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ON LATTICES OF INVARIANT SUBSPACES OF OPERATOR
ALGEBRAS ‘

E. V. KISSIN

In this paper we continue to develop the approach to the theory of operator
algebras introduced in [5} and [7}. Two classes of reflexive algebras play a central
role in this theory: W*-algebras and CSL-algebras (including the particular case
of nest algebras). Usually, when making a study of CSL-algebras or non self-adjoint
algebras in general, one considers the pairs (&, Lat &) in the same way as one
considers the pairs (&, &) in the context of W*-algebras. Much work has also
been done to investigate the Lie algebras 2(«#) of all continuous derivations of &/
The structure of 2(«7) is usually very complicated but in many important cases
it is in fact very simple. Thus it is well-known that all derivations of W*-algebras
are inner. Christensen [2] and Wagner [8] have proved that the same is true of

_nest and quasitriangular algebras. But already in the case of CSL-algebras Gil-
feather, Hopenwasser and Larson [3} have shown that these may have non-inner
derivations although none of these derivations are implemented by bounded operators.

Although a knowledge of the structure of 2(f) gives much useful information
about the structure of o/ and of Lat.«/, there is a Lie subalgebra Ad of of 2(«)
which is more closely linked to & and to Lat.o/ and whose structure can be estab-
lished with greater ease. This Lie subalgebra consists of all bounded operators
which generate derivations of &7. As well as the obvious connection between o/
and Ad.«/, there is also a close link between Lat.s/ and Ad.«.

(i) All operators A in Ad.«/ generate one-parameter groups of one-to-one
mappings of Late/ on itself (M~ exp(tA)M).

(ii) For every subspace L in Lat.s/ the set Ad /(L) = {4 e Ad«/ : AL = L}
is a Lie subalgebra of Adle/ and & = () Ad/(L) if & is reflexive.

Lelat o
An understanding of the structure of Ad.s/ makes it possible to obtain a
clearer description of Lat.«/. This can be done by establishing the structure of orbits
in Lat.e/ with respect to Ad«/. This grasp of the structure of Lats/ in turn
leads to deeper understanding of the structure of .o/. It has therefore been suggested
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[5] that in the general case of operator algebra &/ it would be more useful to
consider the triplets (s7, Lat.«Z, Ad ).

In many cases, however, these triplets degenerate into pairs. For example,
if &/ is a W+-algebra, then Lat & is the set of all projections in &7’, and Ad./ =
= &/ + «/’; as a result of this, the triplet turns into the pair (&7, &7'). If &7 is.
a CSL-algebra, then Ad/ = &/ and the triplet becomes the pair (<7, Lat.r7).
But, in the case of an arbitrary operator algebra, Ad.« is not usually equal to
& + /' and does not contain Lat.sZ; in this case, therefore, the triplet does not
degenerate into a pair.

One of the simplest classes 92, of this type of algebra consists of all the
reflexive algebras & such that the quotient Lie algebra Ad.«//s7 is not trivial and
that for every L in Lats/ the codimension of Ad /(L) in Ad.«/ is less than or
equal to 1.

No CSL- or W#*-algebras (except for the factors B(H) ® L) belong to #,.
As a general rule, Lie algebras Ad &7, for &/ € &,, are much larger than o7 + o/';
as a result, these algebras o/ have many non-inner derivations implemented by
bounded operators.

The triplets (&7, Lat.«Z, Ad.sZ) were investigated in [5] for the case when
&7 € 9, and when the quoticnt Lie algebras Ad.c//e/ are finite-dimensional. A
new method of constructing reflexive operator algebras was introduced in [S] and [7]
which provided many examples of algebras from %,. The structure of Ad .7/
when of € #, in the general case was investigated in [6).

In this article we consider arbitrary operator algebras .o/ and show that Lat <7 is
the disjoint union of scts {1, where &, = {L € Lat.& : codim(Ad /(L)) - n}
and that all &, are invariant under Ad /. For example, Late/ = %, if & is a
CSL-algebra, and Late/ = %, U %, if &/ belongs to #,. The analysis of the
structure of Lie subalgebras of codimension 1 given in [6] makes it possible to
describe the structure of orbits in %;. This, in turn, allows us to establish some
interesting properties of &, U.%, for arbitrary operator algebras, especially for the
case when ¥, =0. The link between the orbits in Lats/ jand the closed Lic
ideals in Ad.e/ is investigated.

We shall also investigate the effect which the existence of simple oibits in
Lat o/ has on the structure of /. Theorem 3.1 shows that if w is a simple orbit,
then there exist closed operators F and G and a projection P such that Ps/P
is a subalgebra of £7(F, (), so that Lat</(F,G) < Lat Po/P < Lat.</. (The alge-
bras «/(F, G) were considered in [7]) The case when Ps/P contains a finite
rank operator is particularly interesting. Here one can prove that w lies in &,
and that Lat Po/P = Lat &/(F, G). One can also describe the structure of Lat P/ P
in detail and in some cases one can even show that P&/P = /(F, G).

