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NORMAL OPERATORS AND THE CLASSES A,

G. EXNER and P. SULLIVAN

0. INTRODUCTION

Let 2# be a separable, infinite-dimensional, complex Hilbert space, and let Z(J#)
denote the Banach algebra of all bounded linear operators on . The paper [5]
which solved the invariant subspace problem for subnormal operators initiated the
study of dual subalgebras of Z(s#), which has led to interesting new results on invar-
iant subspaces and reflexivity of more general operators in #(#). An in-depth
study of these results and a detailed bibliography as of 1984 are given in [2). Some
more recent results can be found in [6], [8], and [9].

In the study of dual algebras the solution of systems of equations in the predual
has played a central role (cf. [1]). In this paper we solve certain systems of equations
in the predual of the dual algebra generated by a normal operator; in particular
we characterize completely by spectral multiplicity of the unitary part the normal
operators in the classes A, (1 < n < N,) to be defined below. These provide new
examples of operators in A,\A,.,; the only other known is the unilateral shift
of multiplicity n. We show also that a direct summand which is a unilateral or bi-
lateral shift has limitations on its equation solving ability.

1. PRELIMINARIES

For T € Z(s#) denote by o(T') the spectrum of T’; recall that T is a contraction
if |T|| < 1. A contraction T is absolutely continuous if the unitary part of T is
absolutely continuous (or acts on the space (0)). If 2 is another Hilbert space then
DA ={ud®v:ueh, ved}is a Hilbert space with |u @ v|? = [|u|® +
+|lv|2. Moreover if T € £(s#) and S € (A ),then T @ S € L(H# @ X') is given
by (T ® S)u @ v)=T(u)® S(). For I<n<Nylet # " denote # @ # @ H ... .

v
n times

If(T € L(H) then T™ € L(#™M)istheoperator T T O T ... .

n times
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If .#Z is a subspace of # then P, denotes the orthogonal projection onto ..
If ./ and A" are subspaces of # then 4/ @ N = A nNL If S € L(H) and A
isa subspace of o such that " = .# © 4 where.#Z and 4 are invariant subspaces
for Sand .# 2.4 then ¢ is a semi-invariant subspace for S. Moreover by S,-€ L(A4')
we denote the operator P, S|A . It is well-known that if " is semi-invariant for
S then (§%),, =(Sx)* for any k in N. Also, if T is unitarily equivalent to S, for some
semi-invariant subspace 5 of S then T is called 2 compression of S, or equiva-
lIently, S a dilation of 7.

Let D denote the open unit disc in C and T denote the unit circle. Let i denote
Lebesgue arc-length measure on T. Let H®(D) = {fanalytic on D :sup{ f{2) : » <
<1} <oo]. If fe H®D) then ifll, =sup{if()|:2€D}. If I is a Borel

measurable subset of T and p > 1 then L?(I) = {f: Sfﬂ” dm<oo} . Let M, be the

r
operator on LX) defined by (M,f)(z) = zf(z) for all fin L3I). If m(I") = { then
M. is the zero operator operating on the space {0). The operator Mt is the usual
bilateral shift.

We need some results about spectral multiplicity for absolutely continuous
unitary operators. The following theorem is adapted from [10, Corollary I1.9.1Z}

THEOREM 1.1. Let U be an absolutely continuous unitary operator. Then there
exists a decreasing sequence {A,}2., of Borel subsets of o(U) such that U is unitarily
equivalent to M1l @ Mi & MAS @ ....

For the following definitions assume that U and {4,} are as in Theorem 1.1

DeFINITION 1.2, Let I be 2 subset of T and n € N. We say the spectral mui-
tiplicity of U on I' is at least n if m(I'\\4,) = 0. We say that the spectral multi-

plicity of U on T is at least §, if (r\ A A,,) ~ 0.
n=1
DeFiNITION 1.3, Let I' be a Borel subset of T. Then s:y(I') = max{k ¢ NU
U N : U has spectral muitiplicity at least & on I'} if this set is non-empty, and s (I') =
= 0 otherwise.

