ON LATTICES OF INVARIANT SUBSPACES OF OPERATOR ALGEBRAS

E. V. KISSIN

In this paper we continue to develop the approach to the theory of operator algebras introduced in [5] and [7]. Two classes of reflexive algebras play a central role in this theory: W^* -algebras and CSL-algebras (including the particular case of nest algebras). Usually, when making a study of CSL-algebras or non self-adjoint algebras in general, one considers the pairs $(\mathscr{A}, \operatorname{Lat}\mathscr{A})$ in the same way as one considers the pairs $(\mathscr{A}, \mathscr{A}')$ in the context of W^* -algebras. Much work has also been done to investigate the Lie algebras $\mathscr{D}(\mathscr{A})$ of all continuous derivations of \mathscr{A} . The structure of $\mathscr{D}(\mathscr{A})$ is usually very complicated but in many important cases it is in fact very simple. Thus it is well-known that all derivations of W^* -algebras are inner. Christensen [2] and Wagner [8] have proved that the same is true of nest and quasitriangular algebras. But already in the case of CSL-algebras Gilfeather, Hopenwasser and Larson [3] have shown that these may have non-inner derivations although none of these derivations are implemented by bounded operators.

Although a knowledge of the structure of $\mathcal{D}(\mathcal{A})$ gives much useful information about the structure of \mathcal{A} and of Lat \mathcal{A} , there is a Lie subalgebra Ad \mathcal{A} of $\mathcal{D}(\mathcal{A})$ which is more closely linked to \mathcal{A} and to Lat \mathcal{A} and whose structure can be established with greater ease. This Lie subalgebra consists of all bounded operators which generate derivations of \mathcal{A} . As well as the obvious connection between \mathcal{A} and Ad \mathcal{A} , there is also a close link between Lat \mathcal{A} and Ad \mathcal{A} .

- (i) All operators A in Ad \mathscr{A} generate one-parameter groups of one-to-one mappings of Lat \mathscr{A} on itself $(M \mapsto \exp(tA)M)$.
- (ii) For every subspace L in Lat \mathscr{A} the set $\operatorname{Ad}\mathscr{A}(L)=\{A\in\operatorname{Ad}\mathscr{A}:AL\subseteq L\}$ is a Lie subalgebra of $\operatorname{Ad}\mathscr{A}$ and $\mathscr{A}=\bigcap_{L\in\operatorname{Lat}\mathscr{A}}\operatorname{Ad}\mathscr{A}(L)$ if \mathscr{A} is reflexive.

An understanding of the structure of $Ad \mathscr{A}$ makes it possible to obtain a clearer description of Lat \mathscr{A}. This can be done by establishing the structure of orbits in Lat \mathscr{A} with respect to $Ad \mathscr{A}$. This grasp of the structure of Lat \mathscr{A} in turn leads to deeper understanding of the structure of \mathscr{A}. It has therefore been suggested

[5] that in the general case of operator algebra $\mathscr A$ it would be more useful to consider the triplets $(\mathscr A, \operatorname{Lat} \mathscr A, \operatorname{Ad} \mathscr A)$.

In many cases, however, these triplets degenerate into pairs. For example, if \mathscr{A} is a \mathscr{W}^* -algebra, then Lat \mathscr{A} is the set of all projections in \mathscr{A}' , and Ad $\mathscr{A} = \mathscr{A} + \mathscr{A}'$; as a result of this, the triplet turns into the pair $(\mathscr{A}, \mathscr{A}')$. If \mathscr{A} is a CSL-algebra, then Ad $\mathscr{A} = \mathscr{A}$ and the triplet becomes the pair $(\mathscr{A}, \operatorname{Lat} \mathscr{A})$. But, in the case of an arbitrary operator algebra, Ad \mathscr{A} is not usually equal to $\mathscr{A} + \mathscr{A}'$ and does not contain Lat \mathscr{A} ; in this case, therefore, the triplet does not degenerate into a pair.

One of the simplest classes \mathcal{R}_1 of this type of algebra consists of all the reflexive algebras \mathscr{A} such that the quotient Lie algebra $\operatorname{Ad}\mathscr{A}/\mathscr{A}$ is not trivial and that for every L in Lat \mathscr{A} the codimension of $\operatorname{Ad}\mathscr{A}(L)$ in $\operatorname{Ad}\mathscr{A}$ is less than or equal to 1.

No CSL- or W° -algebras (except for the factors $B(H) \otimes I_2$) belong to \mathcal{M}_1 . As a general rule, Lie algebras Ad \mathcal{A} , for $\mathcal{A} \in \mathcal{R}_1$, are much larger than $\mathcal{A} + \mathcal{A}'$; as a result, these algebras \mathcal{A} have many non-inner derivations implemented by bounded operators.

The triplets (\mathscr{A} , Lat \mathscr{A} , Ad \mathscr{A}) were investigated in [5] for the case when $\mathscr{A} \in \mathscr{R}_1$ and when the quotient Lie algebras Ad \mathscr{A}/\mathscr{A} are finite-dimensional. A new method of constructing reflexive operator algebras was introduced in [5] and [7] which provided many examples of algebras from \mathscr{R}_1 . The structure of Ad \mathscr{A}/\mathscr{A} when $\mathscr{A} \in \mathscr{R}_1$ in the general case was investigated in [6].

In this article we consider arbitrary operator algebras $\mathscr A$ and show that Lat $\mathscr A$ is the disjoint union of sets $\{\mathscr L_n\}_{n=0}^\infty$, where $\mathscr L_n=\{L\in \operatorname{Lat}\mathscr A:\operatorname{codim}(\operatorname{Ad}\mathscr A(L))=n\}$ and that all $\mathscr L_n$ are invariant under $\operatorname{Ad}\mathscr A$. For example, $\operatorname{Lat}\mathscr A=\mathscr L_0$ if $\mathscr A$ is a CSL-algebra, and $\operatorname{Lat}\mathscr A=\mathscr L_0\cup\mathscr L_1$ if $\mathscr A$ belongs to $\mathscr R_1$. The analysis of the structure of Lie subalgebras of codimension 1 given in [6] makes it possible to describe the structure of orbits in $\mathscr L_1$. This, in turn, allows us to establish some interesting properties of $\mathscr L_0\cup\mathscr L_1$ for arbitrary operator algebras, especially for the case when $\mathscr L_2=\emptyset$. The link between the orbits in $\operatorname{Lat}\mathscr A$ and the closed Lie ideals in $\operatorname{Ad}\mathscr A$ is investigated.

We shall also investigate the effect which the existence of simple orbits in Lat \mathscr{A} has on the structure of \mathscr{A} . Theorem 3.1 shows that if ω is a simple orbit, then there exist closed operators F and G and a projection P such that $P\mathscr{A}P$ is a subalgebra of $\mathscr{A}(F,G)$, so that Lat $\mathscr{A}(F,G) \subseteq \operatorname{Lat} P\mathscr{A}P \subseteq \operatorname{Lat} \mathscr{A}$. (The algebras $\mathscr{A}(F,G)$ were considered in [7].) The case when $P\mathscr{A}P$ contains a finite rank operator is particularly interesting. Here one can prove that ω lies in \mathscr{L}_1 and that $\operatorname{Lat} P\mathscr{A}P = \operatorname{Lat} \mathscr{A}(F,G)$. One can also describe the structure of $\operatorname{Lat} P\mathscr{A}P$ in detail and in some cases one can even show that $P\mathscr{A}P = \mathscr{A}(F,G)$.

I would like to thank the referee for his helpful suggestions.

1. PRELIMINARIES AND NOTATION

Let B(H) be the algebra of all bounded operators on a Hilbert space H and let $\mathscr A$ be a subalgebra of B(H). Lat $\mathscr A$ is the set of all closed subspaces invariant under operators from $\mathscr A$ and Alg Lat $\mathscr A$ is the subalgebra of all operators in B(H) which leave every member of Lat $\mathscr A$ invariant. $\mathscr A$ is called *reflexive* if $\mathscr A = Alg Lat \mathscr A$.

Let M be a linear subspace in H and let B be a linear operator on H. We shall denote

- (i) the domain of B by D(B);
 - (ii) the set $\{Bx : x \in M\}$ by BM, if $M \subseteq D(B)$;
- (iii) the closure of M by sp(M);
- (iv) the closure of B by cl(B), if B is a closable operator;
- (v) by $\{B\}$ the one-dimensional subspace in B(H) generated by B, if $B \in B(H)$. If M is closed and if B is bounded and has a bounded inverse, then sp(BM) = BM.