I would like to thank the referee for his helpful suggestions.
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1..PRELIMINARIES AND NOTATION

Let B(H) be the algebra of all bounded operators on a Hilbert space H and
let &7 be a subalgebra of B(H). Lat.«Z is the set of all closed subspaces invariant
under operators from &7 and AlgLat & is the subalgebra of all operators in B(H)
which leave every member of Lats/ invariant. o/ is called reflexive if & =
= AlgLat o. '

Let M be a linear subspace in H and let B be a linear operator on H. We
shall denote :

- (i) the domain of B by D(B);

(ii) the set {Bx :x € M} by BM, if M < D(B);

(iii) the closure of M by sp(M);

(iv) the closure of B by cl(B), if B is a closable operator;

(v) by {B} the one-dimensional subspace in B(H) generated by B, if B € B(H).

If M is closed and if B is bounded and has a bounded inverse, then
sp(BM) = BM.

If M and L are two linear subspaces in H, then by M + L we shall denote.
the linear subspace generated by all sums x + y where xe M and ye L. If
M n L = {0}, then their direct sum will be denoted by M -4 L. Let L be a linear
subspace of M and suppose that there exists a linear subspace N in M such that
dimN =»n and that M = L - N. Then we say that L has codimension n in M
and denote it by codim L = n.

For any operators A and B from B(H) let
[A,B] = AB — BA.
Then [4,B] is a Lie multiplication on B(H) and
II[4, BH| < 2[4 {||BIl.

A subspace # in B(H) closed in the norm topology is called a normed Lie sub-
algebra of B(H) if [4,Ble & for all 4 and B from #. If # is weakly closed,
then it is called a weakly closed Lie subalgebra of B(H). If # and 2 are normed
(weakly closed) Lie subalgebras of B(H) and if 2 < 4, then 2 is called a closed
(weakly closed) Lie subalgebra of 8. If in addition [B,Cl€ & for every B€ %
and for every Ce 2, then 2 is called a closed (weakly closed) Lie ideal of 4.

DEFINITION. Let & be a subalgebra of B(H) and let M € Lat.</.
Ads/ = (B e B(H):[B, Al€ of for all A€ o#};

Ad (M) = {Be AdsZ : BM = M).

12 — 1475
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Obviously every operator from Ad s/ generates a bounded derivation on ..

LemMa 1.1. Let «Z be a subalgebra of B(H) closed in the norm topology
(the weak topology) and let M € Lat s/.

(i) Ad ./ is a normed (weakly closed) Lie subalgebra of B(H). <7 is a closed
(weakly closed) Lie ideal of Ad.s/ and the commutant ' is a weakly closed Lie
ideal of Ad/;

(i) Ad (M) is a closed (weakly closed) Lie subalgebra of 'Adsf/ and
o & Ad Z(M);
(iii) There exists a maximal closed (weakly closed) Lie ideal I(M) of Ad s/
in Ad Z(M) such that
1) & < IM) = AdL(M);
2) I € I(M) for any Lie ideal I of AdsZ in AdZ(M);
(v) If s is reflexive, then () AdA(M) = .

MeLat o

Proof. 1t is easy to check that for all operators 4, B and C
(1‘1) [[-B’ C]’ A} = [B9 [C9 A]} - [C: [Bs A]]'

If B and C belong to Ad &/ and if A belongs to 7, then [[B, C], A] € o7, so that
[B, Cle Ad «. If B, € Ad &/ and if {B,} converges to B in the norm topology,
then

L[B, A] — [B,. A}l = [[B — B,, A]|| < 2B — B,ljj4]| - 0.

Since [B,, A] € «# and since & is closed, [B, A] € «/. Hence B e Ad.«/ and Ad .o/
is a normed Lie subalgebra of B(H). If &« is weakly closed, then it is also easy
to show that Ad.s/ is weakly closed. If C € o', then, by (1.1), [B, C]€ o/’ for
every Be Ad«/. Since /' is always weakly closed, (i) is proved.

(ii) is obvious. Ordering all closed Lie ideals of Ad«/ in Ad.«/(M) by
inclusion and using Zorn’s lemma, we obtain the proof of (ili) in the usual way.

Finally, by (i) () Ads/(M)contains .« and consists of all operators from

MeLat o7
Ad </ which leave every member of Lat./ invariant. Since o/ is reflexive,
M Ad</(M) = o/ which completes the proof.
MeLlat o7

DEFINITION. For all n > 0 let
&, = {M € Lat &/ : codim(Ad & (M)) = n}

where Ad &/(M) is considered as a subspace of AdsZ. Then %, consists of all
M e Lat.e/ such that Ad/(M) = Ad.«/. By %, we shall denote the class of all
reflexive algebras of such that %, # (3 and that Late/ = £ U .%;.
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By sl(2, C) we shall denote the simple Lie algebra of all complex matrices

(a b). Put
c —a

0 1) 00 (1/2 0
e, = , e_ = , € = .
(0 0 (1 0) 0 ——1/2)
Then

leg,er]l =es, [e, el =—e_, [e., e.]=2e.

THEOREM 1.2. ([6])). If M € %,, then

() 1 € codimI(M) < 3 and the quotient Lie algebra Ad o [I(M) is isomorphic
to si(2,C) or to a Lie subalgebra of sl(2, C);

(ii) if codimI(M) = 2, then there exist operators B.. and B,in Ad o/ such that
Adsot = {B_} + Adst(M), Ad(M) = {By} + (M),
[By, B_] = — B_ modI(M);

(ili) if codimI(M) = 3, then Ad Z/I(M) is isomorphic to sl(2, C) and there
exist operators B_, By and B, in Adf such that

Ad = {B.} + Ad/(M), AdA(M) = {B,} | {B.} + (M),
[By, B,] = B, modI(M), [B,,B.] = — B_ modI(M),

[B,,B_] = 2B, modI(M).

