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REPRESENTATIONS OF OPERATOR BIMODULES
AND THEIR APPLICATIONS

EDWARD G. EFFROS and ZHONG-JIN RUAN

1. INTRODUCTION

It is well-know that any normed vector space V is isometric to a function
space, i.e., a linear subspace of /o(X), the bounded functions on a set X. One may,
for example, let X be the closed unit ball of the dual space, and use the canoniczal
injection of V into its second dual. Similarly, it was shown in {14] that any. L®°*-me-
tricially normed space #” is completely isometric to an operator space, i.e., a linear
subspace of #(H), the bounded operators on a Hilbert space H. In this paper
we turn our attention to matricially normed and dual matricially normed bimodules
for operator algebras. Such bimodules naturally arise when onz considers mapping
spaces for operator algebras. We show that these spaces may often be realized as
operator bimodules, i.c., in many cases we can replace abstract bimodule multi-
plications by opzrator products. These representations enable one to extend various
concrete bimodule results, including a surprising theorem of May ([9], §4.13), to
mapping space bimodules (see (c) below). The latter was needed to complete an
argument in [5].

Given C*-algebras o7, o/, = B(H), with I e o,, o7, we say that a lincar
space ¥ < B(H) is a (concrete) &, &, operator bimodule if o, < ¥ and
vad, V. If W, = o, =2, we say that ¥ is a (concrete) &/ operator bimodule.
The &7, , &, operator bimodules were abstractly characterized in [2]. That approach
is inadequate for the case &, = &, = & since it will generally provide different
representations of o on H for left and right multiplication. The desired
characterization is obtained in Section 2 by using the Christensen-Sinclair theory
of completely positive trilinear maps [3].

A o-weakly closed operator space ¥~ < #(H) is a dual Banach space, and
we say that ¥ together with its o-weak (or weak*) topology is a (concrete) dual
operator space. These spaces are characterized in Theorem 3.3. If we are also given
von Neumann algebras #,, %, = #(H) for which £, = ¥ and V"%, € ¥, we
say that ¥ is a (concrete) dual R, , R, operator bimodule, and as above, if #, = %,
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we say that ¥ is a (concrete) dual R operator bimodule. The normal dual
#1, A, operator bimodules are characterized in Theorem 3.4, and the dual # oper-
ator bimodules are determined in Theorem 4.2. From these representations we con-
clude that for any (abstract) normal dual #,, #, operator bimodule ¥ :

a) given bounded nets r,e€ #,,s,€ Z, and v,e ¥ with r* = r% s -5
strongly and ¢, — v in the weak* topology, then r,v,s, — rvs in the weak* topology.

b) M, (¥") is a normal dual M(%;), Mo(#,)-bimodule,
and given two abstract normal dual Z operator bimodules ¥"; and ¥,

c) if : ¥ >V, is a (not necessarily weak*-continuous) completely bounded
#-bimodule map, then

Pop: Moo(¥7)) > Moy(¥70)

is an M (#)-bimodule map.

It is interesting to note that the representations for matricially normed modules
considered in this paper do not have analogues in the “classical’’ theory of normed
modules.

We consider only unital C*-algebras, and unital bimodules ¥, i.e., we assume
that 1cv = ¢ 1 = v for v € ¥". To avoid confusion from the many uses of the star
symbol, we reserve the symbwol “*”” for dual spaces, and the symbol “*'* for the ad-
Jjoints of operators, and ‘“‘conjugate’’ complex vector spaces. This will naturally lead
to such hybrids as the weak* topology on a dual Banach space, and the streng®
topology on operators.

2. OPERATOR BIMODULES

Reviewing the definitions of {13] and [14], a matricially normed space is a com-
plex vector space together with a norm on each matrix space M,(¥") satisfying

el < o o] B
Z0 @ 0,0 ="vii (2, e M(C), veM(¥)),

and an L®-matricially (resp., L*-matricially) normed space satisfies the additional
condition |v @ wl| = max{|vl], ||w!|} (zesp., |lv ® wi| = o]l + !w!) for v € M(¥),
we M, (). One defines the notions of complete boundedness, and complete iso-
metries between such spaces in the usual manner. It is clear that any operator space
¥ < %(H) with the matricial norms determined by the inclusions M (¥') € A4(H")
is an Le-matricially normed space, and conversely it was shown in [14] that any
L>-matricially normed space is completely isometric to an operator space. We
therefore will refer to these spaces as (abstract) operator spaces.
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An earlier notion that was introduced in [1] was that of an operator system,
i.e., a space of operators & < Z(H) for which & = ¥*, and [ e Z. These have a
matricial ordering determined by the cones

ML) = M (L) n B(H")*.

Such spaces were abstractly characterized in [1]. In all of our representation theorems
for operator spaces, we first embed the operator space in an operator system. This
procedure was first used for concrete operator spaces in [10].

Given a matrix of operators

la v
=% )

a simple calculation shows that 4 > 0 if and only if a, 5 > 0 and for all ¢ > 0,
(@ + &)= Y2p(b + &)~1%|| < 1. In particular, we have that ||v|]} < 1 if and only
if T(v) =2 0, where

I v
2.1) T(v) = [U 1] :

This link between the order and norm plays a key role in what is to follow. In parti-
cular, it determines the canonical L®-matricial normed structure on an abstract
operator system.

Let us suppose that &/, &/, (resp., &) are unital C*-algebras and that ¥
is an operator space which is an &, , &, (resp., &) bimodule. We say that ¥~ is an
o, o, operator bimodule (resp. & operator bimodule) if the bimodule map

2.2) DA\ XV XAy >V (a,0,b) > acvsb

(resp., with &, = o/, = &) is completely contractive. It follows from (2.2) that
if ve M(¥") and aeM,(#)* satisfy ||(a + &)~Y2u(a + €)~/2|| < 1 for all & > 0,
then for any heM, () and ¢ > 0,

(2.3) (6% ab + &)=Y2h* -~ vob(b*ab + &)~ < 1.

