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THE DIFFERENTIAL AND INTEGRAL STRUCTURE OF
REPRESENTATIONS OF LIE GROUPS

DEREK W. ROBINSON

0. INTRODUCTION

The work of Nelson [11] and Goodman [5], [6] established that the differential
and integral structure of a unitary representation U of a Lie group ® can be characte-
rized by the Laplacian associated with a basis of the Lie algebra. The corresponding
situation for non-unitary representations or representations on Banach space is
less well understood and our first aim, in Section 1, is to clarify the situation by
characterizing those representations for which the Laplacian does determine the
differential structure.

Subsequently, in Section 2, we prove a commutator theorem which gives criteria
for a dissipative operator to generate a contraction semigroup. This section is
completely independent of Lie groups and Lie algebras but it provides the key
element for the discussion of the integration problem for isometric representations
given in Section 3. Specifically we consider a representation of a Lie algebra g on
the Banach space & by operators V(x), x €, such that - V(x) are dissipative. We

then give necessary and sufficient conditions, in terms of the Laplacian A associated
with a basis x;, ..., x; of g, for the representation of g to be integrable to a re-
presentation of the corresponding Lie group satisfying the criteria of Section 1.

Basically we require that A generates a contraction semigroup but conditions on
the C2- and C3-structure are also essential. Although our main integrability result
contains Nelson’s characterization of unitary rcpresentations we do not need ana-
lytic techniques; analytic elements play no role in our proofs.

1. REPRESENTATIONS OF LIE GROUPS
Let (4, ®, U) denote a strongly continuous representation of a Lie group &

by linear operators U(g), g € ®, acting on a Banach space #. Fix a basis x;, ..., x,
of the Lie algebra g associated with & and define X, as the infinitesimal genefator



96 DEREK W. ROBINSON

of the one-parameter subgroup ¢ € R —» U(exp(sx,)). Then for each » > 1 introduce
the subspace

d
@n = ‘/”n(U) = m D(Xil e Xi")

f ...,1n=1

v

and define norms || - |I, on the 2, by setting || - [}y == |- {{ and

“a{‘n = ”aV + sup ”Xia;”n—l’ a e‘@n'
1gicd

Since the X; are closed, 4, is a Banach space with respect to the normi'. ", and 43,
is continuously embedded in &,_,, because ia|l,_, < |la|,, a €B,. Morcover it
follows from the group structure that U%, = 4,,n > 1, and that U, = U %, is
i [-continuous. Thus one obtains a family (4,, ®, U,) of continuous represcn-
tations of ®.

Next define the C*-elements of the representation by

v@du = BU) = %,(U)

>l

and if X is the generator of t — U(e™) define dU(x) = X %, . It follows that

1. B,y is norm-dense and invariant under dU, i.e. for each x &g one has
AU S PBaus

2. (ad dU)WAUGNe = dU(ad x)(y)a, x,v €g,a € B,y
Thus one obtains a representation (%,y, g, dU) of the Lie algebra g.

If &% denotes the dual of & then there exists a weak™ continuous representation
(#%.0, U,) of ® on £* defined by U.(g) = U(g~Y)*, g € 6. Now let X, denote the
weak® geaerator of t — U, (exp(ix;)) and define 47 = B¥(U,.) etc. by repetition of
the above procedures. Then one obtains a second representation (#3y, g, dU,) of
g but in this representation 8% is only weak* dense. The two representations satisfy

he duality property dU7.(x) € — dU(x)*, x € g, and —dU(x)* is the weak® closure
of dU (x).

Note that in the sequel all statements concerning operators and representations
on # will refer to the norm, or o(#, #%)-, topology but statements concerning oper-
ators and representations on ¥ will refer to the weak*, or o(#4%,49)-, topology.
For example, if X is an operator on & then X wiil denote its norm closurc but if X
acts on #* then X denotes its weak™ closure.

Now define the Laplacians A and A, associated with the basis x,, ..., x; of

g by

d d
==Y AU}, A, =— Y] dU(x).
i=1 i=1
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Because dU,(x) = —dU(x)* it follows that A, < A* and in particular A,, is closable.
Then by duality A is contained in the adjoint of Z:: and hence A is closable. Note
also if p = (p;;) is an orthogonal transformation of R? and one defines a new basis
X? by

d
xXh =% pix;
j -1
then
d d
A=— Y dUxE, A, =—Y dU (D2
i i1

=1

.

But in general the definition of A is basis dependent.
Now we consider representations satisfying special regularity properties.

THEOREM 1.1. Let (B, ®, U) be a strongly continuous representation of the
Lie group ® and for a fixed basis x,, ..., x; of the associated Lie algebra g define
the Laplacian A by

d
A=— ¥ dU).
i=1

Then A is closable, its closure A generates astrongly continuous semigroup holomorplhic
in the open right half-plane, and B,(U) < D(A).
The following conditions are equivalent

1. #,(U) = D(B);
.. d
2. A=Y dU(xf)?
=1

for each orthogonal transformation p of R?;
3. there is a K=1 such that

|dU(x) dU(x)a|| < K(|Aali + ||al), ae By V),

Joralli,j = 1, ...,d;

4. there is an &, > 0 such that (I + ¢A) is an isomorphism from B, onto B for
all £ e (0, &) .

Moreover, if these conditions are satisfied then (I + aZ) is an isomorphism from
B, .o onto B, for all e € (0, g} and n> 1.

Proof. The general properties of A given in the first statement follow from
combination of results of Nelson and Stinespring [12] and Langlands [8], [9]. Nelson
and Stinespring consider the Laplacians as defined above but Langlands examines

7-1731
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their extensions

A = — é mé, Ay, =— é V(x;)?

where we have set V' = dU for simplicity.
Now Theorem 3.1 of {12] establishes that A generates a strongly continuous

semigroup and Theorem 8 of [8] proves that A, generates a similar semigroup which
is holomorphic in the open right half plane (see also [9], Theorem 2). But a generutor

cannot have a proper generator extension and hence A = A,. Therefore A 2 A,
and D(Z)QD(Al)Qﬁz. Since these arguments apply equally well to the dual
representations one also has A, = A, and D(A,) 2 B¥. Moreover, it follows from
Theorem 7 of [8] (see Theorem 1 of {9]) that (A;)* = A,.. and then by combination

of these conclusions one has (A)* = A,,.
Now consider the four conditions.
1 = 2. It follows from the above considerations that

- A
D(4) 2D(A) = M DV (x:)) 2%;

i=:1

and hence Condition 1 implies that D(A) = D(A,) = %,. Since A2 A, this means
A = A,. But the definition of A is invariant under orthogonal transformations p
of R? and hence this argument can be applied to the basis x*. This establishes Con-

dition 2.
The proof that 2 = 3 relies upon the following lemma.

LemMmA 1.2. For each ¢ > 0 there is a C, such that
NdU(xpall<eldU(x)all + Clal, aeDEU(xY.
Proof. Since U is continuous there exist M >1 and w >0 such that
[1Uexp(tx,)|| < Mexp(w,t), teR.
Again set ¥V = dU. Then one has
i + e¥(x))a) > M-I —uw)lall,  aeDV(x),
for all o € R such that 'zl < 1. Therefore if 1 > aw > 0 then
AW V(xJall < — oV (x)a] + Jial] <

<M — aw) I — 2V (x)Bal| + al]
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for all a e D(V(x;)?). Hence for each & > 0

| V(x)al < el| V(x,)2al + (2(M + ew)*/e)lal.