By SL(2, C) we shall denote the Lie group of all matrices g = (gn glz)

821 822
such that detg = 1.

Let h = (’/2

§ ) € sl(2, C). Then for 2 C
p 12

g(Ah) = exp(Ah) € SL(2, C).

In order to calculate g(i#) we shall consider different cases. The eigenvalues
of h are

Mo =+ l/ps + r¥/4.
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I Let ps + r2j4 # 0 and let p # 0. Set 4 = (2pYps + r2/4)-1. Then
g = Ale1(uy + r)2) — ey + r/2)),
12 = A + 12y + r[2)(Ee™: — &™),
(1.2)
g = Ap¥e™ — &™),
8oz = AP[CZ”Q(M + r/2) - e;'”‘(ﬂz + r/2))-
1I. Let ps + #%/4 =0 but rp # 0. Then
(1.3) gu =1+ /ri2, g =25 g =/ip, 8w =1—7r2
IIT. If » =5 =0 and p # 0, then
(1.4) gn=8nx=1 8;=0 gu=7p

L ¥fp=0andr+#0,theng, =e*? gy =gn' g =0, g0 = 5(g1; — 8207
and if p =+ =0, then gy = gos = 1, 85, =0, gy5 = 7s.

Now let S* = C U oo. For every t € S% and for every g € SL(2, C) set

(1.5) (@)t = (gut + g1)/(gat + gao)-

It is well-known that 7 is a representation of SL(2, C) into the group of homeco-
morphisms of S2.

2. ORBITS IN LAT & WITH RESPECT TO AD &

Throughout this section we assume that an algebra & is closed in the nerm
topology. For any bounded operators 4 and B set

ad B(4) = [B, 4] and exp(ad B)(4) = ¥ ad"B(4)/n!.
. n=0
It is well-known that
2.1) exp(B) 4 exp(— B) = exp(ad B) (4).

For any subspace M and for any bounded operator B set

My = exp(B) M.
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LemMa 2.1. Let Be Ad .
() The mapping A € o — exp(B) A exp(— B) is an automorphism of .
(i) The transformation M+~ My maps Latd onto itself.

(iil) The mapping C € Ad o/ —> exp(B) C exp(— B) is an automorphism of
Ad  and

exp(B) Ad (M) exp(— B) = Ad A (Mp).
Proof. (i) follows immediately from formula (2.1). For any 4 € & by (2.1),
AMg = Aexp(B)M =exp(B)A'M = M,

where A’ = exp(— ad B)(A) € /. Thus My is invariant under all operators from &7.
Since exp(B) is invertible, M, is closed and therefore M, € Lats/. For any
M € Lat/ the subspace M_; belongs to Lat.e/ and exp(B)M_z = M. Therefore
exp(B) maps Lats/ onto itself.

By Lemma 1.1 (i), Ads/ is closed in the norm topology. Hence, by (2.1),
exp(B)Cexp(— B)e Ad/ for any Ce Ad«/. Since exp(adB) is invertible,
C — exp(ad B)(C) is an automorphism of Ad«/. If C e Ad=/(M), then

exp(B)Cexp(— B)My = exp(BYCM < My

which completes the proof of the lemma.

DEFINITION. We say that a subset w in Lat s/ is invariant under Ad<f if
for every M € w and for every B € Ad &/ the subspace My belongs to w. If w is
invariant and if it does not contain any invariant subset, then it is called an
orbit.

LemMma 2.2. (i) &, are invariant under Adof.

(i) o = {exp(By) ... exp(B)M : By, ..., B, belong to AdsZ} is the orbit
which contains M.

(iii) If o, and w, are two orbits, then w, N w, = O.

Proof. If M € &, then there exists a subspace N in Ad & such that dimN =n
and that Ad/ = N + Ad«/(M). By Lemma 2.1 (iii)

Ad s# = exp(B)Ad o exp(— By = exp(B)N exp(— B) |- Ad /(M ).

Since dim(exp(B)Nexp(— B)) = n, we have that Mz e Z, and (i) is proved. Ob-
viously, w is the smallest set which contains M and is invariant under Ad.«/. If
M, = exp(B;) ... exp(B)M, then M = exp(— B,) ... exp(— B)M;, so that w
does not contain any invariant subset. Therefore w is an orbit.
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Since w, and w, arc invariant under Ad &/, w; N w, is also invariant under
Ad <. Since w; Nw, S w, and since w, is a smallest invariant subset, we have
that either o, N w, =0 or w, N w, = ;. But in the last case w, = w, which contra-
dicts the condition that w, is also a smallest invariant subset. This completes the
proof of the lemma.

Let w be an orbit in Lat.g/. Set

I() = N Ad (L),

Kw) =ML,

Lew

M(w) = Sp(ngL)’

where Y, L is the linear space of all linear combinations of elements from all L € w.
Leow

LemMA 2.3. (i) I(w) is a closed Lie ideal of Ad s/ and Nw) = I(L) for any
Lew. If Iis a Lie ideal of AdZ such that & < I = AdZ(L), then I < Kw).

