!: . i Np= 5 N _:;: . 1
BRI (Xm/\,) (g T, () "k) an + ,;np('\l‘ll’) PR NG mk)i.c_,\‘ < -

3k
With &, 0= Sy s 0 0= Ny, e then have
e, < 1 diniily < 1,

EM - (&) Oa RZK"’I?)V(;,\ < ik,
’ . 1 .
Fwi ot + 1= < k-‘ for 1 </ <k

As we have seen in the proof of part (f8), this implies M € 2¥(V, G). Thus, 4¥(V.G)
is convex and the proof is complete.

- 5.5, PrOPOSITION. Jf' L = (L; )1cjray € QUG, N) with L;, € 2x(V,G) for
1</ k<N, then N2 L e ¥V, G).

Proof. (x) Let us first show that, for all L € Zy(V, G), we have L2 : =
= (O Ousd N ajnen € AV, G), where

0f for u#j

J
‘ ]1 for py =j

P
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is the Kronecker symbol. Indeed, if L. € .¢'y(¥, (), then there are weak null sequences
(X% 1 in the unit ball of X, and (v¥) 4 in the unit ball of &,(7) such that

im L my,) O 05 ¢ = 0.

=00
R . bIEN Y TR _ 4N N <t > . PEETY Oy
Set now X, 1= (3, 1%, . Vi c= (@0 1. Then ()7, resp. (1757, are
weak null sequences in the unit balls of X§ resp. &Y(77). Moreover,

ll‘““r) o n}\; ""I:) I:J(i 7.[1)'(,-‘711) GLON = I‘ i n[!('\‘") D(i 71'"(.\';:,:) G 0

[

for n — co. Therefore, L% e 43V, G).
(Fy Fix now L = (L, iz, een € QG N) with L, € (), G) for 1w p

v < N, Then, because of (2), N7IL = Z N2LY ds o convex combination
Telp 0V
of elements in .#"Y(}", G) and hence itself in .2Y(V, G) (by Proposition 5.4).

For a bounded open set Q let A, denote the absolutely convex hull of
(Eii2eQno S) and set Ay = {L =(L, Jyen; L, €Ay for p ve
€ N(N)}, where N e N {N}. 1t follows that A, (resp. A) is dense in the unit
ball of Q() (resp. O(2. .V)) whenever Q N 6,(S) is dominating for Q and N ¢ N. It
Q < G then we write again JG : Q(2, N) —» Q(G. N) for the canonical mapping
induced by J§: Q(Q) - Q(G) (see (9)):

ij'(I‘) = (Jg([“ﬂ,r))u.vixf.\') for_I‘ = (1-;4,1*)/1.05N(A') € Q(g'?’ ‘\')'

The following result is an immediate consequence of Lemma 3.2, Propo-
sition 3.5 and Proposition 5.4.

5.6. LEmyA. Let Q,V, G be bounded open sets in C with O < V=¥ <G
and GNF = 0. Then, for all N € N, we have the inclusion

N 2(0Q, ¥, THJEAD) < 230K, G)

where o8, V, T) is the constant from Lemma 3.2

The next statement is the counterpart of Lemma 4.6.

5.7. LiMMA. Let 2. V.G be as in Lemma 5.6 and assume in addition that
Qo X) is dominating for Q. Let also N € N, KeQ(Q, N), ac X, b¥ e §(V . 1%y,
and & > 0 be given. Then there exist ue X™, % € &V. THN such that

I‘]g(K) - g ¥ cy <&

i 'K,s!,\'

¢

(24) TR S “\'] where o 1= 8(Q, P, 1),

e+ OB+ ey —aOgh®—ud, % ;v <o
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Proof. Since A(R, N) is dense in the unit ball of Q(2, N) there is some L € A}

‘such that ||K — [K|lo yLllg x < /2. Then we also have | J§(K) — [ K[| yJGL)|Io v <

< ¢/2 as inequality ilO) carries over to the present case. By Lemma 5.6 we have

N-28JS(L) € FY(V, G). Therefore, there are i, v* in the open unit balls of X{™ and
BI(V) satisfying

IV -26I5@) — (@ D T llow < - -
25Kl x

and (applying Lemma 5.2 in the same way as before),

5@ O b*llo.x + lla Qo 1 G*)ew < - VHKHQN

With
u :=NVH_ISL(|SM7Z§@)’ o= NV“‘S_“QN 25%)

we obtain the desired inequalities.