If M and L are two linear subspaces in H, then by M+L we shall denote the linear subspace generated by all sums x+y where $x \in M$ and $y \in L$. If $M \cap L = \{0\}$, then their direct sum will be denoted by $M \dotplus L$. Let L be a linear subspace of M and suppose that there exists a linear subspace N in M such that $\dim N = n$ and that $M = L \dotplus N$. Then we say that L has codimension n in M and denote it by codim L = n.

For any operators A and B from B(H) let

$$[A,B] = AB - BA$$
.

Then [A,B] is a Lie multiplication on B(H) and

$$||[A,B]|| \leq 2||A||||B||.$$

A subspace \mathscr{B} in B(H) closed in the norm topology is called a normed Lie subalgebra of B(H) if $[A,B] \in \mathscr{B}$ for all A and B from \mathscr{B} . If \mathscr{B} is weakly closed, then it is called a weakly closed Lie subalgebra of B(H). If \mathscr{B} and \mathscr{D} are normed (weakly closed) Lie subalgebras of B(H) and if $\mathscr{D} \subset \mathscr{B}$, then \mathscr{D} is called a closed (weakly closed) Lie subalgebra of \mathscr{B} . If in addition $[B,C] \in \mathscr{D}$ for every $B \in \mathscr{B}$ and for every $C \in \mathscr{D}$, then \mathscr{D} is called a closed (weakly closed) Lie ideal of \mathscr{B} .

DEFINITION. Let \mathscr{A} be a subalgebra of B(H) and let $M \in \operatorname{Lat} \mathscr{A}$.

Ad
$$\mathscr{A} = \{B \in B(H) : [B, A] \in \mathscr{A} \text{ for all } A \in \mathscr{A}\};$$

$$\operatorname{Ad} \mathscr{A}(M) = \{ B \in \operatorname{Ad} \mathscr{A} : BM \subseteq M \}.$$

Obviously every operator from Ad A generates a bounded derivation on A.

LEMMA 1.1. Let \mathscr{A} be a subalgebra of B(H) closed in the norm topology (the weak topology) and let $M \in \operatorname{Lat} \mathscr{A}$.

- (i) Ad \mathscr{A} is a normed (weakly closed) Lie subalgebra of B(H). \mathscr{A} is a closed (weakly closed) Lie ideal of Ad \mathscr{A} and the commutant \mathscr{A}' is a weakly closed Lie ideal of Ad \mathscr{A} ;
- (ii) Ad $\mathcal{A}(M)$ is a closed (weakly closed) Lie subalgebra of 'Ad \mathcal{A} and $\mathcal{A} \subseteq \operatorname{Ad} \mathcal{A}(M)$;
- (iii) There exists a maximal closed (weakly closed) Lie ideal I(M) of Ad \mathcal{A} in Ad $\mathcal{A}(M)$ such that
 - 1) $\mathscr{A} \subseteq I(M) \subseteq \operatorname{Ad} \mathscr{A}(M)$;
 - 2) $I \subseteq I(M)$ for any Lie ideal I of $Ad \mathcal{A}$ in $Ad \mathcal{A}(M)$;
 - (iv) If \mathscr{A} is reflexive, then $\bigcap_{M \in Lat} Ad \mathscr{A}(M) = \mathscr{A}$.

Proof. It is easy to check that for all operators A, B and C

$$(1.1) [[B, C], A] = [B, [C, A]] - [C, [B, A]].$$

If B and C belong to Ad \mathscr{A} and if A belongs to \mathscr{A} , then [B, C], $A \in \mathscr{A}$, so that $[B, C] \in Ad \mathscr{A}$. If $B_n \in Ad \mathscr{A}$ and if $\{B_n\}$ converges to B in the norm topology, then

$$||[B, A] - [B_n, A]|| = ||[B - B_n, A]|| \le 2||B - B_n||||A|| \to 0.$$

Since $[B_n, A] \in \mathcal{A}$ and since \mathcal{A} is closed, $[B, A] \in \mathcal{A}$. Hence $B \in Ad \mathcal{A}$ and $Ad \mathcal{A}$ is a normed Lie subalgebra of B(H). If \mathcal{A} is weakly closed, then it is also easy to show that $Ad \mathcal{A}$ is weakly closed. If $C \in \mathcal{A}'$, then, by (1.1), $[B, C] \in \mathcal{A}'$ for every $B \in Ad \mathcal{A}$. Since \mathcal{A}' is always weakly closed, (i) is proved.

(ii) is obvious. Ordering all closed Lie ideals of Ad \mathscr{A} in Ad $\mathscr{A}(M)$ by inclusion and using Zorn's lemma, we obtain the proof of (iii) in the usual way.

Finally, by (ii) $\bigcap_{M \in \text{Lat } \mathscr{A}} \text{Ad } \mathscr{A}(M)$ contains \mathscr{A} and consists of all operators from Ad \mathscr{A} which leave every member of Lat \mathscr{A} invariant. Since \mathscr{A} is reflexive, $\bigcap_{M \in \text{Lat } \mathscr{A}} \text{Ad } \mathscr{A}(M) = \mathscr{A}$ which completes the proof.

DEFINITION. For all $n \ge 0$ let

$$\mathcal{L}_n = \{ M \in \text{Lat } \mathcal{A} : \text{codim}(\text{Ad } \mathcal{A}(M)) = n \}$$

where $Ad \mathscr{A}(M)$ is considered as a subspace of $Ad \mathscr{A}$. Then \mathscr{L}_0 consists of all $M \in \text{Lat } \mathscr{A}$ such that $Ad \mathscr{A}(M) = Ad \mathscr{A}$. By \mathscr{R}_1 we shall denote the class of all reflexive algebras \mathscr{A} such that $\mathscr{L}_1 \neq \emptyset$ and that $\text{Lat } \mathscr{A} = \mathscr{L}_0 \cup \mathscr{L}_1$.

By sl(2, C) we shall denote the simple Lie algebra of all complex matrices $\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$. Put

$$e_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad e_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad e_{0} = \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix}.$$

Then

$$[e_0, e_+] = e_+, [e_0, e_-] = -e_-, [e_+, e_-] = 2e_0.$$

Theorem 1.2. ([6]). If $M \in \mathcal{L}_1$, then

- (i) $1 \le \operatorname{codim} I(M) \le 3$ and the quotient Lie algebra $\operatorname{Ad} \mathcal{A}/I(M)$ is isomorphic to $\operatorname{sl}(2, \mathbb{C})$ or to a Lie subalgebra of $\operatorname{sl}(2, \mathbb{C})$;
 - (ii) if $\operatorname{codim} I(M) = 2$, then there exist operators B_{-} and B_{0} in $\operatorname{Ad} \mathscr{A}$ such that

$$\operatorname{Ad} \mathscr{A} = \{B_{-}\} \dotplus \operatorname{Ad} \mathscr{A}(M), \operatorname{Ad} \mathscr{A}(M) = \{B_{0}\} \dotplus I(M),$$

$$[B_0, B_-] \equiv -B_- \mod I(M);$$

(iii) if $\operatorname{codim} I(M) = 3$, then $\operatorname{Ad} \mathcal{A}/I(M)$ is isomorphic to $\operatorname{sl}(2,\mathbb{C})$ and there exist operators B_- , B_0 and B_+ in $\operatorname{Ad} \mathcal{A}$ such that

$$\operatorname{Ad} \mathscr{A} = \{B_{-}\} \dotplus \operatorname{Ad} \mathscr{A}(M), \quad \operatorname{Ad} \mathscr{A}(M) = \{B_{0}\} \dotplus \{B_{+}\} \dotplus I(M),$$

$$[B_0^*, B_+] \equiv B_+ \mod I(M), [B_0, B_-] \equiv -B_- \mod I(M),$$

$$[B_+, B_-] \equiv 2B_0 \mod I(M).$$

By SL(2, C) we shall denote the Lie group of all matrices $g = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}$ such that det g = 1.