To see this let us fix 0 #b € M, (&) (the case b = 0 is trivial) and ¢ > 0, and let
&, = &f|| b*b|l. By assumption |[(a + &) V?ovo(a -+ &) V2| <1, and thus

| (b*ab & £)~12b% 0 v o b(b¥ab 4 ¢)~12|| =
= || (b*ab -+ &)~ Y3 (a + e)VEo (@ + &) V2ov o (a - &) V26 (a + &)Y2b(b*ab +
+ &) V2| <[ (bab + ) 7VE¥(a + &)V || (@ + a)Eb(bFab + §) VR =
= || (b*ab + 6)7126%(a + 5/ 6% [)b(b*ab + )7 <

< || (b%ab + &)~12(b*ab + )(b*ab 4+ &) V2| = | 1] = 1.
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Turning to some examples, let us suppose that W is a normed vector space,
and that & = L(W, &/) is the spacz of bounded iinear maps ¢: W — 7. Iden-
tifying M (&) with L (W, M, («)), it is easy to verify that & is an L®-matricially
normed space. Similarly if 5/” is matricially normed and % = .Z(#", £7) consists
of the completely boundzd linear maps ¢: ¥ — 7, then indentifying M(..7)
with Z(#°, M,(s7)), 7 is again an L=-matricially normed space. It is evident
that letting £ and .# have the “range bimodule operations™ (@ : ¢ = b)(w) =ap(v})d,
we obtain & operator bimoduies.

THEOREM 2.1. Suppose that ¥ is an operator 7 bimodule. Then there exists a
Hilbert space H, a complete isometry 0:7 — 3(H), and a faithful waital repre-
sentation .: o4 — B(H) for which '

Ha- v=b) = 2{a)0{()n(b).

Proof. We let v"% = {v*":vc ¥} denote the “conjugate™ abstract operator
space of ¥". This is most easily dzfined by assuming that ¥  is represented on
some Hilbert space H,, and then letting v* denote the usual adjoint of v. Given
v =[v;le M(¥), we define % e M(?%) by (v%);; = [v;]. The matricial norms
on ¥'* are then given by || v% ' =1v . We let ¥"* have the &/ opzrator bimodule
structure determined by

aswich = (5% -woa¥)".
The bimodule multiplication map
Prad XV EXA -V (a,w, by > asw¥ob

is again completely contractive sincz given a, be M (&7} and w¥ = [wiij e M (¥7%),
we have that

:} Il(ai W*, b)il = ”[ E ®(aip’ WA;::P’ b?l)]: =
»q

=il X @i, whpobgli = il Xﬂ]bé‘j >Wapeap) ] =
2y

2,q

_ PN S IR T S | R
- _{qui‘”qp‘ajp].. — sWeat &
P
o TR el Tt — TR T
= ..bn T h.. BT

il

We let £, = @ ¢ @ 7% be the linear space of expressions of the form

. a o
a@v@w":[ ]
pe

a



REPRESENTATIONS OF OPERATOR BIMODULES 141
with ae o/, ve?, and w*¥ e ¥ *. We let
Mu("([ﬂ) = Mn(&{) @ MII(V) @ MH(V:::)-

Following {14], we see that &, is an operator system with unit 1 =1@® 0 @ 0,
*-operation

(@®v@w) =@ owe ),

and the matricial ordering on M, (%) determined by a@v@ v* > 0 if and only if
a >0, and for all £ > 0, |l(a + &) V2ovo(a + &)~ V2| € 1 (a € M (), v e M(¥)).
We may fix a Hilbert space H, and a unital representation %, < #(H,). The map
A - &Ly (tesp., ¥ = L) determined by ar>a @ 0 @ 0 (resp., v >0 v @ 0)
is a complete order isomorphism (resp., a complete isometry). It is important to
note that the resulting embedding & — #(H,) is not a *-homomorphism. This is
remedied below.

We define a unital o/ operator bimodule structure on %, by
ac(@qy @ v @ w¥)ob = aab @ acveb @ ac(w*)ob.
The corresponding map
{2.4) DA XL XA ——.».Lpbd:(agx,b)ﬁaox«b
is symmetric in the sense of {3] since
(Goxob)¥ = b%ox™ua®.

-To see that it is completely positive according to the definition of [3], let us suppose
that we are givenx =a @ v ® v* e M (£ )+ and b e M, («). Then

bfoxob =b*ab @ b*ovob @ (6% vob)* 20
since from (2.3), (@ + &)~"2cva(a + &)~V <1 for all £>0 implies that
|(b¥ab + £)=12b% c vob(b*ab + ¢)71/2|| < 1

for all ¢ > 0. The operation is completely contractive since given xe M (¥ .,) with
[Ix]i < 1, the positivity of @,, implies that

[a 01711 x} [a 0 }"“ [ aa* arxnh] [ liali®1 a"x°b}
O < o o = < ) ) . .
0 b*] [x* 1 0 b* b¥ox*oa® b*h b¥ox* o g™ | b1

- Since # is an operator system, it follows that jjac xo 5| <|{alj||b{|, and thus for
general X, |laexobi| < lai| ||x[| {Ib]]-
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We now apply the Christensen-Sinclair Representation Theorem for comple-
tely positive multilinear maps to @ (see [3], Theorem 2.8 and Lemma 3.1). It should
be noted that in that proof it is nowhere necessary to assume that the middle
space is a C#*-algebra rather than just an operator system. The argument shows
that there exists a Hilbert space K, a contraction S: H; — K, a completely positive
map ¢: ¥, - %(K), and a representation n of &/ on K such that
(2.5) a-x-b = S*n(a)p(x)n(h)S.

