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EXISTENCE OF THE SCATTERING OPERATOR
FOR DISSIPATIVE HYPERBOLIC SYSTEMS
WITH VARIABLE MULTIPLICITIES

P. STEFANOV and V. GEORGIEV

0. INTRODUCTION

The abstract theory of scattering developed by Lax and Phillips in [10], [11]
enables one to prove the existence of the scattering operator for a large class of
hyperbolic systems and equations. The verification of the basic axioms of the ab-
stract scheme is rather complicated when the space dimension is even. The diffi-
culties increase when one tries to check the axiom concerning the local energy decay
for first order dissipative hyperbolic systems.

.Another idea to study the existence of the scattering operator was exploited
by Strauss [23] for moving obstacles. This idea is based on the strong Huygens
principle, which holds only for odd space dimensions. Petkov [15] and Rangelov
[16] used a similar approach for first order hyperbolic systems and odd space
dimensions.

{n this work we obtain the existence of the scattering operator for a large
class first order dissipative hyperbolic systems in exterior domains. The approach
used in the paper is different from those in [10], [i1}, [14] and enables us to prove
directly the existence of the scattering operator. Our idea is to apply the time-de-
pendent Enss® method (see [1], [2], [3], [19], [21], [22], [25], [26]) proposing a sui-
table adaptation for dissipative hyperbolic systems in exterior domains. We deal
with systems which are not strictly hyperbolic and we do not make any assumptions
on the multiplicities of the characteristics. This leads to some difficulties when we
introduce the incoming and outgoing parts of Enss’ decomposition. Our approach
enables us to study mixed problems in unbounded domains 2 = R™ with a smooth
compact boundary 0Q. More precisely, we consider the following mixed problem

E(x)0u = Gu on (0,00)XQ
0.1) A(x)u =0 on (0, c0) X 0Q
u(0, x) = f(x),
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where

©.2) G = ¥ A) oy, + B(),

7

and E(x), A;(x), B(x), A(x) are matrices with properties described below. The assump-
tions (H,)—(H,) of the next section guarantee that E(x) = E,, 4;,(x) = A‘}, B(x) =0
for |x| sufficiently large and the solution u(z, x) to (0.1) can be represented as
u = V(t)f, where {¥V(t), t > 0} is a contraction semigroup in the energy Hilbert
space Hy. The unperturbed system is connected with the Cauchy problem

(0.3) Edu =G on RXR™, (0, x) = f(x),

m

where G, = Y A‘]’.axj. The operator iE; G, can be defined as a selfadjoint one and
j=1
the solution to the Cauchy problem (0.3) is given by u = Uy(t)f with Uyt) =
= exp(tE;'G,) bzing a unitary group on the Hilbert space Hg .
Since the perturbed semigroup is defined only for ¢ > 0, the basic objects of
the scattering theory — the wave operators, can be defined by the equalities

Q.f = Im V(O *Uy(—1)P (E5 G,

1= +o00

We = limU(—1)JV(t)g for g € HEp.

t—+co

The operators P, (E;'Gy), J, J* and the space HE, are described in Section 1.

The main goal of this paper is to prove the existence of the wave operators
2,, Wand to characterize the image of Q.. This enables one to prove the exis-
tence of the scattering operator

S =wa,.

The present work is a genzralization of [4], where we assume E(x) = I and the prin-
ciple symbol of the systam has nonzero eigenvalues of constant multiplicity. On
the other hand, there are many important examples in the mathematical physics
as the Maxwell equations in an inhomogeneous media, when E(x) # I and the

m
eigenvalues of the matrix Ej? 3 A'}é ; have variable multiplicity (see Appendix 2).
j=1
The Enss’ method is a typical tool for the analysis of Schrodinger type equa-
tions. Since we study mixed problems for general hyperbolic systems, some new

ideas in the scheme proposed by Enss occur. First, we note that it is convenient to
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work with the following analogue of the usual Enss’ condition (compare with
[1]1—-[4D:
(U] lim [[(G — 1)7% — (Go — D~¥x(Ix] > R)|| = 0.

R— 400
R>R0

Here y(A) denotes the multiplication by the characteristic function of the set A,
The condition (0.4) can be proved by using finite dependence argument for first
order hyperbolic systems.

The novelty of our approach is the suitable choice of the incoming and out-
going part in the Enss’ decomposition. The main difficulty is connected with the

fact that the non-zero roots A = a;(¢) of the characteristic equation det().Eo +

m

+ Y, A‘}fj) = (0 may have variable multiplicities and they could be non-differen-
J=1

tiable functions.

Following the approach in [21], [4] and taking into account (0.4), we reduce
the proof of the existence of the wave operators to a suitable estimate for the action
of the unperturbed group Uy(t) on the outgoing and incoming parts of the Enss’
decomposition.

By using the Fourier transform one can connect the action of the unperturbed
group with the following integrals

©.5) Srjk(mﬂ@)m@) expli(Cx — o, & — ra @) 4z,

where the functions a;(&), 7;,(€) in general are non-differentiable, hence we can
not exploit the usual integration by parts argument. A similar difficulty was over-
comed by Yafaev in [26], where polar coordinates are used together with a suitable
modification of the incoming and outgoing parts in the Enss’ decomposition.

In this work we use a suitable modification of the cutt-off functions connected
with the definition of outgoing and incoming parts. The crucial role in the analysis
of the action of the unperturbed group is played by the following estimate

dalx —u, &) — ta;(&)] = Ct

of the phase function in (0.5). The above estimate holds for £ in the “outgoing”
cone and ¢ > #(o) sufficiently large. For small z > O we apply another argument
based on the finite speed of propagations.