Let
$$h = \begin{pmatrix} r/2 & s \\ p & -r/2 \end{pmatrix} \in sl(2, \mathbb{C})$$
. Then for $\lambda \in \mathbb{C}$

$$g(\lambda h) = \exp(\lambda h) \in SL(2, \mathbb{C}).$$

In order to calculate $g(\lambda h)$ we shall consider different cases. The eigenvalues of h are

$$\mu_{1,2} = \pm \sqrt{ps + r^2/4}$$

I. Let
$$ps + r^2/4 \neq 0$$
 and let $p \neq 0$. Set $\Delta = (2p)/ps + r^2/4)^{-1}$. Then

$$g_{11} = \Delta [e^{\lambda \mu_1} (\mu_1 + r/2) - e^{\lambda \mu_2} (\mu_2 + r/2)],$$

$$g_{12} = \Delta (\mu_1 + r/2) (\mu_2 + r/2) (e^{\lambda \mu_2} - e^{\lambda \mu_1}),$$

$$g_{21} = \Delta p^2 (e^{\lambda \mu_1} - e^{\lambda \mu_2}),$$

$$g_{22} = \Delta p [e^{\lambda \mu_2} (\mu_1 + r/2) - e^{\lambda \mu_1} (\mu_2 + r/2)].$$

II. Let $ps + r^2/4 = 0$ but $rp \neq 0$. Then

(1.3)
$$g_{11} = 1 + \lambda r/2$$
, $g_{12} = \lambda s$, $g_{21} = \lambda p$, $g_{22} = 1 - \lambda r/2$.

III. If r = s = 0 and $p \neq 0$, then

$$(1.4) g_{11} = g_{22} = 1, g_{12} = 0, g_{21} = \lambda p.$$

I. If p = 0 and $r \neq 0$, then $g_1 = e^{\lambda r/2}$, $g_{22} = g_{11}^{-1}$, $g_{21} = 0$, $g_{12} = s(g_{11} - g_{22})/r$, and if p = r = 0, then $g_{11} = g_{22} = 1$, $g_{21} = 0$, $g_{12} = \lambda s$.

Now let $S^2 = \mathbb{C} \cup \infty$. For every $t \in S^2$ and for every $g \in SL(2, \mathbb{C})$ set

(1.5)
$$\pi(g)t = (g_{11}t + g_{12})/(g_{21}t + g_{22}).$$

It is well-known that π is a representation of $SL(2, \mathbb{C})$ into the group of homeomorphisms of S^2 .

2. ORBITS IN LAT & WITH RESPECT TO AD &

Throughout this section we assume that an algebra $\mathscr A$ is closed in the norm topology. For any bounded operators A and B set

ad
$$B(A) = [B, A]$$
 and $\exp(\operatorname{ad} B)(A) = \sum_{n=0}^{\infty} \operatorname{ad}^n B(A)/n!$.

It is well-known that

$$(2.1)_i \qquad \exp(B) \ A \exp(-B) = \exp(\operatorname{ad} B) \ (A).$$

For any subspace M and for any bounded operator B set

$$M_{\rm R} = \exp(B) M$$
.

LEMMA 2.1. Let $B \in Ad \mathscr{A}$.

- (i) The mapping $A \in \mathcal{A} \mapsto \exp(B) A \exp(-B)$ is an automorphism of \mathcal{A} .
- (ii) The transformation $M \mapsto M_B$ maps Lat \mathcal{A} onto itself.
- (iii) The mapping $C \in \operatorname{Ad} \mathscr{A} \mapsto \exp(B) C \exp(-B)$ is an automorphism of $\operatorname{Ad} \mathscr{A}$ and

$$\exp(B) \operatorname{Ad} \mathscr{A}(M) \exp(-B) = \operatorname{Ad} \mathscr{A}(M_B).$$

Proof. (i) follows immediately from formula (2.1). For any $A \in \mathcal{A}$ by (2.1),

$$AM_B = A \exp(B) M = \exp(B) A'M \subseteq M_B$$

where $A' = \exp(-\operatorname{ad} B)(A) \in \mathscr{A}$. Thus M_B is invariant under all operators from \mathscr{A} . Since $\exp(B)$ is invertible, M_B is closed and therefore $M_B \in \operatorname{Lat} \mathscr{A}$. For any $M \in \operatorname{Lat} \mathscr{A}$ the subspace M_{-B} belongs to $\operatorname{Lat} \mathscr{A}$ and $\exp(B)M_{-B} = M$. Therefore $\exp(B)$ maps $\operatorname{Lat} \mathscr{A}$ onto itself.

By Lemma 1.1 (i), Ad \mathscr{A} is closed in the norm topology. Hence, by (2.1), $\exp(B)C\exp(-B) \in \operatorname{Ad} \mathscr{A}$ for any $C \in \operatorname{Ad} \mathscr{A}$. Since $\exp(\operatorname{ad} B)$ is invertible, $C \mapsto \exp(\operatorname{ad} B)(C)$ is an automorphism of Ad \mathscr{A} . If $C \in \operatorname{Ad} \mathscr{A}(M)$, then

$$\exp(B)C\exp(-B)M_B = \exp(B)CM \subseteq M_B$$

which completes the proof of the lemma.

DEFINITION. We say that a subset ω in Lat \mathscr{A} is invariant under Ad \mathscr{A} if for every $M \in \omega$ and for every $B \in \operatorname{Ad} \mathscr{A}$ the subspace M_B belongs to ω . If ω is invariant and if it does not contain any invariant subset, then it is called an orbit.

LEMMA 2.2. (i) \mathcal{L}_n are invariant under Ad \mathcal{A} .

- (ii) $\omega = \{\exp(B_1) \dots \exp(B_k)M : B_1, \dots, B_k \text{ belong to Ad } \mathcal{A}\}$ is the orbit which contains M.
 - (iii) If ω_1 and ω_2 are two orbits, then $\omega_1 \cap \omega_2 = \emptyset$.

Proof. If $M \in \mathcal{L}_n$, then there exists a subspace N in Ad \mathcal{A} such that dim N = n and that Ad $\mathcal{A} = N + Ad \mathcal{A}(M)$. By Lemma 2.1 (iii)

$$Ad \mathscr{A} = \exp(B) Ad \mathscr{A} \exp(-B) = \exp(B) N \exp(-B) + Ad \mathscr{A}(M_B).$$

Since dim(exp(B)Nexp(-B)) = n, we have that $M_B \in \mathcal{L}_n$ and (i) is proved. Obviously, ω is the smallest set which contains M and is invariant under Ad \mathcal{A} . If $M_1 = \exp(B_1) \dots \exp(B_k)M$, then $M = \exp(-B_k) \dots \exp(-B_1)M_1$, so that ω does not contain any invariant subset. Therefore ω is an orbit.

Since ω_1 and ω_2 are invariant under Ad \mathscr{A} , $\omega_1 \cap \omega_2$ is also invariant under Ad \mathscr{A} . Since $\omega_1 \cap \omega_2 \subseteq \omega_1$ and since ω_1 is a smallest invariant subset, we have that either $\omega_1 \cap \omega_2 = \emptyset$ or $\omega_1 \cap \omega_2 = \omega_1$. But in the last case $\omega_1 \subset \omega_2$ which contradicts the condition that ω_2 is also a smallest invariant subset. This completes the proof of the lemma.

Let ω be an orbit in Lat \mathscr{A} . Set

$$I(\omega) = \bigcap_{L \in \omega} \operatorname{Ad} \mathscr{A}(L),$$

$$K(\omega) = \bigcap_{L \in \omega} L,$$

$$M(\omega) = \operatorname{sp}(\sum_{L \in \omega} L),$$

where $\sum_{L \in \omega} L$ is the linear space of all linear combinations of elements from all $L \in \omega$.

LEMMA 2.3. (i) $I(\omega)$ is a closed Lie ideal of $Ad \mathscr{A}$ and $I(\omega) = I(L)$ for any $L \in \omega$. If I is a Lie ideal of $Ad \mathscr{A}$ such that $\mathscr{A} \subseteq I \subseteq Ad \mathscr{A}(L)$, then $I \subseteq I(\omega)$.

(ii) The subspaces $K(\omega)$ and $M(\omega)$ belong to \mathcal{L}_0 . If $L \in \omega$, then for any N from \mathcal{L}_0 such that $N \subseteq L$ ($L \subseteq N$), we have that $N \subseteq K(\omega)$ ($M(\omega) \subseteq N$).

Proof. By Lemma 1.1 (ii), $I(\omega)$ is a closed Lie subalgebra of Ad \mathscr{A} . By Lemma 2.1 (iii), for any $B \in \operatorname{Ad} \mathscr{A}$, for any complex t, for any $L \in \omega$ and for any $A \in I(\omega)$

$$\exp(tB)A\exp(-tB) \in \exp(tB) \operatorname{Ad} \mathscr{A}(L)\exp(-tB) = \operatorname{Ad} \mathscr{A}(L_{tB}).$$

Since the map $L \mapsto L_{tB}$ maps ω onto itself, $\exp(tB)A \exp(-tB) \in I(\omega)$. Since $I(\omega)$ is closed, using formula (2.1) and differentiating with respect to t, we obtain that $[B, A] \in I(\omega)$. Therefore $I(\omega)$ is a closed Lie ideal of Ad \mathscr{A} .