Now consider the implication 2 = 3 in Theorem 1.1. It follows from Condition
2 that

. d _
D@) = N DV,

Now equip D(A) with the two norms

— d
lall” = llail + llAall, llal” = llall + ¥ |V (x))?%all.
i=1
Then D(A) is complete with respect to |l -1l But it follows from Lemma 1.2 that
D(A) is also complete with respect to || - ||'*. Moreover |all’<|la|”” for all a e D(A)

by Condition 2. Hence by the closed graph theorem (see, for example, [16], Chapter 4,
Proposition 11) there exists a K> 1 such that [lal|” <K][lal’, a € D(A). In particular

d _ _
Y, [IVGrali < K(jAall + lal),  aeB, < D(A).

Now applying this argument to the basis x% obtained by applying an orthogonal
transformation p to x; and using the invariance of A under such transformations one
concludes that there is a K, > 1 such that

(1.1) | V(x02all <K, (| Aall + |al), aeB,.

1

d
Pee

But for ae%,,x,yegqg, and A, ue R, one has

(1.2) V(Ax + py)a = AV(x)a + uV(»)a

and for a e 4%,

(1.3) @d V)V ()a = V(@@d x)(»))a

because of the group representation properties. Then for a € &,

4V(x) Vixpa = V((x; + ¥/ 2Pa — V((x; — x;)/V 2Pa — 2V ((ad x)(x,)a.

Now Condition 3 follows from (1.1), (1.4), Lemma 1.2, and the structure relations
for g.

1
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3=11Ifae D(A) one can choose a sequence a, € D(A) € %, such that a, - «
and Aa, — Aa. Tt then follows from Condition 3 and Lemma 1.2 that V(x;)a,
- V(\'J)a and V(x;) V(x))a, = V(»c) V(\ Ja. Hence D(_\) < 4, and one must have
D(A) = 4.

3 = 4. We have just argued that Condition 3 is equivalent to Condition 1 and
2. Therefore D(A) = 4, and

(1.4) [+ ela; < a +¢ Z V(). < (1 + de)a)y, ac4s,

for all & > 0. Next since .\ is the generator of a continuous semigroup there exist
M >land @ > lsuch that (I + £X)~! exists if 0 < ¢ < | and

(1.5) I+ ed)ta" <M1 —ew)~ta’.

Then from Condition 3 cextended to the closures by the argument used to prove
3 = 1 one has

W) VU + ed)~tal < K(| AT + ed)-2aii + [i(L + ed)ai)<

(1.6)
< K(lla!'fe + (1 + /)i + eA)-1a!).

Now it follows from (1.5), (1.6), and Lemma 1.2 that there exists a K,>1 such that
L+ sﬁ)—la,‘g’g <K, 'a|for 0 <ew<1. Hence (I + ¢)) is an isomorphism from
4, onto B whenever 0 < ¢ < 1.

4 = 3. If Condition 4 is valid then for each & € (0, &) there 1s a K, > 0 such

that [[(I + eA)~1h}, < K,jb]l. Consequently
V() V(x )(I + sA) i< Kb, bed.
But if ae 4, < D(A) then there is a b€ #Z such that g = + ¢A)~1h. Therefore

V(x)V (xpa < KT+ eNal, acB,.

and Condition 3 holds.
Now consider the iast statement of the theorem.

First we prove that (I + eA)%, = 8, or. equivalently, (I + eA)-14, =4,.
Now it follows from Condition 2 of the theorem that (I + £¢A)4, < 4, and hence
it suffices to prove that (I + ¢A)~1%, < #,. But it foliows from Condition 1 of the
theorem that

d . ——
=M D(AV(x))-
k-1
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Moreover, if a € &, then
eA(l +eA)'a=a— (I + eA)tac B

because D(A) = %, = B, and hence

(I +eA)-1%, (dj D(V(x)A).

k=1
Consequently it suffices to prove that
d — . d e —
(1.7) M DV (x)A4) & M D(AV(xy)).
k-1 k=1

Now if weg}t*, where V, = dU,, then

(ad A:}:)(Vzlz (X))CO = - i (V:I= (xi) V:l:(yi) + V:k (y;) V:k (xi))w

=1

where y; = (ad x,)(x). Hence if a € D(V(x)A) < D(A) = B, then

(4,0 (V(x)a) = (PG Aa) — ¥ (V5 77 + V0 Ve

i1

by duality. But the right hand side is continuous in @ and A* = Z* by the Nelson-
-Stinespring-Langlands results quoted at the beginning of the proof and hence V(x)ae
€ D(A). Therefore (1.7) is satisfied and hence (I + eA)%; = %, .

Second, we argue that (I + ¢A)is an isomorphism from %, onto #,. Now it
follows from Condition 2 of the theorem that
I + ed)all < (1 + ed)liall,,
ie., (I + ¢A)is a bounded map from %, onto #, , and it remains to examine the bound-
edness properties of the inverse map (I + eA)~1. Now it follows from (1.5), (1.6),
and Lemma 1.2 that there exist L, L(® such that

(1.8) [V (x ) +ed)-1a)| < LPall, acB,

1.9) V) V) (T + e8)~a) < LPllall, ae .
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for e € (0, ). But for a e 3,

V) + eA) 2 = (I + e3)V(x)a + e + : A)~ad X)) Vro)d + ed)a.

Hence if C,f‘j denote the structure constants of g and one sets

d
C =sup ¥ Ciyj

kit

then
(1.10) L) V) VO I+ e8)-1a] < LOV(xjal + eCLO|al)).

Therefore by (1.5), (1.8), (1.9), and (1.10) there exists a K& such that
I + ed)tally < K®laly, aes.

Thus (I + €A) is an isomorphism from %, onto %, for & e (0, &).
Third, we prove that (I+¢A), ., 28, for 2> 1.In fact we prove (I +¢A) 4, ©
S B,+s, by induction. Suppose (I + eA)'%, S Bpuq for n =1, ...,m where
m = 1. Next, for brevity, adopt the schematic notation V™ for a monomial of order

m in the ¥{x;) and Y, V™ for a linear combination of such monomials. Then for
a€, .+, one has

(L1 VI 4 eA)ta = (I + eA)~V7a + eI + eX)~Had A} V™I + £d)a.

This commutation rule is justified because AV = Y Ccymee, VA = Y, CV+E and
g+ Ay-ta €#,+2, by Condition 2 of the theorem and the induction hypothesis.
Then since (I + eA)~% < A, one concludes that (I + £A)-la € B,,,,. Therefore
d + ahA‘)‘I‘('Z?m.H S B,y1o. Next it follows from the structure relations of g that
(ad A)(¥™) = Y}, CV™+% and consequently (I.11) gives

VoI + edy~la = (I + e3)"W"a + oI + e 37V Y CV™+Y(I + ed)~a.
Hence multiplying by another ¥ one obtains

VoL 4 e8) =g = (1 + 2) "NV g + & 5, CVP I + £A)a) +
(1.12)
+e(f + eA)Had AYV)T + 28)"Y(V7a + ¢ 5, CV™ U + ¢A)~a).

This commutation relation is justified because a € 4,,,, by assumption, (I+¢A)~'ae
€PBpn+z, by the previous argument, and hence ¥™a + ¢ Y, CV™ (I + eA)-laec B, .
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But (I + eA)-'#, <A, and (ad A)(V) = ¥, CV2. Finally (I + ¢A)~'# < B, and
thus it follows from (1.12) that (I + eA)~'a € B,, 5. Thus (I + eA)'B,11 S B is
and the induction is complete. Note that it follows from Condition 2 of the theorem
that (I + eA)#,,42 < B+, and hence we have established that (/ + ¢A) maps
B ey onto A, for all m = 0.