It seems that this strategy to treat the case of dissipative hyperbolic systems
of variable multiplicity is used for the first time. In this direction, we mention the
paper [24] of Tamura, where an example of hyperbolic system with variable multi-
plicity is studied by using the explicit form of the characteristic roots, together with
the recent works of Iwashita ([7], [8]).
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Finally, we shall sketch the plan of the work. The assumptions and main
results are formulated in Section 1. Some preliminary results are given in Section 2.
The incoming and outgoing parts of Enss’ decomposition and the action of the
unperturbed group on them are described in Sections 3, 4. We prove the existence
of the wave operator Win Section 5. In Section 6 we analyse the images of the wave
operators and prove the existence of the scattering operator. Appendix 1 is devot-
ed to the proof of the existence of the contraction semigroup ¥(t), while Appendix 2
discusses an important application of the results obtained in the work.

The authors would like to thank Vesselin Petkov and Georgi Popov for their
valuable advice during the preparation of this work.

1. ASSUMPTIONS AND MAIN RESULTS

Our assumptions are close to those given in [17]. Let  be an open domain
in R™ with a bounded complement and boundary of class C. Let G be the operator
defined in (0.2) and E(x), 4;(x), be (rxr) matrices with elements in C'(Q), while
B(x) is a matrix of the same type with elements in C(Q). We impose the conditions:

AT(x) = Aj(x), E(x) is a positively defined Hermitian matrix
(Hl) a) f A
or x €0,
there exist constant matrices E,, A% and a number R, > 0 such

() {that A(x) = 4}, E(x) = Ey, B(x) =0 for |x| > Ry,

the matrix A(¢) = — v A%, has constant rank for & = (¢, ...
(Hl) C) (é) jgl _[g] é (él

s ém) # 0‘
According to the results in [17], the problem (0.1) is well-posed in the case
E(x) = E, = I provided the following conditions are fulfilled:
(Hy) a) rank A(x, v(x)) is constant on each component of 90,

(Hy) b) B*(x) + B(x)— ¥ 2 A(x) <O for xe@,
(Hy) ¢ <u, A(x, v(x))u) J{o for u € Ker A(x), x €0Q,
Hy) d) {

Ker A(x) is the maximal linear subspace of C” satisfying the pro-
perty (Hj) c).

Here A(x, {) = ¥, 4;(x)¢; and v(x) = (b4, ..., v,) is the unit normal at x € 0Q
j=1

pointed into  R™\ Q. The inner products in C” and R™ will be denoted by {-,->.
Let Hy be the Hilbert space L2(Q; C") of vector-valued functions with the
inner product

(i85 = S(E(X)f(x), 2 dx.

Q
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The norm in H, will be denoted by |- ||z. Consider the operator E-'G with the
domain D(E-1G) equal to the closure in the graph-norm (J|f||g + [[E~Gfllz) of
the set of functions f € CYQ; C") N H satisfying the boundary condition A(x)f(x) =
= 0 on JQ. Under the assumptions (H;) and (H,) we prove that E-1G generates a
contraction semigroup {¥(1), ¢t > 0} on Hpg (see Lemma A.1). The solution to the
problem (0.1) is given by u(t, x) = V(1)f.

Let Ker(E-'G)! be the orthogonal complement in the space H; to the
null-space of £-1G. Our last assumption is (see [13]):

(Hy) for f e D(E-'G) n Ker(E-1G)! we have the coercive estimate ||d,f]| <

’ {s cdiGrll + 1/1)-

Here |- || is the norm in the Hilbert space L*(Q; €") which is equivalent to
the energy norm ||-||g. We shall also denote by || || the norm in LXR"; C") and
by (-,-) the inner product in these two spaces.

The dissipative operator E-'G is a perturbation of the operator E3!G, =

= Eq? i A‘}Oxj, which is the generator of a unitary group U,(f) on the Hilbert
J=1 '

space Hg = L¥R™; C) with inner product (f; g)r, = (E,f, g). The solution to the
Cauchy problem (0.3) is given by u(r, x) = Ut)f.

Denote by Jy: H = L2(Q; C") - Hy = L3R™; C") the operator of extention
as zero in R™\Q and introduce the operators EY?: H, - H, E}*: HED — H,,
defined by the action of the corresponding matrices EY/%(x), E}/*. Since the oper-
ators E'2 and E}/* are unitary ones, the operator J = Ej Y2J,E'/2 maps isometri-
cally Hy onto Hg, . Similarly, the operator J* = E-12J}E}*® maps Hg, onto Hy.

Following [21], [4] denote by Hz, the orthogonal complement to the linear
space Hp, spanned by the eigenvectors of E-G with eigenvalues on the imagi-
nary axis.

Our key result is

THEOREM 1.1. Suppose the assumptions (H,)—(H,) fulfilled and n € Hgy-

Then there exists a sequence t, tending 10 +oo, such that

lim sup||[[JV(t) — Uo(t)J]V(t,,)nHEO = 0.

n—+-4-o00 tz0

This result enables one to prove the existence of the wave operator Wf =
= lim Uy(—)JV(2)f.
t—+oo

COROLLARY 1.2. Suppose the assumptions (Hy)—(H,) fulfilled and f € Hgy.
Then the following limit
Wf = hm Uy(—0)JV()f
t— +00

exists.
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The Enss’ decomposition principle, used in the proof of Theorem 1.1, can be
exploited to obtain some information about the spectrum of the perturbed generator.

COROLLARY 1.3. The only possible finite limit point of the pure imaginary eigen-
values of E-'G is zero and any non-zero eigenvalue on the imginary axis has finite
multiplicity.

The second problem discussed in this paper is related to the images of the
wave operators
Q, = s-lim VI *Uy(—1)P, (E5 *Gy),

1= 400

Q_ = slim V) J*Uy(t)P, (E5 'Gy).

t—+o0

Here P, (E;G,) denotes the projection on the absolutely continuous subspace
of the selfadjoint operator iE; G, . Proposition 2.3 guarantees that this space coinci-
des with the orthogonal complement of the kernel of Ej G, .