Note that if the spectral multiplicity of U on some non-empty Borel set I
is at least » then there must exist a reducing subspace .# for U such that U,J/Z is
unitarily equivaient to M{®. Also note that if s2,(F) = i for n positive and finite
then we can conclude that m(I"\4,) = 0 but that m(I'\4,,,) > 0. Thus the follow-
ing lemma is immediate.

LemMA 1.4. Let U be an absolutely continuous unitary operator. Let I' be
a Borel subset of T with s2((I') = r where n is positive and finite. Then we can write
U=U" @ M®. Moreover there exists I < I such that m(I'"y > 0 and U’ has speciral
measure with no mass on I,
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If V < D, then NTL(V) is the set of all e € T such that there exists a sequence
{A,}2., = V with 4, — €' nontangentially. It is well-known that NTL(¥) is a Borel
subset of T. A set ¥ = D is called dominating for T if m(T\NTL(V)) = 0. It is
well-known that ¥ is dominating for T if and only if ||f]le = sup{|f(Dl : 1 € V}*
for all f belonging to H*(D) (cf. [4, Theorem 3]).

Our work takes place in the context of dual algebras,and our notationis
as in [2]. We recall nonetheless some of the notation and definitions for the con-
venience of the reader. The Banach algebra Z(#) can be regarded as the dual of
@ (), the trace class operators on 3, via the pairing (T, LY =tr(TL), T € L(¥),
L €%,(o#). The weak™ or ultraweak topology on £ () is the topology induced by
this pairing. A dual algebra & is a weak* closed, unital subalgebra of £ (#). Let L&
denote the preannihilator of the dual algebra &/, thatis, +&/ ={L € %,(5#) : {(A4,L)=0
for all A €/}. Then & may be identified with the dual of the Banach space
Q= ¥(#)] L via the pairing (A, [L] > =tr(4L), A € &, L €€ ,(H#), where [L]
denotes the coset of Lin @, . The weak™* topology induced by this pairing on & coin-
cides with the relative weak™ topology on & (cf. [2, Proposition 1.19]). For x and
y belonging to #, x ® y denotes the rank-one operator in %,(c#) defined by
(x@»)W)=(u, y)x, for u € #. If T € L(#) then te(T(x®y)) =(Tx, v). If T € L(H),
then &1 denotes the ultraweakly closed subalgebra of £ (#) generated by T and the
identity. We write Q instead of QJ,,T and the coset of L in Qn is written [L];.

We now define as in [2] some important properties of dual algebras.

DerFINITION 1.5. Let o7 be a dual algebra, and let n and m be cardinal numbers
such that 1 < m,n < N,. We say that & has property (A, ,) if for every array
{[L;;1:0 < i< m, 0<j< n}ofelements of Q,, there exist sequences {x;:0 < i <
< m} and {y; : 0 < j < n} such that

[L]=[x®y] for0<i<mO0<j<n

Property (A, ) is usually written as property (A,).
Let L' = LYT). It is well-known that L® = L*°(T) is the dual space of L!

under the pairing (f,g> = (27r)‘18fg dm, feL®, geL'. Furthermore, H® =
T
= H>™(T) is a weak*-closed subspace of L*®, and L(H*) is the subspace H} =

2n

= {fe.L1 :gf(e“)ei"’ dt =0forn=20,1,?2, } It follows (cf. [2, Proposition
0
1.19]) that H* is the dual space of L'/H}, where the duality is given by the pairing:

(o [gh) = @2m)? ng dm, feH®, [gle L'H}. If T e L(#) is an absolutely

T
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continuous contraction, and f € H*®, then we can define f(T) using the Sz.-Nagy—
—Foias functional calculus. Let @ : H* — /. be the map given by &) = fAT);
then there exists a bounded, linear, one-to-one map ¢ : Op — LY/H} such that
¢%F = @ (cf. [7, Theorem 3.2} or [16, Theorem Iil.1.2]).