If I is a closed Lie ideal of Ad \mathscr{A} such that $\mathscr{A} \subseteq I \subseteq \operatorname{Ad} \mathscr{A}(L)$ for a subspace $L \in \omega$, then, by (2.1) and by Lemma 2.1(iii),

$$\exp(B)I\exp(-B) = I \subseteq \operatorname{Ad} \mathscr{A}(L_B)$$

for any $B \in Ad \mathscr{A}$. From Lemma 2.2(ii) it follows that $I \subseteq Ad \mathscr{A}(M)$ for all $M \in \omega$, so that $I \subseteq I(\omega)$. Therefore $I(L) \subseteq I(\omega)$. On the other hand, by Lemma 1.1, $I(\omega) \subseteq I(L)$. Therefore $I(\omega) = I(L)$ and (i) is proved.

Since all subspaces in Lat \mathscr{A} are closed, $K(\omega)$ is a closed subspace. If $x \in K(\omega)$, then for any $B \in \operatorname{Ad} \mathscr{A}$, for any $L \in \omega$ any for any complex t

$$\exp(tB)x \in \exp(tB)L = L_{tB} \in \omega$$
.

Therefore $\exp(tB)x \in K(\omega)$. Since $K(\omega)$ is closed, differentiation by t gives us that, $Bx \in K(\omega)$. Hence $K(\omega) \in \mathcal{L}_0$.

If $N \in \mathcal{L}_0$ and if $N \subseteq L$ for a certain $L \in \omega$, then $N = \exp(B)N \subseteq L_B$ for any $B \in \operatorname{Ad} \mathcal{A}$. Therefore $N \subseteq M$ for any $M \in \omega$, so that $N \subseteq K(\omega)$. In the same way one can prove (ii) for $M(\omega)$. The lemma is proved.

DEFINITION. By ψ we shall denote the mapping

$$\psi:\omega\mapsto I(\omega)$$

of the set of all orbits in Lat A into the set of all closed Lie ideals of Ad A.

In an early paper [5] we obtained the structure of orbits in \mathcal{L}_1 for the case when the quotient Lie algebra $\operatorname{Ad} \mathcal{A}/\mathcal{A}$ is finite-dimensional. But using Theorem 1.2 and repeating the argument of Theorem 3.2 and of Theorem 3.5 [5], one can obtain that the structure of orbits ω in \mathcal{L}_1 is the same even in the case when $\operatorname{Ad} \mathcal{A}/\mathcal{A}$ is infinite dimensional.

Theorem 2.4. Let $\omega \subset \mathcal{L}_1$ and let $M \in \omega$.

- (i) Let $\operatorname{codim} I(M) = 2$ and let the operators B_{-} and B_{0} be the same as in Theorem 1.2(ii). Then there exists a subspace L_{∞} in ω such that
 - 1) $B_0L_\infty \subseteq L_\infty$ and $\omega = \{L_t = \exp(B_-/t)L_\infty : t \in S^2 \setminus \{0\}\}$;
 - 2) Ad $\mathscr{A}(L_t) = \{B_- + tB_0\} \dotplus I(\omega), \text{ Ad } \mathscr{A}(L_\infty) = \{B_0\} \dotplus I(\omega);$
- 3) $L_t \neq L_u$ if $t \neq u$. For every $B = pB_- + rB_0 + A \in Ad \mathcal{A}$, where $A \in I(\omega)$ and p and r are complex numbers,

$$\exp(B)L_t = L_u,$$

where
$$u = \pi(g(h))t$$
, $g(h) = \exp h$ and $h = \begin{pmatrix} r/2 & 0 \\ p & -r/2 \end{pmatrix}$.

- (ii) Let codim $I(\omega)=3$ and let the operators B_- , B_0 and B_+ be the same as in Theorem 1.2(iii). Then there exist subspaces L_0 and L_∞ in ω such that
 - 1) $\omega = [L_t : t \in S^2]$ and $L_t = \exp(B_-/t)L_{\infty} = \exp(tB_+)L_0$, for $t \neq 0, \infty$.
- 2) Ad $\mathscr{A}(L_t) = \{B_- + tB_0\} \dotplus \{B_0 tB_+\} \dotplus I(\omega) \text{ and } Ad \mathscr{A}(L_{\infty}) = \{B_0\} \dotplus \{B_+\} \dotplus I(\omega);$
- 3) $L_t \neq L_u$ if $t \neq u$. For every $B = pB_- + rB_0 + sB_+ + A$, where $A \in I(\omega)$ and p, r and s are complex numbers,

$$\exp(B)L_{t}=L_{u},$$

where
$$u = \pi(g)t$$
, $g = \exp h$ and $h = \begin{pmatrix} r/2 & s \\ p & -r/2 \end{pmatrix}$.

REMARK 2.5. If codim I(M) = 1, i.e., Ad $\mathcal{A}(M) = I(\omega)$, then there exists an operator B_- in Ad \mathcal{A} such that Ad $\mathcal{A} = \{B_-\} + I(\omega)$. Let $B = tB_- + A$, where

 $A \in I(\omega)$. From the Campbell-Hausdorff formula [1] it can be derived that there exists an operator $A_1 \in I(\omega)$ such that

$$\exp B = \exp(tB_- + A) = \exp(tB_-)\exp(A_1).$$

Therefore $M_B = M_{tB_-}$. Since Ad $\mathscr{A}(M)$ is a closed Lie ideal in Ad \mathscr{A} , it follows from Lemma [2.1(iii), that Ad $\mathscr{A}(M_B) = \operatorname{Ad} \mathscr{A}(M)$. From this and from Lemma 2.2(ii) we obtain that $\omega = \{M_{tB_-} : t \in \mathbb{C}\}$, but we do not know whether all subspace sM_{tB_-} are different.

Now let L and M belong to \mathcal{L}_1 and let $\operatorname{Ad} \mathcal{A}(L) \neq \operatorname{Ad} \mathcal{A}(M)$. Then $\mathcal{B} = \operatorname{Ad} \mathcal{A}(L) \cap \operatorname{Ad} \mathcal{A}(M)$ is contained in $\operatorname{Ad} \mathcal{A}(L \cap M)$ and in $\operatorname{Ad} \mathcal{A}(\operatorname{sp}(L + M))$. Since codim $\mathcal{B} \leq 2$, we have that

(2.2)
$$L \cap M \in \mathcal{L}_0 \cup \mathcal{L}_1 \cup \mathcal{L}_2$$
 and $\operatorname{sp}(L + M) \in \mathcal{L}_0 \cup \mathcal{L}_1 \cup \mathcal{L}_2$.

In the following two theorems we shall consider the case when the subspaces $L \cap M$ and $\operatorname{sp}(L + M)$ belong to \mathcal{L}_1 .

THEOREM 2.6. Let subspaces L and M belong to \mathcal{L}_1 , let $\operatorname{Ad} \mathcal{A}(L) \neq \operatorname{Ad} \mathcal{A}(M)$ and let $N = \operatorname{sp}(L + M) \in \mathcal{L}_1$.

- (i) Ad $\mathcal{A}(N)$ coincides with one of the Lie subalgebras Ad $\mathcal{A}(L)$ or Ad $\mathcal{A}(M)$.
- (ii) If $Ad \mathcal{A}(N) = Ad \mathcal{A}(M)$, then
 - a) $M(\omega_L) \subseteq N$, where ω_L is the orbit which contains L,
 - b) $N = \operatorname{sp}(M + L_1)$ for any $L_1 \in \omega_L$ such that $\operatorname{Ad} \mathscr{A}(M) \neq \operatorname{Ad} \mathscr{A}(L_1)$.

Proof. Since $\operatorname{Ad} \mathscr{A}(L) \neq \operatorname{Ad} \mathscr{A}(M)$, $\operatorname{codim} \mathscr{B} = 2$ and there exist operators $B_1 \in \operatorname{Ad} \mathscr{A}(L)$ and $B_2 \in \operatorname{Ad} \mathscr{A}(M)$ such that

(2.3)
$$\operatorname{Ad} \mathscr{A}(L) = \{B_1\} \dotplus \mathscr{B}, \quad \operatorname{Ad} \mathscr{A}(M) = \{B_2\} \dotplus \mathscr{B}, \\ \operatorname{Ad} \mathscr{A} = \{B_1\} \dotplus \operatorname{Ad} \mathscr{A}(M) = \{B_2\} \dotplus \operatorname{Ad} \mathscr{A}(L) = \{B_1\} \dotplus \{B_2\} \dotplus \mathscr{B}.$$

Since codim $(Ad \mathcal{A}(N)) = 1$, there exist complex numbers t_1 and t_2 such that

$$Ad \mathscr{A}(N) = \{t_1B_1 + t_2B_2\} \dotplus \mathscr{B}.$$

Suppose that $Ad \mathcal{A}(N) \neq Ad \mathcal{A}(L)$. Then $t_2 \neq 0$. Since $L \subseteq N$,

$$(t_1B_1 + t_2B_2)x \in N$$

for every $x \in L$. But $B_1x \in L$. Therefore $B_2L \subseteq N$. Since $B_2M \subseteq M$, we obtain that $B_2(L+M) \subseteq N$, so that $B_2N \subseteq N$. Therefore $B_2 \in Ad \mathscr{A}(N)$ and

$$\operatorname{Ad} \mathscr{A}(M) = \{B_2\} + \mathscr{B} = \operatorname{Ad} \mathscr{A}(N).$$

(i) is proved.