(it) The subspaces K(w) and M(w) belong to &,. If L € w, then for any N
Jrom %4 such that N = L(L = N), we have that N = K(w) (M(w) < N).

Proof. By Lemma 1.1 (it), I(w) is a closed Lie subalgebra of Ad «/. By
Lemma 2.1 (iii), for any B € Ad &/, for any complex ¢, for any L ¢ w and for
any A € I(w)

exp(tB)A exp(— tB) € exp(tB)Ad o/ (L)exp(— tB) = Ad &/(L,p).

Since the map L+~ L,; maps @ onto itself, exp(¢B)A4 exp(— tB) € I(w). Since I(w)
is closed, using formula (2.1) and differentiating with respect to ¢, we obtain that
[B, A] € I{w). Therefore I(w) is a closed Lie ideal of Ad /.

If I is a closed Lie ideal of Ad.«/ such that «f = I € Ad /(L) for a sub-
space L € w, then, by (2.1) and by Lemma 2.1(iii),

exp(B)lexp(— B) = I = Ad/(Ly)

for any B € Ad &7. From Lemma 2.2(ii) it follows that I = Ad /(M) for all M € o,
so that I < Iw). Therefore I(L) = I(w). On the other hand, by Lemma 1.1,
I(w) € I(L). Therefore I{w) = I(L) and (i) is proved.

Since all subspaces in Lat &/ are closed, K(w) is a closed subspace. If x € K(w),
then for any B € Ad«/, for any L € w any for any complex ¢

exp(tB)x € exp(tB)L = L,p € 0.
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Therefore exp(¢B)x € K(w). Since K(w) is closed, differentiation by ¢ gives us that,
Bx € K(w). Hence K(w)e %&,.

If Ne &) and if N L for a certain L € , then N = exp(B)N < L, for
any B e Ad«/. Therefore N = M for any M € w, so that N € K(w). In the same
way one can prove (ii) for M(w). The lemma is proved.

DeFNITION. By ¢ we shall denote the mapping

Yo Hw)

of the set of all orbits in Lat.s/ into the set of all closed Lie ideals of Ad.«/.

In an early paper [5] we obtained the structure of orbits in %, for the case
when the quotient Lie algebra Ad o7/« is finite-dimensional. But using Theorem 1.2
and repeating the argument of Theorem 3.2 and of Theorem 3.5 [S], one can obtain
that the structure of orbits @ in %, is the same even in the case when Ad &)/
is infinite dimensional.

THEOREM 24. Let v = &£, and let M € w.

(i) Let codimI{M) =2 and let the operators B_ and B, be the same as in
Theorem 1.2(1i). Then there exists a subspace Ly, in w such that

1) ByLe, S Lo, and o = {L, = exp(B_/t)L, : t € S*\{0}};

2) Ad (L) = {B_ + 1B} + 1(0), Ad#(Le) = {By} + I(®):

3) L, # L, if t # u. For every B =pB_ + rB, + A€ Ad o, where 4 € I(w)
and p and r are complex numbers,

exp (B)Lt = Lu >

where u = n(g(h))t, g(h) = exph and h = (r/ 2 0 )
p —r2

(it) Let codim I(w) = 3 and let the operators B_, B, and B, be the same
as in Theorem 1.2(iii). Then there exist subspaces Ly and L, in w such that

1) w=[L,:te 8% and L, = exp(B_/t)Ly, = exp(tB.)L,, for t # 0, co.

2) Ad/(L,) = {B- + tB)} 4 {B, — tB,} -+ I(w) and Ad (L) = {Bo} +
+ {B+} + Ko);

3y L,# L, if t # u. For every B=pB_ + rBy + sB, + A, where A € Kw)
and p, r and s are complex numbers,

exp (B)Lt = Lu>

where u = n(g)t, g = exph and h = (r/2 s )

p —r2

REMARK 2.5. If codim I(M) = 1, i.e., Ad (M) = I(w), then there} exists an
operator B_ in Ad« such that Ad/ = {B_} 4 I(w). Let B = tB_ + A4, where
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A € I(w). From the Campbell-Hausdorff formula [1] it can be derived thatthere
exists an operator A, € I(w) such that

exp B = exp(tB_ + A) = exp(tB.)exp(4,).

Therefore My = M, . Since Ad /(M) is a closed Lie ideal in Ad«/, it follows

from Lemma [2.1(iii), that Ad /(M) = Ad &/(M). From this and from Lemma
2.2(ii) we obtain that w = {M,; :te€ C}, but we do not know whether all sub-

space sM,, are different.
Now let L and M belong to &, and let Ad /(L) # Ad#(M). Then B =

= Ad(L)n Ad (M) is contained in Ad/(L nM) and in AdZ(sp(l. + M)).
Since codim# < 2, we have that

2.2) LoMe £y & 0%, and sp(L+ M)e Lyu LU %,
In the following two theorems we shall consider the case when the subspaces L n M
and sp(L + M) belong to .&,.

THEOREM 2.6. Let subspaces L and M belong to &, let Ad /(L) # Ad (M)
and let N =sp(L + M)e %,.
(1) Ad (N} coincides with one of the Lie subalgebras Ad /(L) or Ad AZ(M).
(i) If AdZ(N) = Ad (M), then
a) M(w,;) & N, where w, is the orbit which contains L,
b) N =sp(M % L)) for any L, € w, such that Ad (M) # Ad (L,).