The following theorem is the main tool needed for the proof of Theorem 1.4,
It states that the dual algebra H>(,) (in situation (15) with (1) satisfied for ,(S)
instead of ¢(S)) has a sort of A, Property in H®(G) relative to the bilinear map-

ping [, and the spaces X and &(Q%, T*).

5.8. THEOREM. Let Z = Zy/Z, be a quotient of two closed subspaces of £°,
T € #(Z) be F-decomposable, X € LatT, S := T[ X, and let (Q,)%.1 be a sequence
of open sets such that (1) is fulfilled with o(S) replaced by 6,(S). Given any family
(Ljx)jxen of elements in Q(,) there exist sequences (xpPPa in X, (VR in
8(Qo,, T*) such that

(25) Vj,kE N: J-Q( k) = X; DG.}Ic

for any bounded open set G > Q. with FNG = 0.

Proof. (a) We first introduce some notations. Let ¥ be a bounded open set
'in C with VnF=0. For L =(L;,)jxen€Q¥,N) and Ne N we define
Ly :=(L; )1<jx<n € @V, N). The mapping L — Ly is thus the canonical epi-
morphism from Q(V, N,) onto Q(V,N). For L = (Lj,k)lgj_,‘g,v we define
L= (ﬁj,k)lsj,kszvﬂ e Q(V,N+ 1) and L= (~ k), xeN by L L= L jx = Lj, for
1<), k< NandLN+1:—LN+1,:—0for] N+1Lk—0if_/>N
or k > N. The mappings L > L resp. L #> L are isometric embeddings of Q(V, N)
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into Q(V, N + 1) resp. Q(V, N,). If Y is a Banach space and 1 < r < oo then the
canonical isometric injections *:£3(Y) = £k (Y), ~:£54(Y) —»[';\.O(Y) are defined
byy =1, - 8005 1=, .., ¥y, 0,0, .. ) for y = ()}, € £3(Y) =Y,

Fix now a sequence (¥,)®, of open sets with Q < V,cV, < Q,,, and
write 8, := 6(2,, V,, T) for the constant obtained from Lemma 3.2. We also set

Q. :=0), @y n:=0Q, N), Il :=1l"llg,> -l :=1"llo,~ [On:=Oa,s
Jz :=Jg" form,ne Nwithm < nand N e NU{§}.

(B) Before soiving the general problem we first consider the special case that
L = (L; ); xen € @21, No) with

(26) ¥ nl/i < oo
n=1 61.
n n-1
where d, = d,(L) := ¥, ILaalh + Y 14004
k==1 j=1

Straightforward computations show that (26) is satisfied if, for instance,

(27) WL; ik < (R~ *minf1, V5, ;1 <m < max{j, k}}

for all j, k € N. Let now (g,)2.; be a sequence of positive real numbers with ¢, 0
and

[+o]
28) 3ot <o

n=2 5n
We will now construct sequences (¢,)%., and (v})2; such that (with v, : =0 € X|
vt :=0e Wy, T, g :=0)

u, e X, vredV,, TH®

(29) L) — thy O larn < &

7 — ~ ~ d, + ¢,-
i, — %p-all,, NI9F — B2 all, <n V_"_én_l

for all ne N. For n =1 we apply Lemma 5.7 with N=1, ¢:=¢, Q:=Q,,
Vi=V:, Gi=Q, Ki=L;, a:=uyy =0, b*:=0v§ =0, to obtain vectors
w€X =XV, v} e&(Vy, TH = 8V, THY satisfying