Let $Ad \mathcal{A}(N) = Ad \mathcal{A}(M)$. Since $L \subseteq N$ and since $B_2 \in Ad \mathcal{A}(N)$,

$$(2.4) L_{tB_2} = \exp(tB_2)L \subseteq \exp(tB_2)N = N$$

for every complex t. In order to prove a) we shall consider three different cases in which $\operatorname{codim}(I(\omega_L))$ is 1, 2 or 3.

- 1) $I(\omega_L) = \operatorname{Ad} \mathscr{A}(L)$. It follows from Remark 2.5 and from formula (2.3) that $\omega_L = \{L_{IB_n} : t \in \mathbb{C}\}$. By (2.4), all $L_{IB_n} \in \mathbb{N}$. Therefore $M(\omega_L) \subseteq \mathbb{N}$.
- 2) codim $I(\omega_L) = 2$. Let the operators B_- and B_0 be the same as in Theorem 1.2(ii). Then there exist p and r such that

$$B_2 = pB_- + rB_0 + A,$$

where $A \in I(\omega_L)$, and, by (2.3), $p \neq 0$. By (2.4), $L_{xB_2} \subseteq N$ for all complex x. It follows from Theorem 2.4(i) that $\omega_L = \{L_t : t \in S^2 \setminus \{0\}\}$ and that $L = L_{t_0}$ for a certain $t_0 \in S^2 \setminus \{0\}$. Then

$$L_{xB_o} = \exp(xB_2) L_{t_o} = L_t$$

where $t = \pi(g)t_0$, $g = \exp(xh)$ and $h = \binom{r/2}{p} - \frac{0}{-r/2}$. If $r \neq 0$, then, by (1.2) and by (1.5),

$$t = e^{xr}t_0r/(pt_0(e^{xr}-1)+r).$$

If r = 0, then, by (1.4) and by (1.5),

$$t = t_0/(xpt_0 + 1).$$

If r = 0, then, since $p \neq 0$, we have that t can be any element from $S^2 \setminus \{0\}$. Therefore all subspaces L_t from ω_L are contained in N. Hence $M(\omega_L) \subseteq N$.

If $r \neq 0$ and if $r - pt_0 \neq 0$, then t can be any element from $S^2 \setminus \{0\}$ apart from $t_1 = r/p$. Therefore all L_t , $t \neq r/p$, are contained in N. It follows from Theorem 2.4(i) that if t_i converge to r/p, then the projections P_{t_i} on L_{t_i} converge to the projection $P_{r/p}$ on $L_{r/p}$ in the norm topology. Therefore for any $y \in L_{r/p}$ the sequence $\{P_{t_i}y\}$ converges to y and $P_{t_i}y \in L_{t_i} \subseteq N$. Since N is closed, $y \in N$, so that $L_{r/p} \subseteq N$. Thus, $L_t \subseteq N$ for all L_t from ω_L and therefore $M(\omega_L) \subseteq N$.

Finally, if $r \neq 0$ but $r - pt_0 = 0$, then for all complex x

$$L_{xB_2} = L_{t_0} = L_{r/p}.$$

From this it follows that $B_2L \subseteq L$, so that $B_2 \in Ad \mathcal{A}(L)$ which contradicts (2.3). Thus a) is proved in this case.

3) codim $I(\omega_L) = 3$. The proof is similar to the proof of the previous case and uses the results of Theorems 1.2(iii) and 2.4(ii) and formulae (1.2)—(1.5).

The linear subspace L+M is dense in N. Hence $\exp(tB_2)(L+M)$ is dense in $\exp(tB_2)N$, for all $t \in \mathbb{C}$. Since $\operatorname{Ad} \mathscr{A}(N) = \operatorname{Ad} \mathscr{A}(M)$, $B_2 \in \operatorname{Ad} \mathscr{A}(N)$ and $\exp(tB_2)(L+M) = \exp(tB_2)L+M$ is dense in $\exp(tB_2)N=N$. Therefore $\operatorname{sp}(\exp(tB_2)L+M)=N$.

If $I(\omega_L) = \operatorname{Ad} \mathscr{A}(L)$, then $\omega_L = \{L_{tB_2} = \exp(tB_2)L : t \in C\}$ and b) holds. If $\operatorname{codim} I(\omega_L) = 2$, then it was shown in 2) that $\exp(tB_2)L$ can be any subspace in ω_L apart perhaps from L_{t_1} , where $t_1 = r/p$ if $r \neq 0$ and $r - pt_0 \neq 0$. Thus b) holds for any subspace from ω_L apart perhaps from L_{t_1} . If $\operatorname{Ad} \mathscr{A}(L_{t_1}) \neq Ad \mathscr{A}(M) = \operatorname{Ad} \mathscr{A}(N)$, then, since they have equal codimensions, there exists B in $\operatorname{Ad} \mathscr{A}(N)$, which does not belong to $\operatorname{Ad} \mathscr{A}(L_{t_1})$ and such that $\exp(B)L_{t_1} = L' \neq L_{t_1}$. L' belongs to ω_L and it was proved above that $\operatorname{sp}(L' + M) = N$. Then $\exp(-B)(L' + M) = \exp(-B)L' + M = L_{t_1} + M$ is dense in $\exp(-B)N = N$ and b) holds for L_{t_1} if $\operatorname{Ad} \mathscr{A}(L_{t_1}) \neq \operatorname{Ad} \mathscr{A}(M)$.

If $\operatorname{codim} I(\omega_L) = 3$, then, using [(1.2)—(1.5) and Theorem 2.4(ii), one can show that $\exp(tB_2)L$ can be any subspace in ω_L apart perhaps from two subspaces L_{t_1} and L_{t_2} . Therefore b) holds for all these subspaces. Repeating the argument above we also obtain that b) holds for L_{t_i} , i = 1, 2, if $\operatorname{Ad} \mathscr{A}(L_{t_i}) \neq \operatorname{Ad} \mathscr{A}(M)$. The theorem is proved.

Using a similar argument one can prove the following theorem.

THEOREM 2.7. Let subspaces L and M belong to \mathcal{L}_1 , let $Ad \mathcal{A}(L) \neq Ad \mathcal{A}(M)$ and let $N = L \cap M \in \mathcal{L}_1$.

- (i) Ad $\mathcal{A}(N)$ coincides either with Ad $\mathcal{A}(L)$ or with Ad $\mathcal{A}(M)$.
- (ii) If $Ad \mathcal{A}(N) = Ad \mathcal{A}(M)$, then
 - a) $M(\omega_N) \subseteq L$ where ω_N is the orbit which contains N;
 - b) $N = L_1 \cap M$ for any $L_1 \in \omega_L$ such that $Ad \mathcal{A}(L_1) \neq Ad A(M)$.

COROLLARY 2.8. If L and M belong to \mathcal{L}_1 , if $L \subseteq M$ and $Ad \mathcal{A}(L) \neq Ad \mathcal{A}(M)$, then $M(\omega_L) \subseteq K(\omega_M)$.

Proof. Since $L \cap M = L \in \mathcal{L}_1$, by Theorem 2.7(ii), $M(\omega_L) \subseteq M$. Since $K(\omega_M)$ is the largest subspace in M from \mathcal{L}_0 , $M(\omega_L) \subseteq K(\omega_M)$.

THEOREM 2.9. Let subspaces L and M belong to the same orbit ω in \mathcal{L}_1 . If $2 \leq \operatorname{codim} I(\omega)$, then $L \cap M$ and $\operatorname{sp}(L+M)$ belong to $\mathcal{L}_0 \cup \mathcal{L}_2$.