Proof. Since AdoA(L) # Ad/(M), codim@ = 2 and there exist operators
B, € Ad (L) and B, € Ad &/(M) such that

Ad/(L) = {B} + B, AdA(M) = {By} + &,
@D et = (B} + Ad (M) = {B,} + Ad (L) = {B,} - {By} 4 2.
Since codim (Ad #/(N)) = 1, there exist complex numbers # and f, suoch that
Ad(N) = {#,B, + t,B,} + 4.
Suppose that Ad/(N) # Ad/(L). Then t, # 0. Since L < N,
(1B, + t,B))xe N

for every x€ L. But B,x € L. Therefore B,L = N. Since B,M = M, we obtain
that By(L + M) < N, so that B,N & N. Therefore B, € Ad«/(N) and

Ad (M) = {B,} 4- B = Ad Z(N).

(i) is proved.
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Let Ad«/(N) = Ad/(M). Since L < N and since B, € Ad «(N),
(2.4) L’B: = exp(tB,)L < exp(tB;)N = N

for every complex t. Tn order to prove a) we shall consider three different cases
in which codim({(w;)) is 1, 2 or 3.

1) I(w,) = AdsZ(L). It follows from Remark 2.5 and from formula (2.3)
that w, = {L,,_c,2 :te€ C}. By (24), all L,z € N. Therefore M(w,) < N.

2) codim [(w,) = 2. Let the operators B.. and B, be the same as in Theorem
1.2(ii). Then there exist p and r such that

By, =pB_+rBy+ A,

where 4 € I(w,), and, by (2.3), p # 0. By (2.4), Lyp, = N for all complex x. Tt fol-
lows from Theorem 2.4(i) that o, = {L,: 7€ S2\{0}} and that L = L, fora
certain 1, € S?\{0}. Then

Lyp, = exp(xBy) L, =L,

rf2 0

where t = n(g)ty, g = exp(xh) and & = (
p —r2

by (1.5),

). If r # 0, then, by (1.2) and

t = e¥torl(pty(e* — 1) + r).
If r =0, then, by (1.4) and by (1.5),
t = to/(xpty + 1).

If r = 0, then, since p # 0, we have that ¢ can be any element from S$2\{0}. There-
fore all subspaces L, from w, are contained in N. Hence M(w,) = N.

If r # 0 and if r — pty # 0, then ¢ can be any element from S2\{0} apart
from ¢, = r/p. Therefore all L,, ¢t # r/p, are contained in N. It follows from Theorem
2.4(i) that if ¢, converge to r/p, then the projections P, on L, converge to the pro-
jection P, on L,,, in the norm topology. Therefore for any y € L,,, the sequence
{P,iy} converges to y and P,iy € L,i € N.Since Nis closed, y € N, so that L,;, = N.
Thus, L, = N for all L, from w, and therefore M(w;) < N.

Finally, if r # 0 but r — pt, = 0, then for all complex x

L =L, =L

vip*
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From this it follows that B,L < L, so that B, € Ad«/(L) which contradicts (2.3).
Thus a) is proved in this case.

3) codimI(w,) = 3. The proof is similar to the proof of the previous case and
uses the results of Theorems 1.2(iii) and 2.4(ii) and formulae (1.2)—(1.5).

The linear subspace L 4+ M is dense in N. Hence exp(tB.)(L + M) is
dense in exp(tB,)N, for aill re C. {Since Ad«/(N) = Ad# (M), B, e Ad.<Z(N)
and exp(tB,)(L + M) = exp(tB;)L + M is dense in exp(tBy)N = N. Therefore
sp(exp(tB,)L + M) = N.

If I(w,) = Ad(L), then o, = {L,g2 = exp(tB,)L : 1€ C} and b) holds.

If codimI(w,) = 2, then it was shown in 2) that exp(¢B;)L can be any sub-
space in w, apart perhaps from L, , where t, = rlpif r £ 0 and r — pty # 0. Thus
b) holds for any subspace from w, apart perhaps from L,l. If Ad &I(L,l) #
# Ad /(M) = Ad Z(N), then, since they have equal codimensions, there exists B in
Ad sZ(N), which does not belong to Ad M(L,l) and such that exp(B)L, = L' #
# L, . L' belongs to o, and it was proved above that sp(L’ + M) = N. Then
exp(—B)(L' + M) =exp(—B)L' + M = L,l + M is dense in exp(—B)N = N and
b) holds for L, if Ad (L) # Ad A(M).

If codiml{w,) = 3, then, using [(1.2)—(1.5) and Theorem 2.4(ii), one can
show that exp(tB,)L can be any subspace in w, apart perhaps from two subspaces
L, and L, . Therefore b) holds for all these !subspaces. Repeating the argument
above we also obtain that b) holds for L’.-’ i=1,2, if Ad Jf(Lp‘_) # Ad o (M). The
theorem is proved.

Using a similar argument one can prove the following theorem.

THEOREM 2.7. Let subspaces L and M belong to %, let Ad /(L) # Ad /(M)
andlet N=LnMe¥%,.
(i) Ad(N) coincides either with AdZ(L) or with Ad (M).
(i) If Ad #(N) = Ad (M), then
a) M (wy) < L where wy is the orbit which contains N;
b) N =L, n M for any L, € w; such that Ad sZ(Ly) # Ad A(M).