Consider the projection £’ onto [r(&/)SH,]. This commutes with n, and since

SEr(a))ota - x o h)a(h)S = S*n(a))n(a@)p(x)n(b)r(b,)S,
we have that

E'n(a)p(xX)n(b)E’ = E'p(a=x:=b)E'.

Replacing K, S,n, and ¢ by E'K, E'S, E'=nE’', and E'@FE', respectively, we
conclude that (2.5) is still valid, = is unital, and in addition,

(2.6) ma)p(x)n(b) = pla x:b).
Letting T = ¢(1), we have that T > 0 and
m(a)T = @(a) = T=(a).

It follows that T2 also commutes with n. From [1], Lemma 2.2, ¢ = T'/)7%/?
where i : ., — B(K) is completely positive and unital. Thus letting § = T725, v.e
have that

aoxob = St n(@T V2 (x)T12x(b)S = S*r(a)(x)n(b)S.
Since
SEr(@W(x)n®)S = S*Y(aoxob)S,
we have as above that
Fray(x)r)F’ = F'f(acxob)F’,

where F’ is the projection onto [7:(&/)5‘”}, which again commutes with z. Replacing
Kby H = F'K, ¢ by F'yF', z by F'zF’, and S by S, we may assume that we have
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(2.5), (2.6), and (1) = 1. = is unital and faithful, since if @ # 0, then
0#£a®0@0 =acl =S*na)e(l)S,

and thus r(a) # 0.

The map ¢: ¥, — PB(H) is a unital complete order isomorphism since S¥¢@S
is the identity map &, —.%,, and thus it is completely isometric. Composing with
the completely isometric bimodule injection ¥~ — &%, we obtain the desired map 0.

3. NORMAL DUAL OPERATOR BIMODULES

Dual topologies must be handled with care. A Banach space may be isometric
to the dual of more than one Banach space, and the corresponding weak* topologies
may be badly behaved with respect to auxiliarly structures on the Banach space.
Thus the Banach space /! is the dual of C(X) for any countable compact metric
spacc X, and it is also the dual of a Banach space in which the positive cone of /*
is not weak* closed. We will use the following well-known facts regarding the dual
V of a Banach space V, (see [4], §V.5.5). Letting K be the norm closed unit bal! of ¥,

W,: A convex subset D < V is weak* closed if and only if D n «K is weak*

closed for each « > 0. In particular, if D is a convex cone, one need only verify
the case o = 1.

W, : A linear functional fon ¥ is weak* continuous if and only if its restriction
flK is weak* continuous. In particular if a net of weak* continuous functionals f,
converges uniformly on K to a functional £, then f must also be weak* continuous.
More generally, a linear map 6 of Vinto a locally convex space is weak* continuous
if and only if it is weak* continuous on K. Since K is compact, any weak* conti-
nuous isometry of dual Banach spaces must be a weak* homeomorphism.

The following result is useful for constructing preduals.

Lemma 3.1, Suppose that (X, , || ) is a normed vector space, and that (X, | 1)
is its dual Banach space. Given an equivalent norm | || on’ X, one has an cquivalent
norm M W on X, with (X, W w)* = (X, W W) if and only if the set

D=f{xeX:nxm <1}

is weak* closed.

Proof. The necessity of the condition is obvious. Conversely, we may identify
the dual Banach spaces (X, || [)* and (X, m Il )* as the same vector space X*
with equivalent norms || |} and 1 1. The evaluation map ¢: X, — X* is isometric
in the || || norms, and we will use it to identify X, with a subspace of X*. We
thus have a relative W W norm on X,. Letting D* be the norm closed unit ball in
(X*, mm), D, = D* n X, is the corresponding relative unit ball. We claim that
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D, is weak* dense in D*. To prove this, Iet us recall that the circled polor S, of
aset § < X* (resp., SY of u set § < X)is the xe X for which 'x*{(x) <1 for
all x* ¢ § (vesp., the x* e ¥* such that x*(x)' <1 for all x e S). It is obvicus that
(D,), 2 D. On the other hand, if x ¢ D, then since D is weak* closed and convex,
we may choose an clement x, € X, with Ix,(D) < 1 and'x,(x)} > 1, i.e,, we hove
that x ¢ (D,),. It follows that

(D)) = D* = D7,

and the density assertion follows from the Bipolar Theorem. As a result, the map
X = (X,)* is i I isometric. On the other hand, the norms I | and § 7 on X,
are equivalent since they arc equivalent on X™*. It follows that if F is a bounded linear
functional on (X, , Il i } it is determined by an element of X = (X, , . ;)* and thus
the map X — (X,)* is surjcctive. '

Given & Hilbert space /1, we recall that Z(H) has a natural predual, which:
we will denote by #(H),. The weak* topology is also called the o-weak operator
topology, and we shall usc these terms interchangeably. This topelogy coincides
on bounded sets with the weak operator topology. The predual was shown by Sakai
be unique, but we shaii not nced this fact. Since any Banach space can be embedded
in #(H) for some H, the unigueness statement is definitely not true for subspaces
of #(H). Given von Neumana algebras 97, < #(H,), k = 1, 2, any weak* conti-
nuous homomorphism ¢: #. — 92, is strong” continuous on bounded scts (and
in particular is o-strongly continuous), and the same is true for states on #,. States
and represcntations of a von Neumann algebra zre also said to be rormai if they
arc weak* continuous.