Proof. If $\operatorname{codim} I(\omega) = 1$, then for every $L \in \omega$, $\operatorname{Ad} \mathscr{A}(L) = I(\omega)$ and we cannot apply Theorem 2.6 and Theorem 2.7. But if $2 \leq \operatorname{codim} I(\omega)$, then it follows

from Theorem 2.4(i) and (ii) that $\operatorname{Ad} \mathscr{A}(L) \neq \operatorname{Ad} \mathscr{A}(M)$ for any L and M from ω .

From (2.2) it follows that $L \cap M$ and $\operatorname{sp}(L+M)$ belong to $\mathscr{L}_0 \cup \mathscr{L}_1 \cup \mathscr{L}_2$. Suppose that $N = \operatorname{sp}(L+M) \in \mathscr{L}_1$. Then, by Theorem 2.6(i), $\operatorname{Ad} \mathscr{A}(N)$ coincides either with $\operatorname{Ad} \mathscr{A}(L)$ or with $\operatorname{Ad} \mathscr{A}(M)$. Assume that $\operatorname{Ad} \mathscr{A}(N) = \operatorname{Ad} \mathscr{A}(M)$. Then, by Theorem 2.6(ii), $M(\omega_L) \subseteq N$. On the other hand, since L and M lie on the same orbit, $\operatorname{sp}(L+M) = N \subseteq M(\omega_L)$. Therefore $N = M(\omega_L) \in \mathscr{L}_0$ which contradicts the assumption that $N \in \mathscr{L}_1$. Thus, $N \in \mathscr{L}_0 \cup \mathscr{L}_2$. In the same way, using Theorem 2.7, one can prove that $L \cap M \in \mathscr{L}_0 \cup \mathscr{L}_2$.

DEFINITION. For any subspaces M and N in Lat A such that $M \subseteq N$ let

$$(M, N) = \{L \in \operatorname{Lat} \mathscr{A} : M \subset L \subset N\}$$

and

$$[M, N] = M \cup N \cup (M, N).$$

We say that an orbit ω is non-trivial if it does not consist of only one subspace.

DEFINITION. We say that a non-trivial orbit ω is simple if there exists $L \in \omega$ such that

$$(K(\omega), L) = (L, M(\omega)) = \emptyset.$$

Simple orbits exist as Examples 1 and 2 (see below) show.

LEMMA 2.10. Let ω be a simple orbit.

- (i) For any M in ω , $(K(\omega), M) = (M, M(\omega)) = \emptyset$.
- (ii) $K(\omega) = L \cap M$ and $M(\omega) = \operatorname{sp}(L + M)$ for any distinct L and M in ω .

Proof. Let L in ω be such that $(K(\omega), L) = (L, M(\omega)) = \emptyset$ and let $M \in \omega$. Assume that there exists a subspace N in Lat $\mathscr A$ for which $[K(\omega) \subset N \subset M]$. Then for every $B \in \operatorname{Ad} \mathscr A$

$$K(\omega) \subset \exp(B)N \subset \exp(B)M$$
.

Since L and M belong to ω , there exists a set $\{B_i\}_{i=1}^n$ such that $L = \exp(B_1) \dots \exp(B_n)M$. Then

$$K(\omega) \subset \exp(B_1) \ldots \exp(B_n) N \subset L$$

which contradicts the condition that $(K(\omega), L) = \emptyset$. Similarly we obtain that $(M, M(\omega)) = \emptyset$. (i) is proved.

We have that

$$K(\omega) \subseteq L \cap M \subseteq L \subseteq \operatorname{sp}(L+M) \subseteq M(\omega).$$

Since ω is simple, either $L \cap M = K(\omega)$ or $L \cap M = L$, and either $sp(L + M) = M(\omega)$ or sp(L + M) = L.

If $L \cap M = L$, then $L \subseteq M \subseteq M(\omega)$ which is only possible if L = M. But this contradicts the fact that L and M are different. Thus $L \cap M = K(\omega)$. In the same way one can prove that $\operatorname{sp}(L + M) = M(\omega)$. The lemma is proved.

Theorem 2.11. Let \mathscr{A} be an operator algebra such that $\mathscr{L}_2 = 0$ and let the mapping $\psi \colon \omega \subseteq \mathscr{L}_1 \mapsto I(\omega)$ be injective.

- (i) If $M \in \omega$ and $L \in \omega_1$, for $\omega \neq \omega_1$, then either $L \cap M \in \mathcal{L}_0$ and $\operatorname{sp}(L + M) \in \mathcal{L}_0$, or $M(\omega) \subseteq K(\omega_1)$, or $M(\omega_1) \subseteq K(\omega)$.
- (ii) If L and M lie on the same orbit ω and if $2 \leq \operatorname{codim} I(\omega)$, then $L \cap M \in \mathcal{L}_0$ and $\operatorname{sp}(L+M) \in \mathcal{L}_0$.
 - (iii) If $2 \le \operatorname{codim} I(\omega)$, then ω is a simple orbit.

Proof. If Ad $\mathcal{A}(L) = \operatorname{Ad} \mathcal{A}(M)$, then

$$I(\omega) \subseteq \operatorname{Ad} \mathscr{A}(L).$$

By Lemma 2.3(i), $I(\omega) \subseteq I(\omega_1)$. In the same way we obtain that $I(\omega_1) \subseteq I(\omega)$, so that $I(\omega) = I(\omega_1)$. Since ψ is injective and since ω and ω_1 are different orbits, $I(\omega) \neq I(\omega_1)$. Therefore Ad $\mathscr{A}(L) \neq \operatorname{Ad} \mathscr{A}(M)$.

Let $N = L \cap M$. If $N \notin \mathcal{L}_0$, then, by Theorem 2.7(i), $\operatorname{Ad} \mathcal{A}(N)$ is either equal to $\operatorname{Ad} \mathcal{A}(L)$ or to $\operatorname{Ad} \mathcal{A}(M)$. Let $\operatorname{Ad} \mathcal{A}(N) = \operatorname{Ad} \mathcal{A}(M)$. Repeating the argument above we obtain that N belongs to ω . Since $N \subseteq L$ and since $\operatorname{Ad} \mathcal{A}(N) \neq A \operatorname{Ad} \mathcal{A}(L)$, it follows from Corollary 2.8 that $M(\omega) \subseteq K(\omega_1)$. In the same way, using Theorem 2.6(i) and Corollary 2.8, we obtain that if $\operatorname{sp}(L+M) \notin \mathcal{L}_0$, then either $M(\omega) \subseteq K(\omega_1)$ or $M(\omega_1) \subseteq K(\omega)$.

The proof of (ii) follows immediately from Theorem 2.9.

Finally, let $2 \le \operatorname{codim} I(\omega)$, let $L \in \omega$ and let $N \in (K(\omega), L)$. If $\operatorname{Ad} \mathscr{A}(N) \ne Ad \mathscr{A}(L)$, then, since $N \subset L$, it follows from Corollary 2.8 that $M(\omega_N) \subseteq K(\omega)$. Therefore $N \subseteq M(\omega_N) \subseteq K(\omega)$ which contradicts the fact that $N \in (K(\omega), L)$.

If $\operatorname{Ad} \mathscr{A}(N) = \operatorname{Ad} \mathscr{A}(L)$, then from the argument at the beginning of the proof it follows that N belongs to ω . But, since $2 \leq \operatorname{codim} I(\omega)$, it follows from Theorem 2.4(i) and (ii) that it is only possible if N = L. Therefore $(K(\omega), L) = 0$. In the same way we obtain that $(L, M(\omega)) = 0$ which completes the proof.

3. THE STRUCTURE OF OPERATOR ALGEBRAS WHICH HAVE SIMPLE ORBITS

In this section we consider a simple orbit ω and investigate the structure of $P \mathscr{A} P$ where P is the projection onto $M(\omega) \ominus K(\omega)$.

Halmos [4] studied subspaces K and L in a Hilbert space H in generic position, that is,

$$K \cap L = K \cap L^{\perp} = K^{\perp} \cap L = K^{\perp} \cap L^{\perp} = \{0\}.$$

In order to prove Theorem 3.1 about simple orbits we need to consider subspaces K and L in H which only satisfy two out of these four conditions.

Lemma 3.0. Let K be a closed subspace in a Hilbert space H, so that $H = K \oplus K^{\perp}$ and $H = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : y \in K, \ x \in K^{\perp} \right\}$. If L is a closed subspace in H such that $K \cap L = \{0\}$ and $\operatorname{sp}(K + L) = H$ (the conditions $K^{\perp} \cap H^{\perp} = \{0\}$ and $\operatorname{sp}(K + L) = H$ are equivalent), then there exists a closed operator F from K^{\perp} into K such that D(F) is dense in K^{\perp} and that $L = \left\{ \begin{pmatrix} Fx \\ x \end{pmatrix} : x \in D(F) \right\}$.