Finally we prove that the mapping (I + ¢A) from B 15 o0to 4, is an isomor-
phism. First if a€ 8,

I+ edyall, < (1 + ed)l[all s

and we now estimate the crossnorm of the inverse.
Set py(a) = ||lal| and p,(a) =.sup||V™a|l for m>1 where the supremum is

over all possible monomials ¥”. Moreover set K, = [[(I + 85)“1H2. Then K, is
finite, for & € (0, ¢], by assumption. Now it follows from (1.11) that there exisis an
L>0 such that

Omes( + £8)720) < K,(po(a) + emLp,sn(d + £8)1a))

for all € 4,,. Then by iteration, and use of the obvious bounds p,(a) < ||ali,.,
P < m, one concludes that there is an A4, > 1 independent of m such that

Pmeol( + e8)"1a) < (m + D! MY|lal,,,.
Therefore

H([ + 8A) la“m+2 (m + 2) 'M”Hallma a e‘@m

and (I + ¢A)-! is a bounded map from 4,, onto4,,, , . Thisestablishes that (I + ¢A)~*
is an isomorphism from #,, onto #,, .., for all m > 0 and all ¢ € (0, &].
Note that the last statement of the theorem establishes that the norm || ||,

on 4, is equivalent to the norm a e @,, — (I + £AYa] and the norm |||l

on PBo, 41 is equivalent to the norm ¢ € %, — (I + éZ&)"aHl . Thus the differentiable
structure of the representations satisfying the conditions of the theorem is essentially
determined by the Laplacian A. The last statement of the theorem can also be rephras-
ed in terms of the representations (%, , ®, U,).

COROLLARY 1.3. If the four equivalent conditions of Theorem 1.1 are satisfied
or the representation (B, ®, U) then they are satisfied for all the representations

(%, 6, U,).

Proof. We have shown that the conditions of Theorem 1.1 imply that there
is a K, > 0 such that

W + ed)allysr < Klall,, ac,
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for small ¢ > 0. Consequently
IV(x) Vixal, < KT + edall,, a€ By

The conditions of Theorem 1.1 also have a tendency to be stable under duality.

ProrosITION 1.4. Let (B, ®, U) be a continuous representation with dual
(@, ®, U,). Then the following conditions are equivalent :
1) There is a K 2 1 such that

IdU(x)dU(x))a )| < K(l[AaI + lall), aeByy:
2. D A)) € B¥ and there is a K, > 1 such that
1dUL(x) dU(x)all < K, (IAall + al), aeD(A,).

Proof. For simplicity we set V =dUand V, = dU,,.
1 = 2. Tt follows from Condition 1 by closure that D(A) < A,, and hence
D(A) = #,, and

(1.13) V) Vixpail < K(iAaj + jal), ae,.

Then from these bounds and Lemma 1.2 one deduces that K can be chosen such that
IV(x)a! < K(iAal} + "al]).

Thus for small & >0 both V(I + eA)- and V(x;) V(x,)({ + eA)-arc bounded

in norm, uniformly in i and j. Moreover since (I + sA)~1%, = Yy there is 2 K’
such that

@d ) (VDU + ed)'a < K'all, ae%,.
Then for ue %, and w € 4%
e + eB)7 Vi), < K1o|-fla).

But A® =2§$ by the Nelson-Stinespring-Langiands analysis and thercfore this
estimate implies D(A,) © 4F and

IVi)oll < KT+ eA)ol, weD@A,).
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Next V(x,-)\V(xj)(I+ ¢A)-1 is bounded in norm, uniformly in i and j, and
(I + eA)-'B, = B, for small ¢ > 0. Therefore if a € B, < B, and w € B* one has

lo((I + eA) =1V (x) V(x)a)l < lo(V(x) (V) + ed)~'a)l +

+ elo( + eA)"Mad D) V(x) V) d +ed)-ta) +

+ el + eA)~* V(x) (ad 3) (V) + ed)~1a)} < K ||oo|)- [lall.

To obtain the last estimate we have used the structure relations of g and the fact,
just established, that |V, (x)({I + ¢A)-1] is bounded uniformly in i for small & > 0.
But this estimate proves that D(A,) € ## and

IValx) VEx)ol < K7 I + eA)ol, we DA,),

i.e., Condition 2 js verified.
2 = 1. The proof is similar.

Note that there is an asymmetry in the two conditions of Proposition 1.4.
it suffices that Condition 1 is satisfied on 2, because it then extends by continuity
to D(A). But it is generally insufficient to assume Condition 2 on &%, because this
subspace is only a core of A, in the weak* topology. For the same reason it is pro-
bably also insufficient to assume the condition on #F. Of course this asymmetry
does not arise if & is reflexive.

COROLLARY 1.5. If 95 is reflexive then the four equivalent conditions of Theorem
1.1 are self-dual, i.e., they hold for (8, &, U) if, and only if, they hold for (#%, 6, U.,).

There is one curious aspect of the four conditions in Theorem 1.1. They are
formulated in terms of one basis of g and since A is invariant under orthogonal
transformations of the basis the conditions are invariant under such transforma-
tions. But it is not evident that they are independent of the original choice of basis.
This would follow if they were also stable under scaling transformations x; —» xf =
= A;x; where 2; € R \\ {0}. This is the case in many examples, as we discuss below,
and it also follows if a seemingly stronger version of Condition 3 of the theorem
18 satisfied.

ProposITION 1.6, Let (#,®,U) be a strongly continuous representation of
the Lie group & and for a fixed basis x,, . .., x; of the associated Lie algebra g define
the Laplacian A by

d
A=— Y dU(x).
{==1
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Assume that for each ¢ > 0 there is a C, > 0 such that
(1.14) (dU)AU(x)al < (1 + e)|Aa) + C,lall, ae By,

then the four equivalent conditions of Theorem 1.1 are satisfied for every basis of g.

Proof. Again set V = dU. Now 4, < D(A) and it follows by closure, using
Lemma 1.2, that

[V(x) V(xal < (1 + )] Aafi + C.llall, a€Bs.

In particular Condition 3 of Theorem 1.1 is satisfied for the basis x,, ..., x,. Since
the definition of A is invariant under orthogonal transformations the condition is
also satisfied for any basis obtained from x,, ..., x, by such a transformation.

Next consider the scaling transformation x; — x} = 2,x; where };€ R\ {0}.
Define A,, on 4, by

d
A}. = — 2 ;,?V(Xi)z.
i=1

. J I
Then by the Nelson-Stinespring-Langlands results D(A;) 2 (M D(¥V(x)*) 24, and

i1
—_— d ———
da ==Y AiV(ix)a, aeB..
i1
Therefore, for each p > 0,

_ o d o
1Al < || Aa]|/p? + 3 11 — AEp% 1 Vix)a]] <
i1

p . -
. BRI . - " .,
< | Asdllfp® + 3 1 oL + gjag + Cillal),  aed,.
i =1

Hence if 1 is in the set C, ,, where

d
Cpu = {1eRI Y 1= ip% <1+ s)},

{ i1
one has a bound of the form
|Ba < K@, p, ([ 25a + a)), @a€Fs.

Since D(A) = %, it follows that A, is closed on %, and consequently D(3,) = %2
But if 1e RY anci i #{0), =1, ...,d then one can choose p and ¢ such that
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AeC,,. Thus D(A;) = 4%, for all A with 2, # 0, i.e. Condition 1 of Theorem 1.1
is invariant under all such scaling transformations.

Finally since each non-singular transformation of R? can be decomposed in
the form O, D0, where O, , O, are orthogonal transformations and D is a non-singular
scaling transformation, Condition 1 of Theorem 1.1 is valid for all possible bases
of g.

We conclude with the discussion of some common examples of representations
satisfying the criteria of Theorem 1.1. The simplest general class of examples is
provided by unitary representations on Hilbert space. Then the conditions are satisfied
for all bases. This is a consequence of the following lemma, which improves Lemma
6.2 of Nelson [11].