CoRrROLLARY 2.8. If L and M belong to %,, if L = M and Ad (L) # Ad s/(M),
then M(w;) < K(wy).

Proof. Since LN M = L € %, by Theorem 2.7(ii), M(w,) € M. Since K(w,,)
is the largest subspace in M from %,, M(w;) S K(w,y).

THEOREM 2.9. Let subspaces L and M belong to the same orbit w in ¥,. If
2 < codim I(w), then L n M and sp(L + M) belong to LU ZLs.

Proof. If codimI(w) =1, then for every L € w, Ad ¥ (L) = I(w) and we
cannot apply Theorem 2.6 and Theorem 2.7. But if 2 < codim I(w), then it follows
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from Theorem 2.4(i) and (ii) that Ad</(L) # Ad«/(M) for any L and M
from w.

From (2.2) it follows that L n M and sp(L + M) belong to L U % UL,.
Suppose that N = sp(L + M) € £,. {Then, by Theorem 2.6(i), Ad«(N) coin-
cides either with Ad /(L) or with Ad/(M). Assume that Ad &/ (N) = Ad & (M).
Then, by Theorem 2.6(ii), M(w,) = N. On the other hand, since L and M lie on the
same orbit, sp(L + M) = N = M(w;). Therefore N = M(w,) € £, which contra-
dicts the assumption that Ne .%;. Thus N € £ U %,. In the same way, using
Theorem 2.7, one can prove that L N M € £ U F,.

DeriNITION. For any subspaces M and N in Lat.e/ such that M < N let
(M, N)={Lelate/ :M < L < N}

and

[M, N]=MuNuy (M, N).

We say that an orbit @ is non-trivial if it does not consist of only one subspace.

DEFINITION. We say that a non-trivial orbit w is simple if there exists
L € o such that

(K(w), L) = (L, M(w)) =0.
Simple orbits exist as Examples 1 and 2 (see below) show.

LEMMA 2.10. Let w be a simple orbit.
() For any M in 0, (K(w), M) = (M, M(w)) = .
(il) K(w) = L n M and M(w) = sp(L + M) for any distinct L and M in o.

Proof. Let L in w be such that (K(w), L) = (L, M(w)) =© and let M € w.
Assume that there exists a subspace N in Late/ for which [K(w) < N < M. Then
for every Be Ad &/ ‘

K(w) < exp(B)N < exp(B)M.

Since L and M belong to w, there exists a set {B;}"; such that L = exp(B,) ...
... exp(B,)M. Then

K(w) < exp(By) ... exp(B)N < L

which contradicts the condition that (K(w), L) =@. Similarly we obtain that
M, M(w)) =0. (i) is proved.
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We have that

KoysLnMc L < spllL + M) € M(w).

Since w is simple, either L nM = K(w) or Ln M = L, and either sp(L + M) =
= M(w) or sp(L + M) = L.

IfLnM =L, then L € M € M(w) which is only possible if L = Af. But
this contradicts the fact that L and M are different. Thus L n M = K(w). In the
same way one can prove that sp(L + M) = M(w). The lemma is proved.

THEOREM 2.11. Let o/ be an operator algebra such that £, =0 and let the
mapping Y:w = ¥, — H(w) be injective.

) IfMewand Le w, for o # w,, then either L0 M e £ and sp(L + M)e
€ %, or M(w) € K(wy), or M(w,) € K(w).

(ity If L and M lie on the same orbit @ and if 2 < codim [(w), then LN M € &,
and sp(L + M) e &,.

(iii) If 2 € codiml(w), then w is a simple orbit.

Proof. Tf Ad (L) = Ad (M), then
I(») = Ad (L),

By Lemma 2.3(i), () < I(w,). In the same way we obtain that I(w,) = (),
so that [(w) = I(w,). Since ¥ is injective and since w and w, are different orbits,
I(®) # I(w,). Therefore Ad /(L) # AdZ(M).

Let N=LnM If N¢.&,, then, by Theorem 2.7(i), Ad/(N) is either
equal to Ad/(L) or to Ad</(M). Let Ado/(N) = Ad /(M). Repeating the
argument above we obtain that N belongs to w. Since N < L and since Ad .o/(N) #
# Ad (L), it follows from Corollary 2.8 that M(w) = K(w,). In the same way,
using Theorem 2.6(i) and Corollary 2.8, we obtain that if sp(L + M) ¢ .&,, then
either M{w) = K(w,) or M(w,) = K(w).

The proof of (ii) follows immediately from Theorem 2.9.

Finally, let 2 < codim[(w), let L € @ and let N € (K(w)., L). If Ad o/(N) #
# Ad./(L), then, since N < L, it follows from Corollary 2.8 that Mwy) €
€ K(w). Therefore N = M{wy) = K(w) which contradicts the fact that
N e (K(w), L).