First, we prove the existence of the wave opzrators Q. by means of Cook’s
method (see [19]). Consider the spaces

Hiw={f1LHgy; lim [ VOf il = 0},
Hiw={fLHgp ; ,PTOO”V*(’V | =0}

As it was mentioned in [4], the above spaces are closely connected with the
images of the wave operators. These spaces are non-empty when disappearing solu-
tions exist, i.e. solutions with V(¢)f = 0 for large ¢ (see [5]).

THEOREM 1.4. Suppose the assumptions (H,)—(Hy) fudfilled. Then the wave
operators Q. exist and

(1.1) RanQ_ = Hip © Hico-
REMARK 1. If we replace the assumption (H,) by the dual estimate
(H3) 11011l < CUGH + [Ifl  for f € Ker(E-1G¥)* N D(E~'G¥),

it is possible to prove that

1.1y RanQ, = Hip © Hr oo

In the case of unitary group V(¢), Theorem 1.4 and Remark 1 yield the com-
pleteness of the wave operators. The equalities (1.1) and (1.1)" show that in geaeral

RanQ_ # RanQ, .
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THEOREM 1.5. Under the assumptions (H,)—(Hy) the scattering operator
S = WQ, exists.

REMARK 2. In Appendix 2 we give an important example of equations satis-
fying the hypotheses (H;)—(H;). That is the Maxwell equations in inhomogeneous
media with strictly dissipative boundary conditions ([12], [13)).

REMark 3. In order to avoid the difficulties connected with the appearence
of two energy inner products (- ")Eo and (-,-)g, we shall reduce our problem to the
usual L2 spaces. Using the unitary maps EV* and E}® we obtain the commutative
diagram

J
H, Hp,

E- 1/2] lEuz y Ej 1/2l TE(l)/z
0
H

0

Now let us formulate Theorems 1.1, 1.4 and 1.5 and Corollaries 1.2 and 1.3
in the spaces H and H,. We have to replace the operators E-1G and Ej'G, by the
operators G = EVX(E -1G)E-Y2 and éo = E}*(E;'G)EyY*, the group Uy(¢) and the
semigroup V(f) by the group U,(t) = EV2U,(1)E; "2 and the semigroup I’}(t) =
= EY®V(t)E~"* etc. The subspaces Hp, and Hg, must be replaced by subspaces
H, and HZ having the same definitions, formally assuming E(x) = I. The oper-
ators (Aio and G satisfy the hypotheses (H;)—(H,) with new matrices AAj, /’1\2, B
and .l?(x) = I. Our advantage of the described reduction is that we can omit the hats
and without loss of generality we can assume E(x) = L.

Remark 4. Later we shall work essentially in the space H, = L%R"™, C").
In order to simplify the notations, given any y € H we shall denote by = Jy¥
the function € H,, which is continued as 0 on R™\ Q. For any operator A4 in H

we shall denote by A the operator J,4J¥ on H,.
ReEmMark 5. We deal with finite range perturbations (the condition b) in

(H,)) only to simplify the proofs. The results of the paper can be obtained for ge-
neral short-range perturbations.

2. PRELIMINARIES

We need the following form of RAGE theorem for contraction semigroups,
obtained by B. Simon in [21].

THEOREM 2.1 ([21]). Let G be the generator of a contraction semigroup V(t) =

= exp(tG), t = O, on the Hilbert space H and Hy be the subspace of H introduced
in Section 1. Suppose that L is a bounded operator and L(G — 1)~ is a compact



224 P. STEFANOV and V. GECRGIEV

one. Then we have
T

lim T-IS WLV@)flEdt =0 for f€ Hy-

T-+oo
1)

COROLLARY 2.2. For any f | H, there exists a sequence 1, — - co, such that
lim (x| < m)V(t,)f] = 0.

n—-+o00

Proof. Theorem 2.1 implies that ||LV(z,)f]| tends to O as n tends to oo for suit-
ably chosen sequence f, - +oco. The coercive estimate (H,) combined with the
Rellich compactness theorem shows that the operator L = y(]x| < RG — 1)~ is

compact on Hy. Thus, the assertion of the corollary is true for any f € Hg n D(G).
Applying a density argument we complete the proof of the corollary.
Next, we are going to study the unperturbed operator G,. Let ¢ # 0 and

@) zab) = ... = a,_do(é) be the non-zero eigenvalues of the matrix A(¢)=
= — Y &4%, where dy = dimKer 4(¢) (see assumption (H,)). The functions a; (&)
are continuous and homogeneous of degree 1. Since we consider the case when the
multiplicities of these eigenvalues may be variable, the functions a;(¢) may have
singularities in R™\{0}. It is not hard to see that the integer r—d, is even and a;(¢)>0
for £ =0, j=1,2,...,(r —dy)/2, while a;(¢) <0 for j > (r — dp)/2. Set

Upin = Min{lg (@) ;1 < j<r—dy, w e S" 1},

Vpax = Max{lgj(@)| ;1 <j < —dy, we S}
Our assumption (H,) guarantees that v, > 0.

ProposITION 2.3. The spectrum of the self-adjoint operator iG, on the space
(Ker Gy) L is absolutely continuous.