LemMma 1.7. Let (#, g, V) denote a representation of g by skew-symmetric
operators on the Hilbert space # . Fix a basis x,, . . ., x4 of g and define
d
A=— Y Vx)E
i1
then for each ¢ >0
| V(x)all < ¢lidall + (i/2¢)]|all,

IVExaVxpal < (1 + e)llAall + 2CYe)lal, aeHy,

forall i,j=1,...,d where C is defined in terms of the structure constants CJ; of
g by

d
C=sup % IC,’j~.

1sicd ji7
Proof. First, by positivity
V(x)al? = — (4, V{x,)’a) <
< (a, Aa) < ||l 22 + /el 2)al?/2

which immediately yields the first bound. Second, by positivity and the structure
relations

WV rpV (xal < (F(x)a, AV (x)a) =

= — (Ve Aa) + ¥, CEV (e V)V (x) + VxOV(x2)a).
ik-=1
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Hence if
k= sup |V(x)V(x)al

igi,jgd
one finds by the Cauchy-Schwarz inequality and the first bound that
k2 < kj|Aall + 2kC(0)|Aal] + (1/20)|a])

for all 4 > 0. Choosing d = ¢/2C one obtains the second bound.

Now if (#, 6, U) is a continuous unitary representation of ¢ then the repre-
sentatives dU(x) of g are automatically skew-symmetric. Thus Lemma 1.7 applics
and hence the conditions of Theorem 1.1 are satisfied for every basis of g.

Other examples, and counterexamples, occur in the theory of partial diffe-
rental equations. Let # be one of the standard function spaces over R? and consider
the group RY acting by translation. Then with the basis x = (x,, ..., x;) € R? one
has V(x;) = id/éx; = D; and Condition 3 of Theorem [.1 can often be verified by
the use of Riesz transforms.

If }”denotes the Fourter transform of f then(Djf')(p) = pjf(p), (Aj"\)( p) = p?f( r)s
and the Riesz transforms R; are defined as the operators with action (Rf)(p) =
=(p;/!p )f(p). Thus D;D;f = R;R;Af and one has the formal bounds

DD f4 < R IR; AL

Therefore this method works for those function spaces for which the R, are bounded
operators. This class includes the spaces LY(R?) if 1 < g < oo (see, for example,
[17], pages 59 and 77) but also includes many other Besov-Holder-Sobolev spaces.
On these spaces one can also establish that the bounds are valid for any choice of
basis. Consider, for example, the spaces L(R?). The group of rotations of R? acts
isometrically on Lf(R?) and there is an action of the group of dilations x — /x =

= (AXy, .o AaXg), 4, € RN0Y, given by (Uif)(x) = f(4x) and one has | U,i, ==
= | U_;"-1. Therefore | U, R.U_,;|', <|R;ll, and then by the group property
YU,RU. ", = 'R, . Sincethe norm | R;}! is also invariant under rotations one tien
haus

DI DPIf < REA, S|

where D{# denotes the partial differential operators with respect totherotated and
dilated basis, A, is the Laplacian with respect to the dilated basis, and R =R
is independent of the choice of basis.

It is remarkable that there are no such bounds for LYR9) or L®(RY), if
d > 2. De Leeuw and Mirkil [3] proved that Condition 3 of Theorem 1.1 fails for
translations on L®(RY) and Ornstein [13] established the same result on L}(RY).
in fact the L?! result follows from the L* resuit by Proposition 1.4. It also follows
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from a simple scaling and translation invariance argument that the bounds fail
for the L'and L™ norms on C*=(A), for each open subset A of RY. Hence the bounds
fail for LYT") and L2(T9), for d > 2. They also fail on Co(R9) or C3(R?) (for further
details see [19], especially Section 2.2.3).

The Riesz transform method sketched above can be generalized to compact
Lie groups (& acting by translations on LY(®), | < ¢ < oo, (see [18], pages 57 and
131) but the general situation is unclear. It would seem worthwhile to investigate
representations of specific classes of simply connected groups, e.g. compact or semi-
simple groups, and particular types of representation, e.g. isometric representations
on reflexive spaces.

Our main aim, however, is to consider the integration problem associated with
representations satisfying the criteria of Theorem 1.1. This will be discussed in
Section 3 with the aid of a semigroup generator theorem which we prove in the next
section.

2. COMMUTATOR THEORY

In this section we derive a sufficient condition for a dissipative operator K
to generate a contraction semigroup. The main theorem is similar to the results
of [1], [15) insofar it compares K with a known generator # and the key condition
is an estimate on the commutator of H with K of the type (ad H}K) = O(H).
But the present result differs from the earlier results in two respects. First, in [1]
and [15) it was assumed that / generates a C,-group of isometries but now we only
suppose that A generates a C,-semigroup of contractions. On the other hand in
[1] it was essentially assumed that K = O(H), or in [15] that K = O(H") for some
n =1, but here we make the stronger assumption that K is infinitesimaily small
with respect to H. Nevertheless the discussion is again based on the singular per-
turbation technique developed in {14] and elaborated in [1], [15].

As a preliminary recall that an operator K on the Banach space 4 is dissipative
in the sense of Lumer and Phillips [10] if for each ¢ € D(K) there is an w € #* such
that w(a) = ||o|-]|lall and Rew(Ka) > 0. Equivalently, K is dissipative if, and
only if]

I + aK)al| > [jall, a € D(K),

for all small & > 0. (For a proof of equivalence see, for example, [1], Theorem 2.1.1.)
Moreover, if K is norm-densely defined then it is dissipative if, and only if, for each
a € D(K) and each w € #* such that w(a) = ||w|-]ja|| one has Rew(Ka)>0. In
particular this last criterion implies that the the sum of two norm-densely defined
dissipative operators is dissipative.

THEOREM 2.1. Let S be a Cy-semigroup of contractions on the Banach space
B with generator H and let a € D(H) — ||ally. = ||Ha|| + ||a|| denote the graph norm
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on the domain D(H) of H. Next let K be an operator with the following
properties:

I. K is closed and dissipative,

2. D(H) € D(K) and for each ¢ > 0 there is C, such that

[ Kal| < el Hal|| + C,lle|l, a e D(H),
3. for some k >0 and 6 >0

(@dSYK)aii € kt||all,, ¢€{0,6], a e D(H).

It follows that K generates a Cy-sermigroup of contractions T.
Moreover if K& = D(H) for some dense S-invariant subspace 2 < D{H?)
then

l. T\D(H)= D(H), >0,
2. T]D(H) is |j - |\-continuous,
3. Tl <eMa,, t20.

Proof. It follows from assumptions 1 and 2 that the family of operators
K, =¢H + K, £¢>0, generate C,-semigroups of contractions (see, for example,
[2]. Theorem 3.1.32). In particular the resolvents (I + aK,)~! are contractions for
each ¢ >0, and ¢ > 0, and (I + 2K,)"8 = D(H).

Next since K is closed, densely defined, and dissipative, it generates a Cj-semi-
group of contractions if, and only if, the range condition R(I + oK) =% is
satisfied for all small & > 0. Now assume there is an o € #* such that

o(( + aK)a) =0
for some small positive « and all @ € D(H). Then
o + aK)I +0xK) a) =0, >0, aed.
But this gives the identity
2.1) (@) = cew(HI + oK) %a), >0, ac.
Now we need an estimate, similar to Lemma 2.2 of [1], for H(I + oX,)"'a.
LEMMA 2.2. If a e D(H) and ok < 1 then

I + oK) all < (1 — ak)Yall.