1) — 1 Oz 012 < &

Nall, = lleall < V“—Igl‘i = g—:, 1581l = lv¥ll < Vgi
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Thus (29) is fulfilled forn = 1. Suppose now we have obtained u;, vf forj = 1,

such that (29) holds for j = 1, ..., n. Then, applying Lemma 5 7 w1th N=n + ]
Q:= Qn+1= Vi=Voya, Gi=Q., Ki=J1"(L,,,) —1u, O+ v, a: =i,
b* := 0¥, &:= (1/2)e,41, We obtain u € XD, v* € £(V, ., , T*)™+D satisfying (24).
With ., :=u, + u, v¥,, = v + v* we then have

N2 Mnss) — Upta On+z ”:+1”n+2,n+1 < €41

and
wt1 T &y
”un+1 unnp ”un+1 un”p = (Il + l)l/ R y
" + g,
0k — vy = llok — < (n+ I)V 3
n+1
because of

A
|]K”n+],n+1 < ”Jf+l(Ln+1 - Ln)”n+1,n+1 +
; A
+ “";,.H(Ln) - &n Du-l'lazt“n%l,n-i-l <
A
< [Lpsr — Ln”l_n+1 + ”Jf+1(L") — Uty Uy UIT”n-I-l,n S dyyy + &,

Therefore (29) is now also fulfilled for n + 1 and our inductive construction of
)21, (VH)2., is complete. Because of (26) and (28) we have

hod dypr + ¢
Solffuti <o
"1 Ops1
This implies that (#,)2.1 , (0¥)72., are Cauchy sequences in f’;\. (X)resp. fq.o(/f(si;,, T%)).

Define now x = (x))i2, : = lima, € £3 (X), y* = 2. = hm ¥ €t (6 Q> T™)).
n—-oo

Fix now an arbitrary bounded open set G > @, with G n F = . Notice that for
all NeN the mapping (g, b*) > (@ O¢b*)y is continuous from 7 (X) X

% £% (6(@c, T) to Q(G, N). Hence, for N < 1 — oo, (using |75 || < 1),
&, L)y — (x Og y*)ull <
< 8 Wy — Gt O 5nllo v + 11GE O 52w — (¢ Do 3wllen <
< UML) — o, Oprr OO nsa v + @, Og vy — x O ¥nllen €
< TP My) — g Opsa Va1 + 1@ Og 05y — (¢ Og Yhllen <

< & + [, Og vM)w — (* Oy nllegn = 0.
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Hence we obtain (25). This completes the proof of the theorem when L = (L; ;); veN
is in Q(Q,, No) and satisfies (26).

(y) For an arbitrary family (L; »); ken With L; , € Q(€,) for all j, ke N, it is
easy to build sequences &; > 0, f; > 0 so that for L : = ((1/2;8,)L;;); xen inequalities
(26) and (27) are satisfied. As we noticed earlier, this implies now:that L € Q(2,, N,)-

Hence, by (§) there are ()P €\(X), (U9)P1 €% (6(Qw, T*) such that
(@ AR (L; ) =u; Ogug for all j,ke N and any bounded open set G with
Gn F =0. With x; 1= ou;, yif := pvf we obtain (25).

Theorem 1.4 will now be an easy consequence of

5.9. THEOREM. Under the assumptions of Theorem 5.8 denote by W~ the
WOT-closure of

{r(S) ; r rational with poles off a(S) uo(T)U ﬁ;}

Then there exist 4, N € Lat ¥ such that J{| N is infinite dimensional and such that
Lat " contains a sublattice order isomorphic to Lat Z[A .