Proof. 1t is sufficient to prove that given any set I/ = R with Lebesgue mea-
sure w(U) =0 we have u{¢:q(()eU} =0forj=1,..., r—d,. Without loss
of generality we can assume that U < [4, B], where 0 < A'< B < co. Fix ¢>0

and let 7, = [M,, M, + & be a family of intervals covering U, such that Y a<e
k=1
For j < (r — dy)/2 we have

O, + e ;@
p{é;a)el} = \ do Am-ld) =

sl Mydw
- Smﬂ{[(ﬁ@  elaf@)]” — [Mifa@)]™) dw <

< H(S™ ) 0,) "My + )" — MP] < C(4, By
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The last inequality follows from the fact the function s — s has a bounded
derivative in the set [4, B]. Hence

k(& a(6) € U} < C(4, B) ¥, & < C(4, Bl

k=1

This completes the proof of the lemma.

The next equality, introduced in [4], plays an important role when we have to
compare the perturbed and unperturbed systems.

ProposiTioN 2.4. Let 0 e CP(R™) and 0(x) = 1 for |x| < R,. Denote by Q

the matrix Q(x) = A% 8(x). Then given any h € H, we have the equality
p I

[Uyt) — V(O = — P()0h + OU(t)h +

+ SV(t — $)QUy(s)h ds.

0

2.1

Next we need the following variant of the principle of the causality (see [10]).

PROPOSITICN 2.5. Suppose ¢ € Hy, ¢(x) = 0 for |x| < R. Then (Uy()p)(x) =0
Jor Xl < R—t-v,,.

This assertion leads to

ProrosiTioN 2.6. ([4]). For any integer k > 1 we have -

lim (G — 1)="* — (Go — ) ™"lx(Ix] > R)|| =0.

3. THE ENSS’ DESCOMPOSITION

In this section we shall introduce the form of the Enss’ decomposition in
the phase space, which is essential in our considerations. Given any function
@ € L}(R™; C") we denote by

00 = Fo© =lim | o ew(-ic £) ax

|xl<n

the Fourier transform of ¢. Choose a function f e S(R™) with the properties:

a) f(x) > 0;
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s

b) Sf(X) dx=1;
Cc) supp fe {¢;1¢&] < &y}, where the constant &, > 0 is fixed and will be
&

specified later.
Given a multiindex o = (o, ..., o,) € Z™, consider the function

3.0) £ = (frr)() = Sf(x — D) dy,

where y, is the characteristic function of the unit cube in R centered at a. Thus we
obtain the following partition of the unity in the coordinate space 1 = Y f,(x).
x € Z"z
Further we make a suitable decomposition in the dual space of the variables . As
it was mentioned in the introduction, we can not exploit the velocities v;(¢) = Va;,
used in [4]. In [24] Yafaev suggests to take into account only the sign of a;(¢). Fol-
lowing this idea, we replace the velocities v;(£) by the vector ¢ if a;(¢)>0 and by —¢,
if a;(¢) < 0. More precisely, consider the functions g, € C*(R*) with the properties

3.2) g:0) =0 ifs < —¢;, g =1 ifs > ¢,

¢y = V/(4v,,) and g_ =1 — g .. Denote by II,(¢), II1,(), II_(£) the projections
for nonzero ¢ on the null-space, the space spanned by the eigenvectors corresponding
to the positive and negative eigenvalues of the matrix A(&), respectively. These pro-
Jjections are smooth homogeneous of degree 0 functions for nonzero ¢&.

Define the matrix-valued functions

(3.3) a) G25(8) = g,(K&/IEl, afloal YA u (AN F(AL)),

(3.3) b) Gio(&) = g-o(CE/IE), /D)W n(A)F(A(L)),

where 0 = 4+, ¥, is a smooth function depending on a positive parameter M, such
that ¥, (s) =0, if |s] < 1/Mor is| = M, Y,(s) =1, if 2/M < |s| < M/2 and

FO=GE—)L=ils—i) 2+ (s—1)L
It is clear that the elements of the matrix ,,(A4(&)) are smooth for nonzero ¢. Hence

the same is true for G34(&), GI°,(&). Since (i F)(0) =0, we have ITy(E)(Y y FYA)) =
= (Y FXAENT(E) = 0. Thus, we have the equalities

(3.4) __Zi[Gl‘,‘u(é) + GLR(O) = LI u(ACDF(A(L) = ¥ (A)FAE)-
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D
Consider the following pseudodifferential operators in H,

Pyt =% Y GADNIIL(D),

la>n/2 o=z
Pir =Y, YGIr(D)f.IT,(D).
lai>n/2 o—=x
Here D = (—i0x , ..., —i0y ), G3'5(D), Gir(D), II (D) are pseudodifferential oper-
ators with symbols G2U(¢), Gin (&), IT,(¢) and f, is the multiplication by the func-
tion f,(x). Note that the operators P, Pi" depend on the parameter M. From (3.4)
we deduce that

G5 Y YYUnGG)F(G)IT(D)f.11,(D) + P3* + Pt = Yy (iG))F(iG,).

lai<n/2 o~z

The decomposition we will use in Section 5 is based on the above equality.
Following [19], [21] one can obtain

ProposiTION 3.1. The operators PS™, PI® are uniformly bounded in Hy =
LER"; CYforn=1,2,....
The proof of this proposition is based on the estimate

1PRRIE = %) ¥ (fG55(DYGE (D) [1,(D)h, IT,(D)h) <

o=+ a,f

<Yy Y Sf/}(x) [He p,o(x — YYI(DYR)(y)IT(D))(x)! fo¥) dxdy,

o==% af

where the sum for «, § is taken over |x|>n/2, |f1>n/2, and the functions H, ;5 ,(x) =
= F G EG5(D)] satisfy the estimate |H, , ,(x)| < C(I + |x|)~™ with a

&€,0

constant C independent of o, f (see Lemma 3 from XI1.17 in [19]).