REPRESENTATIONS OF LIE GROUPS 111
Proof. First one has the identity
S+ aK) 'a =+ aK) 1S,a + (ad S)(({ + «K,) " Ya =
= (I + aK,)"¥(S,a + a(ad SYK)I + oK,) " a).
Therefore, using Condition 3 of the theorem, one estimates that

I — S)I + eK)~al| < [T — S)all + akt(|HUT + aK;)~all + lla])).
Dividing by ¢ and taking the limit ¢ — 0 then gives
| HU + oK)~ tall < (| Hall + oak(|H(I + «K;) %a| + ||all)

and a simple rearrangement using ak < 1 gives the desired result.
Now, returning to the proof of the theorem, we see from (2.1) and Lemma 2.2
that

(@) < we(l — ak) =Y wll(| Hal| + fal)
for all @ € D(H) and ¢ > 0, whenever ak < 1. Therefore, taking the limit ¢ — 0, one
concludes that w(a) = 0 for all @ € D(H). Since D(H) is norm dense it follows that
w = 0. Hence R(I + aK) = % for ak < 1, and K is a generator.
The proof of the last statement of the theorem is now just a repetition of the
argument used to prove a similar result in [1], Theorem 2.1. First, since 2 < D(H)
is norm-dense and S-invariant it follows that it is ||-||,-dense in %,. Second, one

argues that K + kI is |- [l;-dissipative on 2. This follows because dissipativity
of K gives

2.2) (I + (K + kD)al| = (I + ak)ljall, a eD(H)
and hence

I — SHU + (K + kD)all > (1 + ak)||(I — S)all — all(ad S)(K)al.

But if @ € 2 then Ka € D(H) and one deduces from this last inequality, by use of
assumption 3 of the theorem, that

(2.3) |HUI + «(K + kD))a|| = ||Ha| — akjlall, ae 2.
Thus by addition of (2.2) and (2.3) one obtains

I + a(K + kD)all, > [lall,, a€2.
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Third, one argues that ({ + K + kl))Z is , - ,-dense in D(H). For this we note
that if ¢ € 7 then Ka € D(H) and

(2.4) ad H}(K)al < kia',

by use of Condition 3. Now if 4, = D(H) equipped with the norm - !} and if there
is an w € 4y such that

o{({ + (K + kl))a) =0, ae g,
then by standard approximation theory, using (2.4) and S-invariance of ¢, one
deduces that
(2.5) ol + K+ ki)Ra)=0, aecZ,
where R = (/ + H)~'. But R is a bounded map of 4 into %, . Hence the adjoint

R¥ is a bounded map from #§ onto #* and to prove w = 0 it suffices to prove
that R*w = 0 on 4. Now using (2.4) and (2.5) one has

(RF@)({ + 2K)a) = — ak(R*w)(a) + xw((ad R)(K)a) <
< ok R*w, - a| + aw(R(ad K)(H)Ra) < 3xk|R*wjj-{a: <
< 3oki| R*w| - |({ + aK)a,, ae€Z,
where the last step uses dissipativity of K. Since (I + aK)Z is dense in 4 it follows
that (1 — 32k) R*w < 0 and choosing 2 such that 32k <1 one concludes that
R¥w = 0.

Finally it follows from the i - *,~density of &, the |- |;-dissipativity of K -+ kI,
and the range condition, that K + kI generates a C,-semigroup of contractions on
(4,.i- 1) and hence K generates a |- ;-continuous semigroup 7" on 4, satisfying

(Tai, <e|lall,. aei.
Note that this theorem proves that every dissipative operator KX which com-

mutes with a contraction semigroup S and is dominated by its generator in the per-
turbation sense, i.e. D(f/) € D(K) and

"Ka <¢ Ha' + Cjlla, aeD(H), ¢>0,

is automatically a semigroup generator. This allows, for example, a simple proof
that the fractional powers of A generate contraction semigroups.
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If A€ (0, 1) then H* can be defined by

(2.6) Hq = limS ﬂ(I — S)ajt*
60 t
[

with D(H%) the set of a for which the limit exists (see, for example, [20], Section
IX.11). But if a € D(H*), o € #%, and w(@) = ||w||- |la|| then |w(S,a)|<| wll-|all =
= w(a) and
Rew(H*a) = lim S dt Rew((I— S)alt?) 2 0,
60 t
]

i.e. H*is dissipative. Next if ¢ > 0 choose J such that

]

S ds
—_— 8
t).

0

and define C, by
C, =2S dr_
t1+)~
]

Then for g € D(H) one readily estimates from (2.6) that
| H*all < &l| Hal, + C,iaj.

Thus one deduces from Theorem 2.1 the well known result that //* generates a con-
traction semigroup.

The perturbation bound in Theorem 2.1 also follows if D(K?) < D(H) and
one has a bound || K2a|| < k,||Ha|, or even if D(K") = D(H) and ||K"a|| < k,||Hal|
for some n > 2 and k, > 0. This is a direct consequence of the following simple
observation.

Lemma 2.3. If K is dissipative and ¢ > 0 then

@7 |[Kall < &l|K?%a|| + (2/e)]all, aeD(K?).
Proof. One has
ellKal| < |I(f — eK)al| + lla]| <

< U — e2Kal| + |lall < &|[K%l| + 2[4l
where the second inequality follows from dissipativity.

8 — 1731
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Once one has the bound (2.7) for all ¢ > 0 it then follows by a simple in-
duction-iteration argument that for each pair of integers n > m > 1, and each
& > 0, there is a C, ,,(¢) such that

(K"al < ellK"all + C, nE)llall-

Thus these bounds always hold for dissipative operators.

3. INTEGRATION OF LIE ALGEBRAS

The aim of this section is to establish an integration theorem for isometric
representations of the type characterized by Theorem 1.1 for a general Lie
group . Hence we begin with a representation (%, g, V) of the Lie algebra g by
operators V(x), x € g, acting on the dense invariant subspace &, of 4 and look
for conditions which ensure the existence of a unique representation (%4, ®, U) of
the simply connected Lie group & having g as Lie algebra such that 4, = 4,
and V(x) € dU(x), for all x € g. Now if U is isometric then each of the semigroups
¢ = 0 - Ulexp( & tx)), x € ¢, is contractive. Hence the operators dU(x), x € g, are
conservative, i.e. both 4- dU(x) are dissipative. Therefore we will assume the V(x).
x g, are conservative, and, in particular, closable.

Now let x;, ..., x,; be a basis of g and A the corresponding Laplacian,

A= é;l V(x)e.

Qur general strategy is to apply Theorem 2.1 with H = A and K = :{—_V(R")', X Eg.
But for this it is necessary to verify the hypotheses of Theorem 2.1 and this requires
some assumptions on the action of A. These assumptions are phrased in terms of
the subspaces &,(V) where

d JU— [
B, =2 = M DV ... V&),

i nl

equipped with the norms || - ||, defined by ||-{l, = ii-|| and
~all, = la|| + sup WV(x)all,_:-
15i<d

Since ¥(x;) are closed, 4, is a Banach space with respect to the norm || - }\,, and &,
is continuously embedded in 4,_,, for each n > 0. Moreover, we define 4, as the
intersection of the 4,. Now the integration theorem is as follows.
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THEOREM 3.1. Let (#y, 9, V) be a representation of the Lie algebra g by con-
servative operators V(x), x € 9. Further let A denote the Laplacian associated with
a fixed basis x,, ..., x; of 9.