Proof. Choose A€ Q, and set L;:=96;,E; (j,k€N). By Theorem 5.8
there exist sequences (x;)7%; in X and (¥{)., in 8(Qy,» T*) such that for any
bounded open set G > Q, with Gn F =0,

x; Oy =06;E, forall j,keN,

where now E; is the point evaluation at 4 considered on H*®(G). For any rational
function » with poles off K := o(T)Uo(S)U Qe We can find G > K such that
r € H*(G). It follows from (30) that

H(To i, x;p = 8;,4(2)  for all jkeN.
Because of 6(Q, T%) © Z* and o(Ta,) < 2 < K, o(T*) = o(T) < K, o(S) < K,

this implies
QE (S = Qi r(Txp = r(TYYE, 0 =

= (H(THWE, %)) = <r(Ta i X = 0; (A

Let uf be the class of y# in X% = Z*/X*. Thus

A ifj=k

# N =
3D i, r(S)x) { 0 Iy .
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Since % : = {r ; r rational with poles off K} is WOT-dense in %, we conclude
that for all'd e %

Cuf, Ax)y =0 if j# k.

For j = k € N we conclude from (31) that the WOT-continuous functional ¢, : 4 >
— (uk, Axy is multlpllcatlve on ¥ being multiplicative on the WOT-dense sub-
algebra 2. Agam by the WOT-density of # in ¥, we have ¢(4) := 0,(4) =
= (pk(A) for all ke N. We now define 4 := V{Ax;,Ae W, je N}, My =
= V{B*w};BeW,keNc X*and & = n,///;. Clearly 4,/ € Lat¥
with & < .. Because of ufelly c N 1 the functional f* with (£ [v]) :=
= (uF, o) for[v] = v + N €N is well defined and continuous. Since we have
FE B =6, (by (31)), the vectors ([x;]))¥°.; are linearly independent in /A"
Hence, .4} is ‘infinite dnmensmnal "From the definition of ¢ we also obtain for
all ke N, A, B Cew

(C*u, BAx;> = ¢(CBA) = ¢(C)p(B)o(A).

This shows that ((kerg).#)~ = {Ax; A € kero, x € .4}~ belongs to Lat¥" and
1s contained in A". Thus, for ‘any A€ %,

(A — @A) M < N

Hence, if & € Lat.Z/A", we have (4 — o(A))n" W) c N < n~HE) and hence
n~(&) € LatW where n':.# — 4N is the canonical epimorphism.

Proof of Theorem 1.4. If the situation of Theorem 1.4 is given, then by the
proof of 4.2'wc can always assume (up to similarity) that S is as in the assumptions

of Theorem 5.8. Note that if ¢.(S)\o(S) # @ then the statement of the theo-
rem is trivial, Thlgs,_Theorem 1.4 is now an im mediate consequence of Theorem 5.9.

5.10.. THEOREM. Let X be a Banach space which is topologically isomorphic
to a quotient of two"'clc')sed subspaces of (” (1 < p < o0). If S € L(X) has property
(B) on C\F for some closed F < 6(S) such that int(c(SYNF) # O, then there are

MMN € Lat s with A < M such that 4N is infinite dimensional and such that
Lat#"s contains a sublattice order isomorphic to Lat [N .

Proof. As in the proof of Theorem 4.12, S is similar to S, = Tol Y where
T, € ,(K(Z) is Fy-decomposable with o(T,) = a(S,), F, a closed subset of F U do(S),
Z a quotient of two closed subspaces of #?, and Y e LatT,. As above we

may assume that ¢.(S) = 0,(S). Because of int(6,(SYN\F) # @, 6,.(S;) = 61.(S),
Fy = F, we have int(o1,(S,) \Fy) # 0. Let now (2,)%., be a sequence of open discs

in int(o(Se)\F,) such that Q <= Q,,, for all » and with 0,n Fy, =0 where
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oo
Ry =1 2,. Then ()., fulfils (1) with o(S) replaced by o,(S,). Notice that

n.:1

0(So) = 6(S,) U 6(Ty) U Q,, so that we have W =% s, in Theorem 5.9. The state-
ment now follows immediately from Theorem 5.9.

5.11. COROLLARY. Let # be a separable infinite dimensional Hilbert space
and let Se€ L(H) have property () on C\Fjfor a closed set F < o(S). If
int(6(SYNF) # O then Lat¥ s contains a sublattice order isomorphic to Lat #.
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