4. FREE TIME EVOLUTION OF THE INCOMING AND
OUTGOING PARTS OF ENSS’ DECOMPOSITION

The main result of this section is

THEOREM 4.1. Let p > R, be fixed. There exist a constant ny depending only
on p and the matrices A}, such that for t > 0, n > ny and fcr any integer N > 0 we
have the estimates

“4.1) llx(Ix] < p)Us()P™]| < Cy(t + 1 + m)~V,
4.2) lx(Ix] < PUFOPN < Cy(1 + t + n)~7,
(4.3) lx(x] < P)UF@)PIR*|| < Cy(1 + t + nm)~V,

with some positive constant Cy depending only on N, p, A9.
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REmARK. The above estimates are fulfilled if
nO 2 4p(8vmax/vmin + 1)

To prove this theorem we need the following

LEMMA 4.2. Let ¢y € SR™) and 0 < r < R. For each integer N and fe H,
we have

[x(xt < Y D)x(ixt > R < ClIL — BYYE+" i o(R — r)~N.
Proof. For |x} < r and |y} > R we have [x — y| > R — r. Hence

WO > RFI)| = ' S F 1) x — D) dyJ <
1YI2R
< R —)~"(supi(l + |ZR)V=(F )20 S (A + Ix — Y= 1)l dy
zeR™

for |x| < r. Using Young’s inequality, we obtain the needed estimate. This com-
pletes the proof of the lemma.

Proof of Theorem 4.1. Set P4 = G D)f, [1(D), 6 = 4. To prove (4.1)
it is sufficient to obtain the estimate

4.4) 1x(x] < PU(OPRGI < Cy(1 + £ + ja)™V
for t > @ and |«| sufficiently large, more precisely for
(45) :0(] > 2p(8vmax/vmin + 1)

Indeed, the equality P3* = 'y} [P9 + P"] and the estimate (4.4) lead to the

@,
laj>nf2

needed inequality (4.1).
To prove (4.4) we consider two cases

(A) p + 10, < 12l/2,
B) p + tv, > |2
provided (4.5) fulfilled.

In the case (A) we use Lemma 4.2 together with the principle of causality. More
precisely, the principle of causality formulated in Proposition 2.5 yields y(lx| <
< p)Uy(1) = x(Ix] < p)Ug()x(Ix| < p + tv_,,). Thus we obtain

lx(xt < p)Us()PASf 1 <
(4.6) < lx(ixt < p + 10, )G2SD)| ix(Ix] < 3lal /4 () T(D) | +
+ {[X(1x| < p + 10, )G (D)x(Ix] > 3lal/4)]] | £ (D).
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Consider the first term in the right hand side of (4.6). Since the norm |jx(x} <
<p + 1o, )GU(D)} is uniformly bounded (see (3.3)), it is sufficient to estimate the
term |jx(Jx! < 3}a)/4)f(x))lc. For this purpose we shall use the definition of

[, = S f(x — ¥ (y) dy, where ¥, is the characteristic function of the unit cube cen-

tered at . We have [x — y|2la| — |y — o} — |x{>ja] — m'2—3a)/4 =|a|/4 — m1/?
provided y esuppy, and x| < 3la|/4. Since f € S, we find

@7 i < 3lald)allo < g ) dz < Cu(l + la)~ .

z1> fa|/4—m‘/2

To estimate the second term in the right hand side of (4.6) we shall use Lemma 4.2.
Setting r = p + tv,,, and R = 3|u}/4, we obtain R — r > |a|/4, when (A) holds. Hence,

lix(x] < p + 10, )GA(D)x(lx] > 3lal/N)| <
(4.8)

SCylIH (L — AVREMGEHO | jale] =M.

From the definition (3.3) of the function G%!! it is clear that the norm ||(1 —

a,0
— AV2EmGou 1 is uniformly bounded with respect to «. Moreover we have

(4.9) Culed™ < Cy(lad/2 + p + 10,) ™V < Cy(1 + £ + [a) 7N
From the estimates (4.6)—(4.9) we get the needed inequality (4.4) in the case(A).

Next, we turn to the case

(B) p+ tv,,, > lal/2. Here we are going to use a suitable modification of the
stationary phase techniques. The action of the unperturbed group Uy(?) has the
following representation

Uy(1)P2g = (2n)~" 89’(1’2,‘2#/))(6) exp(i<x, & — itA(2) d.

We shall investigate only the case ¢ = +, since the case ¢ = — can be treated in a
similar manner. We mentioned in Section 2 that the positive eigenvalues of the
matrix A() are a,(&), . .., a,(£), where s = (r — d,)/2. Let T(¢) be a unitary matrix
whose elements T7;,(¢) are homogeneous of degree 0 functions such that

AT -(&) = diag(ay(©), . .. a,-a,(D), 0, ...,0).
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Therefore, denoting by (v),, k = 1, ..., r, the components of any vector v € C",
we obtain

(410 GOrEeL = %\ DLOexpicx —u, &) — e 0)de
J=1K

where Dg;(¢) = (271)‘"’5‘_, Ty OT (Og+ KENE, afaDNE(D), and  E(8) =

= [(tllMF)(A(f))ﬁ(faHJr(D)(p)(f) exp(i{x, £)). The integration domain K in (4.10)
is defined by

K = {f 7 cl < lf] s c2}3 Cl = (Mvmax)—.l? 62 = M/Umin‘

Introduce polar coordinates 4 > 0, w € 8™-!, such that ¢ = iw. Then the right
hand side in (4.10) takes the form