If Ade/(N) = Ad (L), then from the argument at the beginning of the
proof it follows that N belongs to w. But, since 2 < codim I(w), it follows from
Theorem 2.4(i) and (ii) that it is only possibie if ¥ = L. Therefore (K(w), L) = O.
In the same way we obtain that (L, M(w)) = O which completes the proof.
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3. THE STRUCTURE OF OPERATOR ALGEBRAS WHICH HAVE SIMPLE ORBITS

In this section we consider a simple orbit w and investigate the structure of
Po/P where P is the projection onto M(w) © K(w).
Halmos [4] studied subspaces K and L in a Hilbert space H in generic posi-
tion, that is,
KnL=KnL*=K'nL=K"'nL" = {0}.

In order to prove Theorem 3.1 about simple orbits we need to consider subspaces
K and L in H which only satisfy two out of these four conditions.

LEMMA 3.0. Let K be a closed subspace in a Hilbert space H, so that H =

X
such that KnL = {0} and sp(K + L) = H (the conditions K* n H* = {0} and
sp(K + L) = H are equivalent ), then there exists a closed operator F from K* into

K such that D(F) is dense in K* and that L= {(Fx) ixX € D(F)}.
x

= K® K* and H={(y):yel(, xeKl}. If L is a closed subspace in H

Proof. Let Q be the projection onto K. Then 1 — Q maps L onto a linear
subspace D in K*. If D is not dense in K™*, then there exists x € K* such that
(1 —Q@)z,x) =0 for all ze L. Then (z, x) =0 for all ze L and, obviously,
(», x) =0 for y € K. Therefore x is orthogonal to K + L which contradicts the
assumption that sp(K + L) = H. Therefore D is dense in K*.

Let x € D. There exists z e L such that (1 — Q)z = x. If z, is another ele-
ment in L such that (I — Q)z; = x, then

z—=Qz—2)+ (1 —Q)(z—12z) =0z —z).
Hence z — z; € Kn L, so that z = z;. Therefore there exists a linear operator S
from D onto L such that (1 — Q)Sx = x for every x € D and that S(1 — Q)z =z
for every z € L.

For every x € D set Fx = QSx. Fis a linear operator from K * into K, D(F) =
= D and for every z€ L,

z= ((1 _QZQ)Z) =(Fxx) where x = (1 — Q)z.

Let z, = (Fx,,) € L,let x, » x and Fx, —»y. Then z, = (y) and, since L
X, , x

is closed, (y
x

completes the proof.

)e L. Therefore x € D(F) and y = Fx so that F is closed which
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THEOREM 3.1. Let o be a simple orbit in LatsZ and let L € w. Set
H, =Kw), H,=L¢c Kw), H;=Mw) &L, H =#6 Muw)

There exist closed operators F and G # O from Hy into Hy, such that every operator
A=(A)e A, 1<1i,j<4 satisfies the following conditions:

(Cy) Ay, D(F) = D(F) and Ay:D(G) = D(G);

(Cy) 4G | D(G) = GAy | D(G);

(Cy) A4y ID(F) = (FAy; — AyF) l D(F);

Cy 4;;=0ifi> ],

(C,) algebras $, = {Aqy : A€ o} and By = {Agy: A € A} are transitive on
H, and on Hj correspondingly.

Proof. We have that # =H @ H, @ H, ® H,. Let A =(4;)e .
Then A4;; = 0, if i > j, since the subspaces K(w), L and M{(w) belong to Lat.eZ, and
(C,) holds. Since L does not belong to &, there exists B = (B;;) € Ad «Z such that
L is not invariant for B. Taking this into account and the fact that K(w) and M(w)
belong to %, we obtain that B, = By = B,, = By, = By # 0 and B;; # 0.Using
that A" = [B, A] € o/ for any A € &7, we obtain

(3~1) BypAgy = AsyBss.

It follows from (3.1) that Ker By, is invariant for &, and that Im B, is invariant for
Hg. Therefore the subspaces K(w) @ Ker By, and L @ sp(Im B,,) belong to Lat 7,
and

K(w) € K(w) ® Ker By, € L < L @ sp(Im By) < M(w).

Since By, # 0 and since w is simple, it follows from Lemma’2.10(i) that Ker By, = 0
and that sp(Im B;,) = H,. Therefore the operator G = B3 is closed, G # 0 and
D(G) =: Im B;, is dense in H;. By (3.1),

3.2) AuD(G) € DIG) and  Ay,G | D(G) = GAg | D(G)

for any A € /. Thus (C,) holds. From the fact that o is simple, in the same way as
above, we obtain that %, and ¢4, are transitive algebras on H, and on Hy correspond-
ingly, so that (C;) holds.

Let L, be another subspace in . Then L, =K(w)® M, and M,
€ H, ® H,. By Lemma 2.10(i), L, n L = K(w), so that M, n H, = {0}, and
sp(L + L) = M(w), so that sp(M; + H,) = H, @ H;. By Lemma 3.0, there
exists a closed operator F from Hj into H, such that D(F) is dense in H, and that
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Fx .

M, = :x e D(F) € H;};. Since L, € Lat o/, we have
X

AD(F) € D(F) and Ay, | D(F) = (FAs — AnF) | D(F).

From this it follows that (C,) and (C,) hold which completes the proof.

Let H and K be Hilbert spaces, let # = H @ K and let F and G be closed
operators from K into H. Let

S#(F, G) = {(’z)“ j‘z) € B(X") : (C)) A5, D(F) < D(F), A»D(G) < D(G);

22

(Co) AuG | D(G) = Gy | D(G); (Co) Asg | DF) = (FAgy — Ay F| D(ﬁ)} .