Proof. Let Q be the projection onto K. Then 1-Q maps L onto a linear subspace D in K^{\perp} . If D is not dense in K^{\perp} , then there exists $x \in K^{\perp}$ such that ((1-Q)z, x) = 0 for all $z \in L$. Then (z, x) = 0 for all $z \in L$ and, obviously, (y, x) = 0 for $y \in K$. Therefore x is orthogonal to K + L which contradicts the assumption that sp(K + L) = H. Therefore D is dense in K^{\perp} .

Let $x \in D$. There exists $z \in L$ such that (1 - Q)z = x. If z_1 is another element in L such that $(1 - Q)z_1 = x$, then

$$z-z_1=Q(z-z_1)+(1-Q)(z-z_1)=Q(z-z_1).$$

Hence $z - z_1 \in K \cap L$, so that $z = z_1$. Therefore there exists a linear operator S from D onto L such that (1 - Q)Sx = x for every $x \in D$ and that S(1 - Q)z = z for every $z \in L$.

For every $x \in D$ set Fx = QSx. F is a linear operator from K^{\perp} into K, D(F) = D and for every $z \in L$,

$$z = \begin{pmatrix} Qz \\ (1-Q)z \end{pmatrix} = \begin{pmatrix} Fx \\ x \end{pmatrix}$$
 where $x = (1-Q)z$.

Let
$$z_n = {Fx_n \choose x_n} \in L$$
, let $x_n \to x$ and $Fx_n \to y$. Then $z_n = {y \choose x}$ and, since L

is closed, $\binom{y}{x} \in L$. Therefore $x \in D(F)$ and y = Fx so that F is closed which completes the proof.

THEOREM 3.1. Let ω be a simple orbit in Lat $\mathscr A$ and let $L \in \omega$. Set

$$H_1 = K(\omega), \quad H_2 = L \odot K(\omega), \quad H_3 = M(\omega) \odot L, \quad H_4 = \mathscr{H} \odot M(\omega).$$

There exist closed operators F and $G \neq 0$ from H_3 into H_2 such that every operator $A = (A_{ij}) \in \mathcal{A}, \ 1 \leq i, j \leq 4$ satisfies the following conditions:

- (C_1) $A_{33}D(F) \subseteq D(F)$ and $A_{33}D(G) \subseteq D(G)$;
- $(C_2) A_{22}G \mid D(G) = GA_{33} \mid D(G);$
- (C₃) $A_{23} | D(F) = (FA_{33} A_{22}F) | D(F);$
- (C_4) $A_{ij} = 0$ if i > j;
- (C₅) algebras $\mathscr{B}_2 = \{A_{22} : A \in \mathscr{A}\}$ and $\mathscr{B}_3 = \{A_{33} : A \in \mathscr{A}\}$ are transitive on H_2 and on H_3 correspondingly.

Proof. We have that $\mathscr{H}=H_1\oplus H_2\oplus H_3\oplus H_4$. Let $A=(A_{ij})\in\mathscr{A}$. Then $A_{ij}=0$, if i>j, since the subspaces $K(\omega)$, L and $M(\omega)$ belong to Lat \mathscr{A} , and (C_4) holds. Since L does not belong to \mathscr{L}_0 , there exists $B=(B_{ij})\in Ad\mathscr{A}$ such that L is not invariant for B. Taking this into account and the fact that $K(\omega)$ and $M(\omega)$ belong to \mathscr{L}_0 we obtain that $B_{21}=B_{31}=B_{41}=B_{42}=B_{43}\neq 0$ and $B_{32}\neq 0$. Using that $A'=[B,A]\in\mathscr{A}$ for any $A\in\mathscr{A}$, we obtain

$$(3.1) B_{32}A_{22} = A_{33}B_{32}.$$

It follows from (3.1) that Ker B_{32} is invariant for \mathcal{B}_2 and that Im B_{32} is invariant for \mathcal{B}_3 . Therefore the subspaces $K(\omega) \oplus \text{Ker } B_{32}$ and $L \oplus \text{sp}(\text{Im } B_{32})$ belong to Lat \mathcal{A} , and

$$K(\omega) \subseteq K(\omega) \oplus \operatorname{Ker} B_{32} \subseteq L \subseteq L \oplus \operatorname{sp}(\operatorname{Im} B_{32}) \subseteq M(\omega).$$

Since $B_{32} \neq 0$ and since ω is simple, it follows from Lemma² 2.10(i) that Ker $B_{32} = 0$ and that sp(Im B_{32}) = H_3 . Therefore the operator $G = B_{32}^{-1}$ is closed, $G \neq 0$ and $D(G) = \text{Im } B_{32}$ is dense in H_3 . By (3.1),

(3.2)
$$A_{33}D(G) \subseteq D(G)$$
 and $A_{22}G \mid D(G) = GA_{33} \mid D(G)$

for any $A \in \mathscr{A}$. Thus (C_2) holds. From the fact that ω is simple, in the same way as above, we obtain that \mathscr{B}_2 and \mathscr{B}_3 are transitive algebras on H_2 and on H_3 correspondingly, so that (C_5) holds.

Let L_1 be another subspace in ω . Then $L_1 = K(\omega) \oplus M_1$ and $M_1 \subseteq H_2 \oplus H_3$. By Lemma 2.10(ii), $L_1 \cap L = K(\omega)$, so that $M_1 \cap H_2 = \{0\}$, and $\mathrm{sp}(L + L_1) = M(\omega)$, so that $\mathrm{sp}(M_1 + H_2) = H_2 \oplus H_3$. By Lemma 3.0, there exists a closed operator F from H_3 into H_2 such that D(F) is dense in H_3 and that

$$M_1 = \left\{ \begin{pmatrix} Fx \\ x \end{pmatrix} : x \in D(F) \subseteq H_3 \right\}$$
. Since $L_1 \in \text{Lat } \mathscr{A}$, we have

$$A_{33}D(F) \subseteq D(F)$$
 and $A_{23} \mid D(F) = (FA_{33} - A_{22}F) \mid D(F)$.

From this it follows that (C₁) and (C₃) hold which completes the proof.

Let H and K be Hilbert spaces, let $\mathscr{K} = H \oplus K$ and let F and G be closed operators from K into H. Let

$$\mathscr{A}(F,G) = \left\{ \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} \in B(\mathscr{K}) : (C_1) A_{22} D(F) \subseteq D(F), \ A_{22} D(G) \subseteq D(G); \right\}$$

$$(C_2) A_{11}G \mid D(G) = GA_{22} \mid D(G); (C_3) A_{12} \mid D(F) = (FA_{22} - A_{11}F \mid D(F))$$

Let us consider the following restrictions of F and G.

$$(R_1)$$
 $D^* = D(F^*) \cap D(G^*)$ is dense in H and $D = D(F) \cap D(G)$ is dense in K ; (R_2) $G \neq 0$;

 (R_3) GD is dense in H and G*D* is dense in K.

Algebras $\mathcal{A}(F, G)$ were considered in [7] and the following theorem was obtained there.

THEOREM 3.2. ([7]). Let the operators F and G satisfy $(R_1)-(R_3)$.

- (i) The operators F + tG and $F^* + \overline{t}G^*$ are closable for any complex t.
- (ii) Let $S_t = \operatorname{cl}(F + tG)$ and $R_t = \operatorname{cl}(F^* + tG^*)$. Then $S_t \subseteq R_t^*$ and $S_0 \subseteq F \subseteq R_0^*$. The algebra $\mathscr{A}(F, G)$ is reflexive if

a)
$$\bigcap_{t \in C} D(S_t) = D$$
 and $cl(G \mid D) = G$, or

b)
$$\bigcap_{t \in C} D(R_t) = D^* \mathcal{E}$$
 and $\operatorname{cl}(G^* \mid D^*) = G^*$.

(iii) Lat $\mathscr{A}(F, G)$ consists of $\{0\}$, of H, of \mathscr{K} and of all subspaces $M_S = \left\{ \begin{pmatrix} Sx \\ x \end{pmatrix} : x \in D(S) \subseteq K \right\}$, where S can be S_t , R_t^* , for $t \in \mathbb{C}$, F or any closed operator from K into H such that

- 1) $S_* \subseteq S \subseteq R_*^*$ for a certain t,
- 2) $A_{22}D(S) \subset D(S)$ for any $A \in \mathcal{A}(F, G)$.