We are now ready to define the classes A,.

DEFINITION 1.6. A(5#) is the set of all absolutely continuous contractions T €
€ Z(#) such that @ is an isometry. We write A for A(s#) when no confusion will
result,

DeFINITION 1.7. If #2 and m are cardinal numbers such that 1 < n, m < N,,
then A, .(3#) is the set of all absolutely continuous contractions I" € #{¥#’} such
that T € A(s#) and </ has property (A, ). We usually write A () for A, ().
When no confusion will result we write A, , for A, (57).

If TeA and X €D, then [C,l; = @7 X[P,]), where [P;] € LY/H{ and P,(c*)
is the usual Poisson kernel function, P,(e"!) = (1 — |A|D)|l — Ae¥*|~2 It is well-
-known that if f belongs to H*(D), then {fAT), [C;1r> = f(4).

If Te A(5#) and § € A(X) then it foliows easily from [7, Theorem 3.2] that
T@® S €Al @ A). Moreover, the preduals Qr, Qs and Qrgs are all naturally
isometrically isomorphic. (For example Prgs” Or isan isometric isomorphism from
Oy to Ores.) One may aziso easily conclude that

.9 [Cilros = 0735 02(CiD)

and if e, v € 72 and o, v €3¢ then

1.9) (& 0) & (+ € Olpys = 97ls > orlle ® tl)
and
(1.10) (0@ ) ®© & Wles = 075 0sllz ® wls:

We will have use for the Mobius transform of an absolutely continuous con-
traction. Recall that if p €D, then ¢, (z) = (¢ — w)(I — jz)~* is the usual Mobius
transform. Note that i, € H*(D). Given an absolutely continuous contraction T’
let T, =y ,(T). It is easy to see that o/ ;= o7 T, T, is an absolutely continuous con-
traction since 7'is and 7, is a completely non-unitary contraction if T'is. Moreover
if TeA and A €D, then

(1.11) [Cuu(z)]ru =[Cilr-

Note also that in the special case where I'= M, then T, is unitarily equi-
valent to T thus given b, and b, belonging to LYT)®™ we canfind b, and b, in LT)®
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such that ||b;]| = ||b;]| ¢ =1, 2) and

(1.12) by ® bolr, = [0 @ bilr (T = M),

We now state the main theorem of the paper.

TurOREM 1.13. Suppose N is a normal absolutely continuwous contraction.
Let N=U@ N’ be the canonical decomposition where U is unitary (or acts on
the space (0)) and N' is completely nommitary. Let I' = TN\NTL(o(N') N D)
and let n be a cardinal number such that 1 < n < W,. Then the following are
equivalent :

1) U has spectral multiplicity at least n on I';

il) N belongs to A,,.

. The remainder of this paper is devoted to proving Theorem 1.13. In Section 2
we prove that i) implies ii) and in Section 3 we show the reverse implication.

2. A DECOMPOSITION OF NORMAL OPERATORS IN A

The proof of the first half of Theorem 1.13 rests on a direct sum decomposi-
tion of a normal operator in A. We start with a slight generalization of [12, Pro-
position 2.21] which is independent of normality.

PROPOSITION 2.1. Suppose n is a positive integer, and T; € A, (#)) for 1 <

igsnlLlet # =@ H andT =@ T;; then T € A,(5F).
i1

i=1
Proof. Wefirst show that T € A(#). If f € H®(D), then ||(T)|| = sup |(T)]|=

=|lflie since T; € A(s#,). To show that o/, has property A,, suppose we are given
an array {[L;jly : 1 < i,j < n} in Q. Let [Mjlr, = o7 @r((Ly]) for 1 < 4, j < n.

For each i, since T; € A, (#;) we can find vectors x; and {y;; : 1 < Jj < n} in #,
n

such that [M;jlr,=[x; ® ylr, for 1 < j < n. Letting w; = @ y,; we have w; € #
' Pl

foreachj Let ;=0 @ 0... ® x; ® ... @ 0, where x; appears in the i’th place.
1t is then easy to compute that [L;;]; = [¥; @ wjlr (1 < 1,/ < n).