[4

(4.11) E S S,Dg JQwYexp(Ai¢x — %, ©) — ita @)A1 dAdw.
j=1

-1
S 1

In order to integrate by parts with respect to 2 in (4.11) consider the operators
Li(x, o, @, t, 0;) = —i{x — a, @) — iaw)]~%3,. It is clear that the exponential
function in (4.11) can be represented as LY {exp(ili¢x — a, @) —ita w)))}. The def-
nition (3.2) of the function g, guarantees that {w, o/la|) > —v_../(4v_,), When
o €suppg. (Ko, «/l«>). On the other hand, we have a;(w) > v, ;>0 forj=1,...,s
and we obtain

x— o, 0y — taj(w) < x| + jalv /(v ) — W -
Since we consider the case (B), for |x| < p we find
<x - 4, 0)> - (CL)) p+ pvmm/Z‘)m'\x rr-m/2 Vrnin < 2p mm/2 =

= 2.0 mm/4 min/4'

Comparing (4.5) and the condition (B), we derive p+ v, = |x[2 2

+ 8pv,.. /.- Hence, 2p — v, /4 < and [Kx —o, @) — ta(w) | > m“,,/4
The last inequality shows that the dlﬂ‘erential operators L; are defined correctly
and integrating by parts in (4.11) we obtain the estimate

2

(4.12) (TP @)! < Cyt ™V S do § [(0,)7V(A" T E (w))| d2.

m—1
S L
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m

Now we can use the equalities 0, = Y, /¢ 6¢j and (0" = ), &),
i=1 I3

where ¢, (&) are functions smooth in R"\{0} and bounded in K. This argument

allows us to estimate the right hand side of (4.12) by

Cyt™™ ¥ S'5'1'"‘la‘éﬂfl'"-lEa@)]l de <

la, <N
K

< Cut V1 — AJNA[EmELO.

Since E (&) = [(YuFNALNF ({11 (D)p)(E)lexp(i<a, &) and K is a compact set
disjoint from 0, by using the Leibniz rule in the right hand side of the last estimate,
we obtain

Ix(ixl < P)Us()PZ 0]
< Gyt M| (1 = AVF(f 1. (D)) exp(ia, KNI =
(4.13) = Cut ™[ (1 + XN LJT(D)p)(x + o)l <
< Gyt (E + X2 fo(0) oo I (D)o || <
< Gyt~ Vo,

since f(x + ) = fy(x). Hence, after taking the norms in the ball {|x| < p} of the
both sides of the inequality (4.13) we obtain (4.4) in the case (B).

The proof of (4.2) is similar. Consider (4.3). The adjoint operator Pi"¥ has
the form IT(D)f,Gi"¥. Given any ¢ € H,, we see that the Fourier transform of
Pi"*¢p is a smooth vector valued function with values in RanIT,(¢). Then we have
the inclusion

supp & (P'"*qo) c suppf + suppG (& <
4.14) < suppf, + suppg,(a/lal, &/IE) NK =
< {&:1¢] < ey} + suppg(Ka/lel, E/IED) N K.

Choosing ¢, > 0 sufficiently small we can arrange the property

if & esupp F(Pp) then <oflal, EIED > — 30,,/(80,,,) and

(4.15) {
EekK ={&; af2 << 20}

Therefore, we can apply the above used technique to prove the estimate (4.3).
This completes the proof of the theorem.
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5. PROOF OF THEOREM 1.1

In this section we are going to prove Theorem 1.1, following closely the ap-
proach in [21], [4]. According to Remarks 3 and 4 we have to show that

(CB)) lim sup [{P(r) — Up(OW (1, )bl = O

n—-+oo t>0

for any 1 H, and for suitably chosen sequence 7, — co, depending on . Lemma
2 from Section 9 in [21] asserts that the set

{(G—1)"2Go ; ¢ € D(G) N Hy'}

is dense in Hy. So, it sufficies to prove (5.1) for ¢ = F(iG)gp, where ¢ | H, and
@ € D(G). Corollary 2.2 enables one to find a sequence ¢, tending to + oo, such
that

(5.2) lx(lxl < m) @] >0 as n > + co.

Here ¢, = V(t,)0, ¥, = V(t,)W. We write down the following decomposition, intro-
duced by B. Simon in [21]
o = Wi + W + YRS + Vil
where (see (3.5))
Y = (F(G) — F(iGy))p, +

(5.3)

5 ¥ UaPCILDLID,,
(5.4) Y = (I — Y (iG)) F(iGo) Py s
(55) ‘/’2,‘11\14 = P:?“tNm ‘M:',’M = Priln(?)n'

Let M > 2 be fixed. First we shall verify the property
(5.6) YDyl tends to O as n tends to co.
Consider the inequality
IFGG) — F(G)I@.ll < Cll x(Ix| < n)@,[l +
+ CI[F(G) — FAGy)] 2(x! = m)li [l@all-

This inequality together with (5.2) and Proposition 2.6 guarantees that the first
term in the right hand side of (5.3) tends to 0. In order to estimate the second
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term in the right hand side of (5.3), we shall use the equality
W uFYiG)IT, (D) 1, (D)@, = (¥ F)IGo) I AD)f 11 (D)y(D)p, -

The function y(£) € CP(R™\{0}) is chosen so that y=1 on X’ (see (4.14) and (4.15)).
Using the inequalities |l¢,]| < llo]l and Y} f, < 1, we obtain

” E 2 (l//MF)(lGO)Ha ;Ho'(’ﬁn” <

jel<n/2 o=+

< CY Y AID <

o—=%x |afgn/2

< Gllix(xl < m@,ll + Gl Y Sl > 3n/4) e +

@, <nf2
+ G Y x(x] < 3n/&)IT,y)(D)x(Ix| > n)f.
o=
The property (5.2), the definition (3.1) of the function f,, and Lemma 4.2 lead to

the property (5.6).
The function ¢{*,, can be estimated as follows

(5.7 oSl < I~ ¥u)Flloolloll = (M) >0 as M — +co.

Let us turn now to the analysis of the outgoing part of Enss’ decomposition.
Applying Proposition 2.4, we get

LU — POT Yl < 11003l +
+ 10U Yl + S QU ds.