Let us consider the following restrictions of F and G.
(R,) D* = D(F*) n D(G*) is dense in H and D = D(F) n D(G) is dense in K
Ry) G # 05
(Ry;) GD is dense in H and G*D* is dense in K.

Algebras #(F, G) were considered in [7] and the following theorem was
obtained there.

THEOREM 3.2. ([7]). Let the operators F and G satisfy (R,)—(R;).
(i) The operators F + tG and F* + tG* are closable for any complex t.
(i) Let S, = cI(F + tG) and R, = cl(F* + 1G*). Then S, < R¥ and S, < F <
S R§. The algebra A (F, G) is reflexive if
a) ‘(Qc D(S) =D and G|D) =G, or

b) M D(R,) = D*{and cl(G* lD*) = G*.
teC
(iti) Lat L(F, G) consists of {0}, of H, of A and of all subspaces Mg =
= {(Sx) :x € D(S) K}, where S can be S,, RF, for t€ C, F or any closed
x

operator from K into H such that
1) S, = S & R} for a certain t,
2) A,D(S) = D(S) for any A € AL(F, G).
From Theorem 3.1 it follows that if w is a simple orbit in Lat &, then for every

L € o there exist closed operators F(L) and G(L) from M(w) © L into L © K(w)
such that PP < (F(L),G(L)). Therefore Lat./(F(L),G(L)) < [K(w), M(w))].
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However it is not clear whether the operators F(L) and G(L) always satisfy restric-
tions (R,;) and (R;). The following theorem can be proved.

THEOREM 3.3. If Po/P contains a finite rank operator, then w lies in &, and
the operators F(L) and G(L) satisfy (R;) and (R,), so that Theorem 3.2 holds for
s/(F(L), G(L)).

REMARK. It follows from Theorem 3.2 that the structure of Lat.<Z(F, G) can
be quite complicated because it is difficult to describe all the operators S which
satisfy conditions 1) and 2). However it is possible to prove that if the subspace H
does not belong to &, then the structure of Lat</(F, G) is much’simpler. Namely,
S, = R} for all ¢ except for no more than two values of ¢ at most. Using this and the
results of Theorems 3.1 and 3.3, one can describe the structure of [K(w), M(w)]
for a simple orbit w in detail. It can also be proved that &/(F, G) is reflexive if H does
not belong to %,.

Now we shall consider two examples of reflexive operator algebras which
have simple orbits and which belong to £, .

ExampLE 1. Let K = H and let G = I,,. Reflexive algebras

A(F) = s(F,I;) = {(fé if) € B(#):1) AD(F) € D(F),

2) Ar| D(F) = [F, 4]| D(F)‘l

were considered in [S). It was shown that Lat&/(F) consists of %", of {0}, of H
and of all subspaces M, = {(Fx + tx) IXE D(F)}. Put M, = H.
x

(i) If F is bounded, then Lat #(F) = £, U %, and dim(Ad «/(F)/(4(F)) = 3,

where &, ={0}u X and &, = \U M, = » consists of one orbit with respect
res”

to Ad(F).

(ii) If F is unbounded, then dim(Ad </(F)/«/(F)) is 1 or 2 and Lats/ =

=%yU%, where %, ={0luM,UX and ¥, =(JM, = w consists of
teC

one orbit with respect to Ad</(F).
In both cases w is simple, K(w) = {0}, M(w) = A, I(w) = «(F), and M,n
nM,={0} and sp(M, + M,) = A for all ¢t #r from S2.
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EXAMPLE 2. Let 5 be the direct sum of n + 1 copies of H and let {F;}.,
be closed operators on H. Let

A AFl K oo %
0 4 - ..
o =1 T e B0 ) AD(F) D) for al i
. * ... F”
0..... 0 4

2) Ar, | D(F)=[F;, A]| D(F))forall i

—

By #;,, 0 <i < n+ 1, we denote subspaces of # which are the direct sum of
i copies of H, so that

O =Hyc Hy=Hc ... c Hpy =K.

Then all #; € Lat /. Set S} = F; + tI for all 1 € C. Let

MS; = {(Stx) :xED(F,-)} SH@®H and My=H_,@® M.
X t t

We can consider .4 sl as subspaces in #;,,. Set D = (M} D(F;)and D* =\ D(F})

i=1 i=1

In [5} the following theorem was proved.

THEOREM 3.4. ([S]). Let D and D* be dense in H and let for every i the closure
of F;|D = F; and the closure of F¥|D* = F*. Then & is a reflexive algebra,

n+1 n
Lated = LyU &y, Lo=\JH:i, £ =\ Jw; and o, =) M are orbits with
i=1 i=1 teC t

respect to Ad«Z. dim(Ad #/I(w))) is 1 or 2 for every i.

From this theorem it follows that all orbits w; are simple and that K(w;) =
= ;_, and M(w,) = #;,,. It is also easy to see that
D if ¢t #r, ‘/”5': NMg = #;_, and sp(Mg + Mg) = Hpy;
r t r
(2) for all ¢t and r, -/”si n .//lsiﬂ = #;_, and sp(a/ls;- + JIS£+1) = 1)

13 — 1475
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(3) M(w;) = #;y S K@) = #,_,ifi + 1 <,

which agrees with the results of Theorem 2.11.

-t
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