From Theorem 3.1 it follows that if ω is a simple orbit in Lat \mathcal{A} , then for every $L \in \omega$ there exist closed operators F(L) and G(L) from $M(\omega) \ominus L$ into $L \ominus K(\omega)$ such that $P \mathscr{A} P \subseteq \mathscr{A}(F(L), G(L))$. Therefore Lat $\mathscr{A}(F(L), G(L)) \subseteq [K(\omega), M(\omega)]$.

However it is not clear whether the operators F(L) and G(L) always satisfy restrictions (R_1) and (R_3) . The following theorem can be proved.

THEOREM 3.3. If $P \mathcal{A} P$ contains a finite rank operator, then ω lies in \mathcal{L}_1 and the operators F(L) and G(L) satisfy (R_1) and (R_3) , so that Theorem 3.2 holds for $\mathcal{A}(F(L), G(L))$.

REMARK. It follows from Theorem 3.2 that the structure of Lat $\mathcal{A}(F, G)$ can be quite complicated because it is difficult to describe all the operators S which satisfy conditions 1) and 2). However it is possible to prove that if the subspace H does not belong to \mathcal{L}_0 , then the structure of Lat $\mathcal{A}(F, G)$ is much simpler. Namely, $S_t = R_t^*$ for all t except for no more than two values of t at most. Using this and the results of Theorems 3.1 and 3.3, one can describe the structure of $[K(\omega), M(\omega)]$ for a simple orbit ω in detail. It can also be proved that $\mathcal{A}(F, G)$ is reflexive if H does not belong to \mathcal{L}_0 .

Now we shall consider two examples of reflexive operator algebras which have simple orbits and which belong to \mathcal{R}_1 .

Example 1. Let K = H and let $G = I_H$. Reflexive algebras

$$\mathscr{A}(F) = \mathscr{A}(F, I_H) = \left\{ \begin{pmatrix} A & A_F \\ 0 & A \end{pmatrix} \in B(\mathscr{K}) : 1) \ AD(F) \subseteq D(F), \\ 2) \ A_F \mid D(F) = [F, A] \mid D(F) \right\}$$

were considered in [5]. It was shown that Lat $\mathscr{A}(F)$ consists of \mathscr{K} , of $\{0\}$, of H and of all subspaces $M_i = \left\{ \begin{pmatrix} Fx + tx \\ x \end{pmatrix} : x \in D(F) \right\}$. Put $M_{\infty} = H$.

- (i) If F is bounded, then Lat $\mathscr{A}(F) = \mathscr{L}_0 \cup \mathscr{L}_1$ and $\dim(\operatorname{Ad}\mathscr{A}(F)/(\mathscr{A}(F))) = 3$, where $\mathscr{L}_0 = \{0\} \cup \mathscr{K}$ and $\mathscr{L}_1 = \bigcup_{t \in S^2} M_t = \omega$ consists of one orbit with respect to $\operatorname{Ad}\mathscr{A}(F)$.
- (ii) If F is unbounded, then $\dim(\operatorname{Ad} \mathscr{A}(F)/\mathscr{A}(F))$ is 1 or 2 and $\operatorname{Lat} \mathscr{A} = \mathscr{L}_0 \cup \mathscr{L}_1$, where $\mathscr{L}_0 = \{0\} \cup M_\infty \cup \mathscr{K} \text{ and } \mathscr{L}_1 = \bigcup_{t \in C} M_t = \omega$ consists of one orbit with respect to $\operatorname{Ad} \mathscr{A}(F)$.

In both cases ω is simple, $K(\omega) = \{0\}$, $M(\omega) = \mathcal{K}$, $I(\omega) = \mathcal{A}(F)$, and $M_t \cap M_r = \{0\}$ and $\operatorname{sp}(M_t + M_r) = \mathcal{K}$ for all $t \neq r$ from S^2 .

EXAMPLE 2. Let \mathscr{H} be the direct sum of n+1 copies of H and let $\{F_i\}_{i=1}^n$ be closed operators on H. Let

$$\mathcal{A} = \left\{ \begin{pmatrix} A & A_{F_1} & * & \cdots & * \\ 0 & A & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & A_{F_n} \\ \vdots & \ddots & \ddots & A_{F_n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & A \end{pmatrix} \in \mathcal{B}(\mathcal{H}) : 1) \ AD(F_i) \subseteq D(F_i) \text{ for all } i,$$

2)
$$A_{F_i} \mid D(F_i) = [F_i, A] \mid D(F_i)$$
 for all $i \in A$

By \mathcal{H}_i , $0 \le i \le n+1$, we denote subspaces of \mathcal{H} which are the direct sum of i copies of H, so that

$$\{0\} = \mathcal{H}_0 \subset \mathcal{H}_1 = H \subset \ldots \subset \mathcal{H}_{n+1} = \mathcal{H}.$$

Then all $\mathcal{H}_i \in \text{Lat } \mathcal{A}$. Set $S_t^i = F_i + tI$ for all $t \in \mathbb{C}$. Let

$$M_{S_t^i} = \left\{ \begin{pmatrix} S_t^i x \\ x \end{pmatrix} : x \in D(F_i) \right\} \subseteq H \oplus H \quad \text{and} \quad \mathcal{M}_{S_t^i} = \mathcal{H}_{i-1} \oplus M_{S_t^i}.$$

We can consider $\mathcal{M}_{S_t^i}$ as subspaces in \mathcal{H}_{i+1} . Set $D = \bigcap_{i=1}^n D(F_i)$ and $D^* = \bigcap_{i=1}^n D(F_i^*)$ In [5] the following theorem was proved.

THEOREM 3.4. ([5]). Let D and D^* be dense in H and let for every i the closure of $F_i \mid D = F_i$ and the closure of $F_i^* \mid D^* = F_i^*$. Then $\mathscr A$ is a reflexive algebra, Lat $\mathscr A = \mathscr L_0 \cup \mathscr L_1$, $\mathscr L_0 = \bigcup_{i=1}^{n+1} \mathscr H_i$, $\mathscr L_1 = \bigcup_{i=1}^n \omega_i$ and $\omega_i = \bigcup_{t \in C} \mathscr M_{S_t^i}$ are orbits with respect to Ad $\mathscr A$. dim(Ad $\mathscr A/I(\omega_i)$) is 1 or 2 for every i.

From this theorem it follows that all orbits ω_i are simple and that $K(\omega_i) = \mathcal{H}_{i-1}$ and $M(\omega_i) = \mathcal{H}_{i+1}$. It is also easy to see that

(1) if
$$t \neq r$$
, $\mathcal{M}_{S_{t}^{i}} \cap \mathcal{M}_{S_{r}^{i}} = \mathcal{H}_{i-1}$ and $sp(\mathcal{M}_{S_{r}^{i}} + \mathcal{M}_{S_{r}^{i}}) = \mathcal{H}_{i+1}$;

(2) for all
$$t$$
 and r , $\mathcal{M}_{S_{r}^{i}} \cap \mathcal{M}_{S_{r}^{i+1}} = \mathcal{H}_{i-1}$ and $\operatorname{sp}(\mathcal{M}_{S_{r}^{i}} + \mathcal{M}_{S_{r}^{i+1}}) = \mathcal{H}_{i+2}$;

(3) $M(\omega_i) = \mathcal{H}_{i+1} \subseteq K(\omega_j) = \mathcal{H}_{j-1}$ if i+1 < j, which agrees with the results of Theorem 2.11.

REFERENCES

- 1. BOURBAKI, N., Groupes et algèbres de Lie, Chapters 2 and 3, Hermann, Paris, 1972.
- 2. Christensen, E., Derivations of nest algebras, Math. Ann., 229 (1977), 155-166.
- GILFEATHER, F.; HOPENWASSER, A.; LARSON, D. R., Reflexive algebras with finite width lattices: tensor products, cohomology, compact perturbations, J. Funct. Anal., 55(1984), 176-199.
- 4. HALMOS, P. R., Two subspaces, Trans. Amer. Math. Soc., 144(1969), 381-389.
- 5. Kissin, E. V., On some reflexive algebras of operators and the operator Lie algebras of their derivations, *Proc. Lond. Math. Soc.* (3), 49(1984), 1-35.
- Kissin, E. V., On normed Lie algebras with sufficiently many subalgebras of codimension 1, *Proc. Edinburgh Math. Soc.*, 29(1986), 199-220.
- 7. Kissin, E. V., On some reflexive operator algebras constructed from two sets of closed operators and from a set of reflexive algebras, *Pacific J. Math.*, 126(1987), 125-143.
- 8. WAGNER, B. H., Derivations of quasitriangular algebras, preprint.

E. V. KISSIN

Department of Mathematics, Statistics and Computing,
The Polytechnic of North London,
Holloway, London N7 8DB,
Great Britain.

Received August 27, 1986; revised April 8, 1987.