The similar result for » = N, in the above proposition is already known;
in fact one can use the weaker hypothesis that for each i, T; € A,(#;), and the same
conclusion is valid (cf. [2, Proposition 5.8]). The following result is then immediate
since if N, normal, is in A then 7y has property A, , for all finite » (cf. [12, remark
last line p. 31, Theorem 2.15, and Corollary 2.6]) and if n = N, the result follows from
[2, Proposition 5.8].
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COROLLARY 2.2. Suppose n is a cardinal number with 1 < n € Ny and N, is
a normal operator in AMA) for O <i<n Let # = & #,and N= @ N

0giin 0zizn

then N € A, (X).
The first half of Theorem 1.13 is a consequence of the following proposition.

ProrostTioN 2.3, Suppose N is a completely non-unitary normal contraction
and 1 < n < Ny . Then there exist {N; :0 < i < n} such that N = @ N, and for each
i

i, N; is a completely non-unitary normal contraction and
m({NTL(o(V) r D) {NTL{g(N,) " D)}) = 0.

Proof of Theorem: 1.13, (i) implies (ii). Apply Proposition 2.3 to N’ to obtain

{N;}%-, such that N' = @ N; and m({NTL(s(N') n D)} {NTL(a(N,) . D)}) = 0
i1
for each i.

Recall that I' = TN\NTL(g(N’) n D} and that the hypotheses of the theorem
1imply that U has a reducing subspace .# such that Uf/l is unitarily equivalent to
M. Let I'y = TN\NTL(o(V;) " D). Let M, =N, ® Ul.#/+ @ M, and for
{22 M; =N, ® M. Note that I = I"; and m(I',\f) =0 for ail 7, and thus
My, is unitarily equivalent to M. Since o(M)ND =o(N)nD, we see that
I, = T\NTL(6(M,) n D). We can now conclude using [15, Theorem 3.1] that

M, belongs to A for cach 7. Letting M = @ M;, we now apply Corollary 2.2 to
=1

conclude that M belongs tc A, . Since N is obviously unitarily equivaient to A the
proof is complete.

In order to prove Proposition 2.3 we shall need several lemmas. For each 4,
0 €0 < 2n and each 2,0 < 2 < 7 let T,, be the region contained in D and inside
the angle with the following properties : vertex at ", measure equal to x and bisected
by the line segment from 0 to e®.

LeMMA 2.4. Let C = T be closed, let V < D, and suppose 0 <o < n and
cach €° € C is a limit point of VN Tg,. Let & > 0 and 0 < r, < 1. Then there exist
ro With ry < ry < 1 and P, Q satisfying :

(25 P,QcVr{zir < zi<ry,

(26) PnQ =0,

(2.7) P and QO ave finite, and

(2.8) for each ¢ e C, there exist p e P Ty, and q€QnT, such that
ip —e" < dand g—e <6

Proof. Choose for cach € in C a 2, in ¥ N Ty N{z:|z] > r} such that
hg— €Y < 5. Let Dy = {e¥: e — 14t < 0}: note that { Dy} is an open cover of C.
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For {Dg} some finite subcover, let P = {2 }. Let r{ = max{|Zg |}. Repeat the
process replacing r, with r{ and obtain Q. Choosing r, = max{|/ : 2 € Q} finishes
the construction and (2.5) — (2.8) are immediate.

The next lemma from [11] partitions a set ¥ in D into disjoint sets each with
the same non-tangential limit points as ¥, up to sets of measure zero.

LEMMA 2.9. Given V < D there exist sets V, and V, satisfying
(210) V; <« Vand V,is countable fori =1, 2,
@.11) m{NTL(¥)\NTL(V)} =0 for i = 1,2,
(2.12) VinV, =@, and
{2.13) if pisin ViU Vythenpis not a limit point of (V1 U V).