It follows that A is dissipative, hence closable, and the following conditions
are equivalent ;

I. B,= D) and (I + eA)B, = B, ([ + eDYB, 2B, for all (small) £¢>0;

2. there is a K> 1 such that

IVxaV(xpall < K(llAall + llal), aeBy,i,j=1,....4d,

By = D(A) and (I + eA)B, = B, for all (small) & >0;

3. A generates a continuous semigroup, D(D) € B,, and

_ R
D@3 = MDA, V(x)):
i=1
4. A generates a continuous semigroup, D(A) c By, and D(A?) € By;

5. A generates a continuous semigroup, D(A) < By, and By, is a core of A;

6. there exists a (unique) continuous isometric representation (%, ®, U) of
the simply connected Lie group ® having g as its Lie algebra such that B, <%y,
V(x) € dU(x), xeg, UD(A) = D(A), and (B, G, U) satisfies the equivalent condition
of Theorem 1.1,

Moreover, if these conditions are satisfied then Wx) =dU(x), x €gq, and
D(A") = B,, for n =1,2, ... .

REMARK 3.2. Each of the first five conditions states, either explicitly or
implicitly, that A generates a continuous semigroup and hence %, < D(A). In
addition the conditions require the converse inclusion D(A) € #,, and this ensures
the range condition (I + e¢A)%, = %. Finally the range condition (I + eNB, = By,
or a domain condition for A2, also appears essential, but in special contexts such as

skew-symmetric operators on Hilbert space these follow from the other requir-
ements.

Proof. The preliminary statements concerning A are a consequence of a number
of standard results and the following simple observation.

LeMMA 3.3. If X is conservative then —X? is dissipative.

Proof. Since X is conservative ||(I & «X)a|| > |la!|forallsmalla > 0. Therefore
I — 2X3al| = (I — aX)I + aX)a]| > llall, a eD(X?)

for all small & > 0. Thus — X2 is dissipative.
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Now each V(x;) is conservative, by assumption. Hence — V(x,)* is dissipative,
by Lemma 3.3. But the sum of two norm-denscly defined dissipative operators is
dissipative. Hence A is dissipative. But each norm-densely defined dissipative oper-
ator is automatically closable and its closure is dissipative (see, for example [2],

Proposition 3.1.15). Therefore A is closable and .\ is dissipative.

Next, to prove the equivalence of the first three conditions in Theorem 3.1
we need the following ‘infinitesimal’ version of Theorera 1.1.

PRrOPOSITION 3.4. Let (B, g, V) be a representation for which the V{x),x €g
are conservative. Assume that the closure A of the Laplacian A is the generator of @

strongly continuous semigroup. Then B,<D(A) and the following conditions are
equivalent :

1. By = D(A);
.. [
2.4 ==Y V(xpy
i1

Jor each orthogonal transfurmation p of Ry ;
3. there is a K = 1 such that

EVeOVpe, < K{ da, + 0, a€dy,

foralli,j=1,...,d;
4. (I + €D is an isomorphism from Bs visio B, for ali ¢ > 0.

Proof. Consider the cperator
d
Ay =— 3 M.
i::1

Then A, is dissipative by the arguments used to deduce that A is dissipative. But
A; = A and since a gencrator has no proper dissipative extension it follows that
A, = A. Therefore A = \,. In particular D(A) 2 D(A) = %,.

Now the proof of equivalence of the four conditions is essentially identical
to the proof of the similar result in Theorem 1.1 but Lemma 2.3, applicd to -V(:x‘,.),
replaces Lemma 1.2. The estimates are also simpiified by noting that the semigroup
generated by A is contractive, because A s dissipative. In particular (F + ed) 1
is well-defined, and contractive, for all ¢ > 0.

Next we consider some implications of the conditions of Proposition 3.4. If
d d d d

x=19% ix;egandy= Y, wy; eg we define x| = Yy |4 and ¥ =Y W
i=1 foa1 i1 [RS8
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LeMMA 3.5. Assume the V(x),x €g, are conservative and there is a K> 1
such that

3.1 V() V(xpall < K(|Aall + |lal)), .ae€By,ij=1,...,d
Then D(A) < B, and

I [V&all < 8(1Ball + [lal) + @KIxIS)al, 6 >0,

2. V(x)Vall < |x| - [yIK([Aal| + [al),

3. (ad V) (V()a = V((ad)(»)a,

4. VOx + pp)a = AV(x)a + uV(a, I pueR,

Sor all a e D) and x,y €g.

Proof. Conditions 1 and 2 follow by continuity from (3.1) and Lemma 2.3.
Then Conditions 3 and 4 follow by closure, using Conditions 1 and 2.

The main difference between Proposition 3.4 and Theorem 1.1 is that the con-

ditions of the proposition do not necessarily imply that (I 4+ sA) is an isomorphism
from 4, onto ;. But the next result gives criteria for this to be the case.

ProrosiTION 3.6. Adopt the assumptions of Proposition 3.4 and further assume
the four equivalent conditions of the proposition are satisfied. Then for each & >0
the following conditions are equivalent:

1. B, = (I + eNBy;

2. @; = (\ DTGB

i=1

d e d .
3. M DAV&) = N DIV)B);
sl i=1

4. (I + €AY is an isomorphism from B, onto B, .

Moreover, if these conditions are satisfied then D(KZ) < Py and thereisa K; 20
such that
l@d B)Y(V(x)al < Ki(lAa]| + flal), @€ DA?).

Proof. If ae B, then

A + ed)"a =a— I+ ed)-laech?
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because D(A) = B, < 4, . Hence

. d .
(I + ed)™'B, = M DV (x)A).

i=1

Conversely if a is an element of the right hand set then a = (I + ¢A)~, for some
be3,and Aae 4, . But

b=ca+ ([ +ed)%beB,
and hence

rdj D(V(x)A) € (I + eA)-14,.

Combining these conclusions gives
d —— - -
A DFD) = (I + 3)~13,.
LS §

and this establishes that 1 < 2.
2 < 3. Since D(A) = 4, one has

d . d
MDAV = M DV x)Vx)V(x)) = %,
k=1 ij k=1

and therefore 2 < 3.
1 = 4. It follows from Condition 3 of Proposition 3.4 and Condition 1 of
Lemma 3.5 that

i V(xdal < I + ed)ajl + fiai(l + ¢ + 2K/s), ae D(B),
and hence

(3.2 VU + eA)taji < (2 + & + 2K[g)jja’, acA.
Moreover, by Condition 2 of Lemma 3.5

| 7(x) V(x)all < K(i( + ed)alije + [lai(l + 1/e)), a € D(A),
and hence

(33) VG Vo) + eB)~all < 2 + V/e)K|lal, ae€3.
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Now (I + ¢A)~! maps &, onto %, by assumption. But if a € 4, then
VixoUd + eA)-la = (I + eA)"V(xpa + eI + eA)~Yad A)(V(x ) +ed)1a.

Hence if C}; denote the structure constants of g and one sets

d
C =sup ¥ IChl
kojica
then

G VeIV (x) V) + sB)~al| < 2 + Ue)K(| Pxoall + 26CQ2 + 1/e)]al.
Therefore, by (3.2), (3.3), and (3.4), there is a K, > 1 such that
(I + ed)-'all < K,|all,, aec,.
Conversely if a € B, < #, = D(A) then
(I + eA)all; < (1 + ed)||all;

by use of Condition 2 of Proposition 3.4. Therefore (/ + ¢A)~1is an isomorphism
from 4, onto 4,.

4 = 1. This 1s evident.

Finally if the conditions are satisfied then
. d _
D(A*) = N\ DI (x)A) = %;.

k=1

Moreover (ad A)(V(x,)) is defined on %, and by Lemma 3.5 one has

(ad D)V (x))a = )ﬁ (V(x) V(xy) + Vixip) V(x)a, aeBs,

where x;; = (ad x;)(x;). Therefore the estimate on the commutator follows from
Lemma 3.5.
Now we are prepared for the principal part of the proof of Theorem 3.1.