Operator multiplication is singly but rot jointly continuous in the weak*
topology. For jeint continuity we will use the following simple result:

Lemma 3.2, Suppose that v,, v,, and s, are bounded nets in $(H), ard ti:at
rE o r¥, s, > s in the strong topology, and v, —> v in the weak* topology. Then
7,08, = ros in the weak* topology.

Proof. Assuming that 7, ¢,, and s, arc contractions, we kave for unit vectors
n and ¢,

(rb,s, — #es)it- & < s (fy — P)7E + (s, — ) oy rtE 4 (v, — et <
< Uy = FFE) (S — s+ iy — o)si P
If 7" is a weak* closed subspace of Z(H), then letting ¥, denote the pre-anni-

hilator, the restriction map 48(H), - ¢, determines a natural isometry ¥~ =~ (¥,)",
where ¥, = @(H), [V .
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Given a matricially normed space ¥~ , we say that a matricially normed space
¥ is the matricial normed dual of ¥, , if ¥ is the dual Banach space of ¥",, and
the pairing

(3.1) M (7 IXM(P) - C:(f; ) = Y, {fips 0,

determines M (#7) as the Banach dual of M, (¥",). If ¥ is an operator space, it
follows that ¥7, is an Zl-matricially normed space, ie., ||[f @ gll = lIfll + ligll
(see [13]). We shall on occasion refer to ¥, as the predual of ¥~ — by this we mean
the given space of which 7~ is the dual. Since we wish to use (W;) and (W,) above,
we shall only consider complcte, i.e., Banach preduals ¥ ,. (3.1) differs slightly from
the usual pairing (f, v) = Y, f;;(v;;) employed in earlier papers (see e.g. [6]). Its
advantages will become clear in the discussion of dual bimodules below.

We are now ready to prove a weak* version of the representation theorem for
opcrator spaces [14].

THEOREM 3.3. Suppose that ¥, is an L*-matricially normed Banach space,
and that v = (¥ )* is the corresponding dual operator space. Then there is a complete-
ly isometric, weak* homeomorphism of ¥~ onto a weak* closed linear space of operators
V1 € B(K) for some Hilbert space K.

Proof. We define
L=Ca?vV v

where 7% = {v*: v € ¥'} is the conjugate matricially normed space (see the proof
of Theorem 2.1), and we have a corresponding identification

M(Z) = M(C) @ M,(¥") & M, (¥™).
We let || |lo be the norm of M, (%) defined by
2 @ v ® w¥lloo = max{]jal], || vi], [|wl]}-

Given f in the Ll-matricially normed Banach space ¥",, we define a linear
functional f* on ¥™* by f*(*) = f(v)~. It is evident that these functions form an
L'-matricially normed predual space ¥"*, which we may identify with the conjugate
spaczs (¥7,)* of ¥°,. Defining

L,=CRYV. @Y%
and letting
M(Z,) = M,(C). @ M,(¥,) @ M, (7))
have the norm

le @/ ® gl = llall + 11 + ligll,
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we may in the usual manner regard M, (&) as the Banach dual of M (%,). In frct
we see that with the norins || | and [ |, the L*-matricially normed Bancch
space .# is the dual of the Ll-matricially normed Banach spacec ., . However, we
wish to change to the operator system norm on %, and use Lemma 3.1 to make a
corresponding modification in &, .

Asin the proof of Theorem 2.1, & is an operator system, and we have a corres-
ponding matricial norm structure determined by | x, < 1 if and only if 7(x) = O
{sec 2.1)). We claim that the corresponding unit ball

D= {xeM(&) x <1}

is weak” closed. To prove this, we use the fact that the operator orders and norms
are intrinsically determined by the matricial normed structure of ¥ .

We have thatx @ ¢ @ w* > 0ifand onlyifa > 0, w = ¢* and for all ¢ > 0,
o+ o)V + &) V2 < )L It follows that M (#)* is weak* closed. To sce this
let us suppose that %, @ v, @ ¢f >« @ v @ v* where o, @ v, @ ¥ > 0. Then
7, = o in matrix norm. Fixing ¢ > 0, (%, + &)~¥* — (2 + £)~%% in norm, and thus

(2% + &) Ve, + 2) V2 o (x + &)~ V(a + &)~V

inthe weak* topology (after applying these expressions to matrices f = [f;;] € M (%)
by using (3.1), this is a consequence of the fact that the scalar multiplication mup
Cx ¥ xC - ¥ is jointly weak* continuous). Since the terms on the left have norm
< 1 and the norm is semicentinuous in the weak* topology, the term on the right
alsc has norm < 1. On the other hand, we have that lix}] < 1if and onlyif T(x) 2 0
(see (2.1)). It follows that the norm closed unit ball D of M (%) is also weak* closed
since if jx,}i<1 and x, — ¥ in the weak* topology, then T(x,) - T(x) weakly*, and
T(x,) > 0imply that T(x) > 0. From Lemma 3.1, we have that M (¢,) hasa predual
norm !! 1! such that (M (&), ') = M (L), " .