Proof. For each positive integer n, let B, = {e® e NTL(V): € is a limit
point of ¥ N Ty r_1/n}- By the regularity of the measure m, for each n we may choose
a sequence {C4}52,; of increasing closed sets contained in B, such that m(B,\C}) <
< 1/j for each j. We now construct V; for i = 1, 2. Let k — (n(k), j(k)) be the enu-
meration of {(n,j) : n,j > 1} suggested by the matrix below:

1 2 47
3 58
6 9
10

We now construct families {P}}]}7., and {Qi8}? ., inductively on k. For k =

apply Lemma 2.4 to V with C=C}, r, =ri®» =1/2, =1, and &« = n — 1/] to
produce P}, QF and r{. Now suppose we have chosen {P}{}, {Qi%)} and r§¥ for
1<k< 1. Wenow apply Lemma 2.4 to V with C = C{}}, & = 1/j(l), a=n — 1/n(l)

and r; =r{’ = max{rf" : 1 < k <I}} to produce Pif), Qi) and r{h. Let ¥, =

= (U Pk} and V, = Y Qi Clearly ¥, = ¥V and ¥, is countable for i =1,2
ko1

k=1
which proves statement (2.10).

Since NTL(V) = |_B, to show that (2.11) holds it suffices to show that

(2.14) m(BN\NTL(V}))) =0 for each a.

We now proceed to establish (2.14). Choose e in B, and suppose €' belongs to
C,J,", which implies that e belongs to Cj for all j>j, since {C}}_, is increasing.
We now show that e belongs to NTL(¥,) by showing that e is a limit point of
ViNTy,.1n- Given & > 0, choose k sufficiently large that n(k) = n, jk) = j,,
and 1/j(k) < &. We now use property (2.8) of Lemma 2.4 to find p and g uch
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that p € Pﬁ% 0 Tgn1jms P — e <1jjtk)< e, g € Qéﬁ’i} NTon_1/a> and |g — el <

< 1/j(k) < &. Hence, € e NTL(V;) for i = 1, 2. We conclude that if €' belongs

to B,, then cither ¢ belongs to NTL(V) or to (B,\\UC?. However, since
j

m(B,\|JC%) = 0 we see that (2.14) is verified which establishes (2.11).
J

Note that (2.5)—(2.7) and the choice of 7{ assure that {2.12) and (2.13) wili
be true.

We now state a lemma whose proof is elementary and will be omitted. If 1 ¢ C
and r > 0 then B(4, ) denotes the open ball centered at A with radius r.

LemMA 2.15. Suppose N in L(#) is normal with spectral measure E(-) end
4 belongs to o(N). Then for any r > 0, 2 belongs to a(N IE(B(/'., ).

We may now prove Proposition 2.3 and thus finish the proof of the first half
of Theorem 1.13.

Proof of Proposition 2.3. We prove the case # = 2, as the rest follow easily
by an inductive argument. Apply Lemma 2.9 with ¥V = a(N)ND to obtain ¥V,
and ¥, satisfying (2.10)—(2.13). Since each ¥ is countable write ¥; = {pi)}® ,

J Vi
Using (2.13) we can find sequences of positive numbers {r{?}152, such that B(p'?,
riycDand B(p, i) n B(pP, rf =D if i#lorj # k. Let E(-) denote the spectral

measure of N. Let .#/; = & EB@Y, KMot for i = 1, 2. We see that ., is orthe-
jii
gonal to.#, and each is reducing for N. Let M; = N ]// ;- Then Lemma 2.15 tells

us that o(4;) > V;, which implies that m{NTL(e(N) N D\NTL(c(M;) N D)} =0.
Letting N, = M, ® N|(.&, @ «#,)* and N, = M, the proof is complete.

3. A UNITARY DIRECT SUMMAND AND EQUATIONS IN THE PREDUAL

The following result will yield the second half of Theorem 1.13.