Theorem 4.1 and the above estimate yield

(5-8) . lim supfl[Ug(r) — V25l = 0.

n—+-oco t2

Finally, we shall prove that

(5.9 lim [l =0,

i+ oo

following the approach in Section 9 of [21]. Since ||0(x)¢,||—0 and since the operators
Pi" are uniformly bounded according to Proposition 3.1, it is sufficient to prove
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that
(5.10) IPin(1 — 6)F(t)p]] -0 as n— + oo.

The property (5.10) follows from

(5.11) IPIFIQL — 0)F(8y) — Up(t)Mll = O,
(5.12) 1PirU(t)gll = 0 for g € H,.
The first property (5.11) is equivalent to

(5.13) 7)1 — 0) = Ui} .
To obtain (5.13) we use the following variant of (2.1)

U3 () = P = — P*(00h + 0US()h +
(5.14)

n S 7t — $)0,UE(s) ds,

0

where Q,(x) is a matrix-valued function with elements in CP(R™). From (5.14)
we derive the estimate

700 — 0) — UFENPE™; < OUF(PR| +

- S IQUR(O PR .
0
Applying the inequality (4.3) from Theorem 4.1, we prove (5.11). In order to check
(5.12) choose a function g € CP(R™; C") with support in {x ; |x| < R}. Then the
equality

IPRU(0) x(Ix1 < B = lix(ixl < RUSOPr*|

and Theorem 4.1 show that (5.12) holds for smooth functions g with compact
support. Since these functions form a dense subset in H, and the operators PirU,(r)
are uniformly bounded, we conclude that (5.12) holds for any g € H,. This completes
the proof of (5.9).
From (5.6)—(5.9) we obtain
lim supl(Up(t) — V() (e, )1l < 26(M).

n—++oo >0

Taking M — + co, we complete the proof of the theorem.
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Proof of Corollary 1.2. We have to show that the limit

(5.15) lim Uy(— 6 (0)f

t—+o0

exists for f | H,. Given any f 1 H,, choose the sequence {f,} according to
Theorem 1.1. For ¢t > ¢t,, s > ¢, we have

1Us(— PSS — Up(— W OFI| < NU(s — 1) — V(s — VA +
+ ”[UO(t - tn) - V(t - tn)]V(tn)fn

Applying Theorem 1.1 and the above estimate, we prove that the limit (5.15) exists.
This proves the corollary.

Proof of Corollary 1.3. Suppose the contrary. Then we can find a sequence ¢,,,
such that G¢, = iw,@,, p, being real numbers tending to the fixed number u # 0
and ||g,l| = 1. According to the results of B. Simon [21] we have G¥p, = — iu,0,
and ¢, L ¢, for k # n. Hence, the sequence ¢, tends weakly to 0. Moreover the
coercive estimate (Hj) implies that |jx(|x] < ») <pk”i] tends to O for suitably chosen
subsequence P - Without loss of generality we can consider that this subsequence

is ¢,. Therefore, setting ¥, = (u, — i) ~2u,p,, we can use the decomposition (5.3)—
—(5.5). Then the properties (5.6)—(5.8) are fulfilled. Following the proof of (5.8)

and using (4.2), we get

(5.16) lim sup [[U @) — V*@OWinyd = 0.

n-ooo ts0
Now we shall use the equality

G1D) G B + G YD) + (s V3% + (s ¥ilae) = Wy ).

Since |j,] € C = sup|u,(, — 1)7% < oo, the first term in (5.17) tends to O,
according to (5.6). The second term can be estimated above by Ce(M). For
the third term we have
s W20 = 1750, WD) = 16, V(OYEED] =
= lim |, (7(t) — Uo(l))lﬁ,?‘f\‘l)l <C sup [(7(6) — Uyl

t= 400

The property (5.8) implies that (", Yo'y tends to O as n tends to + oco. Similarly
one can prove that (,, ") tends to 0, using (5.16). Thus, we conclude that ¥,
tends to 0. This convergence contradicts the fact that

Inll = 1(sa — D) 72l = 1w — D72l # 0.
This completes the proof of the corollary.
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6. PROOF OF THEOREM 1.4 AND THEOREM 1.5
First, we shall prove the existence of the limits

Qo+ = s- lim V()0Uy(— 1) P, (Gy),

t—++-co

Qo _ = s- lim V*(1)0Uy(1) P, (G,).
t—+oo
Here 0 = 0(x) is a smooth function, such that 8(x) =0 for x| < R, + 1 and

Ix) =1 for |x| > Ry + 2. To prove the existence of the operator Q,, we use
the equality

Q.4 (O0f — Qo +(5)f = SV(a)QQU«-a)Pu(Go)fda,

5

where Qg (1) = V()0U(— 1) P,(G,) and Q, = GO — 0G, is a matrix-valued
function with elements in CP(R™). On the other hand, integrating by parts, it is
not difficult to obtain the estimate

(6.1) 1QUn(1) Po(Go)f Il < Cy f(1 + 1t~V

for fe S(R™; C"). Indeed, Proposition 2.3 implies that P,.(G,) = II(D), where
II =1I, + IT_. Hence, we have the equality

Q,Up(1)Pac(Go)f = 2m)="Q, X
(6.2)

-+ oo
X S do S = I(w)(w) explid((x, > — tA(@))] dA.
[

Sm—1
Consider the first order differential operator
L = — [Kx,w) — tA(w)] " (w) id; .

If ¢ > 2 max{x ; x €supp Qy(x)}/v we have the estimate

min

IKx, w) — tA(w)] " (w) < Ct~.