Modifying the proof of [1], Theorem 4.4, we let @, be all of the weak* conti-
nuous completely positive unital maps ¢: % - M, . Letting Mg = M,,, and

‘%DI = 6-) BIKI
GDEDy,
be the L>-direct sum, we define
Jh L >R

by letting J”(v) = (0(¢))yeo,,. The argument in [1] shows that this is a completely
positive map. It is obviously weak* continuous (providing the von Neumann algebra
@My, with the usual weak® = o-weak topology). We claim that

(Jm)m: Mn.("‘({;) - Mm('}gm) Rl @ Mm(;\{;;l)

VED,,
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is an order isomorphism onto its image, i.e., if (J™)(x) > 0, then x > 0. Since
M,,.(Z)* is weak* closed, it suffices to show that if f: M, (¥) — C is positive
and weak* continuous, then f{x) > 0 for such x. Using the notation of {i], we
have that

f(x) = P(x)-¢

where ¥ = Af(x): & - M,, is weak* continuous and completely positive, and
& = [e;;] is the matrix of matrix units in M, (this is a positive matrix). We let
b=y(l). Replacing /" by a positive scalar multiple, we may assume that ||b}|=1.
From [I], Lemma 2.2, we have that { = b/2pbh"/2, where ¢ € #,,. Thus , =
= bllPp,biE, where b, = b® ... @b. Tt should be noted that in the proof of
m times
that result, the matrices converge in norm, and thus the limit functional is weak*
continuous. By assumption we have that ¢(x) > 0, and thus f{x) > 0.
It follows that

J=@J" P >B =@ B,
meN

is a complete unital order isomorphism. Since
Jn: Mu(’(f) - Mn(“@)

is weak* continuous and one-to-one on the norm-closed unit ball D of M (%),
and D is weak* compact, J, is a homeomorphism on the unit ball of the image
J (M (Z)). It follows that the image subspace is weak* closed, and that J, is a
weak* homecomorphism onto the image.

RuiMARK. Tt follows from Theorem 3.3 that if 4" is a complete Ll-matrici-
ally normed space, then it is a quotient matricially normed space of #(H), for
some Hilbert space /. To see this we let ¥ = 4*. From Thecorem 3.3 there is a
completely isometric weak* continuous homeomorphism ¢ of ¥ into #(H) for
some Hilbert space H. 1t follows that 0 = n*, where n: 4(H), — % is a quotient
map. This result was proved in [6], Corollary 2.3 under the additional hypo-
thesis that % is a dual matricially normed space.

Having characterized the dual operator spaces, it is natural to ask whether
or not the g-strong and o-strong* topologies are intrinsically determined on such
a space. That this is not the case is seen as follows: Fixing a Hilbert space H with
basis &, &, ... we let £, be the projection onto [, ... .&,]. Then it is readily
verified that the map

¢:%(H) > ®&M,: T - ® ETE,
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is a completely isometric weak* continuous map onto a subspace #~ of ®M,.
Tt follows from W, and W, (see above) that @ is a weak* homeomorphic complete
isometry of #(H)onto . Letting v, € 4(H ) be the rank one partial isometry carrying
¢, onto &, we have that t, converges g-strongly to 0, but ¥ does not converge
g-strongly to 0. It is easy to directly verify that &(r,) converges to 0 in the
g-strong and o-strong™ topologies, or one can use the fact that @ must be g-strongly
continuous (see below) and these topologies must agree on the finite von Neumann
algebra @M,. Thus @(vF) = &(v,)* converges o-strongly to 0. It follows that
although @-1:%" — 4(H) is & weak* homeomorphic complete isometry, it is not
a-strongly continuous, since ¢ does not converge to 0 o-strongly. Similarly it is
not o-strongly® continuous since ¢, does not converge to 0 o-strongly®.

On the other hand, if ¥ < #(F)is a von Neumann algebra, a g-weakly con-
tinuous completely bounded map 9: .4 — A(K) must be continuous in the o-strong
and e-strong® topologies, since using the Wittstock-Stinespring decomposition.
one has that 0(r) = Vr(¥)W, where n 1s a normal representation (see, e.g., [3], §5.7).
Since 7 is then continuous in these topologies, the same is true for (1. It follows that
a weakh* homeomorphic complete isometry between von Neumann algebras must
be homeomoprhic in the ¢-strong and o-strong* topologies.

Finally we note that the Arveson- Wittstock extension theorem caniiot be adupted
1o weak* continwous completely bounded maps on dual operator spaces. To sec this,
consider the mapping @: A(H) —» % = @M, described previously. 1f we can extend
@1 o - A(H)to a completely bounded weak* continuous map ?: @M, — 4(H).
it will follow from above that ¥ and thus &-?! are e-strongly and e-strongly® con-
tinnous, a contradiction.

Let us suppose that #, and #, are von Neumann algebras, and that 4, is
an L'-matricially normed space which is an #,, #, bimodule for which the map

D Ay XA Xy - (s ) =8 for

is completely contractive. We dzfine .2, , %, bimodule operations on ¥ =(¥ ,}* by
{fircvesy ={s for,vy (Fr€#,s €A)

Owing to our convention (3.7), we have for matrices r € A ,(R}). s € M (#,} and
FeM(?),, t e M (V) that

<f> Popesy = L </u (rotv S)ji> = Z <f., E ",,'pl"pq~"1,i> =
iJ ij ol
= Z < 2 ‘Vlli.fijrjpa qu> = <S ¢ f r, L'>
i P9
Tt follows that ¥ = (¥,)* is an #,, #, operator bimodule, since if we choose [
with | fli < 1,

Kfireves)y < flsoferfliioll < isifirfilol
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If one did not use the modified pairing (3.1), the bimodule operations would instead
have been completely contractive for the opposite algebras #2g°.

If the bimodule ¥~ arises in this manner, we say that it is a dual X, %,
operator bimodule. The mappings v — r o vos are automatically weak* continuous,
and we say that ¥" is normal if in addition the maps r+>rov (resp., s+ vos)
of #, (resp., #2,) into ¥~ are continuous in the weak* topologies for each v e 7.
Again if # = R, = 9%,, we say that ¥~ is a dual or normal dual & operator bimo-
dule.

The following is the normal dual version of [2], Corollary 3.3.

THeoreM 3.4. Suppose that ¥ is a normal dual R,, R, operator bimo-
dule. Then there exists a Hilbert space K, a completely isometric and weak* homeo-
morphic map 0 of ¥~ onto a weak* closed subspace of 3(K), and faithful normal repre-
sentations m, of A, on K (k = 1,2}, such that

O(r o vo5) = T (r)O(ImLLS).