THEOREM 3.1. Let N be a normal operator in A(SK). Let N = U @ N’ be the
canonical decomposition where U is unitary {or acts on the space (0)) and N’ is
completely nonunitary. Let I = T\NTL(o(N') n D). Suppose m(I') > 0. Let i =
= sy(L). If n is finite then N ¢ A, ;.

We postpone the proof of Theorem 3.1 to the end of this section.
Proof of Theorern 1.13, ii) implies i). If m(I')=0 then the theorem is triviaily

true. Assume m(I") is positive. We first treat the case where N € ANo' Let k= sp(I).

From {15, Theorem 3.1] we know that & > 1. If & is finite then Theorem 3.1 tells us
that N ¢ A,.,.,. However, Aso S A, s0 k must be infinite, and the theorem is there-

fore true in this case. We now treat the case NV e A, where n is finite. Again let
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k = wey(). As before k >1 and if k is infinite then the theorem is true. Moreover
if k is finite Theorem 3.1 tells us that N ¢ A,,,. We can then easily see that n < &k
which means that U has multiplicity at least n on I'.

The proof of Theorem 3.1 will require conversion of information about systems
of equations in Q7 into information about systems in L' = IX(T). Given a con-
traction Te Z () and x, y€ #, denote by hZ, (or just k., when no confusion will
result) the function on T whose Fourier coefficients are

Iey(—n) =T [% @ ¥} = (T, ) (0 >0)
(3.2)

h;y(n) = <-Tns [y ® x]T> = (T" » x),;/f (Tl > O)

In our applications it will be clear that /., is in fact an element of L' (though for
a general result and a thorough discussion see [3)). If T=R® S, x =ud w,
and y = v @ z it follows easily from (1.9) and (1.10) that

(3.3) L, =hR, + hs ..

Also if T=MP, u =@, ...,u"), and v = (¢, ..., v") where u', v’ belong to
L? = L¥(T) for each i, then

(34 A

Proof of Theorem 3.1. Let n = sy(I') and note that since N € A it must be
the case that n > 1 (cf. [15, Theorem 3.1]). Recall that if S is an absolutely conti-
nuous contraction, T € A and S@® T ¢ A,,, then T¢ A, (cf. [2, Proposition 4.11]
or [1, Proposition 3.2]). So without loss of generality we may assume that a res-
triction of N to an invariant subspace is unitarily equivalent to MY, since if not we
replace N by N @ (M~ r)®. Let U=U’ @ MY . Since sy(I')=n and n is finite,
using Lemma 1.4 we can find I’ < I such that m(I"") > 0 and U’ has spectral mea-
sure with no mass on I'. From now on let B= My. Let N =N @ U’,so N =
= N" @ B™, and from now on we will write vectors in 4 in the form v@® 5
with respect to the decomposition of # induced by N = N’ @ B™,

We claim that there exists an infinite sequence {4, : k € N} < D such that
for each &

(3.5) "i“n=f1 lCoLly — (v ® 0) @ (v ® O)yll > 1 — 1/k.

If the claim is false there exists &k, such that sup inf [[[C;]y—[(v ® 0) ® (v @ 0)]y]| <
€D |uj=1

< 1 — 1/ky. One may now easily show using (1.8) and (1.9) that ®@,.» is bounded
below and hence an isometry (as in [2, Chapter 7]), which would imply that N'' € A.
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Since N = N’ @® U’and the spectral measure of U’ has no mass on I' <
€ T\NTL(g(N'") n D), this would contradict [15, Theorem 3.1]. Let {/,} be a
sequence which satisfies (3.5). It follows easily that for each &

(3.6) if [Co]y = [(v ® b) ® (v @ b)]y then b > VT =1k

Suppose now that N € A, ., in order to obtain a contradiction. It is known
that if N € A, ., then for every / € D, N has a compression unitarily equivalent to
the operator /I,,, on C**1 (cf. [2, Corollary 4.14] or [1, Corollary 3.6]). Letting
/. = J,., this implies that for each k in N there exists a sequence of vectors (x; : 1 <
<7< n+ 1} < 3 such that