1 = 3. Since A is dissipative and (I + eK)ﬂz = 4 it follows that the restriction
of A to 4, generates a continuous contraction semigroup, by the Hille-Yosida theo-
rem. But since a generator has no strict dissipative extensions it follows that A must
equal its restriction to %4,, i.e. D(Z) = %B,.
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Next (I + ¢A)#, = #, by assumption. But since A is a generator and D(S) =
= 4, it follows that

- d _____
A=— .;1 V{x:)?

by Proposition 3.4. Therefore (I + ¢A)#, < #,, which implies (I + )%, = %;.
But then
- d -
D(AYc B, = DV (x)A)

fe=1

by Proposition 3.6.

1 = 2. Condition 1 implies that D(A) = 4, and A is a generator, by theabove
argument. Therefore the inequalities of Condition 2 follow from Proposition 3.4

2 = 1. First, A is dissipative and hence R(I + ¢A) is closed. But R(I + £A}>
> B, 2 B, which is densc. Therefore R(I + £A) = & and A generates a continuous
contraction semigroup, by the Hille-Yosida theorem. Then 4, = D(K), by Propo-
sition 3.4, and hence (I + s}i)ﬂz = 4.

3 = 4. Since A gencrates a continuous semigroup %, < D(A), by Proposition
3.4, Hence %, = D(A) and

ADPETE) = ( DTV V) = ;.

i,jk=1

4 = 6. First we argue that the assumptions of Theorem 2.1 are fulfilled with

H=Aand K = ;J;V—(:?),foreach X€g.
Now it follows from Condition 4 and Proposition 3.4 that %, = D(A), and
the inequalities of Condition 2 are satisfied. Hence for each &> 0 there is a C,

such that
IV(0)ell <elfAall + C.llal, aeD(d),

by Lemma 3.5. Moreover since D(A?) < %,, by assumption, it thenfollows from the
last statement of Proposition 3.6 that there is a X; > 0 such that

l(ad AY ¥ (x)al| < Ki(|Aall + llal)), aeD(A?).

But if S denotes the semigroup generated by A one has S,D(K‘J) < D(A2) for all
t > 0 and hence

I(ad SHVENai= — Sds S, (ad B)(P(x)Sa, aeD(@Y).
1]
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Consequently

l(ad S)(F()al| < Kit([Aal| + lal)

for all a € D(A2) and ¢ > 0. Then this bound extends to all a € D(A) by continuity.
Thus the three initial hypotheses of Theorem 2.1 are valid with K = 4 ¥(x) and
H = A. Hence it follows from this theorem that each 17(}—), X € g, generates a strongly
continuous group of isometries ¥ = exp{wtmj} of 4.

Next since the equivalent conditions of Proposition 3.6 are fulfilled ¥(x)%, <
< D(A) and in particular ¥(x)D(A?) < D(A). Hence the last conclusions of Theorem

2.1 are valid. Thus ¥*D(A) = D(A) and V*D(A) is continuous with respect to the
graph norm

ae D@) —jalla = |[Aal| + ||a||

Note that since D(A) = %, and (I + ¢A) is an isomorphism from %, onto %,
by Conditions 1, 2 and 3, and Proposition 3.4, the norm )} - || is in fact equivalent
to |- [lz-

It remains to prove that the groups V*, x € g, define a representation of .
This is achieved by a standard line of reasoning (see, for example, [7], Chapters 8
and 9 or [4], Section 5) based on the following lemma.

LemMma 3.7. If x,y € g define e (x; y) e g by

e = % S aar o)

n>0 p!

Then

VEV()VE,a=Vie(x, Ma, aeDE).

Proof. For t > 0 define

P = (1= VDI =TV =7<x‘)718ds(V;‘ —.

0

Then for ae D(A) it follows from Lemma 3.5 that

(VO)Drall < %Sdsuv‘@V@(V: ~ Dal| <

< Klx|- [yl sup [[(VF — Dall,.
Qs
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Since ¥~ is continuous with respect to the norm || - |, by the foregoing one concludes
that

lim V() (I — V¥)aft = V(3)a, ae D).
=0
Similarly
lim (I — VXV(»alt = V(x)V(3)a, ae D(A).

t-0

1t then follows from these observations, the invariance of D(A—) under V*, and Lemma
3.5 that

a‘-‘— VETGIVE e = — VIR@AD0)Via, aeD@),
t

by yet another application of Lemma 3.5.
Finally define

F(s) = VEVefx, )V -ga
where @ € D(A). Then it follows from the foregoing that dF,(s)/ds = 0. Therefore
F(0) = F{(¢). But this is exactly the statement of the lemma.

Now let 4" be an open neighbourhood of the origin in g which is mapped
differeomorphically onto an open neighbourhood .# of the identity in ( by the

d
exponential map. Thus for each g €.# there exists x = ¥ 2.x; € A" such that g =

i=1
= exp{x}. We then define U(g) = Vj' = exp {—¥(x)}. Our aim is to prove that
this defines a representation of . Thus if g, /1, and gh, are in .4/ we must prove that
U(g)U(h) = U(gh). Now we may assume that exp{rx} €.# and exp{tx}he.# for
all te€[0, 1). Then

d
explrxih =exp {Z A t)x,.} = exp{x(1)}
i1
where the coefficients 2; are continuously differentiable in a neighbourhood of {0, 1].
Next for ae D(K) define F by
F(t) = ViWa = exp {-- V(x(1))}a.
Since V¥WD(A) = D(A) = D(V(3)) for all y e g it follows that

1
F(t) — F(s) = Sdi. VEAOV(x(s) — x(1) Vita

[t
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and hence

1
dF(r))dt = — Sd/‘.. VIOV ()VOF(t) =
0

1

= — V(Sdi el(x(t);x'(t))) F(),

0

by use of Lemmas 3.5 and 3.7. But it is a straightforward calculation, within g, to
show that

Sdl e, (x(1); x'(2)) = x.

0

Consequently dF(r)/dt = V(x)F(r). But this implies
d —_
- (Vi¥i%a) =0, ae DA,
t

or, by integration from 0 to 1,
Vg = ViVi®a, ae D(A).
Now in terms of U this gives
U(gh)a = U(g)U(h)a, aecD(A)

and hence, by continuity U(g)U(h) = U(gh). Thus U is a representation.

Next strong continuity of Uisevident and V(x) < dU(x), x € g, by construction.
In fact ¥(x) = dU(x). Moreover the construction also gives UD(A) = D(A) because
D@A) = By(V) = B,(U). But if W is a second representation with the property that
dW(x) 2 V(x) then the generator of the one-parameter subgroup ¢ — W(e'™) must
be a conservative extension of P(x). But V(x) is a generator and hence has no
proper conservative extensions. Thus W(e*) = V; = U(e'*) and the representation
U is unique.

5 = 4. It follows from Proposition 3.4 that A is dissipative, #, = D(A), and
the inequalities of Condition 2 are valid. Moreover

lAa| < ||A%]| + 2|lall, ae B,
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by Lemma 2.3. Hence onc calculates from these inequalities and Lemma 3.5 that
there is an L > 1 such that

lale < L(1A%Y + llaf}), g€ Do,

Then since A, is a core for A one deduces that DAY = @, < %,.
6 = 1. First, let A, denote the Laplacian defined on Z.(U) and A, the res-
triction of this operator to &, . Then the invariance property in Condition 6 states

that UD(A,) = D(A,). But(&, 6, U) satisfies the equivalent conditions of Theorem
1.1. Hence applying Condition 3 of the theorem to ¥ < dU it follows that D(A)) &
< #y(V) < #,(V) by Lemma 3.5. Thus for each x € g one has D(A,) = D(V(x)) ©
< D(dU(x)). Next since UL(A,) = D(A,) it follows that D(A,) is a core of each of
the generators dU(x), x € g. But dU(x) = ¥(x) on D(A,). Consequently dU(x) =
=V(x), xegq.