Proof. From Theorem 3.3 we may assume that ¥ js a o-weakly closed space
of operators on some Hilbert space ), and that the initial weak* topology coincides
with the o-weak topology. From [3] and [12] there exists a representation

roves = Ruy(r0(v)m(s)T,

where 7, and &, are representations of 2, and #,, 0 is a representation of the C#-al-
gebra o/ generated by ¥” on a common Hilbert space K, and

T Fid
H—K,—> H

Is a diagram of contractions. As in the proof of Theorem 2.1 we may assume
that m, and =, are unital.

Since the bimodule is normal, we may replace =, by its “normal part” 7,
Recalling the standard argument for this, we have that the identity map 2, — £,
has a normal homomorphic extension p: #}* — %, . It follows that there is a central
projection z € #7* for which the restriction of p, p,:#i*z > %, is a normal
isomorphism, and if re ®,, p,(rz) = p(r) = r. We may choose a net r, in £,
which converges o-weakly to z in 21", It follows that »,z converges o-weakly to z
in &1, and since p, is a ¢-weakly continuous, r, = p,(r,z) converges o-weakly to
I=p(z)in By, .

Letting 7, : #* — B(K,) be the normal extension of m, to the second dual,
we define 7,0 %, —» #(K,) by mi(r) = #,(rz). This is a normal representation of
@8, since ¥ —>rz (r € 28,) is the inverse of the normal isomorphism p,. In addition,
we have that for r € #,,

,(r) = 7,(rz) = ()7, (z) = lim m(F)Ty(r,) = lim 7y (rr).
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Since r, converges o-weakly to Iin %, and ¥ is a normal #,, &, operator bimodule,
R, (r)0(0)T = lim Ray(rr,)0(e)T = limrr, 00 = rov.

Similarly we may replace n, by its normal part 7, Deleting the tildes, we may ini-
tially assume that m, and 7, are normal. Letting n (k = 1, 2) be faithful normal repre-
sentations of #, on a single Hilbert space H’, and replacing K, by K = K, & H’,
mbym, @m,0 by & 0,,and Tby T @ 0, , we may assume that the r, arc also
faithful. )

On the other hand, letting E' = [r,(#)R*H), F' = [rny(#,)TH], and 0= E0F,
we have that £’ and F’ commute with 7, and r,, respectively, and

F-res = Rnl(r)?)(u)nz(s)T.

We ciaim that 0 is weak* continuous. To see this let us suppose that we have o net
r.€¥ with r,” <1 and r, » v weak*. Then given . €e Hand r € #,, s & 4,
we have that

N ol )T 7 (RPE = 1% - 1,08 & —
= ¢Fopssn-E = 0e)ra(s)Th - w(r)R*E,

and it follows that £'0(¢,) ¥’ converges weakly* to E'0(v)F', i.e., 6 is weak” continvous

on the unit ball of ¥". From W, (sec above), 0: %" — B(K) is weak* continuous.
Again deleting the tilde, we have that

(3.2) Fovos = Ruy(r)0(v)n,(s)T,

where 7,, 0 and m, are weak* continuous. Since 7 is unital, and v = RO(¢)S. it
is evident that @ is the desired weak* homeomorphism.

COROLLARY 3.5. Suppose that ¥ is a normal dual #,, R, operator bimodule.
Then the bimodule operations are continuous in the sense that given bounded
convergent nets r¥ - . s, —» s in the strong topology, and v, — v in the weak*
topology, then r,ov,cs, — rcuves in the weak* topology.

Proof. From Theorera 3.4, we may identify ¥~ with a weak* closed linear
space of operators on 2 Hilbert space H, and the bimodule operations with left
and right multiplication by 7,(r) and 7,(s), respectively, where m, and 7, are weak*
continuous representations of %, and %,, respectively. But a weak* continuous
representation of a von Neumann algebra must be g-strong® continuous and our
assertion follows from Lemma 3.2.

Given an abstract operator space ¥, we let M(?") denote the linear space of
matrices v = [v;;];,;en which are bounded in the sense that there is a constant K
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such that for all ne N, [|[[v;]; ;<all < K. We obtain a norm on My(¥") by letting

lloll = sup{ji[vijl; j>ull:n e N}.

Identifying M, (M (7)) with MM, (¥"), it is a simple matter to verify that
M.(¥") is again an operator space. Letting Mf, be the matrices with only finitely
many non-zero scalar entries, Mo(¥") is an Mi-bimodule under matrix multipli-
cation. In particular, letting £, = I, @ 0, we identify [v;;];j<. With E,vE, . Any
completely bounded map of operator spaces ¢:¥ — ¥ determines a completely
bounded map oo Muo(¥) = Meo(#7) via @oo(lv;]) = [@(v;))]. It is -evident that
¥ is an M. -bimodule map.

If v, is an L*-matricially normed space, then we have completely isometric
inclusions M {(¥",) <> M, . (¥",). We let M(?",) be the completion of\_) M,(¥",).
It is casy to check that it is a predual of M(¥").

If 7" is a subspace of Z(H), we may identify M (¥") with the bounded operators
v=[v;;] on H* with v;; € ¥". In this representation, the operators [v;;};,j<» = E,VE,
converge strongly and thus weakly* to v. If ¥ is weak* closed in Z(H), then M (¥")
is weak* closed in #(H=). To see this let us suppose that ¥ € M (¥") converges
weakly* to v. Then letting F, = E, — E,_,, it follows that ¢}; = F;u"F; converges
weakly* to v;;, and thus v e M(¥"). If ¥ = Z<=%B(H) is a von Neumann algebra,
then M (#) < #A(H*) is again a von Neumann algebra. Letting H, be a coun-
tably infinite dimensional Hilbert space, Mq(4) is isomorphic to the usual von

Neumann tensor product 52 ® B(H,). For r € My(#) we denote r, = E,rE, € M(%).