[x; ® x;]ly = [C).k],\' (1gign+1), and
3.7)
[;®@xly=[0ly (#/j1<ij<n+1)

Note that the sequence {x;} depends on /,.
Let N, = N;,k = lﬁ,:[}(N) and define B{™, N’, N;., and U, similarly. Now using
(1.11) the following is a direct consequence of (3.7):

[v; ® xiln, =[Coly, (1 <i<n+1) and
(3.8)
v @ xjlw, =[0lv, (#j1<ij<n+1)

We now let ir;; = l’-l‘tk: x; defined as in (3.2). Recalling the definition of [C,]~, and (3.9)
a simple computation yields

hiy =P, (1<i<n+1), and
(3.9
hiy=0 (#j1<ij<n+1).

(Recall that P, is the usual Poisson kernel function.) Now let x; = t; @ b;. Define
b, relative to b: as in (1.12) where p = 2, and T=B®._ Then b; = (b}, ..., b}) where
preliforl i< n+ 1,1 < m< n Wenow compute using (3.1) and (3.2)

N N, N Blm
— i ~ ~ k ko _
/l,-j = /’1![@0’1.‘}'@0 + h()ebi,()@hi = hvi'vj + hbiybj =

(3.10)

Ny B Ny’ i —
= h"i'vj + I b, = h”i:”j + ¥ by (I <ij<n+ 1).

m-=1

i
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) n . ! .
Since 0, Py, and Y} b/"b}are in L' we see that lrz,i,’f,j belongs to L' for all J,j
n: -1

using (3.9).
We next claim that

G.11) [l < 20k (1< ij < mot 1),

Recall that N'=N' @ Uso N;' = N, @ U,. Decompose v; = w; @ u;, and observe

. N” N’ U, .

that from (3.6) we have |jv;]|<1/Vk. Also, ||/7vif‘l,jl]1< Hh,,,i",wjli1 + I]/z,,i’,‘,,jlll. Since U
_ U, .

and U, are unitary and ||u;|| < 1/)/k it is easy to check that ||/1,,i’:,,j|[1 < 1/k. Since N’

is a completely non-unitary contraction, so is N} and we may view the latter as a

Sz.-Nagy—Foias functional model. Since [|w,]| < 1/'k, we have: 1|/1{:,i'f,vj[]1 < l/k

by [3, Lemma 1.1], whose w;-w; is our /1?,","_,,],. Thus we have (3.11).
Now (3.9), (3.10), and (3.11) yield

|

Py— ﬁ b

m-:1

<2k, (I1<i<n+1)and

1

(.12)

<2k (#,1<i,j<sn+1).
1

' Z b ;71—5?

m=:1

Recall that (3.12) holds for any k € N (where the b in fact depend on k).
Since P, is the function identically 1 on T, by taking k sufficiently large we deduce
that the following hold pointwise on a set 4, = T of positive measure

e (I<isn+1)and

|1~ M LACRHE

m-.:1

(3.13)
Zn bj-"(e“)b?(e”)

=1

e (#1<i,j<sn+ 1)

These equations are clearly inconsistent for ¢ sufficiently small (they yield an
“almost orthonormal’’ family of n 4+ 1 vectors in C”, namely:

{(Bie"), bi(e™), ... bie) 11 < i< m+ 1}).

This is a contradiction. Therefore N¢ A, ., .
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4. REMARKS

We observe that in the proof of Theorem 3.1 we deduce that N ¢ A, by show-
ing that there is a A € D for which N is not a diiation of the operator A, ., on C*'%,
It is not known whether for any » > 2 there is an operator T € A\A, such that
for each % € D, T dilates the operator 2, on C". It is known that if for even a domi-
nating set A<D, T dilates Iy for each A €4, then T €Ay, (cf. [2, proof of Pro-
position 6.1]).