Integrating by parts in (6.2), we obtain (6.1). This proves the existence of the limits
Q, 4 . It is well known (see Proposition 5, XI.3 in [19]) that this fact implies the
existence of the wave operator Q, . The existence of the wave operator Q_ can be
established by the same manner.
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Finally, we turn to the point b) of Theorem 1.4, Here we follow essentially
[4). First, we shall verify the inclusion

6.3) RanQ_ < Hf © HS.

Let y € D(G) be an eigenvector of the operator G with eigenvalue on the imaginary
axis, i.e. Gy =iy for some real number p. Then V()Y = Pexp(itn). From
the equality

(6.4) (Q-f,) = 1i+m (Us()P,(Go)f, V(W), [ € H,,
we conclude that
Q_f,¥) = Ji:ﬁ (Us(1)P, (Go)f, dyexp(— itp).

1t is well known that Uy(r)P, (G,)f tends weakly to O as ¢ tends to infinity. Hence
Q_f,y) =0 for any ¢ € H, and fe H,. The last property leads directly to
the inclusion

RanQ_ < HE.

Given any § € Hy we have lim{{V(t)yl|l = 0. Then the equality (6.4) shows

t— + oo

that Q_f is orthogonal to the space Hy.
Finally, we shall prove that
(6.5) RanQ_ = HE © HZ,
which is the conclusion b) of Theorem 1.4. Consider the restriction of the operator

(6.6) Q_ W = s 1im V¥O)JFP, (Go)Jo V(1)

t—c0

on the Hilbert space H_ = Hi¢ © HZ . The inclusion (6.3) implies that RanQ_W <
< H. . On the other hand the operator Q_W is a selfadjoint contraction operator.
To prove that the closure of its image is H_ it sufficies to check the equality

Ker(Q_W) n H_ = {0}.

Indeed, assuming Q_Wf = 0 for some f e Hf © H, we obtain from (6.6)
the relation

6.7) 0=(Q.WSS) =,11THP“(G0)V(I)/~'II2-
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Denote by Py, = I — P, (G,) the orthogonal projection onto Ker G,. Then one can
prove the equality

(6.8) lim [|Po7(t,)f[| = 0

for some suitable sequence ¢, = + oo. More precisely, there exists a sequence ¢,
tending to co, such that P,J(r,)f tends weakly to 0, according to Corollary 2.2.
On the other hand,

POV(tn)f = POUO(_ tn)V(tn)f - POW./;’ as n — co.

Hence PyV(t,)f tends strongly to O.
From (6.7), (6.8) wz derive that ¥(z,)f tends strongly to 0. Since V{(¢) are
contraction operators, we obtain

lim [V} = 0
+

t— 400

and hence f e H,. Our choice of the element f implies f = 0.
This proves (6.5) and completes the proof of Theorem 1.4.

Procf of Theorem 1.5. One can obtain the following analogue of the inclu-
sion (6.5)
RanQ. < H © H,.
In its proof an essential role plays Theorem 9.1 in [21], which asserts that if Gg =

= jup, u € R, then G¥¢ = — iup and V*(1)p = @exp(— itu). Hence the scattering
operator S = WQ, is well-defined.

APPENDIX Al
Lemya Al. Suppose the hypotheses (H,)—(H,) fulfilled. Then the operator
E-'G is a generator of a contraction semigroup in Hy.

Proof. The proof is based on the results of Rauch [17]. According to Remark 3,
we can assume E{(x) = £? = I. To prove the lemma it is sufficient to show that

(see [18])
$)) Re(Gu,u) < 0 for each v € D(G),
)} Ran(G—I)=H.

The property (1) follows immediately from the definition of D(G). Consider (2).
Theorem 5 in [17] shows that for each f € H the equation (G — Iu = f has a
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unique solution u € H satisfying the boundary conditions in a generalized sense
[17]. This solution belongs to D(G) according to Theorem 4 in [17]. Thus (2) is
established. This completes the proof of the lemma.

APPENDIX A2

Next we shall consider the important exampie of the Maxwell equations

in homogeneous media
ex)0,E=V X H, u(x)0,H=—V x E, on (0,00) X £,
M
(V,e(x)E> =0, (V,u(x)HY) =0 on (0,00) X @,

where E and H are the electric and magnetic fields respectively, while &(x), u(x)
are (3 X 3) symmetric positive matrices, connected with the anisotropy of the media.
The unperturbed system is

80, E =V X H, p0,H=—V X E, on (0,00) X R3,
2 :
(V,8E> =0, (V,uH> =0 on (0,c0) X R
We assume that for some R, > 0 we have &(x) = g, u(x) =y, provided {x] = R,.
According to the results of Majda [13] any strictly dissipative boundary condition
for Equation (1) satisfies the coercive estimate (H,). There is a simple example
of such boundary conditions {13]

?3) nX[E+y(n X H] =0 on 09,

where p(x) is a smooth positive function on the boundary 4Q. Equations (1), (3)
can be written in the form of the mixed problem (0.1), discussed in the previous
sections. For the purpose it is sufficient to set
)
s

A(E) = ( 0 —ex ) Bx) = (‘“’(") 0 !
. +tex 0 0 ulx)

Note that the last two equations in (2) and (1) are equivalent to the properties
f L Ker(E;'G,) and f 1 Ker(E~'G) respectively. The results in [13] guarantee
that the hypotheses (H;)—(H,) are fulfilled. Moreover, choosing g5 = diag(l, 2, 3),
Uo = I, itis not difficult to see that for & = (4 2, 0, 1) the eigenvalues of the matrix
EgrA(¢) are 0, 2, — 24 and each eigenvalue has multiplicity 2. On the other hand,
for any other choice of ¢ # 0 we have four pure nonzero eigenvalues.

So the treatment of the systems with characteristics of variable multiplicities
is well-motivated.

Partially supported by Bulgarian Committee of Sciences Grant 52/87.
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