Our next aim is to prove that A, = A, and then Condition 1 follows from
Theorem 1.1.

Let S denote the contraction semigroup generated by Ay . It follows that

5, = %dgp,(@b'(g)

G

where dg is the left invariant Haar measure and p a convolution semigroup satisfying
the heat equation on ® (see [11], Section 8§ for details). Therefore

0+ Ay)-t = g dg H(g)U(e)

G

where # is the Laplace transform of p,
r(g) =S dre~'p(g).
(1]

Now since UD(A,) = D(A,) it follows by a Riemann approximant argument (see,
for example, [2], proof of Corollary 3.1.7) that (I + As)~ID(A,) < D(A,). But
D(A,) is norm-dense, since it contains %, , and therefore (/ + _Aldv)‘lD(L\j,,) is a core
for A,,. Consequently D(A,) is a core for A,y and one concludes that Ay = Ayy.
Thus 6 = 1.
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6 = 5. It follows as above that dU(x) = V(x),xeg and A, = A,,. Then
Condition 5 follows from Theorem 1.1 and the fact that Z,, = B,(U) is || - |l,-dense
in 8,(U) = D(A%,) by a standard regularization argument.

The last statements of the theorem follow from the above considerations and
Theorem 1.1.

Note that the argument occurring at the end of the proof of 6 = 1 establishes
the following. If (47, &, U) is a continuous representation of ® and A the Laplacian
associated with some basis of g then each norm-dense, U-invariant, subspace of
D(A) is a core for A. It should be emphasized that U-invariance does not necessarily
imply invariance under the semigroup genecrated by A.

Theorem 3.1 contains Nelson’s Hilbert space result, [11], Theorem 5, as a
special case.

COROLLARY 3.8. Let (o, g, V) denote a representation of o by skew-symmetric
operators V(x), x € g, on the Hilbert space 3 and let A denote the symmetric Lapla-
cian associated with a fixed basis of g.

Then the following conditions are equivalent :

1. A is essentially self-adjoint ;

2. there exists a (unigue) continuous unitary vepresentation (#, ®, U) of the
simply connected Lie group ® having o as its Lie algebra such that H'y S8 ay,
V(x) € dU(x), x€g, and UD(A) = D(A).

Proof. 1 = 2. First, skew symmetry implies the ¥(x), x € g, are conservative.

Second, self-adjointness and positivity of A implies that it generates a continuous
contraction semigroup. Third, by Lemma 1.7, Condition 3 of Proposition 3.4 is

satisfied and hence D{A) = #,. Fourth, since isometry of a group representation
on Hilbert space is equivalent to unitarity, the desired implication follows from

2 = 6 of Theorem 3.1 once it is established that (I + eA)#; = #,, ¢>0. But
for this it suffices by Proposition 3.4 to verify the condition

d o d R
M DVx)A) = M DAFL).
k=1 k-1

Now since D(A) = #, the right hand set is equal to #, and the left hand set contains
5. Hence for equality of the sets it suffices to prove the inclusion

d e d el
(3.5) M D(V{(x)A) = My DAV{x)).
k=1 k1
But this is achieved by the duality argument used to verify (1.7). Now one uses self-

-duality of ## and sets ¥,.(x) = V(x). Then one has A, = A and one replaces the
Nelson-Stinespring-Langlands result by the self-adjointness property A* = A.
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2 = 1. Since U is unitary the dU(x), x € g, are skew-symmetric and Lemma
1.7 establishes that the conditions of Theorem 1.1 are satisfied. Hence the desired
result follows from the implication 6 = 3 in Theorem 3.1.

The duality argument used to verify (1.7) and (3.5) can be used as the basis
of an alternative integration result. We define the representation (%), g, V) to have
a dual (%5, g, V) if there exists a representation of g by operators V.(x), x€g,
on a weak™ dense invariant subspace %}y of the dual #* satisfying the duality con-
dition V. {x) € — V(x)*, x € g. Then for a fixed basis x,, ..., x, of g onecan define
Laplacians A on 4, and A, on #} by

d d
A= _2; Vix)?, A, = —i;l Vi(x)?.

Since V,.(x) € — V(x)* it follows that V (x)2 © (V(x)?)* and consequently A, < A%,

COROLLARY 3.9. Ler (%, . . V) be a representation with a dual (B¥ .. V.,) and
assume the V(x), x € g, are conservative. Further let A and A, denote the Laplacians
associated with a fixed basis x,. .... x, of g.

Then the following conditions are equivalent :

1. By € D), (I + eN)By = B for all (small) 6> 0, and A* =3,;;

2. A generates a continueus semigroup, A% = 5,;:, and there is a K = 1 such
that

WxIV(xpall < K(jAal| + llal)), a€By, i,j=1,....d;

3. there exists a unique isometric representation (B, ®, U) of the simply con-
nected Lie group having o as its Lie algebra such that B, <Py, V(x) € dU(x),

xeg, U D(A) = D(A), and (3, ®, U) satisfies the equivalent conditions of Theoreni1.1.

Proof. 1 = 2. It follows as in the proof of 1 = 3 in Theorem 3.1 that D(A) =
=%, and A generates a continuous contraction semigroup. Hence the desired
implication follows from Proposition 3.4.

2 = 1. It follows from Condition 2, by Proposition 3.4, that D(A) =R,.
Hence (I + ¢éA)#, = # by the Hille-Yosida theorem.

1 = 3. It suffices by Theorem 3.1 to prove that (I + eA)%, 2%, for all small
¢ > 0. But we have just argued that D(A) = %, and A generates a continuous semi-
group and hence by Proposition 3.6, and the reasoning used to deduce 1 = 2 in
Corollary 3.8, it suffices to verify (3.5). But this is achieved by the same duality
argument used to verify (1.7) using the hypothesis A* = Z,.,..

3 = 1. This follows from 6 = 1 in Theorem 3.1 and the Nelson-Stinespring-
-Langlands results quoted at the beginning of the proof of Theorem 1.1.
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Stronger duality results can of course be obtained if 4 is reflexive.

CORALLARY 3.10. Let (By,q, V) be a representation with a dual (8}, q, V).
Assume that B is reflexive and that V(x) and V.(x), x € g, are conservative. Further
let A and A, denote the Laplacians associated with a fixed basis xy, ..., x4 of g.

Then the following conditions are equivalent :

i A* = A, and D(DA) € B,;
2. A* = A, and there is a K > 1 such that
”V(x()y(xj)a” < K(“AaH + |‘a”)’ a e‘@l’v l:/ = 1a BRI d;

3. there exists a (unique) isometric representation (%, ®, U) of the simply
connected Lie group having g as its Lie algebra such that#, < Bsy, V(x) € dU(x),

xeqg, U D(A) = D(A_), and (%, ®, U) satisfies the equivalent conditions of Theorem 1.1,

Proof. Since both V(x) and V,.(x), x €g, are conservative both A and A=
are dissipative by the initial argument in the proof of Theorem 3.1. But then by

reflexivity of 4, the identification A, = K::: , and the Hille-Yosida theorem, it follows
that A generates a continuous contraction semigroup, and A, generates the dual
semigroup. Then by the initial observation of Proposition 3.4 one has &, < D(?k)

and the equivalence of Conditions 1 and 2 follows from Proposition 3.4. Moreover
the equivalence of Conditions 2 and 3 follows from Corollary 3.9.
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