We note that Theorem 1.13 and the proof of Theorem 3.1 yield as a speciu!
case the results of [14] concerning “hole-filling™” for a cyclic normal operator (which
may be taken to be in A). If IV € A is cyclic and has an “outer hole’” then NTL(s(V) n

nD) # T, so N € A, by Theorem 1.13 and the proof of Theorem 3.1 shows there
is a A € B such that N does not dilate AI,. Clearly then N has no pure subnormal
restriction S with i(S — 4) < —1 (where i(-) is the semi-Fredholm index). If ¥ ¢ A
is cyclic with no outer hole in its spectrum, then NTL(a(N)n D) = Tand N € ANO-
Then for any 2 €D and n € NU {N,} one may easily produce subnermal restric-
tions S with i(S — 2) = —#» which may be taken to be pure if 2 ¢ g(N).

We observe that the proof of Theorem 3.1, which in effect shows some limi-
tation on the power of a unitary direct summand of finite multiplicity in solving
systems of equations, has in fact consequences for non-normal operators. Further,
since the unilateral shift S is a restriction of the bilateral shift B = My, we gain
information about operators of the form T @ S® as well. An examination of the
proof of Theorem 3.1 shows that the first assertion below holds, and it easily implics
the second.

COROLLARY 4.1. Suppose T € L(3F) is an absolutely continuous contraction and
n eN. Then
42) T'® B™ eA,,, implics T €A, and
“43) T® S™eA,,, implics T eA.

Similar techniques yield the following result which has also been obtained by
B. Chevreau (unpublished).

ProrosiTioN 4.4. Suppose T € L () is an absolutely continuous contractioin
and j € N. Then
4.5 T@ BY €Ay, implics T €Ay and
46) Toe SV €Ay, implies TeA .

Proof. Since T @ SV ¢ Ay, implies T @ BY € Ay, > We prove (4.5) bolds. Let
BY act on the space . It is known that if 7@ B isin A,,, then for eachieD
there exists a sequence {x,(A)}® , in the unit ball of # @ o satisfying

@7y BmilC), 0 — G @ xMH = o,



THE CLASSES A, 93

4.8) lim[z® x,(A)] =0 for all z e # @ A", and
@49 limx,M)®z]=0forallzeX @ A

{cf. [2, Chapter 6]).
Write x € s# @ A4 in the obvious decomposition # @ v. Suppose that for
Some A €D and sequence { x,(1)} = {u,(}) ® v,(A)} satisfying (4.7)—(4.9) we hav

lim [jo, ()] > ¢ > 0.
It is then easy to show using Mdbius transforms and
[t @ v) ® (0, @ 2], ) = [, ® 0) ® (; @ O, 0 +

+[0 @ v) ® (0@ v)]

res)

that for each ¢ in D there exists a sequence {0 @ v,(¢)} satisfying
Lm{[[Cy] — [0 @ v,(&) ® (0 B v, < VT—¢,

im0 v)®z]=0 foral zes## @ A,
and
Iimz®O0O®v) =0 forallzex @ A .

Transfering these equations to QB(,-) using (1.8) and (1.10) we deduce from [2, Theo-
rem 6.3] that BY) € Ay, » Which contradicts B € A;\A, and [2, Theorem 3.8].

Thus for each 4 €D and {x,(1)} = {1, () ® v, (%)} satisfying (4.7)—(4.9) we
have

(4.10) T [, D] = 1.

We may then deduce as in the proof of Theorem 3.1 that 7 € A and an argument
from (4.7)—(4.10) yields

Him [yl — [,(A) ® u, (M} =0,

limu (i) ® 2] =0 for all z € #,

and
lim[z ® u,()] =0 for all z € #.

Citing [2, Theorem 6.3] again, we have T € ANO.
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Finally we remark that an improvement of Proposition 4.4 to deduce from

T®BY €A, that T € A, would clarify greatly the role of unitary direct summands
in the solution of systems of equations.

The authors wish to express their gratitude to Professor Carl M. Pearcy for

his support and encouragement.
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