COROLLARY 3.6. Suppose that ¥ is a normal dual R,, R, operator bimo-
dule. Then My (¥") is a normal dual Mwo(R,), Mo(R,) operator bimodule under
the operations

roves = limr,ov,os, (weak* topology).

Proof. We choose faithful normal representations n, and a weak* homeo-
morphiccompleteisometry 0:¢¥" — ¥, < %(K)asin Theorem 3.4. Given v € M(¥"),
we have that the operator 0.(v) = [0(v;;)] on K* is just the weak* limit of the oper-
ators 0,(v,). Since 0 is weak* continuous, the same applies to 0. To see this we
note that given 5, £ € K=, the function f(v) = 0,(v)y-£ is the uniform limit on the
closed unit ball D of M (¥") of the functions

ﬁl(v) = 011(011)'111 ) 61! H

where 5, = En, and ¢, = E,£. Since the functions f, are weak* continuous on
D, the same is true for f. It follows that 0. is a weak* homeomorphism on D
and thus a weak* homeomorphism of My(%") onto My (¥";). We note that the same
argument shows that (n, ). are weak* and thus strong* continuous representations
of M(#,) (k =1,2). We let Zpoo = oMo Z)).
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Using Lemma 3.2, it is a simple exercise to verify that M (¥7)) is an %,
Py, operator bimodule under operator multiplication in ZB(K*). We use 0, to
define the bimodule operations on M(¥), i.e., we let

Frves = Rolyoo(r }oo(t)Tace(5)Seo »
where welet R, = R® R @ ... (n copies, | < a2 < oo). It follows from (3.2) that
for any n € N,r e M(#.), s € M (#2,), and v € M {¥"),
(3.3) R(1y), ()0 (N ) )T, = r-vss.
Thus given r € My (%)), s € My{#y), and v € M (¥,
reves = lim R {(m,)(r)0 @) ) {807, = imr,cv,08,.

Since it is evident that M (¥7)) is a normal dus! e, g0 Operator binodule,
the same is true for M(#").

4. NORMAL OPERATOR DUAL BIMODULES

Our next task is to adapt the construction in Theorem 2.t to normal dual
operator bimodules. Throughout this section & will denote a fixed von Necumann
algebra.

oAl

TueoreM 4.1.  Suppose thas ¥7 is normael dual % operatir bimodule. Then
there exist a Hilbert space K, a weak* homeomorphic, completely isometric mapning
0:¢" > B(K), and « faithful unital weak* continuous representation n: £ — A(K)
Jor which

O(r e v o5y = a(r)0(e)r(s).

Proof. As in the proof of Theorem 2.1, we let &, be all expressions
T
r@c@w‘-‘:[ }
W

withre 4, v e?”, and w* ¢ 7%, and we use the same definitions for the matricial
ordering, the =-operation, and the .2 bimedule operations. Again we nuve that
&, is an operator system with unit @ © € © (which we shall denote by /¢ ¢ ,).

On the other hand we may use the technigue of Theorem 3.3, to regard &7y,
as a dual operator system. We let

M%) = M,(i) @ M) @ M,(¥?)
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have the auxiliary norm
Ir @ v @ wHlo = max{r|l, [fol], ||wli}.
Defining
Lo, =R BV, @V
and letting
M(Z2) = M(Z,) ® M,(¥) ® M,(7"})
have the norm

lo @ f@ gl = lloll + 111l + ligll,

we have that M, (¥ 5) is the Banach dual of M,(%, ). Since ¥” is a normal dual

2 operator module, it is clear that the same is true for &#,. The map ¥ —» %, is
a weak* homeomorphic completely isometric injection.

We claim that the cone M, (&L 4;)* is weak* closed. Given a net r, ® v, @ v¥
in M ()" converging to x =r @ v @ v*¥ with

”Vv @ Uv @ v?“oo S 13

we have that in particular, r, converges weakly* to r. A net of convex combinations
of the form

S, (4 >0, Yo =1)

must converge strongly to r, and replacing the r, @ v, @ v} by corresponding con-
vex combinations :

Yl ® v, @ o) = (Pour) ® (Nowvy) © (Leav)),

we may initially assume that r, converges strongly to . Since #, = 0 and ||} < 1,
it follows that for any ¢ > 0, (r, + €)~V/2 converges strongly* to (r + £)~Y2 (see [8],
Lemma 2). Since v, converges weakly* to v, we have from Corollary 3.5 that
(r, + &)~ Y2ou,0(r, + &)~Y2 converges weakly* to (r + &)~ Y2ovo(r + &)~¥2 Since
the terms in the net have norm < 1, the same applies to the limit, and thus
Fr® v e vt 20

As in the proof of Theorem 3.3, it follows that the closed unit ball D in the
operator space norm is weak* closed, and from Lemma 3.1, % is a dual operator
system. Again we see that there is a weak* homeomorphic complete isometry
of &, into B(H) for some Hilbert space H, and we shall identify Z, with its image.
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Turning to the proof of Theorem 2.1, we again have that there exists a faithful
unital representation 7 of .2 and a unital complete order isomorphism ¢: &, — A(K)
such that

FoXxX:z=§ = S*H(I')tp(.\‘)n(s)s
and
n(r)e(x)n(s) = @(rxs).
The argument used in the proof of Theorem 3.4 shows that we may also assume

that 7 is weak* continuous, and that ¢ is weak* continuous on ¥". Letting 0 be the
composition of ¢ with the map ¥~ - £ ,, we obtain the desired embedding.

The following generalizes a result of May (see [9], § 4.13).

THEOREM 4.2, Suppose that ¥, and ¥" are operator spaces which are normal
dual A operator bimodules. If ®:¥", = ¥ 5 is a completely bounded (not necessa-
rily weak* continuous) # bimodule map, then

(Doo: Mao(ﬂlﬁl) - Mao(y/"‘z‘é)

is an My () bimodule map.

Proof. From the proof of Theorem 4.1, we may assume that 2 (¥7)is a
weak* closed operator system on a Hilbert space H, (& = 1, 2), that we have unital
weak* continuous representations w4 — H(H,) for which the bimodule oper-
ations are given by r=x s :=m(r)xn,(s), and that the injections ¥, =% ¥7) are
weak* homeomorphisms. With these assumptions, we note that w,(#) S Z (¥ ).

We may assume that the given map @ is a complete contraction. The map
W: LWV = L 4(¥,) determined by

Y@ v@w*) =r@ o) @ o(w)*
is then completely positive (see [11], Lemma 7.1), and an # bimodule map. The
corresponding map
Voo Moo(L4(71) = Moo (L 5(¥7:))
is given by
Yoli ® 0@ w*) =71 @ Po(v) @ Pr(n)™

It clearly suffices to show that ¥, is an #, = M(#) bimodule map, i.e., that for
F.S €EAw,

W oe(106(1) X T100(8)) = Tao(r) ¥ ool ¥)T2a0(s)-
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We let I, denote the identity in M, (& ,(¥7)). Since ¥ is a unital .# bimodule
map, a simple algebraic calculation shows that ¥, is a unital £, bimodule map for
n € N. Given r € M(2), we have the strong limits

Vos(Maeo(r) = lim W, (m,,(1,) = lim g, () ¥, (1) = Tgeo(r).
On the other hand we have that
(Mool U — ENX] [Maeo(r(Teo — ENXI* = Teo(rUo — ENxx*tyeel (Lo — Er*) <
< [[¥[Fraeor(f — Er®).

¥ is completely positive (strong limits of positive operators are again positive)
and thus it has a completely positive extension

¥ B(H®) - BHD).

Applying the Kadison-Schwarz inequality (see {8], or simply use the Stinespring
representation), we conclude that

Vool taeelr(Loo — EIY) Yol mieelr (Lo — EIX)* <
< Vel{maalr oo — BN} {mislr (oo — EN}¥] <
< el (T — E)r*]) = [|x2mauf (] — E, )]

Since the latter converges weakly to zero, it follows that Yeo(miot(le — E,)]x)
converges strongly to zero. We have that for m > n, E, = E,E,,, and thus

Voo MieorE,)x) = lim ¥, (m,,(E,rE)E,XE,) =

m>»n

= limna,, (E rE)Y,(EXE,) = Tow(rE)¥o(X).

m m
man

We conclude that
Voo(M10o(r)X) = lim ¥ (M0 (F E,)X) =
= 1im Moo (FE,) P oo(X) = Mou(r)Poo(X).
A similar calculation shows that ¥, is also a right My (£)-module map.

Theorem 4.2 may be generalized to suitable submodules of a normal dual %4
operator bimodule ¥°;. We say that a subspace ¥, of ¥, is an My,-submodule of
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¥y if given r, s e Muo(%), and we M (#7), it follows that rovese M (7).
Using the representation constructed in Theorem 4.1, it is evident that the proof
of Theorem 4.2 spplies to bimodule maps @: ¥, = ¥,.

To illustrate theabove theory, let us suppose that # is a von Neumann alge-
bra, and that ¥ is an operator space. We saw above that the space .# = .#(¥", #)
of completely bounded mups ¢:¥" — # is a normal dual # operator bimodule.
Furthermore, we may identify M (.#(¥", #)) with Z(¢", M(4)), letting the first
space have the weak* topology determined by Moo(-¢,) (see above), and (¥, M,(:#))
have the topology of poirt-weak* convergence. In particular, the obvious “range”
Mu(#)-bimodule operations on the latter space correspond to the oner-
ations described above on M {#(¥, #)). To see this we observe that given
8, T € M (#), then letting S, = E,SE,, T, = ETE, and ¢, = E,oE,, we have
that S,¢,T, » S¢T in the point-strong, and thus the point-weak* topology.

Now Iet us suppose that " is a dual operator space, and let 49 = . Zo (¥, %)
be the subspace of weak* continuous mans @ € .4 =.Z((Y", #). We claim that

A is an M-submodile of 4. It is a simple matter to verify that
S Mo 8)) = Mol2°(V, %)),

i.e., a completely boundcd map ¢: %" = M(92) is weak* continuous if and ouly
if ¢ =[] with ¢;;: 7" -> % weak* continuous for all i, j, and that any bounded
(sce Section 3) matrix {¢;], ¢;; €.4°(¥, #) determines a corresponding
© € XYV, Mo (). Given S, T € Z#(H®), the map b+ ShT is weak* continuuvis
and completely bounded on Z(H). It follows that if ¢ € Z9(7", Mz=(3£)), then

SopoT(v) = Se()T
datermines an element of 793", M (%))
Turning to the case considered in {5], we fix 2 von Neumann algebra # < %(H)

and we regard Z(H) and thus Z°(R', #(H)) as & operator bimodules. Then from
ubove we obtain a result uscd in [5], Lemma 4.1.

COROLLARY 4.3. Suppose that @K', B(H)) - B(H) is a completely bounsi-
ed # operatur bimodule inap. Then

Doyt Mool A0(H, B(H))) — M (B(H))
is an Moo(#)-bimodule mas.
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